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NUMERICAL ANALYSIS OF A SECOND-ORDER PURE
LAGRANGE-GALERKIN METHOD FOR
CONVECTION-DIFFUSION PROBLEMS. PART II: FULLY
DISCRETIZED SCHEME AND NUMERICAL RESULTS*

MARTA BENITEZ'! AND ALFREDO BERMUDEZ!

Abstract. We analyze a second order pure Lagrange-Galerkin method for variable coefficient
convection-(possibly degenerate) diffusion equations with mixed Dirichlet-Robin boundary condi-
tions. In a previous paper the proposed second order pure Lagrangian time discretization scheme
has been introduced and analyzed for the same problem. More precisely, the [ (H?!) stability and
[%°(H"') error estimates of order O(At?) has been obtained. Moreover, for the particular case of
incompressible flows, stability inequalities with constants independent of the final time have been
stated. In the present paper [ (H?') error estimates of order O(At?) 4+ O(h*) are obtained for the
fully discretized pure Lagrange-Galerkin method. To prove these results we use some properties
obtained in the previous paper. Finally, numerical tests are presented that confirm the theoretical
results.

Key words. convection-diffusion equation, Lagrangian method, characteristics method, Galerkin
discretization, stability, error estimates, second order schemes

AMS subject classifications. 65M12, 656M15, 656M25, 65M60

1. Introduction. For convection-diffusion problems with dominant convection,
methods of characteristics for time discretization are extensively used (see the re-
view paper [21]). These methods are based on time discretization of the material
time derivative. For space discretization, they has been combined with finite differ-
ences [19], finite elements ([27], [9], [11], [25], [33], [32], [28]), spectral finite elements
([34], [1]), discontinuous finite elements ([3], [2], [4]), and so on. When combined
with finite elements they are also called Lagrange-Galerkin methods. In particular,
when the characteristics methods are formulated in Lagrangian coordinates (respec-
tively, Eulerian coordinates) they are called pure Lagrangian methods (respectively,
semi-Lagrangian methods). The Lagrange-Galerkin method has been mathemati-
cally analyzed and applied to different problems by several authors, primarily in the
semi-Lagrangian version. Numerical solution of convection-diffusion partial differen-
tial equations by this kind of methods is addressed in ([19], [27], [33], [18], [5], [17],
[13]) among others. In the present paper we will consider the combination of the
pure Lagrangian method proposed and analyzed in [8] with a spatial discretization
by using finite element spaces. Studying pure Lagrangian methods is quite natural
because Lagrangian formulations are very common in mechanics. Moreover, from the
numerical results shown in this paper, they do not present oscillations in cases where
classical semi-Lagrangian methods do. These results allow us to conclude that the
advantages of the (new) pure Lagrangian methods over semi-Lagrangian (classical)
ones are that the computational domain is time-independent, they are accurate in
zones of strong gradients or discontinuities of the solution (see Ex. 2 in §5) and terms
of the form O(h®/At) are not observed in the error (see Ex. 1 in §5) as is typical of
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semi-Lagrangian methods.

There exists an extensive literature studying the classical first order characteris-
tic method combined with finite elements applied to convection-diffusion equations.
More precisely, if /At denotes the time step, h the mesh-size and k the degree of the
finite elements space, estimates of the form O(h¥) + O(At) in the [°°(L?(R?))-norm
are shown in [33] (d denotes the dimension of the spatial domain). In [27] error esti-
mates of the form O(h*) + O(At) + O(h¥*+1/At) in the [°°(L?(2))-norm are obtained
under the assumption that the normal velocity vanishes on the boundary of 2. All
of these estimates involve constants depending on solution norms. For linear finite
elements and for a velocity field vanishing on the boundary, convergence of order
O(h?) + O(min(h, h?/At) + O(At) in the [°°(L?(2))-norm is stated in [5], where the
constants only depend on the data. In principle, the method of characteristics has
been introduced for evolution equations but an adaption to solve convection-diffusion
stationary problems has been proposed in [10].

In order to increase the order of time and space approximations, higher order

schemes for the discretization of the material derivative and higher order finite ele-
ment spaces would be used. In [31] a second order characteristics method for solv-
ing constant coefficient convection-diffusion equations with Dirichlet boundary con-
ditions is studied. The Crank-Nicholson discretization has been used to approximate
the material time derivative. For a divergence-free velocity field vanishing on the
boundary and a smooth enough solution, stability and O(At?) + O(h¥) error esti-
mates in the [°°(L?(2))-norm are stated (see also [12] and [13] for further analysis).
In [17], semi-Lagrangian and pure Lagrangian methods are proposed and analyzed
for convection-diffusion equations. FError estimates for a Galerkin discretization of
a pure Lagrangian formulation and for a discontinuous Galerkin discretization of a
semi-Lagrangian formulation are obtained. The estimates are written in terms of the
projections constructed in [15] and [16].
In the present paper, fully discretized pure Lagrange-Galerkin schemes are used for a
more general problem. Specifically, we consider a (possibly degenerate) variable coef-
ficient diffusive term instead of the simpler Laplacian one, a general mixed Dirichlet-
Robin boundary condition and a time dependent domain. Moreover, we analyze a
scheme involving approximate characteristic curves.

As in [8], the mathematical formalism of continuum mechanics (see for instance
[23]) is used to introduce the schemes and to analyze the error. In most cases the
exact characteristics curves are not easy to compute analytically, so, as in the first
part of this work, our analysis include the case where the characteristics curves are
approximated using a second order Runge-Kutta scheme. In [8] a [°°(L?) stability
inequality is stated and [°°(L?) error estimates of order O(At?) are obtained; these
estimates are uniform in the hyperbolic limit. Furthermore, stability and error esti-
mates of order O(At?) are proved in the [°°(H"')-norm. For incompressible flows the
constants in the stability inequalities are independent of the final time. As a logical
continuation of [8], fully discretized pure Lagrange-Galerkin scheme with a wide class
of finite element spaces is analyzed in the present paper. More precisely, [°°(L?) error
estimates of order O(At?) + O(h*) are obtained; these estimates are bounded in the
hyperbolic limit. Moreover, error estimates of order O(At?) + O(h*) are proved in
the (°°(H')-norm.

Usually, the unconditional stability of characteristics methods is only proved un-
der the assumption that the inner products in the Galerkin formulation are exactly
calculated. This is rarely possible so in practice they are calculated using numerical
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quadrature. In general this adds some terms to the final error estimates and, in some
cases, it produces the loss of unconditional stability. There are several papers in the
literature analyzing the effect of numerical integration in Lagrange-Galerkin methods
(see [25], [33], [29], [22], [35], [13]). In particular, in [25] Fourier analysis is developed
for the classical Lagrange-Galerkin method involving piecewise linear finite elements,
when it is applied to the one dimensional linear convection equation and combined
with several quadrature formulas. Unconditional stability has been shown for the
trapezoidal rule and unconditional instability has been proved when the mass ma-
trix is exactly integrated and the term of characteristics is approximated by using the
trapezoidal rule (Lemma 2.4 in [25]). In [7] an analogous approach is developed for the
classical Lagrange-Galerkin method for piecewise linear finite element applied to the
one dimensional linear convection equation. The term of characteristic is decomposed
into two parts; one of them is exactly integrated and the other one is approximated
using the trapezoidal rule (see also [26] for more details). For this scheme condi-
tional stability depending on the CFL number has been shown when the mass matrix
is exactly integrated. Moreover, numerical results showing the influence of several
quadrature formulas in the stability are presented. In the present paper, quadrature
formulas leading to stable schemes are used for the practical implementation of the
introduced methods.

The paper is organized as follows. In Section 2 the convection-diffusion Cauchy
problem is posed in a time dependent bounded domain, a weak formulation of this
problem in Lagrangian coordinates is written and some notations and hypotheses are
stated. In Section 3, we introduce the finite element spaces considered for spatial dis-
cretization and pose the corresponding fully discretized schemes. In Section 4, under
suitable hypotheses on data and solution, [°°(L?) and [*°(H?) error estimates of order
O(At?) + O(Rh¥) for the solution of the fully discretized problem are derived. Finally,
in Section 5 numerical examples showing the above theoretical results are presented.

2. Statement of the problem and weak formulation in Lagrangian co-
ordinates. Let 2 be a bounded domain in R¢ (d = 2, 3) with Lipschitz boundary I'
divided into two parts: I' = TP UT®, with TP N\T'E = (). Let T be a positive constant
and X, : Q x [0,7] — R? be a motion in the sense of Gurtin [23]. In particular,
X, € C3*(Q x [0,T]) and for each fixed t € [0,T], Xc(-,t) is a one-to-one function
satisfying
(2.1) det F(p,t) >0 Vpe€Q,
being F'(-,t) the Jacobian matrix of the deformation X, (-,t). We call Q; = X.(Q,1),
Iy = X (T,t), TP = X, (TP,t) y TE = X (TE,t), for t € [0,T]. We assume that
0 = Q. We will adopt the notation given in [8] for the trajectory of the motion (7),

the velocity (v) and the functional spaces involved (see §2 of [8] for more details). Let
us introduce the trajectory of the motion 7 and the set O be defined by

(2.2) T :={(z,t):2€Q t€[0,T]}, O:= U Q.
te[0,T)

We denote by L the gradient of v with respect to the space variables. If ¥ is a spatial
field we define its material description ¥,, by

(2.3) Ui (pst) == W (Xe(p, 1), 1)

Similar definition is used for functions, ¥, defined in a subset of 7 or of O.
The objective of this paper is the numerical solution of the following initial-boundary
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value problem:

(SP) STRONG PROBLEM. Find a function ¢:T — R such that

(24) ()22 2,1) + pla) vl 1) - mrad o, 1) — div (A(x) grad o, 1)) = f(2.1),

for x € O and t € (0,T), subject to the boundary conditions

(25) ¢(5t) = ¢D('7t) on FtDa
(2.6) ag(-,t) + A(-) grad (-, 1) - n(-, ) = g(-,t) on TF,

for t € (0,T), and the initial condition
(2.7) o(x,0) = ¢° () in Q.

In the above equations, A : O — Sym denotes the diffusion tensor field, where
Sym is the space of symmetric tensors in the d-dimensional space, p : O — R,
f:T—R ¢:Q—R, ép(-,t): TP — R and g(-,t) : TE — R, ¢t € (0,7T) are
given scalar functions and n(-,¢) is the outward unit normal vector to I';.

For a Banach function space X and an integer m, spaces C™([0,T],X) and
H™((0,T),X) will be abbreviated as C" (X ) and H™(X), respectively, and endowed
with norm

2

T m
— () — @) ($)]12
[llomx) = max, {j_rg{‘fl_fmllsa ’ (t)llx} el zm (x) = /0 ;:O e @ dt

In the above definitions, ¢) denotes the j-th derivative of ¢ with respect to time.
Throughout this article some of the following assumptions will be made on the data
of the problem:

Hypothesis 1. There ezists a parameter § > 0, such that the velocity field v is
defined in T° and v € C'(T?), where

(2.8) TS = U ﬁf x {t}, being QO := U B(z,9).

te[0,7] e,
We recall some notations given in [8]

0= |J @, Thi= U G x {1}, being 6 = | B, 0).

t€[0,T] te[0,T] z€TE

Hypothesis 2. Function p is defined in O° and belongs to W1>°(O°). Moreover,
0<v<p(x) ae xe€O,
Let us denote p1,00 = |[p[|1,00,00-
Hypothesis 3. The diffusion tensor, A, is defined in O° and belongs to WH>°(0?).
Moreover, A is symmetric and has the following form:

(2.9) A= ( 0 )
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with Ay, being a positive definite symmetric ny x ny tensor (ny > 1) and where ©
denotes appropriate zero mappings. Besides, there exists a strictly positive constant,
A, which is a uniform lower bound for the eigenvalues of An, .

Hypothesis 4. Function f is defined in T° and it is continuous with respect to the
time variable, in space L?.

Hypothesis 5. Function g is defined in 7}‘5R and it s continuous with respect to
the time variable, in space H'. Besides, coefficient o in boundary condition (2.6) is
strictly positive.

Let us denote by B the d x d tensor,

(2.10) B = < Ig g >

where I,,, is the n; x ny identity tensor. Clearly, under Hypothesis 3 we have
(2.11) A||Bw||} < (Aw,w)q VYw € R%

As far as the velocity field is defined in 7 (see Hypothesis 1), we can introduce the
following assumption:
Hypothesis 6. The velocity field satisfies

(2.12) (I - B)L(x,t)B=0 Y(x,t) e T°.

Remark 2.1. For any d x d tensor E of the form given in (2.9) it is easy to check
that

(EHTwy,wy) = (EHT Bw,, Bw,),

for any d x d tensor H satisfying (I — B)HB = 0, and vectors w1, wo € R9. It will
be used below without explicitly stated.

In [8] the following Lagrangian formulation of the initial-boundary value problem (SP)
has been deduced:

(LSP) LAGRANGIAN STRONG PROBLEM. Find a function ¢, : Q x
[0,T] — R such that

(2.13) puu(p, ) (p,£) det F(p,t) = Div [ Aua(p, )V (p,1)] = fn(p.t) det F(p,1),
for (p,t) € Q@ x (0,T), subject to the boundary conditions

(2.14) P (pt) = op(Xe(p, 1), 1) on TP x (0,7),

A (p, 1) (p,t) + A (p, )V (p,t) - m(p) = (p, t)g(Xe(p,t),t) on TF x (0,T),
(2.15)

and the initial condition
(2.16) D (p,0) = ¢ (p) in O,
where A,, and i are defined by:

Ap(p,t) = F~Y(p, ) A (p, ) F T (p, t) det F(p,t) V(p,t) € Q x [0, T,
m(p,t) == |[F~"(p,t)m(p)|det F(p,t) V(p,t) €T x [0, 7],
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being m the outward unit normal vector to T'.
Moreover, the standard weak problem associated with this Lagrangian strong problem
has been considered:

(LWP) LAGRANGIAN WEAK PROBLEM. Find a function ¢, : Qx[0,T] —
R such that

/Q Pn(D:8) o (9, )8 (p) det F(p, £) dp + /Q Aon (. )V m(p,1) - Vib(p) dp
@It [ A 00 vE) A, = [ a0 det .0 dp
+ /F . m(p, t)gm(p, 1) (p) dAy,

Vi € Hip(Q) and t € (0,7T).

3. Space discretization. Finite element method. In [8] a second order pure
Lagrangian time semidiscretized scheme have been proposed and analyzed. Stability
and error estimates has been obtained. We introduce the number of time steps, IV,
the time step At = T'/N, and the mesh-points, ¢, = nAt for n =0,1/2,1,...,N. In
what follows we use the notations: ¢¥"(y) := ¥(y, t,), for a function ¥(y, t), and

o _ o wnJrl _ 1/}71 N-1
SWl= (o o, Rl = {5 )
n=0

for a sequence 1Z = {yY"}N_,. Let us define the following sequences of functions of p
ki = (Fir) ' Ao XG(Fr) ™" det Fi, mpyx = |(Fig)” " m|det Fpy,

for 0 <n < N.
We propose a space discretization of the time semidiscretized problem introduced in
[8] by using finite elements spaces th, where h denotes the mesh-size and the positive
integer k is the “approximation degree” in the following sense:

Hypothesis 7. There exists an interpolation operator mp, : C°(Q) — th satisfying

[|Tht) — Plls20 < QR °|[Y]|r20 YW eCO)NH"(Q) 0<r<k+1, s=0,1,

for a positive constant Q) independent of h.
In order to obtain fully discrete schemes of the time semidiscretizated problem pro-
posed in [8] (see §4 for more details), we use space V/¥ to approximate space Hl., (Q).
Thus, we obtain the following fully discrete problem:
) Given 62, 5, 5, € ViF, find G acn = {07 acntoy € [ViF]" such that
il il
<‘CA-:2 [¢m,At,h]aq/}h> = <]:A:_27¢h> V?/)h € Vlfv for n = Oa .. '7N -1

Mappings £ 2 [¢] € (H'(Q)) and Fol® € (H'(Q)) are defined by

n+3 . (po Xg,}l det Fg}l +po X} det FI%K) ot — gn
CASICRORS 2 L
Q
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. <(An+1+A )(V¢n+l+v¢n) v¢>
Q

2 2

M < (miid - ) (077 +07) 7¢> |
'R

il det Fpit fitt o Xpit + det Fipe f™ o X2
<]:At 71/]> = 9 7¢
Q
o (TR o X 4 o™ o X
2 Y FR Y

for ¢ € CO(H'(Q)) and ¥ € H' ().

Remark 3.1. Regarding the definitions of LZJQ% [¢] and ]-"Z:r%, only the values of
function ¢ at discrete time steps {t,}Y_, are required. Thus, the above definitions
can also be stated for a sequence of functions ¢ = {¢"}N_, € [H(Q)]N+1.

Remark 3.2. By using the same procedures as the ones employed in [8] to get
stability results of the semidiscretized scheme we can obtain similar stability estimates
for the fully discretized scheme, with H[,(€2) replaced with Vik. In particular, for
incompressible flows we can get a stability inequality with constants independent of
T.

4. Error estimates for the fully discretized scheme. The aim of the present
section is to estimate the difference between the discrete solution of (3.1), (b:;h =
{ ., WY, and the exact solution of the continuous problem, (bm = {on }_,. For
this, let us introduce the notations em)At,h = ¢Z,A\t,h — 7Th¢m, moh = Om — ThOm.
Then, a; - ¢;—A\t7h = m — €m.Atn and, since 19/,n\h can be estimated by Hypothesis
7, the problem is reduced to establish a bound for e@h. Notice that, according to
(2.17), for tpg 1 with 0 <n < N -1, ¢7,\n solves the problem

(4.1) (£ gml ) = (F*E,0) vw e Hlo(@),

where L3 [§,] € (HL(Q)) and F+3 € (HL(Q))' are defined by
<£"+%[@],¢> <poX 3 qet P ¢m)n+% >
Q
+ (A et o) a(mrtientte)
<f”+%,¢> ::<det Frtd it o xPFE g > <mn+§gn+§ oX§+%,1/)>FR,
Vi € HY(Q).
We notice that, as a consequence of Hypothesis 3, there exists a unique positive

definite symmetric ny x n; tensor field, Cy,,, such that A4,, = (Cy,)?. Let us denote
by C' the symmetric and positive semidefinite d x d tensor defined by

(4.2) C = ( o 9 )

Then, A = C? and C € WH>(0?). Let us denote by G the matrix with coefficients
Gij = |grad C;;l, 1 <i,j < d. At this point, we introduce the constant

(4.3) ca =max{||G|” s [ICI.

067 05}
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and the sequences of tensor fields

Oppe i =CoXp (Fri) '\/det Fi, By = B(Fpx) "\/det Fi,

for 0 < n < N, where tensor B has been defined in (2.10).
In what follows, ¢, denotes the positive constant ¢, := maxiepo,7) [[V(:;)]1,00,05-
Moreover, C,, (respectively, J and D) will denote a generic positive constant, related
to the norm of the velocity field v (respectively, to the problem data), not necessarily
the same at each occurrence.
Now let us introduce some additional regularity assumptions on the data of the prob-
lem which are needed to prove the error estimates below.
Hypothesis 8. Functions appearing in problem (2.4)-(2.7) satisfy:
e pm € C?(L™(Q)), A€ W22(0%), A, € C?(WhH>(Q)),
e veC¥TY,
o fm € C2(LA(), f € CHT?), gm € C*(L*(T'R)), g € CY(TZr) and a > 0.
Hypothesis 9. Functions appearing in problem (2.4)-(2.7) satisfy:
e pm € C?(L™(Q)), A c WH>®(0%), A,, € C3(WH>(Q)),
e veC3T?,
o fm € C2(L3(), f € CHT?), gm € C3(LA(T'F)), g € C*(T2s) and a > 0.
LEMMA 4.1. Assume Hypotheses 1, 2, 8, 7. Let ¢, € CH(C°(Q))NCO(H*1(Q))N

H(H*(Q)) be the solution of (4.1) and Qb;,A\t,h be the solution of (3.1). Then there
exist a positive constat ¢(v,T,d) such that, for At < ¢, the following inequality holds:

(44) (LAL* Dol €t hon + €hnen)

< 2 ||Ca (Verhon + Veman) .

"% H@’%K (Vez;rit,h + Ve%,m,h) ‘ ‘:2
‘ \ Mg + M {eﬁit,h + e%,m,h}
. ’ ’ JaetFpitertl,

. 2
son (5|

2
FR
2 2

Ny W
Q

+ |‘¢Zm+1||i+1,2,9 + ||¢Zq||i+1,2,ﬂ) 3

+a
16

L2((tnstnt1),H* (Q))

being ¢ a positive constant, n € {0,...,N — 1} and where o > 0 is the constant
appearing in the Robin boundary condition (2.6).

1~
Proof. First, we decompose <£ZJ£2 (D], eﬁfit,h + e%,m,h> = I + I3 + I3 with

1 1 +1
In — (p © Xlg—}_{ det Fglt + po X]%K det FI%K) 19:’71,]1 - ﬁfn,h 6n+1 + en
! 2 At 1Cm,Ath T Cm AR [
Q
15 = 5 ((ARE + A ) (VO35 + 903 0)  Venhon+ Ver aun).

~n+1 ~n n+1 n n+1 n
<(mRK + M) (ﬁm,h +19m,h) s €m. At,h +€m,At,h>

R

I3 = .
3 PR
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For I, aplying Cauchy-Schwarz inequality, Young’s inequality and Corollary A.4 in
[8], we first have

2

n+1 _n+1
+7H\/detFRK N
Q

gt g
' <e¢ _mh _Tm,h

m,h
At

2
2
n
+~yH,/dethKem7At7hHQ,
Q

(4.5)
where we have assumed that At < K, being K the constant appearing in Corollary

A.4 in [8]. Here ¢ is a positive constant depending on v, T and p; /7. Moreover,
from Barrow’s rule and by applying Cauchy-Schwarz inequality, we deduce

2
i Jo ] (st
S A 2 ﬁm,h b,s dS dp
o At QJt, ( ( ))

2

n+1 n
ﬁm,h - ﬁm,h

At

= é /tth/Q (ﬁmyh(p,s)fdpds = é Hﬁmh}

Finally, by using Hypothesis 7 for s = 0 and r = k we obtain

~2p2k 9
s Jdet Fpten]
= + det I e
L2((tn,tnt1),H5(2)) v RK “m,At,h

(4.6)

L2((tn,tnt1),L2(2))

< g fon|

2
+’Y H\/ det FEKeZ,At,hHQ .
For I}, we apply Cauchy-Schwarz inequality and Young’s inequality, obtaining
=272k 12 2
13 < eQ?h?* (|lop i1 0.0 + 1omlEs12.0)

1 ~n n n 2 1 ~n n n 2
(4.8) + 3 HCR}_{l (vem—t_it,h + vem,At,h) ‘ ‘Q + 3 HCRK (vem—t_it,h + vem,At,h) ‘ ‘Q )

2
Q

where we have used inequalities (A.2) and (A.4) from [8] and Hypothesis 7 for s =1
and r = k+1. Here ¢ is a positive constant depending on v, T" and ¢4 and is bounded in
the hyperbolic limit. For I3 we apply Cauchy-Schwartz inequality, Young’s inequality,
inequalities (A.2) and (A.4) from [8] and Hypothesis 7 for s = 1 and r = k+1, getting

13 <2Q*p ([lom ™ 1R 12.0 + 1omllieioq)
‘ \ Mg + M {S%J,rit,h + e%,m,h}

where we have used the continuity of the trace mapping, i.e., there exist a positive
constant cq such that [0, |[Fx < call9h, 113 5., for I =n,n + 1. Finally, summing
up (4.7), (4.8) and (4.9) we get inequality (4.4). O

THEOREM 4.2. Let us assume Hypotheses 1, 2, 3, 4, 5, 8 and 7, and X, €
C5(Q x [0,T)]). Let

(4.9) ,

3

+ «
16 'R

$m € C3(L2(Q)) N CHCO(Q) NCOUH T (Q)) N HY (HM(Q)),

(410) Ve € C«Q(HI(Q))7 ¢m|FR c 02(L2(FR)),

be the solution of (4.1) and let ¢ZA\t,h be the solution of (3.1) subject to the initial
value ¢¥ n, ;= T ¢%,. Then, there exist two positive constants J and D, being the
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latter independent of the diffusion tensor, such that, if At < D we have

\/gH\/ det Fric (¢m — bm,at.n)|li(z2(0))
A ~ —_—
+ 3 BrrS [Vém — Vom atn)

(4.11) "‘\/%H\/‘W@ — ®m,atn]

HIVomlloz@r ) + [IVom - ml|c220ry) + [[dmllo2r20r))

12(L2(Q))

< J AL (|l¢mlles 2@
12(L2(TR))

I det Ffinllcz2(z2)) + [ fllcrersy + [1Mgml|ceperry) + ||9||Cl(TI§R)>

(o

Loy T H%HCO(HW(Q))) '
Proof. First, recall that €, atn = m — b + ¢:7A\t7h € [VFIN+1. Then, by
using (4.1) and (3.1) we have

T ent] n _ /[ prtag T ekl n
<£At [em,At,h]vem,At,h+em,At,h = (Lt [0m7h]7em,At,h+em,At,h

1 — 1
(£ = £07) [Dml eintAen + €mann) + (Far? = FH etk nt )
(4.12)
for n € {0,...,N —1}. A lower bound for (4.12) is given by Lemma 4.1 in [8].
Moreover, by applying Lemmas 4.6, 4.7 and A.8 in [8], we have an upper bound for

(4.12). By jointly considering these lower and upper bounds of (4.12) and inequality
(4.4) we deduce

2

2
1 n
o T At H\/po X det FgKem,At,hH

1
a7 |[ Voo Xiid aee e,

+§ HCR-I‘F(l (Vem-t_it,h + Vem,At,h) } ’Q + 3 HCRK (vem-t_it,h + vem,At,h) } Lz

2
2
IR

Q

a ~n+1 ~ n+1 n
"’g H Mpr +Mer (€ aen T €m,Ath

(413) 1 1012 4
n+3 n+3 Cg }
< cq 2 2
= (Hgﬁﬂ & Q>+ a (
2 2
+ H\/ det F§K6%7At7hHQ>
Q

+3cy (‘ ‘ 4/ det Fg}lezzrit)h

+’5Q2h2k (

TR
n+%
Lr

2 2 1
n+ bl
} Ll ’
Q TR

]

2
nt11(2 n |12
La(mtmennitiiay 1O Mlis120 ||¢m||’““’2’9> ’

q
At
where ¢ = max {1,1/7, p1,00(cy + CyAt)/~}, € is a positive constant and ¢, and ¢,
are the positive constants appearing in Lemma A.8 from [8]. For n = 0,... N, let us
introduce the notations

0} = |[v/det Fpreels aenlld

A n—1 ~ s s 2
= 35 [ B (Teshon + Vean) |
s=0

0

3N

)
Q
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n—1

n . a ~s+1 ~ s+1 s

O = g E :AtH\/ Mpr + Mk (em,At,h + €m,ath
s=0

Now, for fixed q, 1 < ¢ < N, let us sum (4.13) multiplied by At from n = 0 to
n =q — 1. We have,

2
TR

q—1
(4.14) (1 - 32At)0. + 62 +8, < 62At > 6} + p17’°° 0}
n=0
At 1 n—% 2 n—% 2 4CgAt 1 n—% 2 n—% 2
+e, ;(‘ et || +léF Q>+ z ;(‘ et || L+l FR)

qg—1
T ([
n=0

by using Hypotheses 2 and 3. Some of the terms on the right hand side of (4.14) can
also be bounded. More precisely, by using Lemmas 4.6 and 4.7 in [8] we get

2
n+1(]2 n |12
B2t R Al (‘ (95 20+ ”%“’““vm)) ’

q—1
(1= 3EA00} + 02 +0, < 6CAL Y 04+ (03 + C)

n=0

where C' contains the constant terms multiplied by h?* and At*. For At small enough,
we can apply the discrete Gronwall inequality (see, for instance, [30]) and take the

—_—

maximun in ¢ € {1,..., N}. Then, noting that €, A, , =0, ¢m — Gm.ath = Im,n —
€m.At.h, Using Hypothesis 7, and bounds A.2 and A.4 from [8] the result follows. d

Remark 4.1. Notice that constant J appearing in the previous theorem is bounded
in the limit when the diffusion tensor vanishes. In particular, Theorem 4.2 is also valid
when A = 0.

Remark 4.2. In the particular case of pure convection problems, that is A = 0,
and assuming Dirichlet boundary conditions (I'? = T'), an error estimate of the form
O(R**1) + O(A#2) in the [°°(L%(Q))-norm can be obtained by using analogous proce-
dures to the ones in the previous theorem.

Remark 4.3. Notice that in the previous theorem, an error estimate of order
O(A#?) + O(h*) for the semi-sum of the gradient in [2(L%(2)) norm is obtained.
Assuming additional regularity this estimate can be improved. Specifically, in the
following theorem we state an error estimate of order O(At2?) 4 O(h¥) for the gradient
in 1°°(L2(2)) norm. Furthermore, an error estimate of order O(At?) + O(h*) for the
time derivative is established.

THEOREM 4.3. Let us assume Hypotheses 1, 2, 3, 6, 4, 5, 9 and 7, and X, €
C5(Q x [0,T]). Let

Ligy Om € CHIA(Q) NCHC! (@) N COHM (@) N H (HE1(Q) with
(4.15) Vo € C3HHN(Q)) and b |pr € C3HL2(TF)),

be the solution of (4.1) and ¢:,A\t,h the solution of (3.1) subject to the initial value

O atn = ¢, Then, there exist two positive constants J and D such that, if
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At < D, we have

\/Z Hm@t\[% — Gmar]
+\/§ ‘ ‘ERK (v¢m/—\v¢m,At,h)

(4.16) +\/§H VMREK (ém — Om,atn)

HIVomllez@r ) + IVom - ml|csp2rry) + | dmllcs2mry)

12(L2())

1>=(L2(2))

< J AL ([[émllos 2
120 (L2(T'R))

+[det F fmllc2(20)) + [ fllcrirs) + IMgmllcsp2rry) + ||9||02(TF6R))
I RE (H(bm‘

o) HgbmHCO(HM(Q))) '

Proof. This result can be proved by using similar procedures to the ones of
the previous theorem but applying (4.1) and (3.1) for e:f:itﬁ — €m at,n instead of

zj’it nt €m.arn, Lemmas 4.2, A9, A.10 from [8] instead of Lemmas 4.1, A.8 from
8], and the followmg bound 1nstead of (4.4) (see [6] for further details):

qg—1

N3 ntl n
E : <£At [Fim,nl, Cm,At,h ~ Cm,At,h
n=0
2
n+1 n—+1 n n n+1 n
= 4At Xpg det Frpp +po Xppdet Fipye (em,At,h - em,At,h)
Q

TR

4 HBRKV m, h H\/ mRKem,At h
(4.17) _ ,
+EALA Z HB}%KVeZLAt’h‘ ’Q + aAt Z [/t |
n=1 n=1

() 90+ 50,9 ),
_% ((Mrx +1) Vnn + ) 769n,At,h>FR

HEQ2h2k (H@n‘

2
oy +10m [y ).

where ¢ = max{Cyca/A,Cy}, At < ¢(v,T,d), ¢ is a positive constant, o > 0 is the

constant appearing in the Robin boundary condition (2.6) and ¢ € {1,...,N}. O
Remark 4.4. In the particular case of diffusion tensor of the form A = eB with

€ > 0, constants J and D appearing in the previous theorem are bounded as ¢ — 0.

Approximate solution in Eulerian coordinates

In order to obtain an approximate solution of ¢™ in Eulerian coordinates, we are
going to calculate the spatial description of material field ¢ .,,. To do this, we
distinguish two cases: o

e X. known. In this case, we calculate qﬁ/A;l ~ (E as follows

(4.18) PRep (1) = Oy arn(P(2,t0)) Yo eQ, 0<n <N,
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where P is the reference map of motion X, (see [8] for more details).

e X, unknown. In this case, we use accurate enough approximations of P pre-
serving the error order of the method. More precisely, we use the second order
Runge-Kutta method considered to approximate the characteristics curves.

Then, we calculate qﬁ/A;l as follows
(4.19) Prin(@) == arn(Pric(x) Ve, 0<n<N.

being Py the second order Runge-Kutta approximation of P". Notice that,
for a general velocity field, point Ppj (x) can go out of the computational
domain. In this case, we approximate ¢}, , (Phx(x)) by

(4.20) PRen(Pric () = b ae (@),

being z¢ the nearest point on the boundary to Pj,(z). Notice that, if
the velocity vanishes on the boundary of Q and At is small enough, then

PR () = Q (see Lemma A.7 in [8]). In Example 2 below v satisfies this
property.
Remark 4.5. Notice that, from the estimates obtained in Lagrangian coordinates
and by using appropriate changes of variable, we can deduce analogous estimates in
Eulerian coordinates (see [6] for further details).

5. Numerical results. In order to assess the performance of the above numer-
ical method and to check the convergence behavior predicted by the above theory, we
solve two test problems in two space dimensions. The first one is the rotating Gaussian
hill, for which we verify rates of convergence for the second order pure Lagrangian
method described in the present paper and the analogous one of first order in time.
The second example has a solution developing a steep layer and a velocity field which
is not divergence-free. For this problem, we compare the numerical results obtained
from the pure Lagrangian method proposed in this paper, with the analogous one of
first order in time and with semi-Lagrangian methods. In Example 1, we calculate the
error between discrete solution ¢p a¢, given in (4.18), and exact solution ¢. For this,
we approximate the theoretical H'(€);, ) and L?(£;,) norms by using a quadrature
formula exact for polynomials of degree 5. The functional spaces endowed with these
norms are denoted by Hj (€, ) and L?(Qy, ), respectively. Thus, we denote by [>°(A),
being A = H} (Q,), L3 (Q4,,), and [2(L3(2)) the spaces equipped with the norms

N
o o— n 2
2] =\ A2 Iz 0

N n -~
) %135{”1/) - Hd} 12(L3(9)

10 (A

Firstly, we show numerical results for the problem of the rotating Gaussian hill and
then for the problem including a steep layer.

Example 1

This is a convection-diffusion problem (see, for instance [31] and [13]), aiming to check
the properties of the numerical solution obtained with the scheme analyzed in this
paper. We also make comparisons with some variations of it by changing the time
discretization and the method to compute the characteristics. We also compare our
method with the standard first order characteristics one combined with piecewise lin-
ear finite elements.
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The spatial domain is Q = (=1,1) x (=1,1) and T = 2x. The diffusion tensor is
A = al with a given below. Moreover, v = (—z2,21), p = 1 and the right-hand side
f = 0. We also impose appropriate Dirichlet boundary and initial conditions such
that the solution of the problem is

(5.1) (@, 72,1) = — 2 exp {_ (@) — 20 + F(H) — yo)? }

b+ 4at b+ 4at

where

T =x1cost+xasint, y = —xysint + x2 cost,
(e, ye) = (0.25,0), a = 0.001, b= 0.01.

We solve this problem by using several pure Lagrangian methods. More precisely,
let us denote by (L£G); the method which arises from the Lagrangian weak problem
(2.17), by approximating the material derivative at ¢t = t,,+1 by a first order backward
formula and the characteristics by a first order Euler formula (see [8] for more details),
combined with continuous piecewise-quadratic finite elements for space discretization.
Similarly, we denote by (£G)s the method which arises from replacing in (3.1) the
second order Runge-Kutta approximation of X. by a third order Runge-Kutta ap-
proximation. Finally, we denote by (£G)s the second order scheme given by (3.1).
We have also chosen for space discretization of problems (£G)2 and (£G)s piecewise
quadratic finite elements, that is k = 2. Moreover, we have solved the pure convection
problem (i.e. a = 0) with the (£G)2 scheme. All these methods were combined with
an exact quadrature formula for polynomials of degree 2 in all the terms. It is well-
known (see, for instance, [25], [33], [29], [35], [13], [7]) that the numerical quadrature
may add terms to the final error of the form O(h%/At) and, in some cases, it produces
the loss of unconditional stability. We do not address this issue in the present paper.
Anyway, for this particular example, neither these errors nor an unstable behaviour
are observed (see Figure 5.1). Moreover, it is easy to prove the following properties:

det Fiipe — det F™ = O(AL?), A — A = O(AL?).

Therefore, for this example, the error estimates for (£G)s scheme are of the form
O(At3) + O(At?) + O(h?). This fact can be observed in the Figures below. In

I‘”(Li(ﬁ‘ )) error curve I”(H:‘(Q‘ )) error curve
2 " 5 n
10 10
o - = I
10" TR R \&&m =
* =% 0 N
**& = 100 * o050 ® - ® ®
-
~ 107+
g 10" SN S
5 S g S
5 10° 8 10
g g
S 00| [—e—(o), \ = (o), \
@ T ™~
—— (o), N —+— (LG,
10
10 ——y=CIN? 1 —y=cN® \
s
10 (6), | 10 (Le),
— — y=CIN — — y=CN
0™ 107

10° 10° 10 10° 10* 10° 10° 10"
N: number of time steps (A t=(2m)/N) N: number of time steps (A t=(2m)/N)

Fic. 5.1. Ezample 1: computed 1°°(L%(Q4,,)) (left) and 1°°(H}(Q4,,)) (right) errors, in log-log
scale, for a = 0.001 versus the number of time steps, for a fized spatial mesh of 133 x 133 wvertices.
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IN(LE(Qt )) error curve

N - - (o),
~ - = y=cIN® |4
N S — y=CIN?
,\\:\\\ S ]
~ .
\‘\\\‘ ~
ST~
R .
N ~
N ~_
100 2

N: number of time step (A t=(2r)/N)

Relative error (%)
=
S

Iz(Li(Q)) consistency error curve

~ - = COHSIS[EﬂCy errors

RN ~ = y=CcIN®

RN — y=CIN?

\:\\ > ~
\\\ RN
ST AN
- \\‘\ - =
N \\\\\
N T~ ~ o

N: number of time step (A t=(21)/N)

15

Fic. 5.2. Ezample 1: computed 1°°(L2 (4, )) errors (left) and 12(L% () consistency errors

(right), in log-log scale, for a = 0.001 versus the number of time steps, for a fixed spatial mesh of
521 x 521 wertices.

Figure 5.1 we have fixed a uniform spatial mesh of 133 x 133 vertices and shown the
1°° (L3($,)) and 1> (H}(€, )) errors versus the number of time steps. Apparently,
these results show that schemes (£G)s and (L£G)s possess third-order accuracy in
However, this behaviour is due to the fact that for “large” time steps the

time.

10

10

10 F

10°F

10°

IN(LE(Qt )) error curve

Relative error (%)

——(LG),
— 3
~ — y=CIN}

o),

NX:Ny: number of degrees of freedom in each spatial direction (h:l/NX)

Relative error (%)

IN(H;(Qt )) error curve

—e—(LG),
———y=CIN?
(o),

NX:Ny: number of degrees of freedom in each spatial direction (h:lINX)

Fic. 5.3. Ezample 1: computed 1°° (L% (Q4,,)) (left) and 1°°(H}(Q4,,)) (right) errors, in log-log

scale, for a = 0.001 versus 1/h, for At = 27 /2000.

O(At3) term dominates. This claim has been checked by plotting the errors using a
finer mesh with 521 x 521 vertices (Fig. 5.2, left) and also by showing the [? (L}(Q2))
consistency errors versus the number of time steps (Fig. 5.2, right). We can observe
that for large time steps the term O(At®) dominates. Next, the O(At?) error term is
the highest one and finally the spatial error dominates in the interval where the curves
are horizontal. In fact, in all the above figures we can observe, for fixed h, that the
error curves become horizontal as the time step decreases below a threshold; this is
because the spatial O(h?) term dominates the global error. In Figure 5.3 we represent,
the computed (> (L7 (€2, )) and [°° (H}(£,)) errors versus 1/h for a fixed small time
step, namely At = 27/2000. We can observe that, as predicted by Theorems 4.2 and
4.3, the (£G)2 scheme possesses second-order accuracy in space in the [° (Hj (€, ))-
norm. Moreover, third-order accuracy in space in the > (L% (€2, ))-norm is observed.
In Figure 5.4 we represent the errors, obtained with the (£G)s scheme for the pure
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Im(Lﬁ(Qt )) error curve Error curves for the (LG)2 scheme, for A t=(2m)/2000

10° 10
—e— (LG),
- 2
. =CIN

107t Y; ]
107 s
S &
5 8
ST @
B 10 2
k] k<t
k] & _ o I°(HY@, )) norm
[ -2 ht

10 ¢ 4 10 "¢ n

- y:C/Nf N
@ 2,
10k ] 0l I (Lh(Ql")) norm
-~ y=CoIN?
107 1 " S 0 10" =
10 10° 10 10 10
N: number of time steps (A t=(2m)/N) NX:Ny: number of degrees of freedom in each spatial direction (h:l/NX)

Fi1c. 5.4. Ezample 1: computed errors for the (LG)2 scheme, in log-log scale, for a = 0. On the
left, the lm(L%(Qtn)) error versus the number of time steps, for a fized spatial mesh of 265 x 265
vertices. On the right, the 1°°(L% (Q4,,)) and 1°°(H}(Q4,,)) errors versus 1/h, for At = 2 /2000.

convection problem (a = 0). On the left, we fix a uniform spatial mesh of 265 x 265
vertices, and show the 1> (L% (€2, )) errors versus the number of time steps. On
the right, we represent the computed [* (L7 (€2, )) and 1°° (H}(€y,)) errors versus
1/h for fixed small time step At = 27/2000. Notice that, for the pure convection
problem, the spatial error is dominant in the total error. These results show that, as
predicted in Remark 4.2, the (£G)2 scheme possesses third-order accuracy in space, in
the [*° (Li (Qtn))-norm. Moreover, it is remarkable that even for the pure convection
problem, second-order accuracy in space is observed in the 1 (H}\ (€, ))-norm. In

\ A,

(N i
| i :‘I{I'““ Ui}
i : b

i
I

y -1 -1 X, -1 -1

Fic. 5.5. Ezact (left) and computed (right) solution of Example 1 with a = 0.001 at time
T = 27, with the classical first order scheme and mesh parameter h = 1/132 and At = 27 /400.

Figure 5.5 we can see the exact solution compared with the solution computed by
using the classical first order characteristics method combined with piecewise linear
finite elements. In Figure 5.6 the exact solution is compared with the numerical
solution obtained by using the second order method (£G)s proposed in the present
paper. In both cases a uniform spatial mesh of 133 x 133 vertices has been used and
we have chosen the number of time step minimizing the [°° (L?(€,)) error. Clearly,
(LG)2 achieves better results than the corresponding classical first order method.

Notice that, for this example, the exact characteristics can be easily determined.
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i
fI
i

il

y -1 -1 y -1 -1

Fi1c. 5.6. Ezact (left) and computed (right) solution of Example 1 with a = 0.001 at time
T = 27, with the second order scheme (L£G)2, mesh parameter h = 1/132 and At = 27/100.

In other words, the analytical expression for X, is known:
_( cos(t) —sin(t) D1
Xelp,t) = ( sin(t)  cos(t) p2 )’
Example 2

We consider a second example to compare the numerical results obtained with semi-
Lagrangian and pure Lagrangian methods. It has a solution developing a steep layer
and a velocity field which is not divergence-free. This example has been solved in [17].
The spatial domain is Q = (0,1) x (0,1), T =1, and

v=Vy, A=al, f=0, p=1,
being
P(x1,22) = (1 — cos(2mz1))(1 — cos(2mwx2)), a = 0.001.

The initial data varies between ¢°(0,0) = 0 and ¢°(1,1) = 1 according to the following
expression:

0 si € <0,
(5.2) ¢ (21, 22) = %(1 —cos(m€)) si0<ELT,
1 sil<é,

where € = x1 + 22 — 1/2. Notice that the velocity field is null on the boundary so
Q, = Q Vvt € [0,1]. We impose Dirichlet boundary conditions given by the initial
data, that is ¢p = ¢?F. In Figure 5.7 we plot the velocity field and the initial
data. We solve this problem with the pure Lagrangian methods (£G); and (LG)2
and with two second order semi-Lagrangian methods. More precisely, we denote
by (S£G)3 the semi-Lagrangian scheme analogous to (£G)a, but re-initializing the
transformation to the identity at the beginning of each time step (see [8] for more
details), and by (S£G)3 a two-step second order semi-Lagrangian method. The latter
has been proposed and analyzed for one-dimensional convection-diffusion equations
in [20], and for the incompressible Navier-Stokes equations in [14]. In all cases we
have chosen piecewise quadratic finite elements for space discretization. Moreover,
as in the previous example, an exact quadrature formula for polynomials of degree
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125761001
94244000 ol

62834000
314164000
0.000+000

1.000e+000
75006001
50006001

25006001
0.000+000

F1G. 5.7. Ezample 2: velocity field (left) and initial date (right).

20918001
81716002

1.082e+000
7.908e-001
5.000e-001

0 0.2 0.4 0.6 0.8 1

Fic. 5.8. Ezample 2: numerical solution contours at T = 1 (left) and the section 1 —>
N, 1, (x1,1/2) (right) for (SLG)3 semi-Lagrangian scheme, h = 1/16, At = 1/60.

2 is used to approximate all the integrals. For the (S£G)3 scheme, we use a first-
order semi-Lagrangian method to calculate the numerical solution at the first time
step. In Figures 5.8, 5.9, 5.10 and 5.11 we represent the numerical solution
contours at final time 7" = 1 and the section x; — ¢Xt,h($1, 1/2), computed by
using the (SL£G)3, (S£G)3, (£G)1 and (L£G)s methods, respectively, and h = 1/16.
The semi-Lagrangian methods present oscillations near the transition layer, so Gibbs
phenomena is observed, while the pure Lagrangian methods are accurate even in
the steep layer around the diagonal. These features can be observed on the plots
of the sections. Maybe these oscillations could be removed by using limiters (see
[24]) but this issue is beyond the scope of this paper. This problem has been also
solved in [17] with a semi-Lagrangian method combined with a discontinuous Galerkin
discretization, and also with a standard Galerkin one. The Gibbs phenomena is also
observed for both methods even for very fine meshes, with h = 1/32. The oscillations
produced by the standard Galerkin scheme are observed even far from the transition
layer.
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Fic. 5.9. Ezample 2: numerical solution contours at T = 1 (left) and the section x1 —
#N, . (x1,1/2) (right) for the (SLG)Y scheme, h = 1/16, At =1/60.

Fic. 5.10. Ezample 2: numerical solution contours at T = 1 (left) and the section x1 —
#N, 1 (x1,1/2) (right) for the (LG)1 scheme, h = 1/16, At = 1/60.

6. Conclusions. We have performed the numerical analysis of a second-order
pure Lagrange-Galerkin method for convection-diffusion equations with degenerate
diffusion tensor and non-divergence-free velocity fields. Moreover, we have consid-
ered general Dirichlet-Robin boundary conditions. The method has been introduced
and analyzed by using the formalism of continuum mechanics. In a previous paper
the proposed second order pure Lagrangian time discretization scheme has been rigor-
ously introduced and analyzed for the same problem. Although our analysis considers
any velocity field and use approximate characteristic curves, error estimates of order
O(At?) 4+ O(h*) have been obtained when data and solutions are smooth enough.
These results have been proved by using some properties obtained in the previous
paper [8]. Numerical tests have been presented to confirm the predicted behavior.
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o 0.2

0.4 0.6 0.8 1
x

Fic. 5.11. Ezample 2: numerical solution contours at T = 1 (left) and the section r1 —

#N,  (x1,1/2) (right) for the (LG)2 scheme, h =1/16, At =1/60.

Q: bounded domain

Qt = Xe (Q, t)
0= Ute[O,T] Q
P: reference map of X,
L := gradv
An, © o
A= : diffusion tensor field
©® o6

m: the outward unit normal vector to I' := 92

Xp it second order Runge-Kutta approximation of X
= U, cq, B(z.6)

p: density

P100 = lpll1,00,00
A = (Fpp) 7' Ao Xy (Fryc) ™" det Frye

C=+VA

¢y 1= maxye(o, 7 [|[V(+ D)ll1,00,08
I, ©
© 0

B = , In, is the nq X ny identity matrix

Sl = {ur !+

Xe: motion

T: trajectory of the motion

F = VX,.: Jacobian matrix of the deformation
v: spatial description of the velocity

W,,,: material description of a spatial field ¥

A (p,t) := F~X(p,t) A (p, t) F~ T (p, t) det F(p,1)

m(p,t) == [F~" (p, t)m(p)| det F(p, )
Frr = VXgk

0 = Ute[o,T] ﬁf

~: lower bound for p

A: lower bound for the eigenvalues of A,,
M = [(Fg) " m| det Fgp

ea=max(IGI2 o IO s}, Gy = larad o
Cly i =CoXp(Fry) T, /det Fi,
Bl = B(Fpg )"/ det Fiye

o n+1l _ /n N-1
N {%}
n=0
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