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Abstract. Power cells have presented an increasing popularity during
last decades due to its importance in electric mobility, electronic devices
and energy management systems. The international expansion of green
policies to promote electric cars and renewable energies, has resulted in
the need of ensuring their quality and reliability performance. In this
context, detecting any early deviation from the correct operation must
be addressed. Hence, this work is focused on the fault detection in a
Lithium Iron Phosphate – LiFePO4 (LFP) cell. This is achieved by means
of different one-class techniques, whose performance is assessed through
artificially generated anomalies. After analysing the behaviour of each
tested technique, the chosen classifier presents a successful performance.
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1 Introduction

The vast majority of industrial companies perform complex and expensive pro-
cesses [24, 2]. It is possible to optimize the operation of those processes leading to
an increased efficiency in the use of energy and resources; and a greater quality
of the final product. As a result of this, companies can become more competitive
and enjoy the benefits of higher economic gains [32]. Hence, system optimization
plays a key role in industrial activities.

To effectively optimize the operation of a system it is necessary that all its
components function correctly, such as sensors, actuators and so on. Abnormal
operation or anomalies have multiple sources [22, 37, 39, 28]; mechanical faults,
changes in the system behavior, sensor error and human mistakes. Hence, anoma-
lies are a central and frequent problem during industrial plant operation and it
is mandatory to address them as soon as they occur, especially in safety-critical
and high cost processes [30]. In general terms, anomaly detection is a widely
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Fig. 1. Anomaly example in a two-dimensional data set

used procedure in many different applications, such as credit card fraud detec-
tion [41], fault detection in industrial processes [43, 19], intrusion detection in
surveillance systems [42], medical diagnosis and so on [8, 44].

The scientific community has been focusing its attention on the anomaly
detection problem for two reasons: firstly, industrial systems are becoming heav-
ily instrumented and are therefore in need of new solutions; secondly, modern
computation systems and techniques are more powerful so they can meet those
needs [10]. In this scenario, factors like density distribution of the dataset or
its geometric location have been taken into account in the anomaly detection
process [40]. An example with different points in R2 is shown in Figure 1. In
this case T1 and T2, represent expected behavior and a1, a2, a3 and ak represent
clear abnormal function.

1.1 State Of The Art

Depending on the type of information within a dataset, three main cases of
anomaly detection are contemplated [22]:

– Case 1: the available dataset is conformed only by normal data or by normal
data with a few abnormalities. In this case, the classifier is taught with nor-
mal data and if data with different characteristics arrive, they are identified
as anomalous. This kind of detection can be considered as semi-supervised.
In [21], a virtual sensor for failure detection is implemented in the aircraft
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folding/unfolding wings system. Anomaly detection is achieved by model-
ing the system dynamics and, as a result, the model is capable of detecting
abnormal measurements.

– Case 2: the anomaly has to be detected without any previous knowledge
of the data. The detection approach in this case is based on unsupervised
clustering. Data are distributed in groups, new input data can be classified
by comparing them with the data acquired during system operation. This
detection assumes that normal data is well separated from the outliers. It
provides successful results once the system has a large dataset with good
coverage.

– Case 3: initially, normal and abnormal data are available. The data is pre-
labelled as correct or incorrect data before the implementation of the classi-
fier. In [1] outlier detection has been applied to the field of medicine and has
been achieved through labelling of artificially generated anomaly samples.

Depending on the prior knowledge of the data and its application, different
approaches can be applied. Some techniques identify data deviations depend-
ing on the density estimation of data patterns, such as clustering techniques
like DBSCAN [29]. Other techniques establish spatial boundaries of the dataset
to detect an anomaly when the data is outside those boundaries, as shown in
[14]. The last approach is focused on the reconstruction of data patterns using
predictive models. Then, data with high reconstruction error are identified as
anomalies [34].

In some applications, especially the critical ones, only correct operation data
from the plant is available and failure data is not statistically representative
or simply remains unknown. In the cases where most of abnormal functioning
situations have not occurred yet, a One Class Classification (OCC) is commonly
used [27].

The well-known Support Vector Machine (SVM) algorithm employed in many
different applications [38, 4, 6, 26] is frequently used to solve the OCC problem
as well as Support Vector Data Description (SVDD) [40]. To solve anomalies
issues in different parts of industrial plants, the use of virtual sensors or missing
data imputation techniques is very common [5, 15, 25, 7, 20].

This work presents a Case 2 identification problem with a significant modifi-
cation. This modification consists on using Dimensionality Reduction Techniques
(DTRs) to identify the different data boundaries in a two dimensional map. In-
stead of identifying automatically the data groups using clustering algorithms,
the limits are defined by the user.

The approach proposed was tested in a didactic real plant used to control
the water level of a tank. The speed of a pump is controlled in order to main-
tain a constant water level while emptying through an output valve. Different
abnormalities were induced during the plant operation and the model proposed
is able to recognize this situation.

The outline of this paper is as follows. Section 2 describes briefly the case of
study. Then, the model approach is presented. After section 3, the techniques
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Fig. 2. Laboratory liquid level plant

applied to validate the proposed model are shown. Section 5 explains experiments
and results, and finally, conclusions and future works are exposed in section 6.

2 Case of study

This section describes the plant in which the fault detection with the proposed
system is tested. Moreover, the general features of the dataset are described.

2.1 Tank Level Control

The main goal of this study is to check the performance of the proposed fault
detection system over a real application. The used laboratory plant was built
with industrial equipment (see Figure 2).

The scheme of the industrial plant is shown in Figure 3. As stated above,
the system was designed to control the level of liquid in a tank. The liquid is
initially stored in a different tank placed at a lower level, and it is boosted by a
three-phase pump driven by a variable frequency driver (Figure 3, V/F block).
The flow rate delivered to the objective tank depends on the pump speed, driven
by a three-phase motor (Figure 3, M block). The objective tank, has also two
built-in output valves, one of them is a proportional electric and the other one
is manual. They are used as a path for returning the fluid back to the storage
tank.

The level of fluid is measured using an ultrasonic sensor. The plant structure
is movable, however it has a built in mechanism to fix its wheels and avoid any
kind of vibration that could distort the measurements taken by the sensor.
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Fig. 3. Laboratory liquid level plant structure

Fig. 4. Laboratory of liquid level control scheme

The scheme shown in Figure 4 represents this single input single output
(SISO) system, in which the desired liquid level in a tank is achieved by control-
ling the pump speed.

2.2 Control System Implementation

The control system is a virtual controller that reads the current state of the plant
through a data acquisition card. The set point signal represents the desired liquid
level and the process value is the real level measured in the tank. The control
signal value is sent by the computer and represents the speed of the centrifugal
pump. The control scheme developed using Matlab is shown in Figure 4.

A National Instruments data acquisition card (model USB-6008 12-bit 10 KS
/s Multifunction I/O) was used to connect the plant and the computer, and a
PID (Proportional, Integral, Derivative) control was implemented.

3 Model approach

The aim of this research is to create a model for fault detection in real industrial
plants. If the proposed method performs well it is going to detect faults in
different devices used at the plant.
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Fig. 5. Process Flowchart

Non-supervised techniques are going to be used because it is necessary to
avoid the use of labeled data.

The selected unsupervised techniques are used to allow the visualization of
the operation point in a two dimension graph regardless of the number of vari-
ables. As the industrial plants usually work in one or a few working point, all
the visualized data in an operation point should be near to each other. Hence,
data from different working points displayed in the two dimension graph must
be clearly separated.

Therefore, the data is projected into two dimension graph and the user could
define a contour in the data. With the defined contour, the algorithm used detects
if the working point is out of the working area defined.

Automatic selection of a contour is possible, however there is a possibility
that the created contour is not going to be capable of detecting failures with
the same precision as expert operator would with the manual contour definition.
Figure 5 outlines the steps followed.

3.1 Datasets

The datasets used in this research are obtained by registering data from at
least 10 minutes of normal operation of the plant and from fault situations
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corresponding to water leaks through an electrovalve. The sample rate time is
one second.

The different experiments are based on an adaptive PID algorithm for wa-
ter level control. For the implementation of the PID, the RLS (Recursive Least
Squared) algorithm was used to identify the parameters of the plant transfer
function. The transfer function weights allow to calculate the controller parame-
ters according to the actual plant operating point. The adaptive PID algorithm
helps to control non-linear systems, adjusting the plant transfer function each
time.

Due to the strong non-linearity of the plant under control, an adaptive PID
control is implemented [3]. The first step consisted in identifying the labora-
tory plant on-line as a second order transfer function using the Recursive Least
Squares algorithm, according to the Equation 1:

Gplant(z
−1) =

b0 · z−k

1− a1 · z−1 − a2 · z−2
(1)

where:

– b0 - Open loop gain

– k - System delay

– a1 - First order coefficient

– a2 - Second order coefficient

Then, from the transfer function obtained during the identification process,
an adaptive PID is self-tuned following the equation 2.

Gcontroller(z
−1) =

p0 + p1 · z−1 + p2 · z−2

1− z−1
(2)

and:

– p0 = 1
b0·T 2

c ·(2·K+1)

– p1 = −a1 · p0
– p2 = −a2 · p0

where:

– Tc - Critical period

– K - Critical gain

In this research, two different datasets were created to test the performance
of the proposed model with datasets whose complexity, quantity (number of
samples) and quality (number of features measured) differ. One dataset had
three parameters and the other had five. In both datasets, failures consist in
water leaks from the main water tank to the lower tank through a valve.
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4 Techniques applied to validate the proposed model

To provide a visual representation of the abnormal behavior of the tested sys-
tem, this work proposes the application of several Dimensionality Reduction
Techniques to detect anomalies by means of visual inspection [36]. The problem
of identifying patterns of anomalies that exist across dimensional boundaries in
high-dimensional datasets, can be solved by using projection methods. These
methods project high dimensional data points onto a lower dimensional space
in order to identify ”interesting” directions in terms of any specific index or
projection.

In this work, Principal Component Analysis (PCA), MLHL (Maximum Like-
lihood Hebbian Learning), Beta Hebbian Learning Algorithm (BHL), Curvilin-
ear Component Analysis and ISOMAP DRT techniques have been applied to a
real control liquid level system to validate our approach.

DRT [16] has been used for the purpose of identifying structure in high-
dimensional data. This challenging problem was tackled by projecting the data
onto a low dimensional subspace in which we searched for structures by visual
inspection using raw human vision. Therefore, the visual presentation is the
standard measure widely accepted by the DRT community.

4.1 Principal Component Analysis

Principal Component Analysis (PCA) is a well-known statistical model, intro-
duced in [17], that describes the variation in a set of multivariate data in terms
of a set of uncorrelated variables each of which is a linear combination of the
original variables. From a geometrical point of view, this method mainly con-
sists in the rotation of the axes of the original coordinate system to a new set
of orthogonal axes that are ordered in terms of the amount of variance of the
original data they account for.

PCA can be performed by means of neural models such as those described in
[31] or [18]. It should be noted that even if it is possible to characterize the data
with a few variables, it will not ensure a logical interpretation of these variables.

4.2 Maximum Likelihood Hebbian Learning

Maximum Likelihood Hebbian Learning (MLHL) [12] which is based on Explo-
ration Projection Pursuit (EPP).

The statistical method of EPP [23] was designed to solve the complex prob-
lem of identifying structure in high-dimensional data by projecting it onto a
lower dimensional subspace in which its structure is searched visually. There-
fore, the visual presentation is the standard measure widely accepted by the
EPP community.

To that end, an ”index” must be defined to measure the varying degrees of
interest associated with each projection. Subsequently, the data is transformed
by maximizing the index and the associated interest. From a statistical point
of view, the most interesting directions are those that are as non-Gaussian as
possible.
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4.3 Beta Hebbian Learning Algorithm

Beta Hebbian Learning algorithm (BHL) [33], is an EPP technique that belongs
to a novel family of learning rules derived from the Probability Density Function
(PDF) of the residual based on Beta distribution.

In general, the minimization of the cost function associated with this network,
may be thought to make the probability of the residuals more dependent on the
PDF of the residuals. Thus, if the probability density function of the residuals is
known, this knowledge could be used to determine the optimal cost function. So,
the residual (e) is draw from the Beta distribution, B(α, β), with the following
probability density function (equation 3):

p(e) = eα−1(1− e)β−1 = (x−Wy)α−1(1− x+Wy)β−1 (3)

Where α and β are the parameters that determine the shape of the PDF
curve of the Beta distribution, x is the input of the network, W is the weight
vector associated with network neurons and y is the output of the network.

Then, to maximize the likelihood of the data with respect to the weights, the
gradient descent is performed using equation 4:

∂p

∂W
= (eα−2

j (1− ej)
β−2(−(α− 1)(1− ej) + ej(β − 1))) =

(eα−2
j (1− ej)

β−2(1− α+ ej(α+ β − 2)))
(4)

In the case of the BHL, by maximizing the likelihood of the residual with
respect to the actual distribution, the learning rule is matched to the PDF of
the residual. The BHL may also be linked to the standard statistical method of
Exploratory Projection Pursuit, as the nature and quantification of the inter-
estingness is in terms of the likelihood of the residuals being under a particular
model of the residuals PDF. Therefore, the new neural architecture for BHL is
defined as follows:

Feedforward : yi =
N∑
j=1

Wijxj ,∀i (5)

Feedback : ej = xj −
M∑
i=1

Wijyi (6)

Weightsupdate : ∆Wij = η(eα−2
j (1− ej)

β−2(1− α+ ej(α+ β − 2)))yi (7)

Where α and β are the parameters that determine the shape of the PDF
curve of the Beta distribution, x is the input of the network, W is the weight
vector associated with the network neurons, e is the residual and y is the output
of the network.
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4.4 Curvilinear Component Analysis

Curvilinear Component Analysis (CCA) [13, 11] is a non-linear projection method
that preserves distance relationships in both input and output spaces. CCA is a
useful method for redundant and non-linear data structure representations and
can be used in dimensionality reduction. CCA is useful with highly non-linear
data, where PCA or any other linear method fails to give suitable information.
CCA improves other methods like Sammon’s Mapping [35], although when un-
folding a nonlinear structure, Sammon’s Mapping cannot reproduce all distances.
One way to get round this problem consists in favoring local topology: CCA tries
to reproduce short distances first, viewing long distances as secondary. Formally,
this reasoning led to the following error function (without normalization) defined
in equation 8.

ECCA =
N∑

i,j=1

(
dni,j − dpi,j

)2
Fλ

(
dpi,j

)
(8)

In comparison with ESammon, ECCA has an additional weighting function F
depending on dpij and on parameter λ. The F factor is a decreasing function of
its argument, so it is used to favor local topology preservation.

4.5 ISOMAP Algorithm

ISOMAP nonlinear Dimensionally Reduction Technique [9] attempts to preserve
pairwise geodesic (or curvilinear) distance between data points. Geodesic dis-
tance is the distance between two points measured over the manifold. ISOMAP
defines the geodesic distance as the sum of edge weights along the shortest path
between two nodes. The doubly-centered geodesic distance matrix K in ISOMAP
is of the form given by equation 9.

K = −1/2HD2H (9)

Where D2 = D2
ij means the element wise square of the geodesic distance

matrix D = [Dij ], and H is the centring matrix, given by equation 10.

H = In − 1/NeNeTN (10)

In which eN = [1...1]T ∈ RN The top N eigenvectors of the geodesic distance
matrix represent the coordinates in the new n-dimensional Euclidean space.

5 Experiments and Results

This section describes the experiments performed to validate the proposed sys-
tem and the obtained results. Both linear (PCA) and nonlinear models (MLHL,
BHL, CCA and ISOMAP) have been applied to the previously described datasets
(section 3.1), in order to identify the system malfunction states.
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5.1 Dataset 1

The first dataset consists of 4871 samples and 3 variables (the 3 parameters of
the PID controller) with a total of 21 failure samples.

For the purpose of making a comparative, five different projection models
have been applied, whose results are shown in Figure 6, and the total number of
mixed samples (fault and normal) are presented in Table 1.

Table 1. Number of mixed samples for each algorithm

Algorithm Parameters
PCA 5 samples
MLHL 14 samples
BHL 4 samples
CCA 6 samples
ISOMAP 6 samples

Figure 6 presents the best projection of each algorithm (PCA, MLHL, BHL,
CCA and ISOMAP) and the parameters that were used in each projection are
presented in Table 2, where lrate is the learning rate used during training pro-
cess, iters the number of iterations, lambda the initial radius of influence in
CCA algorithm, and α and β are the parameters that determine the shape of
the PDF curve of the Beta distribution.
These parameters were chosen in an experimental process of trial and error. As
parameter selection is a task that is very dependent on the type of dataset used,
several initial experiments were conducted with a range of combinations of these
parameters. In each figure, anomalies are displayed using red diamond shapes
(⋄) and normal samples with green dots (·).

Table 2. PCA, MLHL, BHL, CCA and ISOMAP parameters for dataset 1

Algorithm Parameters
PCA -
MLHL iters=1000, lrate=0.01, p=0.5
BHL iters=5000, lrate=0.01, α=3, β=4
CCA 100 epochs, alpha=0.5 and lambda=1.5152.
ISOMAP number of neighbours: 5

Results obtained by PCA show normal samples (green dots - Figure 6) are
very sparse in the graph so it has been difficult to establish the boundaries for
the anomalous data.
Although, MLHL presents the normal samples in a very compact group, several
anomalies are over or very near to this group. In the case of CCA and ISOMAP,
their projections are very similar and some anomalies are also over the normal
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Fig. 6. PCA, MLHL, BHL, CCA and ISOMAP projections for dataset 1
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sample, so it has been difficult to clearly separate them from the cluster generated
by normal samples.
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Fig. 7. BHL projection of the dataset 1

In spite of the fact that none of the 5 methods have been able to separate
the anomalies from normal clusters in 100%, it is evident that the projections of
the BHL are superior to those of the PCA and the MLHL. BHL has provided
a clear visualization of samples which represent anomalies and has been able
to present compactly grouped (G1, see Figure 7) samples belonging to correct
system operation and has separated the anomalies from this compact group
(G1).

5.2 Dataset 2

Dataset 2 consists of 7000 samples and 5 variables (identification parameters of
the plant -a0, a1, a2-, water level, process value signal). This dataset provides
more and better information than the previous one, as the number of samples is
higher and 5 variables are measured instead of 3. In this dataset, the number of
anomalous samples is higher; 200 anomalous samples out of the total of 7000.

Figure 8 presents the best projections for each of the 5 tested algorithms,
based on the parameters in Table 3.

In this case, the results obtained by all algorithms are similar. All of them
are able to clearly distinguish between a normal plant process and an anomalous
one. The complexity of this second dataset is smaller than that of dataset 1, as
it provides a more informative description of its internal structure, and there-
fore there are no significant differences between the results obtained by the 5
algorithms.
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Fig. 8. PCA, MLHL, BHL, CCA and ISOMAP projections (component 1 and 2 for all
cases) for dataset 2

Table 3. PCA, MLHL, BHL, CCA and ISOMAP parameters for dataset 2

Algorithm Parameters
PCA -
MLHL iters=10000, lrate=0.01, p=0.8
BHL iters=10000, lrate=0.01, α=3, β=3
CCA 100 epochs, alpha=0.5 and lambda=1.4.
ISOMAP number of neighbours: 7

6 Conclusions and Future Works

This study has proposed a method for accomplishing fault, anomaly or malfunc-
tion detection with unsupervised and projectionist learning techniques. The new
approach has been successfully validated in a real laboratory plant where a level
control loop was implemented. The correct operation of the plant meant that the
output electrovalve had to be completely closed. The feasibility of the proposed
method was checked by opening the electrovalve and simulating a water leak.

The obtained results have been very satisfactory in general terms, although
their accuracy varied depending on the employed technique and especially on
the complexity of the dataset; the higher the complexity the less accurate the
results.

The results indicate that the BHL is capable of generating projections in
which the dataset is clearly structured, with the lowest number of mixed samples
(normal and fault) among the 5 tested algorithms and when complexity of the
dataset was high (dataset 1). However, when complexity is low, there are no
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significant differences in the performance of the 5 algorithms, in all cases they
provided projections in which the samples were not mixed.

Finally, by means of the knowledge of an expert user, the boundaries of the
normal behavior were established in order to automatically detect future faults
in the system.

It is very important to remark that the present contribution approach is par-
ticularly suitable for cases where human expertise must be taken into account.
The described methodology is going to work well when complemented with ex-
pert knowledge in some aspects that cannot be performed automatically (i.e.
conditional and predictive maintenance, when for instance a failure in a gear is
caused by floor vibration.

After analyzing the results of performed experiments we have identified as
an advantage of this approach the fact that it allows a skilled operator to define
the contour detection limit for the application of unsupervised techniques. This
feature is not available in typical fault detection techniques. Thanks to this
contribution, it is possible to include expert knowledge in the fault detection
process and, consequently, achieve better performance. Moreover, the approach
allows to visually monitor the status of the industrial process.

Thus, the developed tool is going to contribute to maintenance, product
quality, efficiency, energy saving or system optimization.

On the basis of the obtained results we can conclude that unsupervised tech-
niques are powerful tools in the detection of anomalies. They allow to monitor
and supervise the correct operation of industrial processes, especially when the
complexity of the system is high.

In a future work we are going to contemplate the ability to define new con-
tours in real time as new data arrive to the system. Furthermore, we are going
to study the possibility of validating additional fault situations using a bigger
dataset from the industrial control level plant. Also, it would be interesting to
analyze other fault detection techniques and compare their performance with the
results obtained in the present work. In addition, different kinds of unsupervised
approaches could be used to this end.
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