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On egalitarian values for cooperative games with a

priori unions*

J.M. Alonso-Meijide1, J. Costa2,
I. Garćıa-Jurado3, J.C. Gonçalves-Dosantos3

Abstract

In this paper we extend the equal division and the equal surplus
division values for transferable utility cooperative games to the more
general setup of transferable utility cooperative games with a priori
unions. In the case of the equal surplus division value we propose
three possible extensions. We provide axiomatic characterizations of
the new values. Furthermore, we apply the proposed modifications
to a particular motivating example and compare the numerical results
with those obtained with the original values.

Keywords: cooperative games, a priori unions, equal division value, equal
surplus division value.

1 Introduction

Many economic problems deal with situations in which several agents co-
operate to generate benefits or to reduce costs. Cooperative game theory
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studies procedures to allocate the resulting benefits (or costs) among the
cooperating agents in those situations.

One of the most commonly used allocating procedures is the Shapley
value, introduced in Shapley (1953) and analyzed more recently in Moretti
and Patrone (2008) or in Algaba et al. (2019). Very often, however, agents
cooperate on the basis of a kind of egalitarian principle according to which
the benefits will be shared equitably. For instance, Selten (1972) indicates
that egalitarian considerations explain in a successful way observed outcomes
in experimental cooperative games.

In recent years, the game theoretical literature has dealt with several
egalitarian solutions in cooperative games. For instance, van den Brink
(2007) provides a comparison of the equal division value and the Shapley
value, and Casajus and Hüttner (2014) compare those two solutions with
the equal surplus division value (studied first in Driessen and Funaki, 1991).
In van den Brink and Funaki (2009), Chun and Park (2012), van den Brink
et al. (2016), Ferrières (2017) and Béal et al. (2019) several axiomatic
characterizations of the equal division and equal surplus division values are
provided. Ju et al. (2007) introduce and characterize the consensus value,
a new solution that somewhat combines the Shapley value and the equal
division rule. Dutta and Ray (1989) introduce the egalitarian solution for
cooperative games, closely related to Lorenz dominance, that considers co-
operating agents who believe in equality as a desirable social goal and ne-
gotiate accordingly; this solution was later characterized by Dutta (1990),
Klijn et al. (2000) and Aŕın et al. (2003), and modified by Dietzenbacher
et al. (2017).

Another stream of literature in cooperative game theory started in Owen
(1977), where a variant of the Shapley value for games with a priori unions
is introduced and characterized. In a game with a priori unions there ex-
ists a partition of the set of players, whose classes are called unions, that
is interpreted as an a priori coalition structure that conditions the nego-
tiation among the players and, consequently, modifies the fair outcome of
the negotiation. There is a large literature concerning the Owen value and
its applications; just to cite some recent papers, Lorenzo-Freire (2016) pro-
vides new axiomatic characterizations of the Owen value, Costa (2016) deals
with an application in a cost allocation problem, and Saavedra-Nieves et
al. (2018) propose a sampling procedure to approximate it. Not only the
Shapley value but also other values have been modified for the case with a
priori unions. For instance, Alonso-Meijide and Fiestras-Janeiro (2002) deal
with the Banzhaf value for games with a priori unions, Casas-Méndez et al.
(2003) introduce the τ -value for games with a priori unions, Alonso-Meijide
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et al. (2011) study the Deegan-Packel index for simple games with a priori
unions, and Hu et al. (2019) introduce an egalitarian efficient extension of
the Aumann-Drèze value (Aumann and Drèze, 1974). Finally, the literature
of games with a priori unions has developed in many other directions. For
instance, Alonso-Meijide et al. (2014) analyze an extension of the Shapley
value for games with a priori unions alternative to the Owen value, Vázquez-
Brage et al. (1996) and van den Brink et al. (2015) introduce and study
values for games with graph-restricted communication and a priori unions,
and Hu (2019) deals with a weighted value for games with a priori unions.

In this paper we modify the equal division value and the equal surplus
division value for games with a priori unions. In Section 2 we illustrate the
interest of our study describing a cost allocation problem that arises in the
installation of an elevator in an apartment building. In Section 3 we define
and characterize the equal division rule for games with a priori unions. In
Section 4 we introduce and characterize three alternative extensions of the
equal surplus division rule for games with a priori unions. In Section 5 we
include some final remarks.

2 An example

In this section we consider an example where the owners of apartments in a
building have agreed to install an elevator and share the corresponding costs.
This example is inspired by a problem analyzed in Crettez and Deloche
(2019) from the point of view of French legislation. The French Law on
Apartment Ownership of Buildings does not provide a precise method for
sharing the cost of an improvement but indicates that the co-owners must
pay “in proportion to the advantages” they will receive. In the case of
elevators in France, Crettez and Deloche (2019) indicate that there is a de
facto sharing method that they call the elevator rule. The elevator rule
associates a parameter λi = 1 + (i − 1)/2 to each floor i and distributes
the total cost among the floors proportionally to those parameters; then the
cost allocated to each floor is divided equally among its apartments. In their
paper Crettez and Deloche study the elevator rule and other proposals in
the spirit of the French legislation.

However, Crettez and Deloche (2019) explain that in other European
countries the legislation is based on principles of egalitarian character. For
example, in the Netherlands each of the owners of the apartments must
“participate for an equal part in the debts and costs which are for account
of all apartments owned pursuant to law or the internal arrangements, unless
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the internal arrangements provide for another proportion of participation.”
The Spanish Horizontal Property Law 49/1960 (modified by the Act

8/2013) indicates that “to each apartment or local will be attributed a quota
of participation in relation to the total of the value of the building (. . . ). This
quota will serve as a module to determine the participation in the burdens
and benefits due to the community.” These quotas generally depend on the
surface area of each apartment but can take into account other aspects.

In a particular example, let us see how the Dutch and Spanish rules
would share the costs of installing an elevator. Consider the following three-
storey building with no apartments or offices on the ground floor: on the first
floor there is a single apartment of 180 square meters, on the second floor
there are two apartments, one of 100 and other one of 90 square meters, and
on the third floor there are three apartments of 60 square meters each. The
second floor has a slightly larger area because one of the two apartments on
the floor has an additional gallery. Suppose now that the cost of installing
the elevator is 120 (in thousands of euros), 50 of which correspond to the
machine, 40 to the works to make the hollow of the elevator, and 30 to
the works to be done on each floor to allow access to the elevator (10 in
each of them). Table 1 below shows the distribution of costs for each of
the apartments according to the Dutch and Spanish rules (the latter with
quotas for each apartment given by its surface). Notice that both rules are
based on egalitarian principles and can be interpreted as the equal division
rule; the difference is that in the case of the Dutch rule the subjects that
receive the equitable distribution are the apartments, whereas in the case
of the Spanish rule the equitable distribution subjects are the quota units.1

Notice that the same egalitarian spirit of these rules can be maintained
despite changing the equitable distribution subjects. For instance, it would
be natural to consider a kind of two-step equitable distribution subjects,
where the subjects in the first step are the floors and the subjects in the
second step are the apartments (in the case of the Dutch rule) or the quota
units (in the case of the Spanish rule). This would result in the distribution
of costs shown in Table 2 below. Observe that this variation arises from
considering that the floors of the building naturally give rise to a structure
of a priori unions in the sense of Owen (1977) and, thus, the convenience of
extending the equal division value for games with a priori unions emerges
spontaneously in this example. We do it formally in Section 3. Table 2 also
displays the distribution proposed by the elevator rule that is by definition

1In this example the quota units are the square meters of the apartments. For the
approach we adopt to be meaningful, the quota unit numbers must be integers.
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a two-step rule.
There are other possible variations of these Dutch and Spanish rules with

and without the structure of a priori unions when using the equal surplus
division value instead of the equal division value. Thus, the convenience of
extending the equal surplus division value for games with a priori unions
can also be motivated on the basis of this example. We do it in Section 4,
where we also analyse in more depth how the equal surplus division value for
games with a priori unions can be applied in the example we have discussed
in this section.

Dutch rule Spanish rule

3rd floor 20 20 20 13.0909 13.0909 13.0909

2nd floor 20 20 21.8182 19.6364

1st floor 20 39.2727

Table 1: Distribution according to the Dutch and Spanish rules

Dutch rule Spanish rule elevator rule

3rd 13.3333 13.3333 13.3333 13.3333 13.3333 13.3333 17.7777 17.7777 17.7777

2nd 20 20 21.0526 18.9474 20 20

1st 40 40 26.6666

Table 2: Distribution according to the two-step Dutch and Spanish rules
and to the elevator rule

3 The equal division value for TU-games with a
priori unions

In this section we extend the equal division value for TU-games to the more
general setup of TU-games with a priori unions. To start with, we introduce
the basic concepts and notations we use in this paper.

A transferable utility cooperative game (from now on a TU-game) is a
pair (N, v) where N is a finite set of n players, and v is a map from 2N to R
with v(∅) = 0, that is called the characteristic function of the game. In the
sequel, GN will denote the family of all TU-games with player set N and G
the family of all TU-games. A value for TU-games is a map f that assigns
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to every TU-game (N, v) ∈ G a vector f(N, v) = (fi(N, v))i∈N ∈ RN with∑
i∈N fi(N, v) = v(N).2

As it was remarked in the introduction, sometimes agents cooperate on
the basis of a kind of egalitarian principle according to which the benefits
will be shared equitably. This gives rise to the equal division value ED
that distributes v(N) equally among the players in N . Formally, the equal
division value ED is defined for every (N, v) ∈ G and for all i ∈ N by

EDi(N, v) =
v(N)

n
.

Now denote by P (N) the set of all partitions of N . A TU-game with a
priori unions is a triplet (N, v, P ) where (N, v) ∈ G and P = {P1, . . . , Pm} ∈
P (N). The set of TU-games with a priori unions and with player set N
will be denoted by GU

N , and the set of all TU-games with a priori unions
by GU . A value for TU-games with a priori unions is a map g that as-
signs to every (N, v, P ) ∈ GU a vector g(N, v, P ) = (gi(N, v, P ))i∈N ∈ RN

with
∑

i∈N gi(N, v, P ) = v(N). The next definition provides the natural
extension of the equal division value to TU-games with a priori unions.

Definition 3.1 The equal division value for TU-games with a priori unions
EDU is defined by

EDU
i (N, v, P ) =

v(N)

mpk

for all i ∈ N and all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and i ∈ Pk; pk
denotes the cardinal of Pk.

Notice that the equal division value for TU-games with a priori unions
has been used in the motivating example in Section 2 (see Table 2 and the
corresponding comments). Next we provide an axiomatic characterization
of this value. We start giving some properties of a value g for TU-games
with a priori unions.

Additivity (ADD). A value g for TU-games with a priori unions satisfies
additivity if, for all (N, v, P ), (N,w, P ) ∈ GU , it holds that

g(N, v + w,P ) = g(N, v, P ) + g(N,w, P ).

2Notice that we have included the efficiency in the definition of value. We could have
considered it as one more property and then it would have appeared explicitly in the
characterizations; nothing relevant would have changed in that case.
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Take a TU-game (N, v) ∈ GN and i, j ∈ N . We say that i, j are indis-
tinguishable in v if v(S ∪ i) = v(S ∪ j) for all S ⊆ N \ {i, j}.

Symmetry within unions (SWU). A value g for TU-games with a pri-
ori unions satisfies symmetry within unions if, for all (N, v, P ) ∈ GU , all
Pk ∈ P , and all i, j ∈ Pk indistinguishable in v, it holds that gi(N, v, P ) =
gj(N, v, P ).

Take (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and denoteM = {1, . . . ,m}.
The quotient game of (N, v, P ) is the TU-game (M, v/P ) where

(v/P )(R) = v(∪r∈RPr) for all R ⊆ M.

Symmetry among unions (SAU). A value g for TU-games with a pri-
ori unions satisfies symmetry among unions if, for all (N, v, P ) ∈ GU and
all k, l ∈ M indistinguishable in v/P , it holds that

∑
i∈Pk

gi(N, v, P ) =∑
i∈Pl

gi(N, v, P ).

Take a TU-game (N, v) ∈ GN and i ∈ N . We say that i is a nullifying
player in v if v(S∪i) = 0 for all S ⊆ N . In words, a player is nullifying when
every coalition containing it receives zero according to the characteristic
function.

Nullifying player property (NPP). A value g for TU-games with a priori
unions satisfies the nullifying player property if, for all (N, v, P ) ∈ GU and
all i ∈ N nullifying player in v, it holds that gi(N, v, P ) = 0.

An analogous to NPP above is used in van den Brink (2007) to char-
acterize the equal division value for TU-games. In the next theorem, we
extend van den Brink’s result to TU-games with a priori unions.

Theorem 3.2 EDU is the unique value for TU-games with a priori unions
that satisfies ADD, SWU, SAU and NPP.

Proof. It is immediate to check that EDU satisfies ADD, SWU, SAU and
NPP. To prove the unicity, consider a value g for TU-games with a priori
unions that satisfies ADD, SWU, SAU and NPP. Fix N and define for all
α ∈ R and all non-empty T ⊆ N the TU-game (N, eαT ) given by eαT (S) = α
if S = T and eαT (S) = 0 if S ̸= T . If T = N , since g satisfies SWU and
SAU, it is clear that gi(N, eαN , P ) = α

mpk
for any P = {P1, . . . , Pm} and all

i ∈ Pk ⊆ N , because all players in N are indistinguishable in eαN and all
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players in M are indistinguishable in eαN/P . If T ⊂ N notice that all players
in N \ T are nullifying players in eαT and then, since g satisfies NPP,∑

i∈T
gi(N, eαT , P ) =

∑
i∈N

gi(N, eαT , P ) = eαT (N) = 0

for any P . Then, since g satisfies SWU and SAU it is not difficult to check
that g(N, eαT , P ) = 0. Finally, the additivity of g and the fact that v =∑

T⊆N e
v(T )
T imply that

gi(N, v, P ) =
∑
T⊆N

gi(N, e
v(T )
T , P ) = gi(N, e

v(N)
N , P ) =

v(N)

mpk
= EDU

i (N, v, P )

for any P and all i ∈ Pk ⊆ N . □

4 The equal surplus division value for TU-games
with a priori unions

In this section we extend the equal surplus division value for TU-games to
the more general setup of TU-games with a priori unions. To start with,
remember that the equal surplus division value ESD is defined for every
(N, v) ∈ G and for all i ∈ N by

ESDi(N, v) = v(i) +
v0(N)

n
,

where v0(S) = v(S) −
∑

i∈S v(i) for all S ⊆ N . Notice that ESD is a
variant of ED in which we first allocate v(i) to each player i ∈ N , and
then distribute v0(N) among the players using ED. ESD is a reasonable
alternative to ED for situations where individual benefits and joint benefits
are neatly separable. Let us illustrate this with the example of Section 2
(notice that it deals with costs instead of with benefits).

Consider again the three-storey building of Section 2. Assume now that
the cost of the machine is 55 and that the owner of the third apartment
of the third floor can get a discount of 5. Clearly, the cost of the machine
is a joint cost, whereas the cost due to the works to be done on each floor
should be paid by the owners of each floor. With respect to the costs of the
hollow, assume that there is a fixed cost of 10 and an individual cost of 10
for the owners of the first floor that is incremented by 10 for the owners of
the second floor and by an additional 10 for the owners of the third floor.
According to this, the cost c(i) in which each player is involved is:
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� 55 (machine) + 10 (floor) + 40 (hollow) = 105, for the first and second
players of the third floor,

� 50 (machine) + 10 (floor) + 40 (hollow) = 100, for the third player of
the third floor,

� 55 (machine) + 10 (floor) + 30 (hollow) = 95, for the players of the
second floor,

� 55 (machine) + 10 (floor) + 20 (hollow) = 85, for the players of the
first floor.

Now we can compute the equal surplus division value for the game in
which the players are the apartments and c(N) = 120 (this is what we call
the ES-Dutch rule) and the equal surplus division value for the game in
which the players are the quota units and c(N) = 120 (this is what we
call the ES-Spanish rule). In the latter case, the discount achieved by the
owner of the third apartment of the third floor is divided equally among
its quota units, i.e., c(i) = 105 − 5/60 for each square meter i in the third
apartment of the third floor. Table 3 below displays the distributions of the
cost among the apartments using both rules. Notice that these distributions
are not satisfactory because they seem to penalize too much the apartments
on the third floor, specially the ES-Spanish rule that even proposes that the
apartment on the first floor is recompensed if the elevator is installed. The
reason for this seems to be that the individual costs in this example actually
belong to the floors instead of to the players; consequently it would be more
reasonable to use a kind of two-step rule for the equal surplus division value
analogous to the two-step rule for the equal division value introduced in
Section 2. In other words, this example suggests that we should consider
the structure of a priori unions given by the floors and distribute the costs
using an extension of the equal surplus division value to TU-games with a
priori unions.

Dutch rule Spanish rule

3rd floor 27.5 27.5 22.5 613.6364 613.6364 608.6364

2nd floor 17.5 17.5 22.7273 20.4545

1st floor 7.5 -1759.0910

Table 3: Distribution according to the ES-Dutch and ES-Spanish rules
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Next we propose three alternative ways for extending the equal surplus
division value to TU-games with a priori unions. The first one divides the
value of the grand coalition in the quotient game using the equal surplus
division value and then divides the amount assigned to each union equally
among its members. It maintains the spirit of ESD but applies it to the
quotient game in order to take into account the unions; then it divides
equally within the unions.

Definition 4.1 The equal surplus division value (one) for TU-games with
a priori unions ESD1U is defined by

ESD1Ui (N, v, P ) =
(v/P )(k)

pk
+

(v/P )0(M)

mpk
=

v(Pk)

pk
+

v(N)−
∑

l∈M v(Pl)

mpk

for all i ∈ N and all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and with i ∈ Pk.

The second extension divides again the value of the grand coalition in
the quotient game using the equal surplus division value; then it distributes

the amount
v(N)−

∑
l∈M v(Pl)

m equally among the players in each union, and
the amount v(Pk) giving v(i) to each player i ∈ Pk and dividing v(Pk) −∑

j∈Pk
v(j) equally among the players in Pk. It maintains the spirit of ESD

and, in some sense, applies it twice: first to the quotient game and second
to divide each v(Pk) among its members.

Definition 4.2 The equal surplus division value (two) for TU-games with
a priori unions ESD2U is defined by

ESD2Ui (N, v, P ) = v(i) +
v(Pk)−

∑
j∈Pk

v(j)

pk
+

v(N)−
∑

l∈M v(Pl)

mpk

for all i ∈ N and all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and with i ∈ Pk.

Finally, the third extension assigns v(i) to each player i and then divides
v0(N) among the players using EDU . It maintains the spirit of ESD in
the sense that it allocates v(i) to each i; then it divides v(N) −

∑
j∈N v(j)

equally, first among the unions and then within the unions.

Definition 4.3 The equal surplus division value (three) for TU-games with
a priori unions ESD3U is defined by

ESD3Ui (N, v, P ) = v(i) + EDU (N, v0, P ) = v(i) +
v(N)−

∑
j∈N v(j)

mpk

for all i ∈ N and all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and with i ∈ Pk.
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Now we can compute the equal surplus division values one, two and three
for the game with a priori unions in which the players are the apartments,
the unions are the floors and c(N) = 120 (they are what we call the ESD1U ,
ESD2U and ESD3U -Dutch rules) and the equal surplus division values one,
two and three for the game with a priori unions in which the players are
the quota units, the unions are the floors and c(N) = 120 (they are what
we call the ESD1U , ESD2U and ESD3U -Spanish rules). Tables 4, 5 and 6
below display the distributions of the cost among the apartments using these
rules. The results in Tables 4 and 5 seem to be more reasonable than those
in Table 3; notice that they slightly penalize the higher floors in comparison
with the results in Table 2 (except for the elevator rule). The results in
Table 6 are not satisfactory since they penalize too much the apartments
on the third floor and allocate a negative cost to the apartment on the first
floor; thus, Table 6 shows that ESD3U is not appropriate for this example.
The reason for this can be that ESD3U does not satisfy the quotient game
property (QGP).3 We believe that QGP is especially relevant in this example
because, as we have already mentioned, the individual costs here belong to
the floors (the unions) more than to the players.

Dutch rule Spanish rule

3rd floor 15.5556 15.5556 15.5556 15.5556 15.5556 15.5556

2nd floor 20.8333 20.8333 21.9298 19.7368

1st floor 31.6667 31.6667

Table 4: Distribution according to ESD1U

Dutch rule Spanish rule

3rd floor 17.2222 17.2222 12.2222 17.2222 17.2222 12.2222

2nd floor 20.8333 20.8333 21.9298 19.7368

1st floor 31.6667 31.6667

Table 5: Distribution according to ESD2U

3A value g for TU-games with a priori unions satisfies the quotient game property if, for
all (N, v, P ) ∈ GU with P = {P1, . . . , Pm} and for its quotient game (M, v/P ), it holds that∑

i∈Pk
gi (N, v, P ) = gk (M, v/P, Pm) for all Pk ∈ P , where Pm = {{1} , {2} , . . . , {m}}.
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Dutch rule Spanish rule

3rd floor 53.3333 53.3333 48.3333 508.3333 508.3333 503.3333

2nd floor 17.5 17.5 355.2632 319.7368

1st floor -70 -2075

Table 6: Distribution according to ESD3U

In the remainder of this section we study ESD1U , ESD2U and ESD3U

from the point of view of their properties; in particular, we provide axiomatic
characterizations of these values. We start by introducing new properties of
a value g for TU-games with a priori unions. Take (N, v) ∈ G and i ∈ N .
We say that i is a dummifying player in v if v(S ∪ i) =

∑
j∈S∪i v(j) for all

S ⊆ N . In words, a player is dummifying when every coalition containing
it is inessential according to the characteristic function, in the sense that its
value equals the sum of the individual values of its members. Take now a TU-
game with a priori unions (N, v, P ) ∈ GU where P = {P1, . . . , Pm}. We say
that Pk is a dummifying union in (v, P ) if k is a dummifying player in v/P .
Dummifying players and dummifying unions should play a relevant role in
the characterizations of ESD1U , ESD2U and ESD3U since a property on
dummifying players is used in Casajus and Hüttner (2014) for characterizing
ESD. In fact they use the following property (for G instead of GU ).

Dummifying player property (DPP). A value g for TU-games with a
priori unions satisfies the dummifying player property if, for all (N, v, P ) ∈
GU and all i ∈ N dummifying player in v, it holds that gi(N, v, P ) = v(i).

Notice that ESD3U satisfies DPP, but neither ESD1U nor ESD2U sat-
isfy it. In the search of properties that ESD1U or ESD2U might satisfy, we
propose the following variations of DPP and NPP.

Dummifying union/player property (DUPP). A value g for TU-games
with a priori unions satisfies the dummifying union/player property if, for
all (N, v, P ) ∈ GU and all Pk ∈ P dummifying union in (v, P ) with i ∈ Pk

being a dummifying player in vPk
,4 it holds that gi(N, v, P ) = v(i).

Dummifying union/nullifying player property (DUNPP). A value g
for TU-games with a priori unions satisfies the dummifying union/nullifying

4vPk denotes the characteristic function of the TU-game (Pk, vPk ), where vPk (S) = v(S)
for all S ⊆ Pk.
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player property if, for all (N, v, P ) ∈ GU and all Pk ∈ P dummifying union in
(v, P ) with i ∈ Pk being a nullifying player in vPk

, it holds that gi(N, v, P ) =
0.

Now we give parallel characterizations of the three extensions of ESD
using the properties we have introduced above.

Theorem 4.4 ESD1U is the unique value for TU-games with a priori
unions that satisfies ADD, SWU, SAU and DUNPP.

Proof. It is immediate to check that ESD1U satisfies ADD, SWU, SAU
and DUNPP. To prove the unicity, consider a value g for TU-games with a
priori unions that satisfies ADD, SWU, SAU and DUNPP. Take (N, v, P ) ∈
GU with P = {P1, . . . , Pm} and define the TU-game (N, v1) given by

v1(S) =
∑
Pl⊆S

v(Pl) =
m∑
l=1

vPl(S)

for all S ⊆ N , where vPl(S) = v(Pl) if Pl ⊆ S and vPl(S) = 0 otherwise.
Take Pk ∈ P . Since g is a value for TU-games with a priori unions, then∑

i∈N
gi(N, vPk , P ) = vPk(N) = v(Pk).

All unions Pl ∈ P are dummifying unions in (vPk , P ) and all players i ∈ Pl,
with l ̸= k, are nullifying players in (vPk)Pl

. By DUNPP, gi(N, vPk , P ) = 0
for all i /∈ Pk. And since all players in Pk are indistinguishable in vPk , then
SWU implies that, for all i ∈ Pk, gi(N, vPk , P ) = v(Pk)

pk
. Using the additivity

of g, for all i ∈ Pk,

gi(N, v1, P ) =
v(Pk)

pk
. (1)

Define now v2 = v − v1 and, for all α ∈ R and all non-empty T ⊆ N ,
eαT by eαT (S) = α if S = T and eαT (S) = 0 if S ̸= T . It is clear that

v2 =
∑

T⊆N e
v2(T )
T . If T = N , since all players in N are indistinguishable

in e
v2(N)
N and all players in M are indistinguishable in e

v2(N)
N /P , SWU and

SAU imply that, for all i ∈ Pk,

gi(N, e
v2(N)
N , P ) =

v2(N)

mpk
=

v(N)−
∑

l∈M v(Pl)

mpk
.

If T ⊂ N , consider two cases:

13



� Take T = ∪l∈LPl, with ∅ ⊂ L ⊂ M . For all Pu ∈ P , if T ̸= Pu then

e
v2(T )
T (Pu) = 0 and if T = Pu then e

v2(T )
T (Pu) = v2(Pu) = 0. Hence,

it is easy to see that all the unions in M \ L are dummifying unions

in (e
v2(T )
T , P ). Also, since all players in N \ T are nullifying players in

e
v2(T )
T , DUNPP implies that gi(N, e

v2(T )
T , P ) = 0 for all i /∈ T . Notice

that since all unions in L are indistinguishable in e
v2(T )
T , then by SAU∑

i∈Pk
gi(N, e

v2(T )
T , P ) =

∑
i∈Pl

gi(N, e
v2(T )
T , P ) for all k, l ∈ L; notice

also that since∑
i∈T

gi(N, e
v2(T )
T , P ) =

∑
i∈N

gi(N, e
v2(T )
T , P ) = e

v2(T )
T (N) = 0

then
∑

i∈Pk
gi(N, e

v2(T )
T , P ) = 0 for all k ∈ L. To conclude, SWU

implies that gi(N, e
v2(T )
T , P ) = 0 for all i ∈ Pk, with k ∈ L, and

therefore for all i ∈ N .

� For any other T ⊂ N that is not in the previous case, the quotient

game (M, e
v2(T )
T /P ) satisfies that (e

v2(T )
T /P )(R) = 0 for all R ⊆ M

and, thus, all the unions in P are indistinguishable and dummifying

unions in (e
v2(T )
T , P ). If i /∈ T , then i is a nullifying player in e

v2(T )
T

and DUNPP implies that gi(N, e
v2(T )
T , P ) = 0. Analogously as in the

previous case, SAU and SWU imply that gi(N, e
v2(T )
T , P ) = 0 for all

i ∈ T .

Now ADD implies that, for all i ∈ Pk with Pk ∈ P ,

gi(N, v2, P ) =
∑
T⊆N

gi(N, e
v2(T )
T , P ) =

v2(N)

mpk
. (2)

Finally, from (1), (2), ADD and v = v1 + v2 it is clear that

g(N, v, P ) = ESD1U (N, v, P ).

□

Theorem 4.5 ESD2U is the unique value for TU-games with a priori
unions that satisfies ADD, SWU, SAU and DUPP.

Proof. It is immediate to check that ESD2U satisfies ADD, SWU, SAU
and DUPP. To prove the unicity, consider a value g for TU-games with a
priori unions that satisfies ADD, SWU, SAU and DUPP. Take (N, v, P ) ∈
GU with P = {P1, . . . , Pm} and define va, v01 and v02 by:
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� va(S) =
∑

i∈S v(i),

� v01(S) =
∑

Pl⊆S v0(Pl) =
∑m

l=1 v
0Pl(S),

� v02(S) = v0(S)−
∑

Pl⊆S v0(Pl),

for all S ⊆ N , where v0Pl(S) = v0(Pl) if Pl ⊆ S and v0Pl(S) = 0 otherwise.
Since all unions are dummifying in (va, P ) and all players are dummifying

in va, then DUPP implies that, for all i ∈ N ,

gi(N, va, P ) = va(i) = v(i). (3)

Take Pk ∈ P . Since g is a value for TU-games with a priori unions, then∑
i∈N

gi(N, v0Pk , P ) = v0Pk(N) = v0(Pk).

All unions Pl ∈ P are dummifying unions in (v0Pk , P ) and all players i ∈ Pl,
with l ̸= k, are dummifying players in (v0Pk)Pl

. By DUPP, gi(N, v0Pk , P ) =
v0Pk(i) = 0 for all i /∈ Pk. And since all players in Pk are indistinguishable in

v0Pk , then SWU implies that, for all i ∈ Pk, gi(N, v0Pk , P ) = v0(Pk)
pk

. Using
ADD, for all i ∈ Pk,

gi(N, v01, P ) =
v0(Pk)

pk
. (4)

Take now into account that v02 =
∑

T⊆N e
v02(T )
T . If T = N , since all

players in N are indistinguishable in e
v02(N)
N and all players in M are indis-

tinguishable in e
v02(N)
N /P , SWU and SAU imply that, for all i ∈ Pk,

gi(N, e
v02(N)
N , P ) =

v02(N)

mpk
.

If T ⊂ N , consider two cases:

� Take T = ∪l∈LPl, with ∅ ⊂ L ⊂ M . Since e
v02(T )
T (Pu) = 0 for all

Pu ∈ P and (e
v02(T )
T /P )(R) = 0 for all R ⊆ M with R ∩ (M \ L) ̸= ∅,

all the unions in M \ L are dummifying unions in (e
v02(T )
T , P ). Also,

since all players in N \ T are dummifying players in e
v02(T )
T , DUPP

implies that gi(N, e
v02(T )
T , P ) = e

v02(T )
T (i) = 0 for all i /∈ T . Notice

that since all unions in L are indistinguishable in e
v02(T )
T , then by SAU
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∑
i∈Pk

gi(N, e
v02(T )
T , P ) =

∑
i∈Pl

gi(N, e
v02(T )
T , P ) for all k, l ∈ L, and

notice that since∑
i∈T

gi(N, e
v02(T )
T , P ) =

∑
i∈N

gi(N, e
v02(T )
T , P ) = e

v02(T )
T (N) = 0

then
∑

i∈Pk
gi(N, e

v02(T )
T , P ) = 0 for all k ∈ L. Hence, SWU implies

that gi(N, e
v02(T )
T , P ) = 0 for all i ∈ T .

� For any other T ⊂ N that is not in the previous case, the quotient

game (M, e
v02(T )
T /P ) satisfies that (e

v02(T )
T /P )(R) = 0 for all R ⊆ M

and, thus, all the unions in P are indistinguishable and dummifying

unions in (e
v02(T )
T , P ). If i /∈ T , then i is a dummifying player in e

v02(T )
T

and DUPP implies that gi(N, e
v02(T )
T , P ) = e

v02(T )
T (i) = 0. Analogously

as in the previous case, SAU and SWU imply that gi(N, e
v02(T )
T , P ) = 0

for all i ∈ T .

Now ADD implies that, for all i ∈ Pk with Pk ∈ P ,

gi(N, v02, P ) =
∑
T⊆N

gi(N, e
v02(T )
T , P ) =

v02(N)

mpk
. (5)

Finally, from (3), (4), (5), ADD and v = va + v01 + v02 it is clear that

g(N, v, P ) = ESD2U (N, v, P ).

□
Now we provide a characterization of ESD3U . In order to do it we

introduce a new property that is a weaker version of SAU.

Weak symmetry among unions (WSAU). A value g for TU-games with
a priori unions satisfies weak symmetry among unions if, for all (N, v, P ) ∈
GU with v(j) = 0 for all j ∈ N , and for all k, l ∈ M indistinguishable in
v/P , it holds that

∑
i∈Pk

gi(N, v, P ) =
∑

i∈Pl
gi(N, v, P ).

Theorem 4.6 ESD3U is the unique value for TU-games with a priori
unions that satisfies ADD, SWU, WSAU and DPP.

Proof. It is immediate to check that ESD3U satisfies ADD, SWU,
WSAU and DPP. To prove the unicity, consider a value g for TU-games
with a priori unions that satisfies ADD, SWU, WSAU and DPP. Take now
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(N, v, P ) ∈ GU and i ∈ Pk with Pk ∈ P , and define va = v − v0. ADD
implies that

gi(N, v, P ) = gi(N, va, P ) + gi(N, v0, P ). (6)

Since all players are dummifying in va, then DPP implies that

gi(N, va, P ) = va(i) = v(i). (7)

Now, using for (N, v0) analogous arguments as those used in the proof
of Theorem 3.2, it is clear that ADD, SWU, WSAU and DPP imply that

gi(N, v0, P ) = EDi(N, v0, P ). (8)

Finally, from (6), (7) and (8) it is clear that

g(N, v, P ) = ESD3U (N, v, P ).

□

It is immediate to prove that ESD3U does not satisfy SAU. Since WSAU
is a weaker version of SAU, and ESD3U is characterized with ADD, SWU,
WSAU and DPP, we conclude that there does not exist a value for TU-games
with a priori unions satisfying ADD, SWU, SAU and DPP.

To conclude, we indicate that the properties in the theorems of this paper
are independent. We prove this in a separate appendix.
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Casas-Méndez B, Garćıa-Jurado I, van den Nouweland A, Vázquez-Brage
M (2003). An extension of the τ -value to games with coalition structures.
European Journal of Operational Research 148, 494-513.
Chun Y, Park B (2012). Population solidarity, population fair-ranking and
the egalitarian value. International Journal of Game Theory 41, 255-270.
Costa J (2016). A polynomial expression of the Owen value in the mainte-
nance cost game. Optimization 65, 797-809.
Crettez B, Deloche R (2019). A law-and-economics perspective on cost-
sharing rules for a condo elevator. To appear in Review of Law & Eco-
nomics. doi: 10.1515/rle-2016-0001.
Dietzenbacher B, Borm P, Hendrickx R (2017). The procedural egalitarian
solution. Games and Economic Behavior 106, 179-187.
Driessen TSH, Funaki Y (1991). Coincidence of and collinearity between
game theoretic solutions. OR Spectrum 13, 15-30.
Dutta B (1990). The egalitarian solution and reduced game properties in
convex games. International Journal of Game Theory 19, 153-169.
Dutta B, Ray D (1989). A concept of egalitarianism under participation
constraints. Econometrica 57, 615-635.
Ferrières S (2017). Nullified equal loss property and equal division values.
Theory and Decision 83, 385-406.
Hu XF (2019). The weighted Shapley-egalitarian value for cooperative
games with a coalition structure. To appear in Top. https://doi.org/10.1007/s11750-
019-00530-4
Hu XF, Xu GJ, Li DF (2019). The egalitarian efficient extension of the
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Appendix

a) Independence of the properties of Theorem 3.2:

� φi =
v(Pk)
pk

+
v(N)−

∑
l∈M v(Pl)

mpk
satisfies ADD, SWU and SAU, but not

NPP.

� φi =
v(N)
n satisfies ADD, SWU and NPP, but not SAU.

� φi =
2v(N)
mpk

if i = min
j∈Pk

j or φi =
(pk−2)v(N)
mpk(pk−1) if i ∈ Pk and i ̸= minj∈Pk

j,

satisfies ADD, SAU and NPP, but not SWU.
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� φi =
2v(N)

mpk|Zk| if i ∈ Zk = {j ∈ Pk/v(j) = min
z∈Pk

v(z)}, φi =
(pk−2)v(N)

mpk(pk−|Zk|)

if i ∈ Pk\Zk, satisfies SWU, SAU and NPP, but not ADD.

b) Independence of the properties of Theorem 4.4:

� φi =
v(Pk)
pk

+
v(N)−

∑
l∈M v(Pl)

n satisfies ADD, SWU, DUNPP, but not
SAU.

� φi =
v(Pk)
pk

+
2(v(N)−

∑
l∈M v(Pl))

mpk
if i = min

j∈Pk

j or φi =
v(Pk)
pk

+
(pk−2)(v(N)−

∑
l∈M v(Pl))

mpk(pk−1)

if i ∈ Pk and i ̸= minj∈Pk
j, satisfies ADD, SAU and DUNPP, but not

SWU.

� φi =
v(Pk)
pk

+
2(v(N)−

∑
l∈M v(Pl))

mpk|Zk| if i ∈ Zk = {j ∈ Pk/v(j) = min
z∈Pk

v(z)},

φi =
v(Pk)
pk

+
(pk−2)(v(N)−

∑
l∈M v(Pl))

mpk(pk−|Zk|) if i ∈ Pk\Zk, satisfies SWU, SAU
and DUNPP, but not ADD.

� φi = v(i)+
v(Pk)−

∑
j∈Pk

v(j)

pk
+

v(N)−
∑

l∈M v(Pl)

mpk
satisfies ADD, SWU and

SAU, but not DUNPP.

c) Independence of the properties of Theorem 4.5:

� φi = v(i)+
v(Pk)−

∑
j∈Pk

v(j)

pk
+

v(N)−
∑

l∈M v(Pl)

n satisfies ADD, SWU and
DUPP, but not SAU.

� φi = v(i) +
v(Pk)−

∑
j∈Pk

v(j)

pk
+

2(v(N)−
∑

l∈M v(Pl))

mpk
if i = min

j∈Pk

j or φi =

v(i) +
v(Pk)−

∑
j∈Pk

v(j)

pk
+

(pk−2)(v(N)−
∑

l∈M v(Pl))

mpk(pk−1) if i ∈ Pk and i ̸=
minj∈Pk

j, satisfies ADD, SAU and DUPP, but not SWU.

� φi = v(i) +
v(Pk)−

∑
j∈Pk

v(j)

pk
+

2(v(N)−
∑

l∈M v(Pl))

mpk|Zk| if i ∈ Zk = {j ∈

Pk/v(j) = min
z∈Pk

v(z)}, φi = v(i)+
v(Pk)−

∑
j∈Pk

v(j)

pk
+

(pk−2)(v(N)−
∑

l∈M v(Pl))

mpk(pk−|Zk|)

if i ∈ Pk\Zk, satisfies SWU, SAU and DUNPP, but not ADD.

� φi =
v(Pk)
pk

+
v(N)−

∑
l∈M v(Pl)

mpk
satisfies ADD, SWU and SAU, but not

DUPP.

d) Independence of the properties of Theorem 4.6:

� φi = v(i) +
v(N)−

∑
j∈N v(j)

n satisfies ADD, SWU and DPP, but not
WSAU.
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� φi = v(i)+
2(v(N)−

∑
j∈N v(j))

mpk
if i = min

j∈Pk

j or φi = v(i)+
(pk−2)(v(N)−

∑
j∈N v(j))

mpk(pk−1)

if i ∈ Pk and i ̸= minj∈Pk
j, satisfies ADD, WSAU and DPP, but not

SWU.

� φi = v(i) +
2(v(N)−

∑
j∈N v(j))

mpk|Zk| if i ∈ Zk = {j ∈ Pk/v(j) = min
z∈Pk

v(z)},

φi = v(i) +
(pk−2)(v(N)−

∑
j∈N v(j))

mpk(pk−|Zk|) if i ∈ Pk\Zk, satisfies SWU, WSAU
and DPP, but not ADD.

� φi = v(Pk)
pk

+
v(N)−

∑
l∈M v(Pl)

mpk
satisfies ADD, SWU, WSAU but not

DPP.
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