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Abstract: 

Accurate identification of heterogeneous aquifer structures is essential for obtaining 

reliable predictions of groundwater flow and solute transport. Aquifer structures built 

with only sparse borehole data often maintain large uncertainty. Here we present an 

integrated inversion framework, which combines a concurrent-single-image generative 

adversarial network (ConSinGAN), a deep octave convolution dense residual network 

(DOCRN), and an iterative ensemble smoother for identifying heterogeneous 

structures.ConSinGAN is able to use a low-dimensional noise vector with a single 

training sample to represent accurately aquifer heterogeneous structure within a short 

training time. Simultaneously, the octave convolution layer and the multi-residual 

connection enable DOCRN to carry out the mapping from the heterogeneous structure 

to the state field (hydraulic head and concentration distributions), while increasing 

approximation accuracy, and reducing the GPU memory. ConSinGAN and DOCRN 

networks are systematically integrated into an iterative ensemble smoother to 

incorporate available observed data for structure inversion. The performance of the 

integrated framework is illustrated with two synthetic contaminant transport 

experiments in 2D and 3D. We show that ConSinGAN can generate a series of 
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heterogeneous models with geostatistical characteristics similar to those of the training 

sample. Its training is more than 10 times faster than that of a multi-sample-based 

generative adversarial network. In addition, DOCRN provided accurate state fields for 

heterogeneous structures in 2D and 3D. The integrated inversion framework obtained 

realistic heterogeneous structures. The integration of ConSinGAN and DOCRN 

reduces significantly reduce the computation time of the inversion process. 
 
 

1. Introduction 

Groundwater flow and solute transport models are widely used in hydrogeological 

applications, such as contaminant transport, CO2 geological sequestration, groundwater 

resource management, and geological radioactive waste disposal (Linde et al., 2015; 

Paniconi & Putti, 2015). Reliable model prediction depends on a realistic 

characterization of aquifer heterogeneous structures (Dai et al., 2020). Such structures 

are commonly identified with geostatistical methods (Dai et al., 2007; Deutsch & 

Journel, 1992) and from conditional facies data obtained from spare boreholes and 

outcrops.  

Geostatistical methods can be divided into two-point and multi-point methods. The 

two-point statistical method is typically used to calculate the spatial covariance or the 

variogram of the stratigraphic facies, which are then used to interpolate the distribution 

of spatial heterogeneity of the site based on these statistical variables. To overcome the 

issue of some geological models which are non-Gaussian and highly non-linear, Carle 

and Fogg (1996) proposed a kriging geological modeling method for indicators based 

on transition probability. Compared with the covariance approach, this method allows 

incorporating subjective information (such as the estimation of facies extension 

lengths), and the sedimentary trend. In recent years, this method has been widely 

employed to identify heterogeneous facies (Dai et al., 2018; Song et al., 2019). The 

multi-point statistical method relies on a training image to predict complex 

heterogeneous aquifer structures (Li et al., 2016; Tahmasebi, 2017). This method is 
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based on extracting first the spatial distribution pattern of the facies from an image, and 

then the pattern is matched with conditional data. This method, however, behaves 

poorly in non-stationary strongly-heterogeneous formations because the image pattern 

matches incompletely the true facies distribution. In addition, both two-point and multi-

point statistics rely primarily on borehole data, and because such data are limited and 

costly, an inversion method combined with prior knowledge and measured hydraulic 

head and concentration data are often needed to obtain accurate representations of 

aquifer structures. 

The inversion of aquifer heterogeneous structures has received extensive attention 

in recent years (Canchumuni et al., 2019; Liu et al., 2019; Soares et al., 2020; Xu et al., 

2021). For example, Xu and Gómez-Hernández (2018) used the ensemble Kalman filter 

to identify the heterogeneous conductivity field by assimilating hydraulic head and 

concentration data. Laloy et al. (2016) used a sequential geostatistical resampling 

algorithm to identify the conductivity field based on multi-point statistics. However, in 

the process of heterogeneous structure inversion using observations, particularly for 

large-scale aquifers, the inversion parameters are usually high dimensional. Most 

inversion methods usually require performing multiple forward simulations to obtain 

convergent solutions (Dai et al., 2014; Dai & Samper, 2004). To alleviate these 

problems, parameterization methods and surrogate models are often used for the 

inversion of heterogeneous structures (Mo et al., 2020). 

The parameterization method uses low-dimensional vectors to represent high-

dimensional aquifer structures. Commonly used parameterization methods include 

zonation (Harp et al., 2008), level-set function (Song et al., 2019), principal component 

analysis (PCA) and its variants (Emerick, 2017; Gao et al., 2015; Sarma & Chen, 2009), 

K-singular value decomposition (Kim et al., 2018), and discrete cosine transformation 

(Jung et al., 2017). In recent years, the development of deep learning techniques has 

yielded also encouraging results (Yu et al., 2020), especially in image processing. 2D 

and 3D aquifer structures can be rendered as images accordingly, and many scholars 

have resorted to deep learning techniques of image processing for parameterizing 
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geological structures. Generative adversarial network (GAN) and variational auto-

encoder (VAE) are the two most popular methods. Mosser et al. (2017) used GAN to 

reconstruct 3D porous media structure. Zhang et al. (2019) generated realistic 3D 

reservoir facies models by using GAN. Chan and Elsheikh (2017) used WGAN 

(Wasserstein GAN) to parameterize the channelized geological structures together with 

Bayesian methods to obtain the a posteriori distribution. Laloy et al. (2018) used spatial 

GAN as the parameterization method to alleviate the computational cost of Markov 

chain Monte Carlo Bayesian inversion of geological structures. Laloy et al. (2017) used 

VAE for the inversion of a binary facies structure.  Canchumuni et al. (2017) used 

VAE to parameterize the binary facies model for history matching. Mo et al. (2020) 

reported an adversarial autoencoder method by combining VAE and GAN to 

parameterize a non-Gaussian hydraulic conductivity field.  

The use of deep learning methods for aquifer model parameterization is limited by 

the large number of required training samples and the instability of the training process 

because the quality of the training results may not improve when the training time is 

increased.  

Surrogate models are computationally fast and provide similar results as high-

fidelity forward simulations (Keating et al., 2016). In the inversion of the aquifer 

heterogeneous structure, surrogate models are used to find complex relationships 

between structures and state variables such as concentrations and hydraulic heads. As 

the size of both the heterogeneous structure and state field is often large, and the 

parameters involved are commonly high-dimensional, these relationships tend to be 

highly nonlinear. It is difficult for some commonly used surrogate methods, such as 

polynomial chaos expansion (Fajraoui et al., 2011; Jia et al., 2018), kriging (Zhou et al., 

2018), and Gaussian processes (Zhang et al., 2016), to obtain optimum results. Owing 

to their powerful nonlinear mapping capabilities, deep learning techniques have 

achieved impressive results in building surrogate models with high-dimensional inputs 

and outputs. Sun (2018) used GAN to map the parameter and state field. A residual 

recurrent network was used by Kani and Elsheikh (2019) to build a surrogate model of 
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multiphase flow simulation. Mo et al. (2020) related the hydraulic conductivity field to 

the concentration and hydraulic head fields with deep residual dense convolution 

networks (DRDCN). Although these methods have produced inspiring results, there are 

still some differences between the high-fidelity and the surrogate models. Further, the 

deep learning-based surrogate model usually needs a large amount of graphics 

processing unit (GPU) memory during training, the requirement of which may be 

difficult to meet. It is a limiting factor in both image processing and geoscience; 

however, with the rapid development of deep learning techniques in recent years, some 

state-of-the-art methods can alleviate these problems. 

Here we present a novel inversion framework which improves GAN based on a 

single-sample training to parameterize aquifer heterogeneous structures. After training, 

a series of heterogeneous structures with similar facies distribution patterns as the 

training sample are generated. This proposed parameterization network is denoted here 

as concurrent-single-image generative adversarial network (ConSinGAN). It is capable 

of decreasing significantly the training times through a parallel multi-stage learning 

strategy with a single training sample. In addition, a novel deep octave convolution 

residual network (DOCRN) is proposed for the surrogate model. The DOCRN uses 

octave convolution instead of the traditional convolution layer. It decomposes the 

training samples into two parts: high- and low-frequency information, which 

significantly reduces the GPU memory required for surrogate model training. DOCRN 

uses residual dense blocks (Rakotonirina & Rasoanaivo, 2020) as the basic component 

of the network. The inclusion of more dense residual structures improves the accuracy 

of DOCRN results. Simultaneously, Gaussian noise is added to the output of each 

residual dense block to alleviate model overfitting and instability. Finally, ConSinGAN 

and DOCRN modules are integrated into an iterative local updating ensemble smoother 

algorithm (ILUES, Zhang et al., 2018) to form an integrated ConSinGAN-DOCRN-

ILUES inversion framework. The proposed method has been used to identify 2D and 

3D aquifer heterogeneous properties. 
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Section 2 presents the ConSinGAN-DOCRN-ILUES inversion framework. The 

statistical analyses of the unconditional simulation results of ConSinGAN are described 

in Section 3. Section 4 presents the unconditional simulation results. Section 5 presents 

the surrogate model performance and the inversion results. Section 6 discusses the 

advantages and limitations of the proposed inverse framework. Finally, the conclusions 

are highlighted in Section 7.  
 

2. Problem Formulation 

This study deals with contaminant transport in a steady-state flow field. The 

governing equation is given by (Bear, 1979): 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= div(𝐃𝐃 ⋅ ∇C) − div(𝐮𝐮C) + 𝑆𝑆              (1) 

where C (M·L-3) is the solute concentration, t (T) is time, D (L) is the hydrodynamic 

dispersion tensor, 𝐮𝐮  (L/T) is the pore water velocity and S (M·L-3·T-1) is the 

sink/source. The solute transport equation was solved numerically with 

TOUGHREACT (Xu et al., 2006). 

In this paper, we focus on the inversion identification of the aquifer structure with 

high heterogeneous by using observation data. The objective function of the inversion 

problem is the difference between the simulated and measured hydraulic heads and 

concentrations. Here the aquifer structure is parameterized with a low-dimensional 

vector. Therefore, the inversion process consists on finding a series of optimal vectors, 

which are used for aquifer parameterization to obtain realistic aquifer structures. 

3. Integrated Inversion Framework 

3.1 ConSinGAN Architecture 

The proposed GAN architecture is based on ConSinGAN (Hinz et al., 2021). This 

type of architecture is capable of training the generator to produce realistic images with 

just an image. A multi-stage parallel training strategy is used to improve the quality of 
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the generated image in less time; however, in its initial form, the dimensions of the 

input latent vector were identical to those of the object image. Thus, for the inversion 

of a large-size aquifer structure, the high dimensionality of the input vector results in a 

huge computational burden, thus preventing convergence of the inversion process. To 

overcome these problems, two noise-map blocks were used for mapping the low-

dimensional vector to the high-dimensional one with the same shape as the object 

aquifer. Noise-map 1 block was used in the first stage of training, and noise-map 2 block 

was used in the follow-up stages (Figure 1). In addition, ConSinGAN was extended to 

obtain 3D heterogeneous structures. 

Figure 2 shows the modified ConSinGAN architecture. ConSinGAN first learns to 

map a vector to a low-resolution image (Figure 2, training Stage 0). Once completed, 

the size of the generated image is increased via the upsample layer. To improve diversity, 

an input vector is also added to the upscaled image through the noise-map 2 block, and 

this mixed image is used as the input for the next training stage. Besides Stage 0, a 

residual connection is added to connect the input image to the output of each training 

stage. This process is repeated N times until an image with the desired resolution is 

generated. 

The discriminator architecture is the same as that of SinGAN (Shaham et al., 2019), 

and the initial version of ConSinGAN. It includes several user-defined convolution 

blocks, each containing two operations (convolution and activation), and the LeakyRule 

activation function is used for both generator and discriminator. In this multi-stage 

training process, the generator and discriminator focuses on global features at the low 

stage and finer textures at the higher stage. 
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Figure 1. Block structures for the 3D test cases of (a) noise-map 1, and (b) noise-map 2. Dense refers 
to a fully connected layer; Transconv contains three operations: Transposed convolution (with stride 
= 2), Batch Normalization, and Activation; The Upsample operation is used to transform the size of 
the 3D noise vector into the same as the object model at the current stage. 

 
Figure 2. Modified ConSinGAN architecture (modified from Hinz et al. (2021)). 

 

X denotes the true heterogeneous structure (training sample), 𝑋𝑋� is the estimated 
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heterogeneous structure obtained by the generator 𝑋𝑋� = 𝐺𝐺(𝑍𝑍) . Z is the noise vector 

selected from a specific distribution, with a user-defined dimension. Like most other 

GAN, the generator and discriminator are learned consecutively with opposing targets.  

Discriminator D(.) is trained to distinguish 𝑋𝑋�  from X as much as possible. 

Simultaneously, the generator G(.) learns the patterns of X, and generates 𝑋𝑋� to fool the 

discriminator into labeling 𝑋𝑋� as a true heterogeneous structure. Mathematically, at any 

given stage N, this training process can be translated into the following minimization-

maximization loss function (Eq. 2; Hinz et al. (2021)): 

min
𝐺𝐺𝑁𝑁

max
𝐷𝐷𝑁𝑁

ℒ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤−𝑔𝑔𝑔𝑔(𝐺𝐺𝑁𝑁,𝐷𝐷𝑁𝑁) + 𝛿𝛿ℒ𝑟𝑟𝑟𝑟𝑟𝑟(𝐺𝐺𝑁𝑁)                 (2) 

where ℒ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤−𝑔𝑔𝑔𝑔(𝐺𝐺𝑁𝑁,𝐷𝐷𝑁𝑁)  is the WGAN-GP loss function (Gulrajani et al., 2017) 

shown in Eqs (3 and 4),  ℒ𝑟𝑟𝑟𝑟𝑟𝑟(𝐺𝐺𝑁𝑁)  is the reconstruction loss, and 𝛿𝛿  is the 

reconstruction loss weight defined by users to balance the similarity between the true 

and estimated structures. 

 The WGAN-GP loss function can significantly improve the stability and speed of 

GAN training: 

ℒ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤−𝑔𝑔𝑔𝑔(𝐷𝐷𝑁𝑁) =  −E𝑥𝑥~𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐷𝐷(𝑥𝑥) + 𝐸𝐸𝑥𝑥~𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝐷𝐷(𝑥𝑥) + 𝜆𝜆𝐸𝐸𝑥𝑥�~𝑃𝑃𝑥𝑥�[‖∇𝑥𝑥𝐷𝐷(𝑥𝑥�)‖2 − 1]2 (3) 

ℒ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤−𝑔𝑔𝑔𝑔(𝐺𝐺𝑁𝑁) = −𝐸𝐸𝑥𝑥~𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝐷𝐷(𝑥𝑥)                      (4) 

where 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is the training data distribution, 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔  denotes the generated data 

distribution, and 𝑃𝑃𝑥𝑥�  is a random sample distribution that uniformly samples along 

straight lines between 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  and 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔 ,  𝜆𝜆  is the penalty coefficient, and ∇𝑥𝑥𝐷𝐷(𝑥𝑥�) 

represents the gradient of discriminator. Both terms of E𝑥𝑥~𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐷𝐷(𝑥𝑥) + 𝐸𝐸𝑥𝑥~𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝐷𝐷(𝑥𝑥) 

are the Wasserstein distance used to measure the space between the distributions of X 

and 𝑋𝑋�. The introduction of these terms alleviates the problem of gradient vanishing 

(slowing down the parameter updating speed during GAN training). 

𝜆𝜆𝐸𝐸𝑥𝑥�~𝑃𝑃𝑥𝑥�[‖∇𝑥𝑥𝐷𝐷(𝑥𝑥�)‖2 − 1]2 is the gradient penalty term used to ensure that the gradient 

of D(.) is neither too large nor too small, and further prevent gradient explosion and 

vanishing.  

The reconstruction loss ℒ𝑟𝑟𝑟𝑟𝑟𝑟(𝐺𝐺𝑁𝑁) was used to measure the similarity between X� 
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and X. The larger the value of 𝛿𝛿, the less diverse is 𝑋𝑋�, and the larger the similarity to 

X. The reconstruction loss function at a given stage N is given by: 

ℒ𝑟𝑟𝑟𝑟𝑟𝑟(𝐺𝐺𝑁𝑁) = ‖𝐺𝐺𝑁𝑁(𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟) − 𝑋𝑋𝑁𝑁‖                      (5) 

where 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟  is a reconstruction noise vector randomly selected from a user-defined 

distribution before training, and remains fixed throughout training process; and 𝑋𝑋𝑁𝑁 is 

the downsampled version of the original training image at a given stage N. 

At each stage, adversarial training is completed in two consecutive steps: First, the 

parameters of G(.) is fixed to train D(.) three times to minimize Eq. (3), and 

subsequently G(.) is trained three times with fixed D(.) parameters to minimize the sum 

of Eqs (4) and (5). After training, the generator G(.) creates a series of realistic 

heterogeneous structures with different noise vector inputs. 
   

3.2 DOCRN for Surrogate Modeling 

A surrogate model for the forward simulation is an image-to-image translation 

process to establish a complex nonlinear relationship between the heterogeneous 

aquifer structures and the state field. For the 3D test case, this process is given by: 

𝑌𝑌𝐿𝐿∗𝑊𝑊∗𝐻𝐻∗𝐷𝐷𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐹𝐹(𝑋𝑋𝐿𝐿∗𝑊𝑊∗𝐻𝐻∗𝐷𝐷𝐼𝐼𝐼𝐼)                     (6) 

where 𝑋𝑋 is the heterogeneous structure and 𝑌𝑌 represents the state field; L, W, and H 

are the length, width, and height of the 3D heterogeneous structure, respectively; 𝐷𝐷𝐼𝐼𝐼𝐼 

and 𝐷𝐷𝑂𝑂𝑂𝑂𝑂𝑂 represent the dimensions of the input and output parameters at each grid, 

respectively; and F denotes the complex nonlinear relationship between input and 

output parameters. he o performance of the surrogate model is improved by integrating 

a novel convolution structure, “octave convolution,” and a novel residual block, 

“residual in residual dense residual block (RRDRB)”, into the DOCRN surrogate model. 

3.2.1 Octave Convolution  

The information of a natural image can be decomposed into low- and high-

frequency information. Low-frequency information is usually the global structure, 
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whereas more detailed information is generally included in the high-frequency. In 

neural network training processes, some redundant low-frequency information can be 

compressed without affecting the learning ability (Chen et al., 2019). The traditional 

convolution layer is replaced by an octave convolution layer to reduce this redundancy 

and improve the processing of information with different frequencies. The architecture 

of the octave convolution is shown in Figure 3. The first octave convolution is used to 

decompose the input feature map into high- and low-frequency features according to: 

 𝑌𝑌𝐻𝐻 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋)                            (7)  

                     𝑌𝑌𝐿𝐿 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑋𝑋))                   (8) 

In contrast, the last octave convolution was used to recombine the high- and low-

frequency features into the output feature according to:  

                     𝑌𝑌 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝐻𝐻) + 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝐿𝐿))      (9) 

The middle octave convolution operations are given by:  

  𝑌𝑌𝐻𝐻 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝐻𝐻) + 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝐿𝐿))    (10)  

𝑌𝑌𝐿𝐿 =   𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑋𝑋𝐻𝐻)� + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝐿𝐿)      (11) 

where Conv contains the following three operations: convolution (with stride = 1), 

batch normalization, and activation, used to change the channel dimension of the 

feature map without altering its spatial dimensions. The spatial dimensions are altered 

by the Upsample and Avepool operations, where Upsample is used to expand the spatial 

dimension of the feature map, and Avepool is used to reduce it. 
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Figure 3. (a) First, (b) middle, and (c) last octave convolution architecture (modified from Chen et 
al., (2019)). X and Y denote the input and output feature maps, respectively; the superscripts H and 
L denote the corresponding high- and low-frequency features, respectively; 𝑤𝑤 and h are the spatial 
dimensions of the images; 𝑐𝑐𝑖𝑖𝑖𝑖   and 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜  are the channel dimensions; and α  is a user-defined 
parameter representing the ratio of input feature channels used in low-frequency feature maps. Here 
α is taken equal to 0.25.   

3.2.2 Octave Residual in Residual Dense Residual Block 

RRDRB was first proposed for super-resolution image generation (Rakotonirina 
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& Rasoanaivo, 2020). It contains three residual dense blocks (RDBs), which add a 

residual connection every two layers (blue lines in Figure 4(a)) and enable learning the 

feature map patterns at multiple levels. This multilevel residual learning increases the 

network capacity, and ensures that the network can learn a more complex, non-linear 

relationship between the heterogeneous structure and state field. Concurrently, a crucial 

role of the residual learning strategy is to alleviate the gradient vanishing problem. To 

this end, the quality of the translated images using an RDB tends to be better than that 

of simple dense block, SDB (Rakotonirina and Rasoanaivo, 2020).  

To improve training stability, all outputs from the RDBs were multiplied by a 

residual scale β (β = 0.2 in the present study; Szegedy et al. (2017)). Similar to the 

method of adding noise to human face generation tasks, Gaussian noise was multiplied 

by a learning scale parameter γ (γ = 0.1 in the present study) and added to the scaled 

RDB outputs to improve translated image details. 

The octave residual dense block (OctRDB) was based on the aforementioned RDB, 

while replacing the convolution layer with an octave convolution layer. Batch 

normalization (BN) layers were also used to improve the generalization ability of the 

surrogate model. For OctRRDRB, besides replacing RDB with OctRDB, the first and 

last octave convolution layers were added to the head and the tail of RRDRB (Figure 

4). 
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Figure 4. (a) OctRDB contains five layers, a residual connection is added between every two layers, 
BN denotes the Batch Normalization operation and Relu is the activation function. (b) OctRRDRB 
contains three OctRDBs, β  is the residual scale, and γ  denotes the learning scaling parameter 
(modified from Rakotonirina & Rasoanaivo, 2020).  
 

3.2.3 DOCRN Networks based on OctRRDRB 

OctRRDRB was integrated into the DOCRN surrogate model. DOCRN (Figure 5) 

adopts a similar network distribution structure to DRDCN developed by Mo et al. 

(2020). This type of network structure, which resembles a hourglass, enables the 

network to learn pattern information from coarse to fine scales. DOCRN has four 

OctRRDRBs, and each OctRRDRB has 17 convolution layers. Contrary to the 

traditional convolution layer which repeatedly learns some low-frequency information 

and requires a lot of computational resources, the OctRRDRBs proposed here alleviates 

this problem. Compared to residual in residual dense block (RRDB), additional residual 

connection structures and Gaussian noise have contributed to the translation of images 

with more realistic textures and details (Rakotonirina & Rasoanaivo, 2020). It should 

be noted that, except for the OctRRDRBs, all other blocks (e.g., Conv1 and Conv2) still 
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employ traditional convolutional layers.  

 

Figure 5. Architecture of DOCRN. The yellow blocks (Conv1, Conv2) have the following three 
operations: Batch Normalization, Activation and Convolution (with stride = 2). The blue blocks 
(Conv3, Conv4) involve the following four operations: Batch Normalization, Activation, Upsample 
and Convolution (with stride = 1). 

3.3 ILUES for Inverse Modeling  

The purpose of heterogeneous structure inversion (Eq. 12) is to find a series of 

noise vectors Z, which can be fed into ConSinGAN to obtain results (𝑋𝑋�) that are similar 

to the true heterogeneous structure (X): 

X� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍)                             (12) 
Similar to Mo et al. (2019), Song et al. (2019) and Zhang et al. (2018) ILUES is 

used here for inversion.  

In practice, one cannot obtain the actual aquifer heterogeneous structure, as only 

a limited amount of borehole data, hydraulic head, and concentration data are collected. 

Therefore, the difference between the generated and true structures can be evaluated by 

using these measurements. 

It is assumed that the relationship between the observations and the forward model 

output for a heterogeneous aquifer can be expressed by:  

𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑑𝑑𝑓𝑓 + 𝑒𝑒                             (13) 

where 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜  are the measurements, 𝑑𝑑𝑓𝑓 = 𝑓𝑓(𝐺𝐺(𝑚𝑚))  is the simulated result of the 

forward model,  f(.), G(.) is the trained generator, m is the noise vector and 𝑒𝑒 is a 

𝑁𝑁𝑓𝑓 ∗ 1 observational error vector with a mean of zero and a covariance of 𝐶𝐶𝐷𝐷 = 𝐸𝐸[𝑒𝑒𝑒𝑒𝑇𝑇].  

 The ILUES process includes two main steps: First, an ensemble 𝑀𝑀0 of the 𝑁𝑁𝐸𝐸𝐸𝐸 
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initial parameter samples is generated from a specific prior distribution (Eq. 14): 

M0 = [𝑚𝑚1
0,𝑚𝑚2

0, … ,𝑚𝑚𝑁𝑁𝐸𝐸𝐸𝐸
0 ]                    (14)  

Second, after the 𝑙𝑙 -th iteration (𝑙𝑙 = 1,2, … ,𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ), the nth realization of the model 

parameter ensemble 𝑚𝑚𝑛𝑛
𝑙𝑙+1  is updated via an ensemble smoother scheme by 

incorporating the measurements (Emerick and Reynolds, 2013):   

 𝑚𝑚𝑛𝑛
𝑙𝑙+1 = 𝑚𝑚𝑛𝑛

𝑙𝑙 + 𝐶𝐶𝑀𝑀𝑀𝑀𝑙𝑙 (𝐶𝐶𝐹𝐹𝐹𝐹𝑙𝑙 + 𝐶𝐶𝐷𝐷�)−1[𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 + �𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑒𝑒𝑛𝑛𝑙𝑙 − 𝑓𝑓(𝐺𝐺(𝑚𝑚𝑛𝑛
𝑙𝑙 ))]    (15) 

where 𝐶𝐶𝐷𝐷� = 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐶𝐶𝐷𝐷  is the inflated covariance matrix, 𝑒𝑒𝑛𝑛𝑙𝑙 =  𝐶𝐶𝐷𝐷
1/2 ∗ 𝑟𝑟𝑁𝑁𝑓𝑓 

(𝑟𝑟𝑁𝑁𝑓𝑓~𝑁𝑁(0, 𝐼𝐼𝑁𝑁𝑓𝑓)) is the n-th random realization of the measurement error, 𝐶𝐶𝑀𝑀𝑀𝑀𝑙𝑙  is the 

cross-covariance between the parameters after the l-th iteration and the simulation 

results, and  𝐶𝐶𝐹𝐹𝐹𝐹𝑙𝑙   is the auto-covariance of the forward model predictions. The 

expressions of 𝐶𝐶𝑀𝑀𝑀𝑀𝑙𝑙  and 𝐶𝐶𝐹𝐹𝐹𝐹𝑙𝑙  are given by: 

𝐶𝐶𝑀𝑀𝑀𝑀𝑙𝑙 ≈ 1
𝑁𝑁𝐸𝐸𝐸𝐸−1

∑ [�𝑚𝑚𝑛𝑛
𝑙𝑙 − 𝑚𝑚𝑙𝑙�����(𝑑𝑑𝑛𝑛

𝑓𝑓,𝑙𝑙 − 𝑑𝑑𝑓𝑓,𝑙𝑙�����)𝑇𝑇]𝑁𝑁𝐸𝐸𝐸𝐸
𝑛𝑛=1               (16) 

𝐶𝐶𝐹𝐹𝐹𝐹𝑙𝑙 ≈ 1
𝑁𝑁𝐸𝐸𝐸𝐸−1

∑ [(𝑑𝑑𝑛𝑛
𝑓𝑓,𝑙𝑙 − 𝑑𝑑𝑓𝑓,𝑙𝑙�����)(𝑑𝑑𝑛𝑛

𝑓𝑓,𝑙𝑙 − 𝑑𝑑𝑓𝑓,𝑙𝑙�����)𝑇𝑇]𝑁𝑁𝐸𝐸𝐸𝐸
𝑛𝑛=1              (17) 

where T denotes the transpose and 𝑑𝑑𝑛𝑛
𝑓𝑓,𝑙𝑙 = 𝑓𝑓(𝐺𝐺(𝑚𝑚𝑛𝑛

𝑙𝑙 )) is the forward model predictions. 

ILUES adopts a local updating scheme in Eq. (15) to avoid problems resulting 

from the prior or posterior distribution of unknown parameters. The local ensemble of 

the parameter sample was identified by using the following distance metric:  

𝐽𝐽(m) = 𝐽𝐽𝐹𝐹(𝑚𝑚)
𝐽𝐽𝐹𝐹
𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐽𝐽𝑀𝑀(𝑚𝑚)

𝐽𝐽𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀                           (18) 

where 𝐽𝐽𝐹𝐹(𝑚𝑚) = [𝑑𝑑𝑓𝑓 − 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜]𝐶𝐶𝐷𝐷−1[𝑑𝑑𝑓𝑓 − 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜]  represents the distance between the 

simulation results and the measurements, 𝐽𝐽𝑀𝑀(𝑚𝑚) = �𝑚𝑚 −𝑚𝑚𝑗𝑗
𝑠𝑠�𝐶𝐶𝑀𝑀𝑀𝑀−1 [𝑚𝑚−𝑚𝑚𝑗𝑗

𝑠𝑠] measures 

the distance between the parameters and the local ensemble sample 𝑚𝑚𝑗𝑗
𝑠𝑠(𝑗𝑗 =

1,2, … ,𝑁𝑁𝐸𝐸𝐸𝐸),  and 𝐽𝐽𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀  and 𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  are the maximum values of 𝐽𝐽𝐹𝐹(𝑚𝑚)  and 𝐽𝐽𝑀𝑀(𝑚𝑚) , 

respectively. Based on the values of J, a roulette wheel selection operator (Lipowski & 

Lipowska, 2012) was used to select the local ensemble of parameters. The selection 

probability of the n-th parameter was determined by 𝑝𝑝𝑛𝑛 = 𝛽𝛽𝑖𝑖
∑ 𝛽𝛽𝑗𝑗
𝑁𝑁𝐸𝐸𝐸𝐸
𝑗𝑗=1

, 𝑖𝑖 = 1,2, … ,𝑁𝑁𝐸𝐸𝐸𝐸, 
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where 𝛽𝛽𝑖𝑖 = 1
𝐽𝐽(𝑚𝑚𝑖𝑖)

 (Mo et al., 2019). More can be found in Zhang et al. (2018) and Mo 

et al. (2019). 

 

3.4 The Integrated ConSinGAN-DOCRN-ILUES Inversion Framework 

The ConSinGAN heterogeneous structure parameterization model and the 

DOCRN surrogate model are integrated with the ILUES inverse module. The major 

steps of the integrated ConSinGAN-DOCRN-ILUES inversion framework for 

heterogeneous structure inversion include: 

1. Training the generator ConSinGAN, G(.), and the DOCRN surrogate model, 

Fs(.), based on the training samples. 

2. Generating the initial ensemble of noise vectors 𝑀𝑀0 = [𝑚𝑚1
0,𝑚𝑚2

0, … ,𝑚𝑚𝑁𝑁𝐸𝐸𝐸𝐸
0 ] 

from an user-defined distribution. 

3. Obtaining the heterogeneous structure ensemble 𝑋𝑋𝑖𝑖 = [𝑥𝑥�1𝑖𝑖 , 𝑥𝑥�2𝑖𝑖 , … , 𝑥𝑥�𝑁𝑁𝐸𝐸𝐸𝐸
𝑖𝑖 ]  by  

𝑋𝑋�𝑗𝑗𝑖𝑖 = 𝐺𝐺(𝑚𝑚𝑗𝑗
𝑖𝑖). 

4. Runing the surrogate model to obtain the simulation result ensemble       

 𝑑𝑑𝑖𝑖 = [𝑑̂𝑑1𝑖𝑖 , 𝑑̂𝑑2𝑖𝑖 , , … , 𝑑̂𝑑𝑁𝑁𝐸𝐸𝐸𝐸
𝑖𝑖 ] from  𝑑̂𝑑𝑗𝑗𝑖𝑖 = 𝐹𝐹𝐹𝐹(𝑥𝑥�𝑗𝑗𝑖𝑖). 

5. Updating the ensemble of noise vectors by assimilating observation data with 

ILUES. 

6. Repeating steps 3-5 with the updated noise vector ensemble            

𝑀𝑀𝑖𝑖+1 = [𝑚𝑚1
𝑖𝑖+1,𝑚𝑚2

𝑖𝑖+1, … ,𝑚𝑚𝑁𝑁𝐸𝐸𝐸𝐸
𝑖𝑖+1 ]  until the prescribed maximum number of 

iterations is reached. 

7. Obtaining the posterior heterogeneous structure ensemble 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

�𝑥𝑥�1
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑥𝑥�2

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, … , 𝑥𝑥�𝑁𝑁𝐸𝐸𝐸𝐸
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� from 𝑋𝑋�𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐺𝐺(𝑚𝑚𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). 

 



18 
 

3.5 Spatial Statistical Model for Assessing Generation Quality 

To evaluate the generator's ability to obtain heterogeneous structures, geostatistical 

analysis was performed on the ConSinGAN's unconditional generation results. The 

main focus is the evaluation of the geometry and the spatial correlation structure of the 

facies. The following three properties are evaluated: 

(1) The volume proportion of each facies, 𝑝𝑝𝑖𝑖 , which is calculated from the 

proportion of the grid number of the i-th facies, 𝑁𝑁𝑖𝑖, and the total grid number: 

𝑝𝑝𝑖𝑖 = 𝑁𝑁𝑖𝑖
∑ 𝑁𝑁𝑗𝑗𝐾𝐾
𝑗𝑗

                       (19) 

where K is the number of different facies. 

(2) The mean length of the i-th facies in the 𝜃𝜃 direction, 𝐿𝐿�𝑖𝑖𝜃𝜃, which is obtained 

by counting each continuous facies block’s length in different directions 

according to: 

𝐿𝐿�𝑖𝑖𝜃𝜃 =
∑ 𝐿𝐿𝑖𝑖,𝑚𝑚

𝜃𝜃𝑀𝑀𝑖𝑖
𝑚𝑚
𝑀𝑀𝑖𝑖

                       (20) 

    where  𝐿𝐿𝑖𝑖,𝑚𝑚𝜃𝜃  and 𝑀𝑀𝑖𝑖 are the length and the number of the m-th continuous 

block for the i-th facies in the 𝜃𝜃 direction, respectively. 

(3) The transition probability, 𝑡𝑡𝑖𝑖𝑖𝑖(𝒉𝒉𝜑𝜑), which measures the probability that the j 

–th facies is found at a point located a distance 𝒉𝒉𝜑𝜑 from another point with 

the i –th facies (Carle & Fogg, 1997; Ritzi et al., 2004). Its expression is given 

by:     

𝑡𝑡𝑖𝑖𝑖𝑖(𝒉𝒉𝜑𝜑) = Pr�𝐼𝐼𝑖𝑖(𝒙𝒙 + 𝒉𝒉𝜑𝜑) = 1  and 𝐼𝐼𝑗𝑗(𝒙𝒙) = 1�/Pr�𝐼𝐼𝑗𝑗(𝒙𝒙) = 1�       (21) 

where 𝐼𝐼𝑖𝑖(𝑥𝑥)  and 𝐼𝐼𝑗𝑗(𝑥𝑥)  are indicator functions. 𝐼𝐼𝑖𝑖(𝑥𝑥) = 1  if facies i is at 

location x, and 𝐼𝐼𝑖𝑖(𝑥𝑥) = 0 otherwise. 

The transition probability rate, 𝑟𝑟𝑖𝑖𝑖𝑖 is the slope of 𝑡𝑡𝑖𝑖𝑖𝑖(𝒉𝒉𝜑𝜑) at 𝒉𝒉𝜑𝜑 = 0 (Carle 

and Fogg, 1997): 

𝑟𝑟𝑖𝑖𝑖𝑖 = 𝜕𝜕𝑡𝑡𝑖𝑖𝑖𝑖(0)
𝜕𝜕𝒉𝒉𝜑𝜑

                      (22) 

    It can also be expressed in terms of the facies volume proportion and the mean 
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length according to (Dai et al., 2019):  

                              𝑟𝑟𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖
𝐿𝐿�𝑖𝑖
𝜃𝜃(1−𝑝𝑝𝑗𝑗)

                     (23) 

     

4. Unconditional Simulation Results 

4.1 2D Test Case 

The 2D test case considered a 100× 80 binary training sample generated by 

cropping randomly the 340×200×80 training image representing the hydrofacies of an 

alluvial aquifer in the Maules Creek Valley, Australia (Figure 6). The aquifer contains 

two facies with contrasting permeabilities equal to 10-10 m2 for facies 1 and 10-12 m2 for  

facies 2. The corresponding ASCII file can be found at http://www.trainingimages.org. 

 
Figure 6. The 340×200×80 training image used for the 2D and 3D test cases. 
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The random noise vector in the ConSinGAN network was generated from a 

standard normal distribution, and the dimension of it was set 100. The training stage of 

the ConSinGAN in the 2D test case was 5, the reconstruction loss weight was 10, and 

the learning rates of the generator and discriminator were equal to 0.0001 and 0.00005, 

respectively. With these super-parameters, the ConSinGAN network was trained for 

1000 epochs based on a single training sample (Figure 7(a)). The training process took 

~280 s on an NVIDIA GeForce GTX 1060 GPU, whereas generating a single 100×80 

realization with the trained network took 0.05 s on an Intel i9-10850K CPU.  

The reconstructed results and some selected realizations are shown in Figure 7 (b–

f). Visually, the reconstruction had nearly the same structure as the training sample, and 

the trained ConSinGAN was capable of generating realistic heterogeneous structures 

based on random noise vectors. 10,000 realizations were performed to evaluate 

quantitatively the trained ConSinGAN network’s ability to reproduce the facies volume 

proportions, the mean lengths in the X and Y directions and the transition probability 

rates. Figures 8–10 show the frequency distributions of these statistical results. The 

training sample statistics are marked with arrows in these figures. 

The statistical results show that the variation in different realizations compared to 

the training samples was limited. The statistical results of the volume proportion, mean 

length and transition probability rate of the heterogeneous structure generated by the 

trained ConSinGAN network are similar to those of the training model’s results and 

generally present a normal distribution. By comparing the position of the training 

model’s results in the corresponding normal distribution, the volume proportion of 

facies and mean length in the X-direction are well captured by the ConSinGAN network. 

However, the mean length in the Y direction, and the transition probability rate 

distribution are relatively more offset. 
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Figure 7. Unconditional simulation results for the (a) original training sample, (b) reconstructed, 
and (c-f) some selected realizations 1–4 of 2D test case. Blue blocks represent facies 1, and red 
blocks represent facies 2. 

 

 
Figure 8. Volume proportion frequency distribution for (a) Facies 1 and (b) Facies 2 of 2D test 

case. 
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Figure 9. Frequency distributions of mean lengths in the (a, b) X and (c, d) Y directions for Facies 

1 and 2 of the 2D test case.  

 

 
Figure 10. Frequency distribution of auto-transition probability rates in the (a, b) X and (c, d) Y 
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directions for Facies 1 and 2 of the 2D test case. 

 

4.2 3D Test Case 

A 40×30×20 binary training sample (Figure 11(a)) was similarly generated for the 

3D test case by cropping randomly the 340×200×80 training image shown in Figure 6. 

The Gaussian noise vector’s dimension is identical to that of the 2D test case. The 

training stage of ConSinGAN in the 3D test case is 3, the reconstruction loss weight is 

10, and the learning rates of the generator and discriminator are equal to 0.0005 and 

0.00005, respectively. The ConSinGAN network was trained for 1500 epochs. The 

training time was ~600 s on the used GPU, and the single image generation time was 

~0.2 s using the CPU mentioned above. 

Figure 11 (b–f) show the reconstructed results and some selected realizations. The 

structure of the training sample was reconstructed well, and realistic heterogeneous 

structures were obtained. The volume proportion of the two facies and the mean lengths 

and transition probability rates along the X, Y, and Z directions were calculated from 

10,000 3D realizations. Figures 12–14 show the frequency distributions of these 

statistical results. 

Similar to the 2D test case, the statistical properties of the generated realizations 

are similar to those of the training model’s results. The ConSinGAN network of the 3D 

test case captures the volume proportion of the facies better than in the 2D test case.  

For other variables, such as the mean length and transition probability ratio of most 

directions, the average value of their distribution was relatively more offset. 
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Figure 11. Unconditional simulation results for the (a) original training sample, (b) reconstructed, 

and (c-f) some selected realizations 1–4 of the 3D test case.  

 

 
Figure 12. Volumetric proportion frequency distribution for (a) Facies 1 and (b) Facies 2 of the 3D 

test case. 
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Figure 13. Frequency distributions of mean lengths in the (a, b) X, (c, d) Y, and (e, f) Z directions 

for Facies 1 and 2 of the 3D test case.  
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Figure 14. Frequency distribution of auto-transition probability rates in the (a, b) X, (c, d) Y, and 

(e, f) Z directions for Facies 1 and 2 in the 3D test case.  
 

5. Inversion Framework Evaluation 

5.1 Surrogate Model Training Results 

5.1.1 2D Surrogate Model 

The 2D inversion case considered a hypothetical scenario in which a contaminant 

source was released in a steady-state flow field. The size of the domain was 100 (L)×80 

(L), and was uniformly discretized into 8000 grids of a unit grid size. Dirichlet 

conditions were adopted for the left and right boundaries with prescribed hydraulic 
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heads equal to 1 (L) and 0 (L), respectively. The upper and lower boundaries are 

impervious.  

As shown in Figure 15, there was a 3 (L)×7 (L) contaminated area (yellow) near 

the left boundary. This area continuously released NaCl at a rate of 0.1 M·L-3·T-1. A 

total of 80 monitoring wells (Figure 15, the green blocks) were evenly distributed across 

the entire area, and seven different time concentrations (0.5, 1, 2, 3, 4, 6, and 12 T) were 

collected, along with hydraulic head data corresponding to the final time (12 T). The 

permeability of the two facies within the domain was assigned as 1×10-10 m2 and 1×10-

12 m2, respectively. Based on the different heterogeneous structures generated by the 

trained ConSinGAN, TOUGHREACT (Xu et al., 2006) was used to obtain the training 

sample set by simulating this hypothetical scenario. In this 2D test case, 10,000 samples 

were generated for DOCRN training. The training efficiency of network learning was 

improved by working with dimensionless concentrations, 𝑐̂𝑐𝑘𝑘  which are calculated 

from: 

𝑐̂𝑐𝑘𝑘 = 𝑐𝑐𝑘𝑘−𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚−𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

                          (24) 

where 𝑐𝑐𝑘𝑘 is the concentrations at grid k, and 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and 

maximum concentrations within the entire training sample set, respectively. 

 

 

Figure 15. 2D surrogate model’s locations of contaminated area (yellow) and observation points 

(green blocks). 
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The number of samples was 10,000, 80% were used for training, and the remaining 

20% for validation. The batch size of the training process was 128, and an Adam 

optimizer was used. To prevent overfitting in the later training stage, the following 

exponential function was adopted to implement a learning rate decay strategy: 

𝑅𝑅𝑁𝑁 = 𝑅𝑅0 ∗ 𝑒𝑒𝑁𝑁                             (25) 

where 𝑅𝑅0 = 0.0005 is the initial learning rate, 𝑅𝑅𝑁𝑁 is the updated learning rate in the 

N-th epoch, and e is the multiplicative factor of learning rate decay (e = 0.99 was used 

in the present study). 

 The following regularized L1 loss function was used in DOCRN training: 

ℒ1 = 1
𝐾𝐾
∑ ‖𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘‖1 + 𝑤𝑤

2
𝐾𝐾
𝑘𝑘=1 𝜃𝜃𝑇𝑇𝜃𝜃                  (26) 

where 𝑦𝑦𝑘𝑘 is the simulated results by TOUGHREACT at grid k, 𝑦𝑦�𝑘𝑘 is the predicted 

value of the DOCRN, K is the number of grids, 𝑤𝑤 is the regularization coefficient 

which is equal to 10−5), and 𝜃𝜃 denotes the vector of network trainable parameters. 

The DOCRN training was conducted on an NVIDIA Tesla V100s GPU for 500 

epochs. To evaluate the quality of the DOCRN predictions, the DRDCN developed by 

Mo et al. (2020) was also trained with the same super-parameters setting on the same 

GPU. In addition, was also calculated to evaluate The accuracy of the surrogate model 

was evaluated with the following 𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 root-mean-square error (RMSE) criterion: 

𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝐾𝐾
∑ ‖𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘‖22𝐾𝐾
𝑘𝑘=1                    (27) 

The L1 loss, RMSE of the validation set, and GPU memory use were compared 

between DOCRN and DRDCN (Table 1). All three values were lower for DOCRN; and 

more specifically, L1 and RMSE of DOCRN were ~20% less, and the GPU memory 

cost was decreased by 11%, ultimately favoring DOCRN’s performance over DRDCN. 

The training time of DOCRN was ~5 h, whereas the trained network could generate the 

concentration and hydraulic head distribution fields within 0.2 s. As shown in figure 16, 

regardless of the concentration fields or the head field, the results of the DOCRN 

network and TOUGHREACT were extremely similar, and the differences were mainly 

distributed along the edges of the contaminant plume. Therefore, it was concluded that 
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DOCRN could accurately map the heterogeneous structure to the corresponding state 

field.  

 

Table 1. Comparison of DOCRN and DRDCN results for the 2D test case. 

Network L1 loss RMSE GPU use 

DOCRN 0.014553 0.035512 20.48 GB 

DRDCN 0.018212 0.042736 24.00 GB 

 

 
Figure 16. Comparison of the concentration fields of a simulated contaminant plume at (a–g) seven 
different times, c1–c7, and (h) the hydraulic head field for the 2D test case. 𝑦𝑦  is the surrogate 
model’s results, 𝑦𝑦�  represents the TOUGHREACT simulation results, and y − 𝑦𝑦�  denotes the 
prediction errors of the surrogate model. 
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5.1.2 3D Surrogate Model 

The model domain of the 3D test case is 40 (L)×30 (L)×20 (L). It was uniformly 

discretized with unit grid size. Hydraulic heads were prescribed to 1 (L) and 0 (L) at 

the right and left boundaries, respectively. The remaining boundaries were imprevious. 

Figure 17 shows the location of the contaminant source (yellow area near right 

boundary) and the observation points (green blocks). The 3 (L) × 3 (L) × 2 (L) 

contaminated area had a continuous release rate of NaCl (0.05 M·L-3·T-1). There are 48 

monitoring wells (light green blocks) to collect observation data at 4 different depths. 

The collected data type, monitoring frequency and facies permeabilities are similar to 

those of the 2D test case. 5000 samples were generated for DOCRN training in the 3D 

test case. Concentration data were normalized according to Eq. (24). 

 

 
Figure 17. 3D surrogate model’s locations of contaminated area (yellow) and observation points 
(green blocks). Light green blocks represent the locations of monitor wells. 

 

All super-parameters were similar to those of the 2D test case. The save for the 

batch size was 64. The L1 loss, RMSE of the validation set, and the GPU memory use 

of DOCRN and DRDCN are listed in Table 2. Comparatively, the L1 and RMSE values 

of DOCRN were ~10% smaller, and the GPU memory cost was 22% smaller than those 

of the DRDCN. Therefore, it can be concluded that similar to the 2D test case, the 
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DOCRN outperforms DRCRN in the 3D test case. Because the size of the 3D 

heterogeneous structure was much larger than that of the 2D test case, the training of 

DOCRN took nearly 15 h, while the concentration and hydraulic head distribution could 

still be generated by the trained network within 0.2 s. Some randomly selected results 

of the validation set are shown in Figure 18. In the 3D test case, the trained DOCRN 

network could still obtain a state field close to the TOUGHREACT simulation results. 

Therefore, it can be concluded that DOCRN can handle effectively the heterogeneous 

structure inversion in 3D test cases.  

 

 

Table 2. Comparison of the DOCRN and DRDCN results for the 3D test case. 

Network L1 loss RMSE GPU Use 

DOCRN 0.011755 0.028675 14.08GB 

DRDCN 0.012776 0.030862 18.24GB 

 



32 
 

 
Figure 18. Comparison of the concentration fields of a simulated contaminant plume at (a–g) seven 
different times, c1–c7, and (g) the hydraulic head field based on some randomly selected 
heterogeneous structure for the 3D test case. 𝑦𝑦  is the surrogate model’s results, 𝑦𝑦�  is the 
TOUGHREACT simulation results, and y − 𝑦𝑦� denotes the prediction errors of the surrogate model. 

 

5.2 Inversion results 

After training the DOCRN, the ILUES was used to invert the heterogeneous 

structure. In the 2D and 3D test cases, the concentration data of 80 and 192 observation 

points at eight different state fields were collected, respectively (Figures 14 and 16). 

Therefore, 80×8 = 640, and 192×8 = 1536 observation data were used for the inversion 

of 2D and 3D heterogeneous structures, respectively. To increase the inversion 

challenge, no conditional data were used (e.g., borehole data), and a 5% observation 



33 
 

error for each observation data was added. The object aquifer (Figure 19) was generated 

by feeding a randomly selected 100 dimension noise vector Z from the standard normal 

distribution N (0,1) into the ConSinGAN network. The statistics of the geometric 

features and the spatial correlation structure of the object aquifer were calculated. The 

differences between the object and the training aquifer structure are readily apparent, 

further increasing the challenge of inversion. 

The large ensemble size and iteration number could enable the ILUES to obtain 

relatively good results (Zhang et al., 2018), but also increase the computational cost. To 

balance the inversion accuracy and computational cost, the ensemble size 𝑁𝑁𝑒𝑒 = 3000, 

and the iteration number 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 30 were used in both the 2D and 3D test cases. The 

local ensemble factor α = 0.1 was used here. Therefore, both 2D and 3D test cases 

inversions required 30 × 3000=90,000 iterations. Although requiring many iterations, 

the use of the DOCRN surrogate model can significantly reduce inversion time. The 

inversion of the 2D heterogeneous structure took ~2.4 h, and that of the 3D test case 

took ~6 h.  

After the inversion process was completed, 3000 posterior noise vectors were fed 

into the trained ConSinGAN network to obtain 3000 corresponding heterogeneous 

structures. The facies with the largest number of occurrences in each grid were regarded 

as the grid’s posterior facies. The inversion results show that both 2D and 3D posterior 

models capture the underlying structure of the object model, and only some local 

features display differences (Figure 19). It is concluded that the ConSinGAN-DOCRN-

ILUES framework can obtain accurate and realistic posterior aquifer structure without 

conditional data when observation errors are not large. 
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Figure 19. The object and posterior aquifer using the ConSinGAN-DOCRN-ILUES 

framework in the (a) 2D and (b) 3D test case. 

 

 

 

6. Discussion 

The results demonstrated that each module of the ConSinGAN-DOCRN-ILUES 

inversion framework works wells. The posterior aquifer captured the main structure of 

the true model, with only some observable differences in the local features.  

Compared to the multi-sampled-based neural network (Chan & Elsheikh, 2019; 

Laloy et al., 2018; Liu et al., 2019), the training speed of the proposed ConSinGAN 

was significantly increased. For example, the training of the ConSinGAN for a 3D 

heterogeneous structure containing 24,000 grid cells required only 600 s, whereas for a 

multi-sample-based neural network, generating a heterogeneous structure with a similar 
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size required several hours (Laloy et al., 2018; Mo et al., 2020). Based on a single 

training sample, ConSinGAN generated a series of heterogeneous structures with 

geometric features and spatial correlation structures similar to those of the training 

sample.  

The prediction accuracy of the DOCRN surrogate model was significantly 

improved by integrating the octave convolution layer and RRDRB, and the octave 

convolution layer significantly reduced the occupied GPU memory by DOCRN during 

the training process. This can enable the inversion of heterogeneous structures with 

larger size when GPU memory is limited. It also permitted for an increase in the batch 

size used in the training process, which can further improve training the efficiency and 

the prediction accuracy. Furthermore, the additional residual connection structure and 

Gaussian noise helped the DOCRN to obtain more accurate prediction results without 

dramatically increasing the network complexity.  

The proposed inversion framework has some limitations. The generated results of 

ConSinGAN show a diversity poorer than that of the results generated by the multi-

sample-based GANs. Therefore, the ConSinGAN is more suitable when the true aquifer 

structure has statistical characteristics similar to those of the training sample. For cases 

with large differences between the true model and the training sample, a lower 

reconstruction loss weight (δ ) in the loss function of ConSinGAN can be used. In 

practical applications, multiple δ values can be tested during the inversion framework. 

In addition, the local features of the heterogeneous structure are not well identified by 

the integrated inversion framework employed here, possibly due to: (1) The low 

dimensionality of the noise vector, making each independent variable of the noise 

vector influence a large region of the generated heterogeneous structure, and slight 

changes in each variable could result in significant changes; and (2) There are slight 

difference between the predicted and simulated DOCRN results of the forward model. 

The large measurement error and high heterogeneity of the aquifer model may have led 

to differences between the posterior structure and the true model. Here, the Bayesian 

inversion method may consider better the observation error and the surrogate model 
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prediction deviation (Laloy et al., 2018; Zhu & Zabaras, 2018). Further, the uncertainty 

analysis of the inversion results can also be conducted. However, the Bayesian methods 

require much longer inversion times. 

Besides heterogeneous structure inversion, the inversion framework module 

proposed here has the potential also for other purposes. For example, the ConSinGAN 

provides an efficient way to quantify aquifer structure uncertainty owing to its rapid 

generation speed. The DOCRN and OctRRDRB proposed here can be used also for 

contaminant source identification, monitoring network optimization, and other 

applications which require many forward model simulations. The octave convolution 

layer is suitable for many high-dimensional geoscience applications because the 

introduction of this layer can effectively reduce the computational burden of network 

training.  

With the continuous development of deep learning techniques, the proposed 

ConSinGAN-DOCRN-ILUES inversion framework could be further improved, 

especially for single-sample-based GANs. Such networks were first proposed by 

Shaham et al. (2019) only recently, and it is expected that more powerful generation 

capabilities for these methods will be proposed soon, potentially enabling 

parameterization of heterogeneous structures. In addition, deep learning can also be 

applied as an inversion method. In the inversion problem discussed here, the neural 

network can be used to determine directly the relationship between the observations 

and the input latent vectors. Then, the input noise vector can be directly predicted by 

the trained neural network based on the observations. This is promising when  

adequate training data are available, and the neural network capability is sufficiently 

strong. In this context, it would be unnecessary to use computationally-demanding 

inversion methods such as the ensemble smoother and the Bayesian inversion. 

 

7. Conclusions 

A novel integrated inversion framework for the identification of complex 



37 
 

heterogeneous structures has been presented. The inversion framework combines a 

concurrent-single-image generative adversarial network (ConSinGAN) for modeling 

heterogeneous parameterization, a deep octave convolution dense residual network 

(DOCRN) for surrogate modeling, and an iterative ensemble smoother. The results of 

the testing of the inversion framework with two synthetic contaminant transport 

experiments show that  

1. The integrated inversion framework was able to identify the heterogeneous 

structures with a clear reduction of computational time compared to state-of-

the-art deep learning methods.   

2. The ConSinGAN overcame the dependence of traditional generative 

adversarial networks on multiple training samples. ConSinGAN was trained 

with a single aquifer model sample and required much less time. Furthermore, 

the generated heterogeneous structures showed geometric features and spatial 

correlation structures similar to those of the training sample. This powerful 

learning and generating ability greatly enhance the efficiency of the ensemble-

based inversion.  

3. DODCN outperformed other deep learning networks with similar structures 

such as DRDCN. DOCRN obtained more accurate predictions and required 

less GPU memory thanks to the octave convolution layer, the dense residual 

connections and the additional Gaussian noise. DOCRN enabled the surrogate 

model-based inversion framework to obtain approximation results of the 

inversion framework based on the forward model, but significantly improved 

inversion speed.  

4. The integration of the ConSinGAN and DOCRN networks enabled the efficient 

generation of realistic posterior heterogeneous structures by accounting for 

indirect observations.  

 

The inversion framework can be further improved by integrating hydraulic head, solute 

concentration and other types of measured data for aquifer structure inversion such as  
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core logs, borehole geophysical data and expert knowledge to obtain reliable training 

samples of ConSinGAN. Although our inversion framework has been tested with binary 

facies, it can be readily extended to the inversion for multiple facies or continuous 

parameter structures by replacing the training sample of ConSinGAN. 
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Appendix A: List of Acronyms 

Acronyms Description 

SinGAN Single-image generative adversarial network 

ConSinGAN Concurrent-single-image generative adversarial network 

DOCRN Deep octave convolution dense residual network 

DRDCN Deep residual dense convolution network 

ILUES Iterative local updating ensemble smoother 

GAN Generative adversarial network 

VAE Variational auto-encoder 

WGAN Wasserstein generative adversarial network 

WGAN-GP Wasserstein generative adversarial network with gradient-penalty 

GPU Graphics processing unit 

CPU Central processing unit 

FirstOctConv First Octave Convolution 

OctConv Middle Octave Convolution 

LastOctConv Last Octave Convolution 

RDB Residual dense block 

SDB Simple dense block 

RRDB Residual in residual dense block 

RRDRB Residual in residual dense residual block 

OctRDB Octave residual dense block 

OctRRDRB Octave residual in residual dense residual block 

BN Batch normalization 
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