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ABSTRACT

In this paper, we consider the numerical valuation of swing options in electricity
markets based on a two-factor model. These kinds of contracts are modeled as path-
dependent options with multiple exercise rights. From a mathematical point of view,
the valuation of these products is posed as a sequence of free boundary problems,
where two exercise rights are separated by a time period. In order to solve the pricing
problem, we propose appropriate numerical methods based on a Crank–Nicolson
semi-Lagrangian method combined with biquadratic Lagrange finite elements for the
discretization of the partial differential equation. In addition, we use an augmented
Lagrangian active set method to cope with the early exercise feature when it appears.
Moreover, we derive appropriate artificial boundary conditions to treat the unbounded
domain numerically. Finally, we present some numerical results to illustrate the proper
behavior of the numerical schemes.
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1 INTRODUCTION

Nowadays, due to the liberalization of electricity markets, electricity prices are deter-
mined by the principle of supply and demand. This absence of regularization affects
prices by increasing their volatility and introducing uncertainty. Due to this fact,
(mainly) companies that buy electricity directly from an exchange are demanding
the existence of contracts that would protect them against high prices but also give
them the possibility of benefiting from low prices. For an introduction to electricity
markets, we refer the reader to, for example, Chapter 2 of the recent book by Aïd
(2015).

In this paper, we focus on one standard type of these contracts: swing options.
Swing contracts are a kind of path-dependent option that allows the holder to exercise
a right multiple times over a period, with the constraint that the two consecutive
exercise dates must be separated by a refracting period. That is, not all the rights can
be exercised at one time. One example of this right could be to receive the payoff
of a call option. Nevertheless, there are other possibilities, such as the consideration
of different payoff functions depending on the spot price, such as calls and puts,
or calls with different strikes. Swing options are widely offered in the market and
used by major energy companies, especially in the electricity and fossil fuel markets.
Sometimes the volume of the physical underlying commodity is also a state variable.
A very interesting summary of the different features of swing options in practice and
their valuation can be found in Eydeland and Wolyniec (2003, Chapter 8), which is
devoted to structured products based on fuels and commodities.

As indicated in Carmona and Ludkovski (2009), the first discussions about swing
options appeared in energy magazines (Barbieri and Garman 1996), while the first
rigorous treatment of this topic was in Jaillet et al (2004). The formulation of swing
option prices in terms of multiple optimal stopping times represents a relevant step
developed in Carmona and Touzi (2008), who related swing and American options.
From this relation, the partial differential equation (PDE) approach to price swing
options arises (for one exercise, both options are equivalent). Along these lines, we
direct the reader to Dahlgren (2005) and Wilhelm and Winter (2008). In Dahlgren
(2005), a one-factor Ornstein–Uhlenbeck process for the logarithm of the commodity
price is considered, and a system of variational inequalities is posed and numerically
solved. In addition, a one-factor model is considered in Wilhelm and Winter (2008).
Other alternative models to describe the evolution of electricity prices are presented
in Lucia and Schwartz (2002) and Barlow (2002), where the author introduces a
nonlinear Ornstein–Uhlenbeck process to model the spot prices; this model is without
jumps, but it can incorporate spikes. More recently, in Hambly et al (2009), a model
with two stochastic factors is considered, although the pricing problem is solved by
means of binomial trees. One of the innovative points of the present work is the
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consideration of numerical methods to solve the PDE formulation associated with a
two-factor model for electricity price. Hereby, we consider the stochastic two-factor
model proposed in Hambly et al (2009).

Financially, swing options can be equivalently handled as a portfolio of American-
type options with a waiting period (the so-called refracting period) between the two
exercises. From a mathematical point of view, the swing option valuation problem
can be posed as a sequence of free boundary problems, one for each right. Since in the
obstacle function the value of the contract with one fewer exercise right is involved,
an initial boundary value problem (IBVP), restricted to a time interval of length equal
to the refracting period, also needs to be solved.

In the literature, different numerical techniques have been employed to obtain the
value of swing contracts. Binomial trees are considered in Jaillet et al (2004), but
only when the underlying is a one-factor, seasonal, mean-reverting process. Also, in
Hambly et al (2009), a binomial tree method is used when the spot price is modeled
as the sum of a deterministic function in order to incorporate seasonality and two
stochastic factors, with the possibility of incorporating spikes. In other works, such
as Meinshausen and Hambly (2004) and Thanawalla (2005), the valuation of multiple
stopping time problems is tackled using Monte Carlo simulation techniques. One of
the first numerical solutions of the PDE approach is provided in Dahlgren (2005),
in which the domain is truncated to a bounded domain, and homogeneous Neumann
boundary conditions are imposed. Additionally, finite elements or finite differences
are combined with a projected successive over relaxation (PSOR) algorithm to cope
with the early exercise feature. Finite elements are also applied in Wilhelm and Winter
(2008) to solve the PDE problem when the spot price only depends on one stochastic
factor, whereas in Wegner (2002) the solution of the PDE is discretized using finite
difference schemes. Also, in the case of electricity prices with one stochastic factor,
swing options have been treated with Fourier-based methods in Zhang and Oosterlee
(2013). Jump diffusion processes to describe the evolution of the underlying asset can
also be taken into account, thus leading to a partial integro-differential equation. In this
setting, a finite difference scheme combined with a dynamic programming technique
has been used in Kjaer (2007), and an implicit–explicit finite difference scheme was
proposed in Nguyen and Ehrhardt (2012). As indicated in Carmona and Ludkovski
(2009), practitioners usually value swing options by simulation techniques; however,
the rigorous error analysis associated with many simulation schemes is difficult.

In the present paper, we propose the numerical solution of the two-factor model
by means of a Crank–Nicolson characteristics scheme for the time discretization,
combined with finite elements for the space discretization. The classical character-
istics scheme was first introduced in Pironneau (1982), and first applied in finance
to price European and American options in Vázquez (1998). The method was then
applied to American–Asian options with jumps in D’Halluin et al (2005) and natural
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gas storage valuation problems in Cheng and Forsyth (2007). The Crank–Nicolson
characteristics scheme we propose was first used in Bermúdez et al (2006c) to price
American–Asian options without jumps, and in other finance-related problems in
Calvo-Garrido and Vázquez (2012), Calvo-Garrido et al (2013) and Calvo-Garrido
and Vázquez (2015). To the best of our knowledge, the numerical solution of PDE
models for swing options when two stochastic factors are considered in electricity
prices has not yet been addressed in the literature. The mathematical analysis of these
discretization schemes has already been treated in Bermúdez et al (2006a,b). Fur-
ther, in order to deal with the inequalities associated with the early exercise feature
of swing options, we use the augmented Lagrangian active set (ALAS) algorithm
(Kärkkäinen et al 2003), which is more efficient than the classical PSOR, alternative
duality or penalization methods. More precisely, in the PSOR method, the conver-
gence depends on the relaxation parameter, and it deteriorates as soon as meshes are
refined. Penalization methods also rely on the convergence of the penalized problem
when the penalization parameter tends to zero. Active set strategies mainly consist of
two steps: one to select the set of mesh nodes with active constraints, and another to
solve the reduced system associated with the mesh nodes located in the inactive set
(Tarvainen 1997). The presence of a reduced system only involving the nodes in the
inactive set represents a very competitive advantage with respect to alternative meth-
ods, especially when the structure of the discrete problem and the appropriate mesh
nodes numbering allows us to efficiently identify the evolution of this inactive set of
nodes. Although in the here-proposed ALAS method a parameter is also involved, it
only affects the first iteration. In Tarvainen (1997), the PSOR method is compared with
different active set methods, while in Bermúdez et al (2006d) the authors illustrate the
advantages of the ALAS method when compared with an alternative duality method
in the pricing of Asian options with arithmetic average and early exercise opportunity.
Moreover, in order to obtain a numerical solution to the problem, we need to replace
the unbounded domain with a bounded one; hence, appropriate boundary conditions
are required. For this purpose, instead of using homogeneous Neumann boundary
conditions (empirically motivated by the expression of the payoff function), as pro-
posed in Dahlgren (2005) for the one-factor case, we derive more appropriate artificial
boundary conditions (ABCs) based on the work of Halpern (1986).

This paper is organized as follows. In Section 2, we describe the stochastic model for
the spot electricity price under consideration, and we state the mathematical problem
that governs the valuation of swing contracts on this underlying. In Section 3, we
formulate the swing option pricing problem in a bounded domain after a localization
procedure. Since we have to supply boundary conditions, we construct appropriate
ABCs. Then, we introduce the discretization in time of the problem, using a Crank–
Nicolson characteristic scheme, and we state the variational formulation of the time
discretized problem in order to apply finite elements. At the end of this section, we
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describe theALAS algorithm. Finally, in Section 4, we present some numerical results
to illustrate our findings.

2 THE MATHEMATICAL MODEL

2.1 The electricity spot price model

In this section, we introduce the model of Hambly, Howison and Kluge (Hambly et al
2009) to describe the stochastic evolution of the electricity spot price. More precisely,
under the risk neutral probability measure, the spot electricity price, St , is assumed
to be the continuous time process

St D exp.f .t/C NXt C Yt /; (2.1)

where f is a deterministic periodic function that represents the seasonality and
accounts for regular changes in the prices evolution; NXt denotes the Ornstein–
Uhlenbeck (OU) process with zero mean-reversion level and mean-reversion speed,
˛ > 0. Thus, the following stochastic differential equation (SDE) is satisfied:

d NXt D �˛ NXt dt C � dWt ; (2.2)

where � denotes the volatility of the process and Wt represents a standard Brownian
motion. For the third component Yt in Hambly et al (2009), the following SDE is
posed:

dYt D �ˇYt dt C Jt dZt ; (2.3)

where ˇ is a mean-reversion speed, Jt denotes the jumps size distribution andZt is a
Poisson process of intensity �. As in some cases in Hambly et al (2009), in the present
paper we consider the case without jumps in Yt dynamics, so that, by choosing � D 0,
the model can be written as

dYt D �ˇYt dt: (2.4)

The general case with jumps (2.3) leads to a partial integro-differential equation
formulation, the numerical solution of which will be the subject of a forthcoming paper
by the authors. Keeping this in mind, although this last model for Yt is deterministic,
we prefer to maintain the numerical methodology associated with a two stochastic
factor formulation, which can potentially be extended to other two-factor diffusive
mean-reverting processes, such as those in Lucia and Schwartz (2002) and Pilipovic
(1997).

For convenience, we write the seasonal function f as a time-dependent mean-
reversion level of the process NXt , and we introduce Xt D NXt C f .t/. Next, we
consider the following processes:

Mt D exp.Xt /; Nt D exp.Yt /;
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so that St D MtNt , and

dMt D ˛.�.t/ � ln.Mt //Mt dt C �Mt dWt ;

dNt D �ˇ ln.Nt /Nt dt; (2.5)

with

�.t/ D f .t/C 1

˛

�
�2

2
C f 0.t/

�
:

As indicated in Lucia and Schwartz (2002), the processMt tends to the mean value
of f in the long term. For a given value of M0, this convergence is faster for larger
values of ˛. There exist other, alternative models, either with one or two stochastic
factors, to describe the spot electricity price evolution, such as those presented in
Lucia and Schwartz (2002).

2.2 The PDE formulation

The price of any asset whose value is a function of time t and the stochastic factorsMt

andNt (the dynamics of which are described by (2.5)) is given by a stochastic process,
Vt D V.t;Mt ; Nt /, where V denotes a sufficiently smooth function. Then, by using
a dynamic hedging methodology similar to the case of pension plans depending on
salary (see, for example, Calvo-Garrido and Vázquez 2012), the function V is the
solution of a certain PDE problem. Thus, we can apply Itô’s lemma (Itô 1951) to
obtain the variation of Vt , dVt , from time t to t C dt for small dt . Hereafter, we
suppress the dependence on t in order to simplify notation. More precisely, we have

dV D
�
@V

@t
C ˛.�.t/ � ln.M//M

@V

@M
� ˇ ln.N /N

@V

@N
C 1

2
�2M 2 @

2V

@M 2

�
dt

C �M
@V

@M
dW: (2.6)

Next, we build a risk-free portfolio˘ by buying one unit of the asset V1 with maturity
T1, and selling � units of asset V2 with maturity T2. Thus, the resulting portfolio ˘
reads

˘ D V1 ��V2:

Note that the variation of the portfolio value between t and t C dt is given by

d˘ D dV1 �� dV2 D .� � �/ dt C �M

�
@V1

@M
��@V2

@M

�
dW; (2.7)

where .� � �/ contains the drift term. Therefore, ˘ turns out to be risk free for the
following choice of �:

� D @V1=@M

@V2=@M
: (2.8)
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Moreover, for this choice of �, the variation of the risk-free portfolio is given by

d˘ D
�
@V1

@t
� ˇ ln.N /N

@V1

@N
C 1

2
�2M 2 @

2V1

@M 2

��
�
@V2

@t
� ˇ ln.N /N

@V2

@N
C 1

2
�2M 2 @

2V2

@M 2

��
dt: (2.9)

Next, by using the arbitrage-free assumption, this variation is also given by d˘ D
r˘ dt , where r is the deterministic risk-free interest rate. Hence, we obtain the identity

�
@V1

@M

��1�
rV1 � @V1

@t
C ˇ ln.N /N

@V1

@N
� 1

2
�2M 2 @

2V1

@M 2

�

D
�
@V2

@M

��1�
rV2 � @V2

@t
C ˇ ln.N /N

@V2

@N
� 1

2
�2M 2 @

2V2

@M 2

�
: (2.10)

Note that (2.10) holds for any pair of assets. Then, we can introduce the quantity

Na.t;M;N / D
�
@V

@M

��1�
rV � @V

@t
C ˇ ln.N /N

@V

@N
� 1

2
�2M 2 @

2V

@M 2

�
; (2.11)

where it is convenient to write Na.t;M;N / D ˛.�.t/ � ln.M//M .
By reordering the terms in (2.11), we obtain the following PDE in two spatial

dimensions that governs the value of any asset, depending on the two underlying
stochastic factors M and N :

@V

@t
C 1

2
�2M 2 @

2V

@M 2
C˛.�.t/� ln.M//M

@V

@M
�ˇ ln.N /N

@V

@N
� rV D 0: (2.12)

For the particular case of electricity markets in which the payoff �.T; S/ is a function
depending on the electricity price, S , at maturity T , (2.12) is supplied with the final
condition

V.T;M;N / D �.T;MN/: (2.13)

2.3 The swing option pricing problem

From a mathematical point of view, swing options in electricity markets can be mod-
eled as financial products with multiple exercises of American type. Moreover, two
exercise dates are separated by a constant refracting period ı > 0. As mentioned in
Carmona and Touzi (2008), the consideration of this refracting period avoids the exer-
cise of all the rights at once, which would be optimal in the absence of this separation
time. That is, without the refracting period ı, the swing option pricing problem could
be reduced to the valuation of multiple American options.

Let us consider p 2 N exercise rights. If we denote by Tt;T the set of all stopping
times with values in Œ0; T �, and by Tt;1 the set of all stopping times with values
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greater than or equal to t , we can define the set of admissible stopping time vectors in
the following way (see, for example, Carmona and Touzi 2008; Wilhelm and Winter
2008):

T .p/
t D f� .p/ D .�1; : : : ; �p/ j �i 2 Tt;1;

with�1 6 T almost surely and �iC1 � �i > ı for i D 1; : : : ; p � 1g:
(2.14)

Note that at least one exercise right of the swing option with maturity T is exercised,
but it is not necessary to exercise all the rights. The investor could let an exercise right
expire to benefit from better future prices. Thus, not all stopping times of a vector
have their values in the interval Œ0; T �.

In Wilhelm and Winter (2008), the risk-free price of a swing option depending on
one underlying factor is written as a multiple stopping time problem; it is proven in
Carmona and Touzi (2008) that it can be translated to a sequence of single stopping
time problems. Analogously, when the electricity price depends on two stochastic
factors under a risk-neutral probability measure Q, the price of a swing option with
p 2 N exercise rights is given by

V .p/.t;Mt ; Nt / D sup�2Tt;T
E

QŒe�r.��t/˚ .p/.�; S� /�; p > 1; (2.15)

with St D MtNt and

˚ .p/.t; St / D
(
�.t; St /C E

QŒe�rıV .p�1/.t C ı;MtCı ; NtCı/� if t 6 T � ı;
�.t; St / if t > T � ı:

Moreover, we start from

V .0/.t;Mt ; Nt / D 0: (2.16)

2.3.1 The free boundary problem

After making the time reversal change of variable � D T �t , we introduce the function
u.p/.�;M;N / D V .p/.T � �;M;N / so that it solves the following complementarity
problem:

LŒu.p/� 6 0 in .0; T / � R
2C;

u.p/ > 	 .p/ in .0; T / � R
2C;

.LŒu.p/�/.u.p/ � 	 .p// D 0 in .0; T / � R
2C;

u.p/.0; �/ D 	 .p/.0; �/ in R
2C; (2.17)
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where the operator L is defined by

LŒF � D �@F
@�

C 1
2
�2M 2 @

2F

@M 2
C˛.�.T ��/� ln.M//M

@F

@M
�ˇ ln.N /N

@F

@N
�rF;
(2.18)

and the pth reward obstacle function 	 .p/ has the following form:

	 .p/.�; S/ D
(
�.T � �; S/C w�;.p�1/.ı;M;N / for � 2 Œı; T �;
�.T � �; S/ for � 2 Œ0; ı/: (2.19)

In (2.19), w�;.p�1/.ı;M;N / denotes the value of the swing option with one fewer
exercise right.

In order to obtain the value of w�;.p�1/.ı;M;N / for � 2 Œı; T �, when p D 1, we
note that

w�;.0/.t;M;N / D 0 for .t;M;N / 2 Œ0; ı� � R
2C:

When p > 1, however, we need to solve the following PDE problem:

LŒw�;.p�1/� D 0 in .0; ı/ � R
2C;

w�;.p�1/.0; �/ D u.p�1/.� � ı; �/ in R
2C;

)

where L is given by (2.18).
Note that, due to the constant refracting period, the reward function (2.19) can be

equivalently written as

	 .p/.�; S/ D
(
�.T � �; S/C w�;.p�1/.ı;M;N / for � > .p � 1/ı;
	 .p�1/.�; S/ for � < .p � 1/ı: (2.21)

That is, in a period of length .p� 1/ı, we can only exercise .p� 1/ rights, due to the
refracting period. That is why the value of the reward function with p exercise rights
is equal to the value with .p � 1/ rights at any time � < .p � 1/ı.

3 THE NUMERICAL METHODS

In order to obtain a numerical approach to the value of a swing option with p 2
N exercise rights, we need to solve a free boundary problem for each value of p.
Additionally, for p > 1, in order to obtain the value of the reward function	 .p/.�; S/

associated with each complementarity problem (2.17), the solution for certain times
of an initial value problem is required. For the numerical solution of the PDEs (2.17)
and (2.20), we propose a Crank–Nicolson characteristics time discretization scheme
combined with a piecewise biquadratic Lagrange finite element method. Thus, first
a localization technique is used to cope with the initial formulation in an unbounded
domain. For the additional inequality constraints associated with the complementarity
problem (2.17), we propose a mixed formulation and an ALAS technique.
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3.1 Localization procedure and formulation in a bounded domain

In this section, we replace the unbounded domain with a bounded one. In order
to determine the required boundary conditions for the associated PDE problems, we
follow Oleinik and Radkevic (1973), which is based on the theory proposed in Fichera
(1960). More recently, this theory was also applied to degenerated parabolic PDEs,
which appear in finance in Bucková et al (2015). Let us introduce the notation

x0 D �; x1 D M and x2 D N; (3.1)

and let us consider both x1
1 and x1

2 to be large enough, suitably chosen real numbers.
Let

˝ D .0; x1
0 / � .0; x1

1 / � .0; x1
2 /;

with x1
0 D T . Then, let us denote the Lipschitz boundary by 
 D @˝, such that


 D S2
iD0.


�
i [ 
 C

i /, where


 �
i D f.x0; x1; x2/ 2 
 j xi D 0g;

 C

i D f.x0; x1; x2/ 2 
 j xi D x1
i g; i D 0; 1; 2:

Then, the operator defined in (2.18) can be written in the form

LŒF � D
2X

i;j D0

bij

@2F

@xixj

C
2X

j D0

bj

@F

@xj

C b0F; (3.2)

where the involved data is given by

B D .bij / D

0
BB@
0 0 0

0 1
2
�2x2

1 0

0 0 0

1
CCA ; (3.3)

Eb D .bj / D

0
B@ �1
g.x0; x1/

h.x2/

1
CA ; b0 D �r; (3.4)

where

g.x0; x1/ D
(
0 if x1 D 0;

˛.�.T � x0/ � ln.x1//x1 if x1 ¤ 0;

h.x2/ D
(
0 if x2 D 0;

�ˇ ln.x2/x2 if x2 ¤ 0:
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Thus, following Oleinik and Radkevic (1973), in terms of the normal vector to the
boundary pointing inward˝, Em D .m0; m1; m2/, we introduce the following subsets
of 
 :

˙0 D
�
x 2 


ˇ̌̌
ˇ

2X
i;j D0

bijmimj D 0

�
; ˙1 D 
 �˙0;

˙2 D
�
x 2 ˙0

ˇ̌̌
ˇ

2X
iD0

�
bi �

2X
j D0

@bij

@xj

�
mi < 0

�
:

As indicated in Oleinik and Radkevic (1973), the boundary conditions at˙1 [˙2 for
the so-called first boundary value problem associated with (3.2) are required. Note
that ˙1 D 
 C

1 and ˙2 D 
 �
0 . Therefore, in addition to an initial condition (see

Section 2.3.1), we need to impose a boundary condition on 
 C
1 . For this purpose,

in order to construct an ABC on this boundary, we replace the operator (2.18) in the
right exterior domain (ie, for x1 > x

1
1 ) with the following:

NLŒF � D �@F
@�

C 1
2
�2.x1

1 /
2 @

2F

@x2
1

C ˛.� � ln.x1
1 //x

1
1

@F

@x1

� rF; (3.5)

where we assume that the coefficients are constant, and there is no dependency on
the variable x2. Next, by applying the Laplace method, we can write the Laplace-
transformed right ABC as

OFx1
.x1

1 ; s/ D
�
b

2a
� 1

2a

C
p
b2 C 4.c C s/a

�
OF .x1

1 ; s/; (3.6)

where

a D 1
2
�2.x1

1 /
2; b.T � �/ D ˛.ln.x1

1 / � �.T � �//x1
1 ; c D r;

and s is the dual variable of the Laplace transform. Here, C
p� � � denotes the branch

of the square root with a positive real part. In what follows, for simplicity we drop
the time dependence in the notation for b. Also note that if we neglect the seasonality
(f D 0), as in the forthcoming Example 1, neither � nor b depends on time.

Taking into account the approach of Halpern (1986), we use a first-order Taylor
approximation for small values of a of the square root term in (3.6). This leads to the
following transformed boundary condition:

OFx1
.x1

1 ; s/ �
�
b � jbj
2a

� c C s

jbj
�

OF .x1
1 ; s/: (3.7)

Finally, using an inverse Laplace transformation, for b > 0 we obtain the following
first-order ABC:

@F

@�
C b

@F

@x1

C cF D 0 on 
 C
1 : (3.8)
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Taking into account the previous change of spatial variables, we write (2.20) in
divergence form in the bounded spatial domain ˝ D .0; x1

1 / � .0; x1
2 /. Thus, the

IBVP takes the following form.
Find w�;.p�1/ W Œ0; ı� �˝ ! R, such that

@w�;.p�1/

@t
C Ev � rw�;.p�1/ � Div.Arw�;.p�1//C lw�;.p�1/ D Qf in .0; ı/ �˝;

(3.9)

w�;.p�1/.0; �/ D u.p�1/.� � ı; �/ in ˝; (3.10)

@w�;.p�1/

@t
C ˛.ln.x1

1 / � �/x1
1

@w�;.p�1/

@x1

C lw�;.p�1/ D 0 on .0; ı/ � 
 C
1 :

(3.11)

Further, for the complementarity problem associated with the swing option value,
denoting byP the Lagrange multiplier, we can pose the following mixed formulation.

Find u.p/ W Œ0; T � �˝ ! R, such that

@u.p/

@�
C Ev � ru.p/ � Div.Aru.p//C lu.p/ C P D Qf in .0; T / �˝; (3.12)

with the complementarity conditions

u.p/ > 	 .p/; P 6 0; .u.p/ � 	 .p//P D 0 in .0; T / �˝ (3.13)

and the initial and boundary conditions

u.p/.0; �/ D 	 .p/.0; �/ in ˝; (3.14)

@u.p/

@�
C ˛.ln.x1

1 / � �/x1
1

@u.p/

@x1

C lu.p/ D 0 on .0; T / � 
 C
1 : (3.15)

For both problems, the involved data is defined as follows:

A D
 

1
2
�2x2

1 0

0 0

!
; Ev D

 
Qg.�; x1/
Qh.x2/

!
; l D r; Qf D 0;

Qg.�; x1/ D
(
0 if x1 D 0;

.�2 � ˛.�.T � �/ � ln.x1///x1 if x1 ¤ 0;

Qh.x2/ D
(
0 if x2 D 0;

ˇ ln.x2/x2 if x2 ¤ 0:

3.2 Time discretization

First, we define the characteristics curve through x D .x1; x2/ at time N� , X.x; N� I s/,
which satisfies

@

@s
X.x; N� I s/ D Ev.X.x; N� I s//; X.x; N� I N�/ D x: (3.16)
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In order to discretize in time the material derivative in the complementarity problem
(3.12), let us consider a number of time steps NN , the time step �� D T= NN and the
time mesh points �n D n�� , n D 0; 1

2
; 1; 3

2
; : : : ; NN . In order to obtain the initial

condition for solving the problem (3.9), the time discretization has to be chosen such
that ı=�� 2 N. So, we should choose NN as a multiple of T=ı. In the discretization
of the material derivative in the initial value problem (3.9), we consider a number of
time steps equal to ı=�� .

The material derivative approximation by the characteristics method for both
problems is given by

DF

D�
D F nC1 � F n ıXn

��
;

where F D u.p/, w�;.p�1/ and Xn.x/ WD X.x; �nC1I �n/. For the case of f D 0,
the components of Xn.x/ can be computed analytically:

Xn
1 .x/ D

(
x1 if x1 D 0;

expŒ.exp.�˛��/.�2 C ˛ ln.x1// � �2/=˛� if x1 ¤ 0;

Xn
2 .x/ D

(
x2 if x2 D 0;

exp.ln.x2/ exp.�ˇ��// if x2 ¤ 0:

However, for the general case in which it is not possible to compute the characteristics
curves analytically, some numerical ordinary differential equation (ODE) solvers can
be used (see, for example, Bermúdez et al 2006a).

Next, we consider a Crank–Nicolson scheme around .X.x; �nC1I �/; �/ for � D
�nC.1=2/. So, the time discretized equation for F D u.p/, w�;.p�1/ and P D 0 can
be written as follows.

Find F nC1 such that

F nC1.x/ � F n.Xn.x//

��
� 1

2
Div.ArF nC1/.x/

� 1
2

Div.ArF n/.Xn.x//C 1
2
.lF nC1/.x/C 1

2
.lF n/.Xn.x// D 0: (3.17)

Moreover, we also discretize the artificial boundary condition on 
 C
1 :

F nC1.x/ � F n. OXn.x//

��
C 1

2
.cF nC1/.x/C 1

2
.cF n/. OXn.x// D 0; (3.18)

where OXn.x/ D .�b�� C x1; x2/
T in the case of f D 0.

Thus,

F nC1.x/ D 1 � c��=2
1C c��=2

F n. OXn.x// on 
 C
1 : (3.19)
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In order to obtain the variational formulation of the semi-discretized problem, we
multiply (3.17) by a suitable test function, integrate in˝ and use the classical Green
formula as well as the following (Nogueiras 2005):Z

˝

Div.ArF n/.Xn.x// .x/ dx

D
Z

�

.rXn/�T .x/n.x/.ArF n/.Xn.x// .x/ dx

�
Z

˝

.rXn/�1.x/.ArF n/.Xn.x//r .x/ dx

�
Z

˝

Div..rXn/�T .x//.ArF n/.Xn.x// .x/ dx: (3.20)

Note that, when f D 0, we have

Div..rXn/�T .x// D

0
BB@
1

e1

.exp.˛��/ � 1/
1

e2

.exp.ˇ��/ � 1/

1
CCA ; (3.21)

where

e1 D exp

�
exp.�˛��/.�2 C ˛ ln.x1// � �2

˛

�
and

e2 D exp.ln.x2/ exp.�ˇ��//:
In the general case, Div..rXn/�T .x// needs to be approximated. After the previous
steps, we can write a variational formulation for the time discretized problem as
follows.

Find F nC1 2 H 1.˝/ such that, for all  2 H 1.˝/ such that  D 0 on 
 C
1 ,Z

˝

F nC1.x/ .x/ dx C ��

2

Z
˝

.ArF nC1/.x/r .x/ dx

C ��

2

Z
˝

lF nC1.x/ .x/ dx

D
Z

˝

F n.Xn.x// .x/ dx � ��

2

Z
˝

.rXn/�1.x/.ArF n/.Xn.x//r .x/ dx

� ��

2

Z
˝

lF n.Xn.x// .x/ dx

� ��

2

Z
˝

Div..rXn/�T .x//.ArF n/.Xn.x// .x/ dx; (3.22)

where rXn can be computed analytically in some cases. At other times, it needs to
be approximated (see, for example, Bermúdez et al 2006a).
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3.3 Finite elements discretization

For the spatial discretization, we consider f�hg, a quadrangular mesh of the domain˝.
Let .T1;Q2; ˙T1

/ be a family of piecewise biquadratic Lagrangian finite elements,
where Q2 denotes the space of polynomials defined in T1 2 �h, with degree less than
or equal to two in each spatial variable;˙T1

is the subset of nodes of the element T1.
More precisely, let us define the finite elements space Fh as

Fh D f�h 2 C0. N̋ / W �hT1
2 Q2; for all T1 2 �hg; (3.23)

where C0. N̋ / is the space of piecewise continuous functions on N̋ .

3.4 ALAS algorithm

Here, the ALAS algorithm proposed in Kärkkäinen et al (2003) is applied to the fully
discretized in time and space mixed formulations (3.12) and (3.13). More precisely,
after this full discretization procedure, the discrete problem can be written in the
following form:

Mhu
.p/;n

h
C P n

h D bn�1
h ; (3.24)

with the discrete complementarity conditions

u
.p/;n

h
> 	

.p/;n

h
; P n

h 6 0; .u
.p/;n

h
� 	 .p/;n

h
/P n

h D 0; (3.25)

where P n
h

denotes the vector of the multiplier values, and 	 .p/;n

h
denotes the vector

of the nodal values defined by the function 	 .p/.
The basic iteration of the ALAS algorithm consists of two steps. In the first step,

the domain is decomposed into active and inactive parts (depending on whether the
constraints are active or not). In the second step, a reduced linear system associated
with the inactive part is solved. Thus, we use the algorithm for unilateral problems,
which are based on the augmented Lagrangian formulation.

First, for any decomposition N D I [ J, where N WD f1; 2; : : : ; Ndofg, let us
denote by ŒMh�II the principal minor of the matrix Mh, and by ŒMh�IJ the co-
diagonal block indexed by I and J. Thus, for each time �n, the ALAS algorithm
computes not only u.p/;n

h
and P n

h
but also a decomposition N D Jn [ In, such that

Mhu
.p/;n

h
C P n

h D bn�1
h ;

ŒP n
h �j C �Œu

.p/;n

h
� 	 .p/�j 6 0; for all j 2 Jn;

ŒP n
h �i D 0; for all i 2 In; (3.26)

for a given positive parameter � . In the above equations, In and Jn are the inactive
and active sets at time tn, respectively. More precisely, the iterative algorithm builds
sequences fu.p/;n

h;m
gm, fP n

h;m
gm, fIn

mgm and fJn
mgm, converging to u.p/;n

h
, P n

h
, In and

Jn by means of the following procedure.
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(1) Initialize u.p/;n

h;0
D 	

.p/;n

h
and P n

h;0
D minfbn

h
� Mhu

.p/;n

h;0
; 0g 6 0. Choose

� > 0. Set m D 0.

(2) Compute

Qn
h;m D minf0; P n

h;m C �.u
.p/;n

h;m
� 	 .p/;n

h;m
/g;

Jn
m D fj 2 N ; ŒQn

h;m�j < 0g;
In

m D fi 2 N ; ŒQn
h;m�i D 0g:

(3) If m > 1 and J n
m D J n

m�1, then convergence is achieved. Stop.

(4) Let u.p/ and P be the solution of the linear system

Mhu
.p/ C P D bn�1

h ;

P D 0 on In
m and u.p/ D 	

.p/;n

h;m
on Jn

m: (3.27)

Set u.p/;n

h;mC1
D u.p/, P n

h;mC1
D minf0; P g, m D mC 1 and go to (2).

It is important to note that, instead of solving the full linear system in (4), for I D In
m

and J D Jn
m, the following reduced system on the inactive set is solved:

ŒMh�IIŒu
.p/�I D Œbn�1�I � ŒMh�IJŒ	

.p/�J;

Œu.p/�J D Œ	 .p/�J;

P D bn�1 � MhV: (3.28)

In Kärkkäinen et al (2003), the authors proved the convergence of the algorithm in
a finite number of steps for a Stieltjes matrix (ie, a real symmetric positive definite
matrix with negative off-diagonal entries (seeVarga 1962)) and a suitable initialization
(the same we consider in this paper). They also proved that Im � ImC1. Nevertheless,
a Stieltjes matrix can only be obtained for linear elements, and never for the here-
used biquadratic elements, because we have some positive off-diagonal entries arising
from the stiffness matrix (actually, we use a lumped mass matrix). However, we have
obtained good results using the ALAS algorithm with biquadratic finite elements.

Concerning the efficient solution of the different reduced systems that appear at
each iteration of the ALAS algortithm, as in Nogueiras (2005), we order the mesh
nodes from right to left, and from bottom to top, so that we obtain a matrix Mh of the
complete system with Nx2

blocks of dimension Nx1
. Indeed, each set of nodes with

the same x2 coordinate gives rise to a block in the matrix. Thus, for each block (x2

coordinate) we have either all the nodes in the inactive set or only the firstn.x2/ < Nx1

nodes in the inactive set. The full matrix Mh is factorized only once outside the ALAS
loop (we use a Cholesky factorization); at eachALAS iteration, we solve theNx2

linear
systems with variable dimension.
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4 NUMERICAL RESULTS

In this section, we show some numerical results to illustrate the performance of the
numerical methods by comparing them with some examples in the literature. Note
that this paper is the first to consider the numerical solution of the PDE associated
with a two-factor model for electricity prices. Thus, we mainly compare our results
with the example in Hambly et al (2009) that considers two factors and a binomial
method, as well as with the extension to two factors of the one-factor stochastic model
solved in Wilhelm and Winter (2008) with finite elements.

Concerning the numerical convergence of the Crank–Nicolson characteristics dis-
cretization method, first note that the numerical analysis for the initial boundary value
problem under rather general conditions on a PDE operator has been developed in
Bermúdez et al (2006a,b), where second-order convergence in space and time is the-
oretically proved. However, in the present nonlinear problem, we need to combine
the method with the ALAS algorithm, so that the second-order convergence cannot
be obtained, as also happens, for example, in Calvo-Garrido and Vázquez (2015).
However, we prefer to maintain Crank–Nicolson characteristics, which results in a
slightly better accuracy than a possible alternative fully implicit method.

4.1 Example 1

First, as in Hambly et al (2009), we consider the valuation of a swing option with
up to p D 20 exercise rights, in which the rights correspond to the payoff of a call
option. For this purpose, we need to specify a set of parameters related to the market
values of the data involved in the underlying factors, the initial conditions of the
stochastic processes and the parameters of the payoff function. All of these are taken
from Hambly et al (2009) and shown in Table 1. We have chosen these parameters in
order to compare the results we obtain with those in Hambly et al (2009), in which
a binomial method has been used. Moreover, concerning the numerical methods, we
select the parameters collected in Table 2. The finite element mesh corresponds to a
constant mesh step in each direction and 24� 24 finite elements (ie,�xi D x1

i =24,
i D 1; 2). Note that, as we consider f D 0, thus neglecting seasonality, b does not
depend on time in Example 1.

In Figure 1, we show the value per exercise right of the swing option when the
maturity of the contract is one year, and a right can be exercised at most once per day
(ie, the refracting period ı is one day). Moreover, we consider that the time step ��
is also one day. For this example, in Figure 2, we represent the approximate location
of the free boundary at origination (ie, t D 0) when p D 2. In the white region, it is
optimal to exercise the option, whereas the black region corresponds to the non-early
exercise region. In Figure 3, we show the exercise value (or obstacle) at origination for
the same swing contract and data set. In Figure 4, the swing option value at origination
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TABLE 1 Fixed parameters of the model for Example 1 (cf. Hambly et al 2009).

Market parameters of the underlying factors

Speed of mean-reversion process M , ˛ 7
Volatility, � 1.4
Speed of mean-reversion process N , ˇ 200
Interest rate, r 0
Seasonality, f 0

Initial conditions

Initial value of M , M0 1
Initial value of N , N0 1

Payoff function parameters

Payoff, �.T; S/ .S �K/C
Strike, K 1

TABLE 2 Parameters of the numerical methods in Example 1.

Computational domain

x1
1 3K
x1

2 3K

ABC

Coefficient b 20.13

Finite elements mesh data

Number of elements 576
Number of nodes 2401

ALAS algorithm

Parameter � 10000

is shown. Note that in the white region of Figure 2, the value of the swing option in
Figure 4 coincides with the exercise value represented in Figure 3. In addition, we
present some results of just changing p D 2 to p D 6 in the previous data. More
precisely, in Figures 5 and 6, we observe that the exercise region is not too greatly
affected by this change, while the solution changes mainly due to the change in the
new exercise value function.
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FIGURE 1 Value per right of a swing option with one year to delivery in Example 1.
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FIGURE 2 Approximated free boundary in the grid at origination of a swing option with
p D 2 rights and one year to delivery in Example 1.
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Next, in Figure 7, we present the value per exercise right of the swing option when
the maturity of the contract is two months, the refracting period ı is one day and the
time step �� coincides with the refracting period. Finally, in Figure 8, we consider
that the option has ten exercise opportunities per day (ie, the refracting period is 0.1
days) and the delivery period is six days. The time step �� is equal to the refracting
period.

Figures 1, 7 and 8 are in full agreement with the analogous ones appearing in
Hambly et al (2009) and Kluge (2006), which are obtained using binomial methods.
More precisely, the results in Figure 1 agree with those for the case without jumps
in Hambly et al (2009, Figure 10) (see also Kluge 2006, Figure 4.8); the results in
Figure 7 are the same as those without jumps in the bottom-right graph of Hambly
et al (2009, Figure 11) (equivalently in Kluge 2006, Figure 4.8); and our results in
Figure 8 agree with those in Kluge (2006, Figure 4.11). Further, we observe that the
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FIGURE 3 Obstacle at origination of a swing option with p D 2 rights and one year to
delivery in Example 1.
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FIGURE 4 Swing option value at origination with p D 2 rights and one year to delivery in
Example 1.
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price per exercise right decreases with the number of exercise rights. This is what
we expected, because p swing options with one exercise right (which are equivalent
to p American options) give more flexibility, as you can exercise all the rights at
once; consequently, its price must be higher than the price of one swing option with
p exercise rights. In Figure 8, the difference between two values per exercise right is
smaller due to the value of the refracting period. As expected, when the value of the
refracting period decreases, the value of a swing option with p exercise rights tends
to the value of p American options with one exercise right.

Concerning the computational cost of the numerical experiments related to Exam-
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FIGURE 5 Approximated free boundary in the grid at origination of a swing option with
p D 6 rights and one year to delivery in Example 1.
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FIGURE 6 Swing option value at origination with p D 6 rights and one year to delivery in
Example 1.
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ple 1, for the results presented in Figure 8, the computing time ranges from 23 seconds
(for p D 1) up to 86 seconds (for p D 4) in a computer with Intel Core I5-2400 CPU
@ 3.10 GHz with 4GB of RAM. The same order of computational times has been
analogously observed Example 2.

4.2 Example 2

In this section, unlike in Example 1, we show some cases in which the seasonality
function and the interest rate are different from zero. For this purpose, we consider a
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FIGURE 7 Value per right of a swing option with sixty days to delivery in Example 1.
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FIGURE 8 Value per right of a swing option with six days to delivery in Example 1.
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swing option with up to p D 7 rights, a maturity of one year and a refracting period
of 0.1 years. Moreover, we consider the values for the parameters involved in the
underlying factors, which appear in Table 3. Most of these are taken from Wilhelm
and Winter (2008) for a one-factor stochastic model for electricity prices; these, in
turn, are taken from Lucia and Schwartz (2002) and are obtained from daily electricity
spot and future price experimental observations. In order to pose a two-factor model,
we consider different nonzero values for the parameter ˇ. For the numerical solution,
we again consider the parameters in Table 2, except the coefficient b of the ABC,
which in this case depends on time and is always greater than zero. In this example,
the time step is�� D 0:01. In Figures 9 and 10, we show the value of this option per
exercise right when ˇ D 0:2 and ˇ D 2, respectively. In Figure 11, we represent its
value for ˇ D 20. As illustrated by these three figures, we can observe that the value
of the swing option decreases when we increase the value of the mean-reversion
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TABLE 3 Fixed parameters of the model with seasonality in Example 2.

Market parameters of the underlying factors

Speed of mean-reversion process M , ˛ 0.016
Volatility, � 0.086
Speed of mean-reversion process N , ˇ 0.2, 2, 20
Interest rate, r 0.05
Seasonality, f 4.867 C 0.306 cos..t C 0.836/.2�=365//

Initial conditions

Initial value of M , M0 1
Initial value of N , N0 1.5

Payoff function parameters

Payoff, �.T; S/ .S �K/C
Strike, K 1

FIGURE 9 Value per right of a swing option with one year to delivery when ˇ D 0.2 in
Example 2.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

V
al

ue
/r

ig
ht

s

Exercise rights

parameter ˇ. Note that an increase in ˇ implies a decrease in the asset value and,
therefore, in the value of the call swing option. This property has also been observed
in Hambly et al (2009), where jumps are additionally included in the dynamics of Yt .

5 CONCLUSIONS

In this paper, we have considered the valuation of swing options in electricity mar-
kets by numerically solving a PDE-based formulation. While the case of electricity
prices driven by one stochastic factor has been considered in the literature with PDE
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FIGURE 10 Value per right of a swing option with one year to delivery when ˇ D 2 in
Example 2.
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FIGURE 11 Value per right of a swing option with one year to delivery when ˇ D 20 in
Example 2.
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methods, we have successfully addressed the case with two stochastic factors. Indeed,
another novelty relies on the consideration ofABCs instead of the not-so-well-justified
homogeneous Neumann boundary conditions already used in the one-factor case.

The swing option mainly consists of a path-dependent option with multiple exercise
rights. The right consists of receiving the payoff of a call option. The valuation problem
has been posed as a sequence of free boundary problems, one for each right. In
addition, an initial value problem has to be solved due to the fact that the value of
a swing option with one fewer exercise is involved in the definition of the obstacle
function.

In order to obtain a numerical solution to the problem, we have proposed appro-
priate numerical methods based on Lagrange–Galerkin formulations combined with
the ALAS algorithm to deal with the early exercise feature. As we have to confine
the unbounded domain, appropriate artificial boundary conditions are constructed.
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Finally, we show some numerical results in order to illustrate the behavior of the
proposed methods.

It is important to note some advantages of numerical methods for PDE valuation
of swing options with respect to alternative Monte Carlo or lattice methods. The
numerical methods provide the surface of swing prices at origination for the whole
set of electricity spot prices, while the alternative approaches obtain one swing option
price for each spot price. Also, the methods we propose exhibit a clear advantage in
the computation of the exercise boundary and exercise region simultaneously with
the computation of swing option prices for a set of electricity spot prices. The use
of Monte Carlo or lattice methods for this purpose would require a lot of additional
computation. In future work, we plan to incorporate possible spikes in the electricity
prices. For this purpose, jump diffusion processes are required to describe the evo-
lution of the underlying factors, thus leading to partial integro-differential equation
problems instead of PDE ones.
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