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Abstract  

The link between the local structure of the primary motor cortex and motor function has 

been well documented. However, motor function relies on a network of interconnected 

brain regions and the link between the structural properties characterizing these 

distributed brain networks and motor function remains poorly understood.  Here, we 

examined whether distributed patterns of brain structure, extending beyond the primary 

motor cortex can help classify two forms of motor function: corticospinal excitability and 

intracortical inhibition. To this effect, we recorded high-resolution structural magnetic 

resonance imaging scans in 25 healthy volunteers. To measure corticospinal excitability 

and inhibition in the same volunteers we recorded motor evoked potentials (MEPs) 
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elicited by single-pulse transcranial magnetic stimulation (TMS) and short-interval 

intracortical inhibition (SICI) in a separate session. Support vector machine (SVM) 

pattern classification was used to identify distributed multivoxel gray matter areas, which 

distinguished subjects who had lower and higher MEPs and SICIs. We found that MEP 

and SICI classification could be predicted based on a widely distributed, largely non-

overlapping pattern of voxels in the frontal, parietal, temporal, occipital and cerebellar 

regions. Thus, structural properties distributed over the brain beyond the primary motor 

cortex relate to motor function. 

 

Introduction 

Variation in local brain structure has been shown to be linked to performance in a range 

of motor functions (Kanai and Rees, 2011). Structure-function links of this sort were 

demonstrated at both the microstructural and macrostructural scales. For example, 

variation in microstructural white matter integrity in the body of the corpus callosum, as 

assessed with diffusion MRI is associated with variation in performance of a bimanual 

coordination task (Johansen-Berg et al., 2007). Similarly, individual differences in the 

macrostructural gray matter properties of the presupplementary motor area are linked to 

subjects' ability to voluntarily select correct actions in the face of conflict (van Gaal et al., 
2011). However, the link between the structural properties characterizing distributed 

brain networks and motor function remains incompletely understood. 

In humans, transcranial magnetic stimulation (TMS) techniques have been vital in 

probing the physiological properties of the motor system (Dayan et al., 2013; Hallett, 

2007; Rothwell, 1997). Two transcranial magnetic stimulation (TMS) protocols have 

been widely utilized as markers of motor corticospinal excitation and inhibition at rest. 

Motor evoked potentials (MEPs) elicited by single-pulse TMS over the primary motor 

cortex (M1) are a widely-used measure of instantaneous corticospinal excitability 

(Hallett, 2007; Rothwell, 1997; Rothwell et al., 1999). Similarly, short-interval 

intracortical inhibition (SICI), elicited by paired-pulse TMS over M1 is widely regarded as 

a measure of cortical inhibition (Kujirai et al., 1993; Rothwell et al., 2009). MEPs and 
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SICIs relate with the structure of the primary motor cortex (Conde et al., 2012).  

However, since motor function does not rely solely on one cortical region (He et al., 

2007; Matsumoto et al., 2006; Picard and Strick, 1996), we examined links between 

distributed structural properties of the cerebral cortex and MEPs and SICIs, an issue 

that has not been reported in the literature. We reasoned that since clear links between 

the structure or function of single brain regions and variability in subjects’ response to 

TMS were not identified to date, examining multivariate distributed substrates may 

provide an alternative approach. We thus evaluated whether differences in the 

magnitudes of MEPs and SICIs could be classified from subjects’ distributed whole-

brain multi-voxel patterns of gray matter volume using whole brain machine learning 

pattern classification analysis. 

 

Methods 

Subjects: Data from 25 young, right-handed healthy volunteers (13/12 females/males; 

mean age 26.48± 5.15 STD) were used for analysis. Handedness was established 

using the Edinburgh Handedness Inventory (Oldfield, 1971).  All subjects had 

unremarkable physical and neurological history, no MRI contradictions, and did not use 

any psychoactive medication. Written informed consent was obtained from all subjects 
prior to their participation in the study and all procedures were approved by the 

Combined Neuroscience Institutional Review Board, National Institutes of Health. All 

procedures were in accordance with approved guidelines.  

General procedure: All subjects underwent an imaging session and a stimulation 

session, which were administered separately (Fig 1A). The imaging session consisted 

of an anatomical scan (see details beneath). The stimulation sessions comprised single 

and paired-pulse TMS protocols, administered in an interleaved manner, where MEPs 

and SICIs were recorded respectively (Fig 1B). During the stimulation sessions, 

subjects were seated in a comfortable chair with their eyes open and were asked to stay 

relaxed and to not engage in conversation during the course of stimulation.  

EMG recordings: Electromyographic (EMG) traces were recorded via Ag/AgCl surface 
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recording electrodes (7 mm x 4 mm recording area), placed over the right first dorsal 

interosseous (FDI) muscle. The active electrode was placed over the muscle belly and 

the reference electrode over the metacarpophalangeal joint of the index finger. 

Responses were acquired using a Neuropack MEB-2200 device (Nihon Kohden, Tokyo, 

Japan) through filters set at 10 Hz and 2 kHz with a sampling rate of 5 kHz, amplified 

(Micro-1401, Cambridge Electronic Devices, Cambridge, UK), and then recorded using 

the Signal software (Cambridge Electronic Devices, Cambridge, UK). 

TMS procedure: TMS was delivered through a figure-of-eight coil with an outer diameter 

of 70 mm (Magstim Co., Whitland, Dyfeld, UK) over the left motor cortex. The 

stimulators were triggered using the Signal software. The coil was held with the handle 

pointing backwards and laterally to evoke an anteriorly directed current in the brain 

(Sakai et al., 1997), and was optimally positioned to obtain MEPs in the FDI muscle. 

Using this configuration, single and paired pulses were delivered from a monophasic 

Magstim BiStim stimulator. We first localized the “motor hotspot” (defined as the point 

on the scalp at which single pulse TMS elicited MEPs of maximal amplitude from the 

right FDI). We then established each subject’s resting motor threshold (RMT), which 

corresponds to the minimum stimulation intensity over the motor hotspot, eliciting an 

MEP in the relaxed FDI of no less than 50 μV in 5 out of 10 trials. 

Overall, the stimulation session included 40 stimulation trials, including 20 MEPs (at 

120% RMT) and 20 SICI measures. MEPs and SICIs were administered in an 

interleaved and randomized manner, with an inter-trial interval of 5s, varying by up to 

10%. SICIs were recorded as described previously (Kujirai et al., 1993), whereby a 

subthreshold conditioning stimulus (CS) at 80% of RMT preceded a test stimulus (120% 

RMT) by 3 ms.  

--Figure 1 here— 

Imaging Setup: Imaging data was acquired with a 3.0-T GE Signa HDx scanner 

equipped with an 8-channel coil. High-resolution (1x1x1mm3) 3D magnetization 

prepared rapid gradient echo (MPRAGE) T1-weighted images were acquired (repetition 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted August 19, 2017. ; https://doi.org/10.1101/178301doi: bioRxiv preprint 

https://doi.org/10.1101/178301


5 

 

5 

 

time = 4.688 ms, echo time = 1.916 ms, slice thickness: 1.2 mm, slice spacing = 1.2 

mm, acquisition matrix = 224x224 mm2, flip angle = 12°, 124 slices). 

 

Data Analysis:  

TMS Data Analysis:  

Mean peak-to-peak amplitudes served as our primary outcome measure. Trial-to-trial 

variability in MEP amplitudes were additionally quantified using the coefficient of 

variation (CV), calculated across all MEP trials as follows: 

�� �
σ

µ
 

where σ denotes standard deviation and μ denotes the mean. For the SICI analysis, the 
mean peak-to-peak amplitude of the conditioned MEP was expressed as a percentage 

of the mean peak-to-peak amplitude of the unconditioned MEP. Trial-to-trial variation in 

SICI amplitudes was quantified using the CV metric, as described above. Parametric 

statistical tests were used to analyze MEP and SICI measurements after confirming the 

normality of the distributions using Kolmogorov-Smirnov tests. All tests were performed 

in SPSS 19 (Chicago, IL). Significance was set at alpha=0.05. 

Imaging data analysis 

Image preprocessing: The VBM8 toolbox, part of Statistical Parametric Mapping 8, 

was used to preprocess subjects’ anatomical scans. The images were first normalized 

to the Montreal Neurological Institute (MNI) standard space and segmented for gray 

matter, white-matter and cerebro-spinal fluid (CSF) using the default segmentation 
routines of VBM8 (Gaussians per class 2,2,2,3,4,2; Bias regularization 0.0001; Bias 

FWHM 60mm cutoff; Affine regularization ICBM space template; Warping regularization 

4; Sampling distance 3) and DARTEL normalization. The images were then subjected to 

pattern classification analysis, with the objective of finding distributed patterns of 

graymatter volume that could classify group differences in corticospinal excitability and 

inhibition at rest. This approach follows a recent body of research where multivariate 
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morphometric parameters can be used to differentiate healthy controls from, for 

instance, patients with Alzheimer’s disease (Vemuri et al., 2008) or autism (Ecker et al., 

2010b) based on machine learning pattern classification techniques (Bishop, 2006). 

 

Pattern Classification: Pattern classification analysis was performed using the Pattern 

Recognition of Brain Image Data (PROBID) toolbox, on MATLAB 7. This analysis aimed 

to find patterns of gray matter volume that accurately classify group differences in MEPs 

and SICIs, treating subjects’ images as points in a high-dimensional space, 

corresponding to the number of voxels contained on each image (Dayan et al., 2014; 

Ecker et al., 2010b). Pattern classification analysis was used, rather than a mass-

univariate approach, as it may potentially allow to detect more subtle multivariate 

structural substrates that contribute to variation in MEPs and SICIs.  

The subjects were first split (using a median split) into groups, distinguishing between 

subjects for whom low and high mean MEP amplitudes and low and high SICIs were 

recorded (thus the 25 subjects were split into two groups of 12 subjects each, leaving 

out the median). The median split procedure enabled labeling of the data (into two 

groups in each classification), a prerequisite for supervised pattern classification. 

Modulated and normalized preprocessed gray matter images (see description of 
preprocessing steps, above) were then subjected to kernel support vector machine 

(SVM) classification (Boser et al., 1992). This procedure is composed of two phases. 

First, in the training phase, a kernel SVM classifier is trained to distinguish between 

modulated and normalized anatomical images, labeled according to the results of the 

median split analysis, described above. In this phase, a hyperplane that separates the 

images in the training dataset according to their known labels was defined. Then, during 

the test phase, the performance of the classifier was tested with a leave-two-out cross-

validation procedure, whereby the test was administered n times (n = number of 

subjects), leaving a pair of subjects out on each iteration.  

In this analytical framework accuracy also denotes the average between the 

classification’s sensitivity (proportion of subjects from class label I that were correctly 
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classified as such) and specificity (proportion of subjects from class label II, who were 

correctly classified as such). As the input space used for classification was in voxel 

space, the weight vector normal to the hyperplane defined during training corresponds 

to the direction along which the images belonging to two groups differ the most. These 

inputs were then used to generate discrimination maps, which depicted a spatial map of 

the voxels that contributed the most to the discrimination among groups (Ecker et al., 

2010b; Marquand et al., 2010; Mourão-Miranda et al., 2005). The maps depict voxels 

whose weights were at least 60% of the value of the voxel with the highest weight 

overall. This conservative threshold (Ecker et al., 2010a; Mourão-Miranda et al., 2005) 

allowed us to focus on the regions which most strongly discriminated among the groups. 

Discrimination maps were smoothed with a 3mm Gaussian kernel and cluster 

thresholded (10 voxels) for illustration purposes and the results were visualized using 

MRIcron (http://www.mccauslandcenter.sc.edu/mricro/mricron/).  

Significance estimates for the accuracy of each classification were derived using a 

permutation test consisting of 5000 iterations. In this test, the classification procedure 

was repeated 5000 times, wherein labels were randomly assigned to subjects. In each 

permutation the cross-validation procedure was repeated and the number of times the 

accuracy levels exceeded those obtained with the original labeled data were counted, 

where p denotes the accumulated number of times divided by 5000.     

 

Results 

Data from 25 young healthy volunteers were analyzed, testing the utility of using SVM 

classification of volumetric patterns of gray matter to predict group differences in 

corticospinal excitability and inhibition at rest, as measured with TMS-induced MEPs 

and SICs. 

Classification of MEP amplitudes 

Subjects displayed substantial interindividual differences in mean peak-to-peak MEP 

amplitudes (Fig. 2A), which were normally distributed in this sample (Kolmogorov-
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Smirnov Z=0.162, p=0.091) Indeed, a median split of the data into two groups (n=12 

each), of subjects who displayed low and high mean MEP amplitudes (henceforth, 

MEPlow and MEPhigh) resulted in significant differences between the groups (t22=5.234, p 

<0.0001), confirming the existence of sizable interindividual differences. These two 

groups did not differ in age (t22=0.922, p=0.366) or in their male/female distributions 

(Kolmogorov-Smirnov Z=1.021, P=0.249).  

We first sought to test the degree to which group differences in MEP amplitudes could 

be predicted using whole-brain SVM classification. 75% of the subjects in the MEPlow 

group (the classification model’s ‘sensitivity’) and 58.33% of the subjects in the MEPhigh 

group (the model’s ‘specificity’) were classified correctly, resulting in an overall accuracy 

of 66.67%, which was significantly better than chance (p <0.05, random permutation 

test) (Fig. 2B). Thus, these results reveal that patterns of gray matter allowed for a 

classification of group differences in MEP amplitudes. To more specifically identify the 

regions that contributed to this classification, discrimination maps were generated, 

depicting the weight of the voxels which contributed the most to the discrimination 

among the MEPlow and MEPhigh groups (Fig. 2C, Table 1). The maps revealed that a 

widely distributed pattern of voxels composed of bilateral frontal and middle temporal, 

right inferior and anterior parietal and inferior occipital and left posterior cerebellar foci 

discriminated among the two groups.  

--Figure 2 and Table 1 around here-- 

We next quantified the trial-to-trial variability in amplitudes with the CV statistic (Fig. 3A). 

This allowed us to assess the contribution of more transient and unspecific factors to 

the classification of MEPs (for instance, movement of the TMS coil along the stimulation 

site, slight changes in the orientation of stimulation, etc). MEP CVs differed substantially 

among subjects and were insignificantly correlated with mean MEP amplitudes (r=-

0.268, p=0.195), suggesting that these two measures were largely independent of one 

another in the current sample of subjects. A median split of the data into two groups 

(n=12 each) of subjects who displayed high and low CVs (henceforth, MEPCVlow and 

MEPCVhigh) resulted in significant difference between the two groups (t22=5.53, p 
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<0.0001). These two groups did not differ in age (t22=0.269, p=0.791) or in their 

male/female distribution, which were identical. 

The trial-to-trial variation in MEP amplitudes could not be accurately classified in relation 

to gray matter volumetric patterns. Only 41.67% of the subjects in the MEPCVlow 

(sensitivity) and 58.33% of the subjects in the MEPCVhigh (specificity) groups were 

classified correctly, resulting in an overall accuracy of 50% (Fig. 3B). The accuracy of 
this classification, which did not differ from chance levels, was not statistically significant 

(p= 0.58)  

--Figure 3 here-- 

 

Classification of SICI amplitudes  

SICI amplitudes were also variable among subjects (Fig. 4A) and the data was also 

normally distributed in this sample (Kolmogorov-Smirnov Z=0.126, p=0.2). Indeed, a 

median split of the data into two groups (n=12 each) of subjects who displayed low and 

high mean SICIs (henceforth, SICIlow and SICIhigh) resulted in significant differences 

between the groups (t22=6.48, p <0.0001). These two groups did not differ in age 

(t22=0.154, p=0.879) or in their male/female distributions (Kolmogorov-Smirnov Z=0.408, 

P=0.996). 

We next tested whether SICI mean amplitudes could be predicted using whole brain 

SVM classification. 58.33% of the subjects in the SICIlow group (the model’s sensitivity) 

and 75% of the subjects in the SICIhigh group (the model’s specificity) could be classified 

correctly (Fig 6A), which together summed up to 66.67% accuracy, significantly better 

than chance levels (p <0.05, random permutation test; Fig 4B). Discrimination maps 

were then generated in order to identify the regions which contributed to this 

classification. A distributed pattern of voxels in bilateral frontal and posterior cerebellar 

and left inferior occipital and inferior parietal foci contributed mostly to the classification 

of group differences in SICI amplitudes (Fig 4C, Table 2).  

--Figure 4 and Table 2 around here-- 
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The trial-to-trial variability in SICIs, quantified with the CV statistic (Fig. 5A), differed 

substantially among subjects and was significantly inversely correlated with mean SICIs 

(r=-0.498, p<0.02). A median split of this data into two groups (n=12 each) of subjects 

who displayed high and low SICI CVs (henceforth, SICICVlow and SICICVhigh) resulted in 

significant difference between the two groups (t22=5.818, p <0.0001). These two groups 
did not differ in age (t22=0.4, p=0.969) or in their male/female distributions (Kolmogorov-

Smirnov Z=0.408, P=0.996). 

We next assessed the degree to which group differences in the trial-to-trial variability of 

SICIs could be predicted using whole brain SVM classification. 41.67% of the subjects 

in the SICICVlow  group (sensitivity) and 33.33% of the subjects in the SICICVhigh group 

(specificity)  were classified correctly. Combined, whole brain SVM of SICI CVs thus 

resulted in 37.5% accurate classification, a proportion which was not statistically 

significant (p=0.925; Fig. 5B).  

--Figure 5 here— 
 

Similarities between MEP and SICI classification 

Finally, we assessed similarities in the classification of MEPs and SICIs, as our results 

indicate that both were statically significant. In the current dataset MEPs and SICIs were 

insignificantly correlated within subjects (r= -0.169. p= 0.419). Overlaying the 

discrimination maps identified in the classification of each of these measures (Fig. 2C 

and Fig. 4C) revealed that the maps were largely non-overlapping (Fig. 6). 

--Figure 6 here-- 
 

Discussion  

We tested the feasibility of classifying group differences in mean MEP and SICI, elicited 

by single and paired-pulse stimulation of M1, from multi-voxel patterns of gray matter 
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volume, aiming to find links between distributed structural properties and motor function. 

Mean MEP classification could be achieved with significant accuracy levels from a 

widely distributed pattern of voxels composed of regions in frontal, parietal, temporal 

occipital and cerebellar regions.  Similarly, mean SICI was predicted, with similar 

accuracy levels, from a widely distributed pattern of voxels which included foci in frontal, 

parietal, temporal and occipital cortices, as well as the cerebellum. The prediction was 

specific to mean MEP peak-to-peak amplitudes and SICIs. Group differences in the 

trial-to-trial variation in neither MEPs nor SICIs could be classified from patterns of gray 

matter volume.  

Our results reveal that distributed patterns of gray matter volume, extending well 

beyond M1 allowed for an accurate group classification of MEP and SICI amplitudes.  

While MEPs are widely used for probing the physiology of M1, multiple lines of evidence 

suggest that they do not reflect a simple read-out of neuronal processes occurring 

within M1, but rather also tap into physiological processes that occur outside of this 

structure (Bestmann and Krakauer, 2015). This is strongly demonstrated by dual-site 

stimulation paradigms where a conditioning TMS pulse is delivered to various cortical 

regions prior to a test stimulus in M1 (Dayan et al., 2013), establishing the functional 

connectivity of these regions with M1, while revealing the influence these regions may 

exert over MEPs (Bestmann and Krakauer, 2015; Liew et al., 2014).  Along these lines, 

several of the regions which were found here as implicated in the classification of MEP 

and SICI have been shown to interact with M1 based on dual-site TMS stimulation. For 

example, connectivity between M1 and ventral premotor (Buch et al., 2010) and dorsal 

premotor (O’Shea et al., 2007) cortices has been demonstrated, which fits well with the 

dense inputs between these regions and  M1 in the monkey (Dum and Strick, 2005; 

Hoshi and Tanji, 2007). Similarly, connectivity between the cerebellum and M1 has 

been demonstrated with dual-site TMS (Daskalakis et al., 2004), consistent with 

cerebellar –motor cortex loops found in the monkey (Kelly and Strick, 2003). Altogether, 

using a whole brain analysis and a nonrestricted and unbiased pattern classification 

method we have not found multivoxel patterns in M1. In summary, our results identify a 

relationship between distributed multi-voxel patterns of brain volume in extra-motor 

cortical regions and variability in MEP and SICI.  
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In addition to our focus on group classification of differences in corticospinal excitability 

and inhibition, which we studied by quantifying mean MEPs amplitudes and SICIs, we 

also tested whether there were differences in the trial-to-trial variability subjects display, 

quantified with the CV statistic. This allowed us to assess the contribution of more 

transient and unspecific factors to the classification of MEPs and SICIs.  Contrary to 

mean MEP and SICI amplitudes, intra-subject variation could not be classified from 

patterns of gray matter volume. It may thus be that intra-subject variation is indeed 

induced by more transient and state-dependent factors, which were not controlled for in 

this study, whereas group differences in mean MEP and SICI amplitudes were driven by 

more stable, possibly pre-existing state-independent factors.  

Inter- and intraindividual differences in MEP and SICI amplitudes have been widely 

reported before, and were ascribed largely to transient, spontaneous and state-

dependent factors. Variation in MEP measurement, for instance, has been attributed to 

spontaneous fluctuations in corticospinal and segmental motoneuron excitability (Kiers 

et al., 1993). Likewise, various transient physiological states such as pre-stimulation 

muscle activation (Darling et al., 2006), central (Temesi et al., 2014) and more localized 

(muscle-specific) fatigue (Taylor and Gandevia, 2001), response preparation (Mars et 

al., 2007) and attention (Rosenkranz and Rothwell, 2004; Thomson et al., 2008) 

modulate MEPs and SICIs. Our results cannot exclude the contribution of transient or 

spontaneous factors to variability in MEPs and SICIs. However, our data suggests that 

stable, possibly pre-existing non state-dependent neuroanatomical substrates may 

allow for the classification of group differences in corticospinal excitability and inhibition. 

Thus, intrinsic (Goetz et al., 2014) and stable properties like brain structure could 

contribute to the variability in corticospinal excitability and inhibition. 

Non-transient factors may also contribute to the variability in MEPs or SICIs. For 

instance, age and sex interact with the trial-to-trial variability of MEP amplitude (Pitcher 

et al., 2003), but in our current results, none of the classified groups differed in age or in 

male/female ratios, so the contribution of these factors to the results reported here is 

unlikely. Similarly, the physical parameters of stimulation may also contribute to the 

variability in MEPs or SICIs, but their contribution to their variability is not trivial. For 
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instance, the relationship between mean MEP amplitude and stimulation intensity is not 

necessarily linear (Darling et al., 2006).  Likewise, variability in MEPs does not decrease 

when more elaborate methods are used to localize M1, such as stereotactic 

neuronavigation (Jung et al., 2010). The contribution of factors such as stimulation 

intensity and fluctuations in coil positioning to the degree to which variation in MEPs and 

SICIs relates to brain structure remains to be tested in future research.  

As subjects’ attention has been found to influence MEPs (Mars et al., 2007) and SICIs 

(Rosenkranz and Rothwell, 2004; Thomson et al., 2008), one possibility that warrants 

consideration is that the structural differences between subjects who showed higher and 

lower MEPs and SICIs may relate to interindividual differences in attention, which in turn 

influenced MEP amplitudes and SICIs. Regions such as the dorsolateral prefrontal 

cortex (dlPFC), inferior frontal gyrus, supramarginal gyrus and middle temporal gyrus, 

found here as implicated in the classification of MEP amplitudes and SICIs are 

considered to be a part of the dorsal and ventral attention networks (Fox et al., 2006; 

Vossel et al., 2014). Moreover, correlations between regional structural properties of 

several of the brain regions found here as implicated in the classification of MEP and 

SICI with attention or attention-related functions have been reported before (Smolker et 

al., 2015; Westlye et al., 2010). For instance, significant associations were found 

between the executive component of attention and cortical thickness in the middle and 

superior temporal gyri, inferior frontal gyrus and dlPFC, and reduced gray matter 

volume in dlPFC is associated with better performance in the monitoring and updating 

of working memory (Smolker et al., 2015), functions which require attentional control 

(Fougnie, 2008). Future research may explore the relationship between attention-

related regions and corticospinal excitability. 

Although several previous reports found a relationship between SICI and MEP 

estimates (Roshan et al., 2003; Sanger et al., 2001), a systematic examination revealed 

that SICIs is dependent on the intensity of the test TMS pulse, rather than the size of 

the test MEP per se (Garry and Thomson, 2009). These results are consistent with our 

findings that MEP and SICI amplitudes did not covary among subjects and the regions 

which contributed to classification of differences along these measures were largely 
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independent. Still, because of the lack of covariation in MEPs and SICIs among our 

sample of subjects, the classification analysis for these two measures was based on 

different subject-groupings. Thus, although our results suggest that differences in MEPs 

and SICI amplitudes may possibly originate from variation in largely non-overlapping 

structural substrates additional data is needed in order to confirm this suggestion. 

Our goal here was to establish the feasibility of classifying group differences in MEP 
and SICI amplitudes based on multi-voxel patterns of brain volume, aiming to find links 

between distributed structural properties and motor function. An advantage afforded by 

this approach is that it enables us to detect subtle and distributed morphological 

differences between subjects possibly masked by a mass-univariate approach such as 

voxel-based morphometry (Dayan et al., 2014; Ecker et al., 2010b).  However, the 

supervised learning approach we used here required splitting of the dataset into groups 

which thus reduced the true variation of the dataset. Links between multivariate 

representations of brain structure and a more continuous variation in MEP and SICIs 

should be established in future studies.  
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Figures  

 

Fig. 1. Design and analysis. (A) All subjects underwent a TMS session, where single

and paired pulses were used to measures MEPs and SICIs and an imaging session

where high resolution T1 weighted images were acquired, (B) MEPs were recorded

from the FDI muscle following single TMS pulses delivered over primary motor cortex at

120% RMT. SICIs were recorded with a subthreshold conditioning stimulus at 80% RMT

followed by a test stimulus at 120% RMT. (C) Pattern classification analysis was

composed of two phases. In the training phase, a kernel SVM classifier was trained to

distinguish between sets of anatomical images with known labels. A hyperplane that

separates the training images according to their known labels was defined. Then, during

the test phase, the performance of the classifier is tested on unlabeled images testing if

the predictive model built during training can successfully classify the images. Fig 1A

was drawn based on a human head model from: http://www.ir-ltd.net/. Used by Creative

Commons license. 
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Fig. 2. Pattern classification of MEP amplitudes. (A) Mean peak-to-peak MEPs differed

by up to 168.4% among subjects. (B) Pattern classification of MEP amplitudes. Overall

classification accuracy was significant at p <0.05, (random permutation test) (C)

Discrimination maps depicting the weight of the voxels which contributed the most to the

discrimination among the subjects who displayed low and high MEP amplitudes. Shown

are regions where MEPlow > MEPhigh (in blue) and where MEPhigh > MEPlow (in red). LH,

left hemisphere; RH, right hemisphere. IFG, inferior frontal gyrus; IOG, inferior occipital

gyrus; IPL, inferior parietal lobule; MFG, middle frontal gyrus; MTG, middle temporal

gyrus. 
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Fig. 3. Pattern classification of MEP trial-to-trial variation. (A) Trial-to-trial variability in 

MEP amplitudes, quantified with CV statistic, differed among subjects by up to 101.3% 

(B) Overall classification accuracy was at chance levels (50%) 
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Fig. 4. Pattern classification of SICI amplitudes. (A) Mean peak-to-peak SICIs differed

by up to 195.83% among subjects.  (B) Overall classification accuracy was significant at

p <0.05, (random permutation test)  C. Discrimination maps depicting the weight of the

voxels which contributed the most to the discrimination among the subjects who

displayed low and high MEP amplitudes. Shown are regions where SICIow > SICIhigh (in

blue) and where SICIhigh > SICIlow (in red). LH, left hemisphere; RH, right hemisphere.

IFG, inferior frontal gyrus; IOG, inferior occipital gyrus; ITG, inferior temporal; gyrus

MFG, middle frontal gyrus; SMP, supramaginal gyrus. 
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Fig. 5. Pattern classification of SICI trial-to-trial variation. (A) Trial-to-trial variability in 

SICI amplitudes, quantified with CV statistic, differed among subjects by up to 133.3% 
(B) Overall classification accuracy was worse than chance levels. 
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Fig. 6. Similarities in the classification of MEP and SICI amplitudes. Overlaying the

discrimination maps identified in the classification of each of these measures (depicted

in purple and green contours) revealed that apart from a partial overlap in bilateral

frontal cortex and right cerebellum (overlap in orange) the maps were mostly non-

overlapping.  IFG, inferior frontal gyrus; MFG, middle frontal gyrus. 
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Tables 

Table 1 

Brain regions that contributed the most to the discrimination among the subjects who 

displayed low and high MEP amplitudes. X,Y, Z coordinates (in MNI space) are 

displayed.   

Region side X Y Z 

MEPlow >MEPhigh     

Inferior Occipital Gyrus R 40.5 -69         -10.5 

Middle Frontal Gyrus R 22 37 29 

Middle Frontal Gyrus L -37.5 37.5 22.5 

Inferior Parietal Lobule R 52.5        -39         40.5 

MEPhigh> MEPlow     

Posterior Cerebellum L -31.5       -52.5       -49.5 

Middle Temporal Gyrus L -55.5       -40.5       -15 

Middle Temporal Gyrus R 56 -52.5 3 

Inferior Frontal Gyrus R 37.5 45           3 

Middle Frontal Gyrus R 27 37 25 

Middle Frontal Gyrus L -37.5 10.5 36 

Postcentral Gyri R 58.5        -22.5       33 
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Table 2 

Brain regions that contributed the most to the discrimination among the subjects who 

displayed low and high SICI amplitudes. X,Y, Z coordinates (in MNI space) are 

displayed.  

 

Region side X Y Z 

SICIlow >SICIhigh     

Inferior Occipital Gyrus L -39        -70.5      -7.5 

Inferior Frontal Gyrus R 39 45 3 

Inferior Frontal Gyrus L -37 42 13 

Supramarginal Gyrus L -51        -51         31.5 

Middle Frontal Gyrus R 25 34 35 

Middle Frontal Gyrus L -34         19.5       40.5 

SICIhigh> SICIlow     

Posterior Cerebellum L -31.5      -51        -49.5 

 R 12          -84        -37.5 

Inferior Temporal Gyrus L -46.5      -4.5        -33 
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