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Abstract

We introduce the notion of local pseudo-homomorphism between
two topological abelian groups. We prove that it is closely related
with the widely studied notions of local cross sections and splitting
extensions in the category of topological abelian groups. In the final
section we present an example of a non-splitting extension of (R, τν)
by R, where τν is a metrizable group topology on R weaker than the
usual one. This extension admits a local cross section.
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1 Introduction

An extension of topological abelian groups is a short exact sequence

E : 0→ H
ı→ X

π→ G→ 0,

where ı and π are continuous and open homomorphisms when considered
as mappings onto their images. We say that the extension splits if there
exists a continuous homomorphism ρ : G→ X with π ◦ρ = idG. A mapping
(not necessarily a homomorphism) ρ : G→ X which is continuous on some
neighborhood of zero and satisfies π ◦ ρ = idG is called a local cross section
for E.

Local cross sections have been been studied since the 1950s. The first
classical result in this direction, due to Gleason, can be formulated in this
way: any extension of the form E : 0 → H → X → G → 0, where G
is a locally compact group and H is a compact Lie group, admits a local
cross section [7]. Some significant advances in these problems have also been
obtained outside the class of locally compact groups, see for instance [11]
or [2]. Not long ago, cross sections have been studied in connection with
extensions involving the maximal precompact topology of an abelian group
[5].
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In this paper we explore the relationship between local cross sections and
the splitting problem for extensions of topological abelian groups. The no-
tion of local pseudohomomorphism is an essential tool for that exploration.
We explain the background and terminology in Section 2. In Section 3 we
present some sufficient conditions for the existence of local cross sections and
establish the precise connection between (splitting) extensions and (approx-
imable) local pseudo-homomorphisms. In Section 4 we apply these results
to construct an example of a non-splitting extension E : 0 → R ı→ X

π→
(R, ν)→ 0 admitting a local cross section.

2 Background and terminology

2.1 Algebraic extensions of groups

Definition 2.1. Let G and H be abelian groups. An extension of G by H
is a short exact sequence of groups and homomorphisms

0→ H
ı→ X

π→ G→ 0

where X is an abelian group and 0 denotes a one-element group.

Definition 2.2. Let G and H be abelian groups. Let Ej : 0→ H
ıj→ Xj

πj→
G → 0 (j = 1, 2) be two extensions of G by H. We say that E1 and E2

are equivalent if there exists a group isomorphism T : X1 → X2 for which
T ◦ ı1 = ı2 and π2 ◦ T = π1.

X1

T

��

π1

  

0 // H

ı1
>>

ı2
  

G // 0

X2

π2

>>

It is an easy consequence of the Five Lemma that any group homomor-
phism T : X1 → X2 making the above diagram commutative is actually an
isomorphism.

Definition 2.3. We say that the extension of abelian groups 0 → H
ı→

X
π→ G → 0 splits if it is equivalent to the canonical extension 0 → H

ıH→
H ×G πG→ G→ 0.

The following Proposition characterizes splitting extensions in a conve-
nient way for our purposes. The proof is left to the reader.

Proposition 2.4. Let E : 0→ H
ı→ X

π→ G→ 0 be an extension of abelian
groups. The following conditions are equivalent:
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(i) E splits.

(ii) There exists a homomorphism P : X → H with P ◦ ı = idH .

(iii) There exists a homomorphism S : G→ X with π ◦ S = idG.

The following known result (see for instance [9, A1.35, A1.14]) character-
izes the classes of free abelian groups and divisible abelian groups in terms
of their behaviour with respect to splitting extensions:

Proposition 2.5. (a) Let H be an abelian group. Then H is divisible if
and only if every extension of abelian groups of the form 0 → H

ı→
X

π→ G→ 0 splits.

(b) Let G be an abelian group. Then G is free (that is, G ∼= Z(I) for some
index set I) if and only if every extension of abelian groups of the form
0→ H

ı→ X
π→ G→ 0 splits.

2.2 Extensions of topological abelian groups

Definition 2.6. Let G and H be topological abelian groups. An extension
of G by H is a short exact sequence of topological abelian groups and con-
tinuous homomorphisms E : 0 → H

ı→ X
π→ G → 0 where 0 denotes a

one-element group, and both ı and π are relatively open.

Definition 2.7. Let G and H be topological abelian groups. Let Ej : 0→
H

ıj→ Xj
πj→ G→ 0 (j = 1, 2) be two extensions of G by H. We say that E1

and E2 are equivalent if there exists a topological isomorphism T : X1 → X2

for which T ◦ ı1 = ı2 and π2 ◦ T = π1.

Actually any continuous group homomorphism T : X1 → X2 satisfying
T ◦ı1 = ı2 and π2◦T = π1 is already a topological isomorphism. This follows
from the Five Lemma as above, and Merzon’s Lemma [6, Lemma 1] .

Definition 2.8. We say that the extension of topological abelian groups
0 → H

ı→ X
π→ G → 0 splits if it is equivalent to the canonical extension

0→ H
ıH→ H ×G πG→ G→ 0.

Definition 2.9. We say that the extension of topological abelian groups
0 → H

ı→ X
π→ G → 0 splits algebraically if the underlying extension of

abelian groups splits in the sense of Definition 2.3.

The following characterization is essential when dealing with extensions
of topological abelian groups. It follows from Proposition 2.4 and elementary
considerations involving continuity.

Theorem 2.10. Let E : 0 → H
ı→ X

π→ G → 0 be an extension of
topological abelian groups. The following are equivalent:
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(i) E splits.

(ii) There exists a continuous homomorphism P : X → H with P ◦ı = idH .

(iii) There exists a continuous homomorphism S : G→ X with π◦S = idG.

Definition 2.11. Let E : 0 → H
ı→ X

π→ G → 0 be an extension of
topological abelian groups. We say that E admits a local cross section if
there exists a map s : G→X such that π ◦ s = idG and s is continuous on a
neighborhood of zero in G. If this neighborhood of zero can be taken as the
whole group G, we say that E admits a global cross section.

We assume in what follows that any (global or local) cross section s
satisfies s(0) = 0.

If X and G are topological abelian groups and π : X → G is a quotient
homomorphism, we say that π admits a local cross section if the canonical
extension 0→ Kerπ → X → G→ 0 has a local cross section in the sense of
Definition 2.11.

The following simple example shows the difference between local and
global cross sections.

Example 2.12. The canonical extension E : 0→ Z ı→ R π→ T→ 0 admits
a local cross section but not a global cross section.

The proof of the following Proposition is straightforward.

Proposition 2.13. Let E : 0 → H
ı→ X

π→ G → 0 be an extension of
topological abelian groups. The following are equivalent:

1. E has a local cross section.

2. There exists a mapping r : X → H continuous on a neighborhood of
zero in X and such that r ◦ ı = idH and r(x + ı(h)) = r(x) + h for
every h ∈ H and x ∈ X.

3. There exists a bijective mapping φ : X → H ×G such that both φ and
φ−1 are continuous on a neighborhood of zero, making the following
diagram commutative:

X

φ

��

π

##
0 // H

ı

;;

ıH
##

G // 0

H ×G
πG

;;
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3 Local pseudo-homomorphisms and local cross
sections

The problem of existence of local cross sections of quotient maps has been
thoroughly studied in the locally compact case. It was answered positively
for finite dimensional quotient groups by P. S. Mostert in 1953 and for
subgroups that are Lie groups by A. M. Gleason in 1950. The following
Proposition contains these and some other results about the existence of
local cross sections.

Proposition 3.1. An extension 0 → H
ı→ X

π→ G → 0 of topological
groups admits a local cross section in any of the following cases:

(1) [4, Proposition 3.4] H or G discrete

(2) ([7, Theorem 4.1]) X locally compact and H a compact Lie group

(3) [13, Theorem 8] X locally compact, G finite dimensional

(5) [11, Corollary 1.3] X metrizable, H complete and G zero-dimensional.

Another result involving the existence of local cross sections is the fol-
lowing (see [8] for the definition and properties of locally kω spaces):

Proposition 3.2. Let E : 0 → H
ı→ X

π→ G → 0 be an extension of
topological abelian groups where H is compact and G is locally kω and zero-
dimensional. Then E has a local cross section.

Proof. It is known that a topological group is locally kω if and only if it has
an open subgroup which is a kω space [8, Proposition 5.3]. Let A be an open
kω subgroup of G. In particular A is zero-dimensional and by [2, Theorem
2.8] there exists a continuous map r : A → X such that π ◦ r = idA. Any
mapping s : G → X extending r in such a way that π ◦ s = idG is a local
cross section for E.

Let G and H are topological abelian groups. To every algebraically
splitting extension E : 0 → H → X → G → 0 with a local cross section
one can associate in a natural way a mapping ω : G→ H which determines
E modulo equivalence of extensions. In particular this mapping carries
the information whether or not E splits. We next introduce the relevant
definitions.

Definition 3.3. Let G and H be topological abelian groups. Let ω : G→ H
be a mapping such that ω(0) = 0. Define ∆ω : (x, y) ∈ G×G 7→ ω(x+ y)−
ω(x)− ω(y) ∈ H. We say that ω is

(a) a quasi-homomorphism if ∆ω is continuous at (0, 0)
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(b) a local pseudo-homomorphism if ∆ω is continuous on a neighborhood
of zero in G×G.

(c) a pseudo-homomorphism if ∆ω is continuous on G×G.

The notion of quasi-homomorphism was defined in [3]. Pseudo-homomorphisms
were introduced and studied in [1]. The role of pseudo-homomorphisms in
relation with cross sections is analogous to the role played by local pseudo-
homomorphisms with respect to local cross sections. Approximations to
these concepts from other points of view are studied in [4, 10, 12, 11].

Lemma 3.4. Let G and H be topological abelian groups and ω : G → H a
map with ω(0) = 0. Then ω is a local pseudo-homomorphism if and only if
it satisfies the following properties:

(a) The map ∆ω : (x, y) ∈ G × G 7→ ω(x + y) − ω(x) − ω(y) ∈ H is
continuous at (0, 0).

(b) There exists U ∈ N0(G) such that if the net (xα) converges to x ∈ U ,
then ω(xα)− ω(xα − x)→ ω(x).

Proof. If ω is a local pseudo-homomorphism, (a) is trivially true. Let us
prove (b): Let U be a symmetric neighborhood of zero in G such that ∆ω

is continuous on U × U. Let xα → x in U . From the continuity of ∆ω it
follows that ∆ω(xα,−x)→ ∆ω(x,−x). Hence ω(xα−x)−ω(xα)−ω(−x)→
ω(x− x)− ω(x)− ω(−x), i. e.

ω(xα)− ω(xα − x)→ ω(x).

Conversely, assume that both (a) and (b) are true. Fix U ∈ N0(G) as in
(b). Let us prove that ∆ω is continuous in V × V where V is a symmetric
neighborhood of zero in G such that V +V ⊂ U. Pick two nets (xα)α∈A → x
in V and (yα)α∈A → y in V . By condition (b)

ω(xα)− ω(xα − x)→ ω(x),

ω(yα)− ω(yα − y)→ ω(y),

ω(xα + yα)− ω(xα + yα − x− y)→ ω(x+ y)

By condition (a)

ω(xα − x+ yα − y)− ω(xα − x)− ω(yα − y)→ 0.

Using the structure of a topological group it easily follows that

ω(xα + yα)− ω(xα)− ω(yα)→ ω(x+ y)− ω(x)− ω(y).

Since x and y are arbitrary elements of V , we deduce that ∆ω is continuous
on V × V .
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Definition 3.5. A local pseudo-homomorphism ω is said to be approx-
imable if there exists a homomorphism a : G → H such that ω − a is
continuous on a neighborhood of zero.

In the next Proposition we show that it is enough to require continuity
at zero in Definition 3.5.

Proposition 3.6. A local pseudo-homomorphism ω : G → H is approx-
imable if there exists a homomorphism a : G → H such that ω − a is
continuous at 0.

Proof. Note that ω−a is a local pseudo-homomorphism and actually ∆ω−a =
∆ω. Let U ∈ N0(G) be as in Lemma 3.4(b). Let us show that ω − a is
continuous on U . Fix a net (xα)α∈A in G which converges to x ∈ U. By
Lemma 3.4(b) we have (ω − a)(xα) − (ω − a)(xα − x) → (ω − a)(x). Since
ω−a is continuous at zero and xα → x, we deduce (ω−a)(xα)→ (ω−a)(x),
as required.

Local cross sections are closely related with local pseudo-homomorphisms,
as we show in the two following propositions:

Proposition 3.7. Let E : 0 → H
ı→ X

π→ G → 0 be an extension of
topological abelian groups. Assume that E splits algebraically and admits a
local cross section ρ : G → X. Let P : X → H be a group homomorphism
such that P ◦ ı = idH .

Then ω = P ◦ ρ is a local pseudo-homomorphism. Moreover, the exten-
sion E splits if and only if ω is approximable.

Proof. Assume that ρ is continuous on W ∈ N0(G). Then

∆ω(x, y) = ω(x+ y)− ω(x)− ω(y) = P (ρ(x+ y)− ρ(x)− ρ(y))

= ı−1(ρ(x+ y)− ρ(x)− ρ(y))

(because ρ(x + y) − ρ(x) − ρ(y) ∈ Kerπ = ı(H)) and we deduce ∆ω =
ı−1 ◦ ∆ρ. It is immediate to show that ∆ρ is continuous on W ′ × W ′ for
every W ′ ∈ N0(G) such that W ′ + W ′ ⊂ W . Since ı−1 is continuous on
ı(H), we deduce that ∆ω is continuous on W ′ ×W ′.

Assume that E splits. Let S : G → X be a continuous homomorphism
such that π ◦ S = idG. Note that for every g ∈ G we have

(P ◦ ρ− P ◦ S)(g) = P (ρ(g)− S(g)) = ı−1(ρ(g)− S(g))

since ρ(g) − S(g) ∈ Kerπ = ı(H). This clearly implies that ω − P ◦ S =
P ◦ ρ− P ◦ S is continuous on W , and in particular ω is approximable.

Conversely, assume that ω = P ◦ ρ is approximable. Let a : G → H be
a homomorphism such that P ◦ ρ − a = f is continuous at zero. Note that
every x ∈ X can be expressed as

x = ρ(π(x)) + (x− ρ(π(x))) = ρ(π(x)) + ı(ı−1(x− ρ(π(x))))
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since x− ρ(π(x)) ∈ Kerπ = ı(H).
Applying P on both sides we obtain P (x) = (a + f)(π(x)) + ı−1(x −

ρ(π(x))). This suggests the definition of P̃ : X → H as

P̃ (x) = P (x)− a(π(x)) = f(π(x)) + ı−1(x− ρ(π(x)))

for every x ∈ X. From the expression P̃ (x) = P (x) − a(π(x)) it easily
follows that P̃ is a homomorphism and a left inverse for ı. From P̃ (x) =
f(π(x)) + ı−1(x − ρ(π(x))) it is clear that P̃ is continuous at zero, hence
globally continuous. By Theorem 2.10, E splits.

Note that by Proposition 3.7, all examples of extensions 0→ H
ı→ X

π→
G → 0 with local cross sections given in Propositions 3.1 and 3.2 can be
presented as examples of local pseudo-homomorphisms ω : G → H if we
add the hypothesis that the extension splits algebraically. This is the case
for instance if the group H is divisible (Proposition 2.4).

The following result is a natural converse to Proposition 3.7.

Proposition 3.8. Let G and H be topological abelian groups and let ω : G→
H be a local pseudo-homomorphism. There exist an extension of topological
abelian groups E : 0 → H

ı→ X
π→ G → 0, a homomorphism P : X → H

and a local cross section ρ for E such that ω = P ◦ ρ.

Proof. As mentioned in [3, Lemma 2], it is not difficult to show that the
family of sets W(V,U) = {(h, g) ∈ H × G : g ∈ U, h ∈ ω(g) + V } where
U ∈ N0(G) and V ∈ N0(H)) is a basis of neighborhoods of zero for a group
topology τω on H ×G. Let X be the group (H ×G, τω). Define P : X → H
as P (h, g) = h and ρ : G→ X as ρ(g) = (ω(g), g).

Assume that ∆ω is continuous on a neighborhood S of zero in G × G.
Let W ∈ N0(G) be such that W × (−W ) ⊂ S. We are going to prove that
ρ is continuous on W . This means that for every g ∈ W, V ∈ N0(H) and
U ∈ N0(G) we need to find U ′ ∈ N0(G) such that

ρ(g + U ′) ⊆ ρ(g) +W(V,U).

Fix g ∈ W , V ∈ N0(H) and U ∈ N0(G). We may assume that V is
symmetric. Consider the pair (g,−g) which, by our choice of W, is in S.
Since ∆ω is continuous at (g,−g) by hypothesis, from V ∈ N0(H) we obtain
Ũ ∈ N0(G) with

[(g1, g2)− (g,−g) ∈ Ũ × Ũ ⇒ ∆ω(g1, g2)−∆ω(g,−g) ∈ V ].

Let U ′ ∈ N0(G) be such that U ′ ⊂ Ũ∩U and take any g′ ∈ G with g′−g ∈ U ′.
Let us check that ρ(g + U ′) ⊆ ρ(g) +W(V,U). This means that

g′ − g ∈ U ′ ⇒
{

(1) g′ − g ∈ U
(2) ω(g′)− ω(g) ∈ ω(g′ − g) + V
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Fix g′ ∈ G with g′ − g ∈ U ′. Clearly g′ satisfies condition (1). To prove
(2), consider the element (g1, g2) = (g′,−g) ∈ G × G. Note that (g′,−g) −
(g,−g) = (g′ − g, 0) ∈ Ũ × Ũ since U ′ ⊂ Ũ . By our choosing of Ũ we have
∆ω(g′,−g)−∆ω(g,−g) ∈ V. It is easy to check that

∆ω(g′,−g)−∆ω(g,−g) = ω(g′ − g)− ω(g′) + ω(g) ∈ V = −V,

from which we obtain condition (2).

4 Weakened topologies on R providing non-splitting
extensions

We devote the remainder of the paper to showing that there exists a non-
splitting extension of (R, τν) by (R, τ) which admits a local cross section,
where τν is a metrizable group topology on R, weaker than the usual one.
This will also provide an example of a local pseudo-homomorphism that is
not approximable. To this end, we will use the technique for weakening
Euclidean topologies introduced in [15] by the fourth-named author.

In what follows the notation ‖ · ‖ always represents Euclidean norms,
and τn stands for the usual topology on Rn. We abbreviate τ1 to τ. The
notation Z(N) represents the subgroup of the product ZN formed by those
sequences in Z with only finitely many nonzero elements. The integer part
of the nonnegative real number x is denoted by bxc.

Definition 4.1. A groupnorm ν on an abelian group G is a mapping ν :
G→ [0,∞) satisfying the following conditions:

(a) ν(g) = 0 if and only if g = 0

(b) ν(−g) = ν(g) for every g ∈ G

(c) ν(g + h) ≤ ν(g) + ν(h) for every g, h ∈ G.

If ν is a groupnorm on G, the family of sets {Bν(ε)}ε>0, where Bν(ε) =
{g ∈ G : ν(g) < ε} is a basis of neighborhoods of zero for a metrizable group
topology τν on G.

In order to proceed with our example we need to introduce the following
definitions:

Definition 4.2. A sequential norming pair (SNP) on Rn is a pair ({vj}, {pj})
where

• {vj} is a sequence of elements of Rn such that 0 < ‖vj‖ ≤ ‖vj+1‖ for
every j,
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• {pj} is a sequence of real numbers which converges to zero in the usual
topology and such that 0 < pj+1 ≤ pj for every j,

• there exists a positive lower bound for the sequence {pj+1‖vj+1‖/‖vj‖}.

For instance, {(j!), (1/j)} is a SNP on R.

Definition 4.3. Let ({vj}, {pj}) be a SNP on Rn and let {yj} be any se-
quence in Rm. Consider the sequence {(vj , yj)} in Rn+m. The pair ({(vj , yj)}, {pj})
is said to be an extended norming pair (ENP) on Rn+m associated to the
SNP ({vj}, {pj}) on Rn.

Facts 4.4. (a) [15, Proposition 4.1] Let ({vj}, {pj}) be a SNP on Rn. The
function

ν : x ∈ Rn → ν(x) = inf{
∑
|cj |pj + ‖x−

∑
cjvj‖ : {cj} ∈ Z(N)}

is a groupnorm on Rn which satisfies ν(x) ≤ ‖x‖ for every x ∈ Rn and
ν(vj) ≤ pj for every j ∈ N. We will call ν the groupnorm associated
to the SNP ({vj}, {pj}).

(b) [14, Proposition 5] Let ({(vj , yj)}, {pj}) be a ENP on Rn+m The func-
tion

µ : x ∈ Rn+m → µ(x) = inf{
∑
|cj |pj+‖x−

∑
cj(vj , yj)‖ : {cj} ∈ Z(N)}

is a groupnorm on Rn+m which satisfies µ(x) ≤ ‖x‖ for every x ∈ Rn+m
and µ(vj , yj) ≤ pj for every j ∈ N. We will call µ the groupnorm
associated to the ENP ({(vj , yj)}, {pj}).

Let ({vj}, {pj}) be a SNP in Rn and let ν be its associated groupnorm.
For any x ∈ Rn, there are infinitely many ways to write x in the form
x =

∑
cjvj + z, where {cj} ∈ Z(N) and z ∈ Rn, and for each of them we

have ν(x) ≤
∑
|cj |pj + ‖z‖. For the SNP ({j!}, {1/j}), for example, we can

write 20 as 3(3!) + 1(2!) and also as 1(4!) − 2(2!). We are interested in the
case when there is a unique “best” representation for x, in the sense that
ν(x) =

∑
|cj |pj+‖z‖. This happens for those x such that ν(x) is sufficiently

small, as we establish in the following Proposition. Its proof is contained in
the proofs of Theorem 8 and Lemma 13 in [14] (especially pp. 57-58).

Proposition 4.5. Let ({vj}, {pj}) be a SNP on Rn such that

pj b
‖vj+1‖
‖vj‖

− 1c ≥ 1 for every j

and let ν be its associated groupnorm. There exists r > 0 such that any
x ∈ Rn with ν(x) < r can be uniquely expressed as x =

∑
cjvj + z where

{cj} ∈ Z(N) and z ∈ Rn are such that
∑
|cj |pj +‖z‖ < r. Moreover, we have

ν(x) =
∑
|cj |pj + ‖z‖.
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After these preliminaries, we can now prove the theorem that contains
our example.

Theorem 4.6. Let ({(vj , yj)}, {pj}) be an ENP on Rn+m associated to the
SNP ({vj}, {pj}) on Rn. Assume that

pj b
‖vj+1‖
‖vj‖

− 1c ≥ 1 for every j.

Let ν and µ be the groupnorms associated to the above SNP and ENP, re-
spectively.

(a) If τν and τµ are the group topologies induced by the groupnorms ν and

µ, respectively, then the sequence E : 0 → (Rm, τm)
ı→ (Rn+m, τµ)

π→
(Rn, τν)→ 0 is an extension of topological abelian groups which admits
a local cross section, where

ı : (Rm, τm) −→ (Rn+m, τµ) π : (Rn+m, τµ) −→ (Rn, τν)
y 7−→ (0, y) (x, y) 7−→ x

(b) If n = m = 1, {yj} does not converge to zero in τ and {yj/vj}
converges to zero in τ , the extension E : 0 → (R, τ)

ı→ (R2, τµ)
π→

(R, τν)→ 0 does not split.

Proof. (a) It is clear that E is an exact sequence. The fact that ı is an
embedding is proved as Proposition 7 in [14]. It follows from the
definitions of ν and µ that ν(π(x, y)) = ν(x) ≤ µ(x, y), and thus
π is continuous. The remaining assertions are a consequence of the
following claim:

Claim: If r > 0 is as in Proposition 4.5, the mapping ρ : (Rn, τν)→
(Rn+m, τµ) defined by

ρ(x) =

{∑
cj(vj , yj) + (z, 0) if ν(x) < r

(x, 0) otherwise

is a local cross section for E such that µ(ρ(x)) = ν(x) for every x ∈ Rn
with ν(x) < r. Here {cj} ∈ Z(N) and z ∈ Rn are uniquely defined by
the decomposition x =

∑
cjvj + z with ν(x) =

∑
|cj |pj + ‖z‖ .

Proof of the Claim: It is clear that π ◦ ρ = idRn . Fix x ∈ Rn with
ν(x) < r; let us prove that µ(ρ(x)) = ν(x). As noted above, for every
(x, y) ∈ Rn+m we have ν(x) ≤ µ(x, y). Since π(ρ(x)) = x, it follows
that ν(x) ≤ µ(ρ(x)). On the other hand, the triangle inequality implies
that µ(ρ(x)) = µ(

∑
cj(vj , yj) + (z, 0)) ≤ µ(

∑
cj(vj , yj)) + µ(z, 0) ≤∑

|cj |pj + ‖(z, 0)‖ = ν(x).

In particular ρ is continuous at zero, which clearly implies that π is
open. This completes the proof of (a).
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(b) To prove (b), it suffices to show that the only continuous homomor-
phism from (R2, τµ) to (R, τ) is the trivial one. Let f : (R2, τµ) →
(R, τ) be a continuous homomorphism. Since τµ is weaker than τ2, f
is continuous with respect to the usual topologies. Hence f(x, y) =
ax + by for some a, b ∈ R. Since (vj , yj) → 0 in τµ and f is continu-
ous, we deduce avj + byj → 0 in (R, τ). Since {|vj |} is increasing and
nonzero, the sequence (avj + byj)/vj converges to zero, too. From this
fact and our hypothesis yj/vj → 0 it follows that a = 0 and hence
byj → 0 which (since yj does not converge to zero) implies that b = 0.

Remark 4.7. An instance where the requirements in Theorem 4.6(b) are
fulfilled is vj = j!, yj = j, pj = 1/j.

Corollary 4.8. With the notations and hypotheses of Theorem 4.6(b), the
mapping

ω : (R, τν)→ (R, τ), ω(x) =

{∑
cjyj if ν(x) < r

0 otherwise

is a not approximable, local pseudo-homomorphism.

Proof. This follows at once from Theorem 4.6 and Proposition 3.7.
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