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Mathematical analysis of obstacle problems for pricing fixed-rate
mortgages with prepayment and default options
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aDepartment of Mathematics, University of A Coruña. Campus Elviña s/n, 15071 A Coruña, Spain

Abstract

In this paper, we address the mathematical analysis of a partial differential equation model
for pricing fixed-rate mortgages with prepayment and default options, where the underlying
stochastic factors are the house price and the interest rate. The mathematical model is posed
in terms of a sequence of linked complementarity problems, one for each month of the loan life,
associated with a uniformly parabolic operator. We study the existence of a strong solution to
each one of the obstacle problems.

Keywords: Fixed-rate mortgages, obstacle problem, uniformly parabolic operator, strong
solution

1. Introduction

A mortgage is a financial contract between two parts, a borrower and a lender, in which the
borrower obtains funds from the lender (a bank or a financial institution, for example) by
using a risky asset as a guarantee (collateral), usually a house. In this work, we focus on the
mathematical model for fixed rate mortgages with monthly payments. The loan is reimbursed
through monthly payments until the cancellation of the debt at maturity date. Thus, the
mortgage value is understood as the discounted value of the future monthly payments (without
including a possible insurance on the loan by the lender) and the underlying stochastic factors
are the interest rate and the house price. The mathematical model is posed in [4, 13] so that
prepayment is allowed at any time during the life of the loan and default only can occur at any
monthly payment date. Thus, the mathematical model is posed in terms of a sequence of linked
complementarity problems associated to a parabolic partial differential equation, one for each
month of the loan life. The link between obstacle problems comes from the condition at the end
of the month defined as the mortgage value at this date obtained from the obstacle problem
for next month. The existence of solution for each obstacle problem in these sequence is an
open problem treated in the present paper. In [4, 13] a log-normal process is assumed for house
price evolution, so that this value evolves continuously whereas the interest rate dynamics is
described by means of the CIR model. More recently, in [3] a jump-diffusion model is proposed
to describe the house price dynamics to account for bubble or crisis phenomena in real state
markets. The numerical resolution of these problems has been addressed by using different
techniques (see [1, 8, 13, 4], for example).
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The main objective of this paper is the mathematical analysis of the obstacle problems involved
in the valuation of fixed rate mortgages with prepayment and default options. We propose an
approach based on the concept of strong solution. The existence of a strong solution is studied
in the framework of uniformly parabolic PDEs with variable coefficients, mainly adapting the
results in [11]. The mathematical analysis of obstacle problems related to finance has been
addressed in the literature. For example, in [6] the authors prove the existence of a strong
solution for an obstacle problem linked to a non-uniformly parabolic operator of Kolmogorov
type. This kind of Kolmogorov operators also appear in the complementarity problems that
arise in the pricing of other financial products, such as American Asian options [10], pension
plans with early retirement [2] or stock loans [12].

This paper is organized as follows. In Section 2 we pose the pricing model in terms of a
sequence of complementarity problems. In Section 3 we first prove the existence of a unique
strong solution to each obstacle problem in a bounded domain by adapting a penalization
technique. Next, we prove the existence of a strong solution to the obstacle problem in the
unbounded domain by solving a sequence of complementarity problems in regular bounded
domains.

2. Mathematical modelling of the pricing problem

A mortgage can be treated as a derivative financial product, for which the underlying state
variables are the house price and the term structure of interest rates. So, we have to model the
dynamics of the underlying factors. Under risk neutral probability, the value of the house at
time t, Ht, is assumed to follow the stochastic differential equation (see [9]):

dHt = (r − δ)Htdt+ σHHtdX
H
t , (1)

where r is the interest rate, δ is the ’dividend-type’ per unit service flow provided by the house,
σH is the house-price volatility and XH

t is the standard Wiener process associated to the house
price. The other source of uncertainty, the stochastic interest rate rt at time t, is assumed to
be a classical Cox-Ingerrsoll-Ross (CIR) process [5], satisfying

drt = κ(θ − rt)dt+ σr
√
rtdX

r
t , (2)

where κ is the speed of adjustment in the mean reverting process, θ is the long term mean of the
short-term interest rate (steady state spot rate), σr is the interest-rate volatility parameter and
Xr
t is the standard Wiener process associated to the interest rate. Wiener processes, XH

t and
Xr
t can be assumed to be correlated according to dXH

t dX
r
t = ρdt, where ρ is the instantaneous

correlation coefficient.

Following the same notation as in [4], we assume that the mortgage is repaid by a sequence of
monthly payments at dates Tm, m = 1, ...,M , where M is the number of months of loan life.
Assuming that T0 = 0, let ∆Tm = Tm−Tm−1 the duration of month m. Moreover, τm = Tm− t
denotes the time until the payment date in month m, c is the fixed contract rate and P (0) is
the initial loan (i.e. the principal at T0 = 0), the fixed mortgage payment (MP ) is given by:

MP =
(c/12)(1 + c/12)MP (0)

(1 + c/12)M − 1
. (3)

For m = 1, ...,M , the unpaid loan just after the (m− 1)th payment date is

P (m− 1) =
((1 + c/12)M − (1 + c/12)m−1)P (0)

(1 + c/12)M − 1
. (4)
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Next, we take into account the prepayment and default options. The option to default only
happens at payment dates if the borrower does not pay the monthly amount MP . The option
to prepay can be exercised at any time during the life of the loan, if the borrower fully amortizes
the mortgage at time τm by paying the amount (which includes the total remaining debt plus
an early termination penalty):

TD(τm) = (1 + Ψ)(1 + c(∆Tm − τm))P (m− 1), (5)

where ∆Tm − τm represents the time that has elapsed since the beginning of month m and
Ψ ≥ 0 denotes the prepayment penalty factor.

By using Ito lemma combined dynamic hedging methodology, in [4] the formulation in terms
of linked obstacle problems proposed in [13] is justified. Thus, the mortgage valued process, Vt,
can be obtained in the form V̄t = V̄ (t,Ht, rt) where the function V̄ satisfies a sequence of PDE
problems.

More precisely, for month m, the function V̄ is the solution of the following obstacle problem:{
min{L̄V̄ − āV̄ , TD − V̄ } = 0, in ŜT = (0,∆Tm)× R2

+,

V̄ (τm = 0, H, r) = ḡ, (H, r) ∈ R2
+,

(6)

where

L̄V̄ = − ∂V̄
∂τm

+
1

2
σ2HH

2 ∂
2V̄

∂H2
+ρσHσrH

√
r
∂V̄

∂H∂r
+

1

2
σ2rr

∂2V̄

∂r2
+(r−δ)H ∂V̄

∂H
+κ(θ−r)∂V̄

∂r
, (7)

ā = r and ḡ denotes the initial condition with respect to τm for each month, defined as follows:

• at month M , just before the last payment:

ḡ(τM = 0, H, r) = min(MP,H) (8)

• at the other payment dates:

ḡ(τm = 0, H, r) = min(V̄ (τm+1 = ∆Tm+1, H, r) +MP,H), 1 ≤ m ≤M − 1. (9)

3. Mathematical analysis

3.1. Equivalent problem and properties

In order to prove the existence of solution for the obstacle problem (6), we adapt some results
proved in [11] for parabolic PDEs with variable coefficients. First, we make the change of
variables to x = (x1, x2), with x1 = ln(H) and x2 =

√
r. So, we can write problem (6) in the

equivalent form :{
min{LV − aV, TD − V } = 0, in ST = (0,∆Tm)× R× R+,

V (τm = 0,x) = g, x ∈ R× R+,
(10)

where a = a(τm,x) = x22, g(τm,x) = ḡ(τm, x̂(H, r)) and

LV =
1

2

2∑
i,j=1

cij
∂2V

∂xi∂xj
+

2∑
i=1

bi
∂V

∂xi
− ∂V

∂τm
(11)
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with

cij(τm,x) =

(
σ2H

1
2ρσHσr

1
2ρσHσr

1
4σ

2
r

)
and bi(τm,x) =


(x22 − δ)−

σ2H
2(

κ

2
(θ − x22)−

σ2r
8

)
/x2

 . (12)

Next, we introduce the natural definition of parabolic Hölder spaces for these equations.

Definition 3.1. For the exponent α (0 < α < 1) and the domain ST = (0,∆Tm) × R × R+,
we denote by CαP (ST ) the space of bounded functions u such that there exists a constant C
satisfying

|u(t, x)− u(s, y)| ≤ C(|t− s|α/2 + |x− y|α), t, s ∈ (0,∆Tm), x, y ∈ R× R+.

Therefore, the space CαP (ST ) can be equipped with the norm

‖u‖CαP (ST ) = sup
(t,x)∈ST

|u(t, x)|+ sup
(t,x)∈(ST ),(t,x)6=(s,y)

|u(t, x)− u(s, y)|
|t− s|α/2 + |x− y|α

.

Next, we introduce two lemmas. The first one states that operator L is uniformly parabolic
and the second one is about the regularity of the operator coefficients.

Lemma 3.2. As |ρ| < 1, the matrix cij is symmetric and positive definite. Thus, L is uniformly
parabolic, i.e., there exists a positive constant Λ such that

Λ−2|ψ|2 ≤
2∑

i,j=1

cij(τm,x)ψiψj ≤ Λ2|ψ|2, (τm,x) ∈ (0,∆Tm)× R× R+, ψ ∈ R2

Lemma 3.3. The coefficients cij are bounded and parabolic Hölder continuous functions with
exponent α = 1

2 , that is: cij ∈ CαP ((0,∆Tm)×R×R+), 1 ≤ i, j ≤ 2. Moreover, the coefficients bi
and a are locally bounded and locally Hölder continuous on compact subsets of (0,∆Tm)×R×R+.

Next, we introduce the Sobolev spaces and the concept of strong solution.

Definition 3.4. Let O a domain in (0,∆Tm)×R×R+ and 1 ≤ p ≤ ∞. We denote by Sp(O)
the space of functions V ∈ Lp(O) such that the weak derivatives

∂V

∂xi
,

∂V

∂xi∂xj
,
∂V

∂τm
∈ Lp(O) for i, j = 1, 2.

Moreover, V ∈ Sploc(O) if V ∈ Sp(O1) for each domain O1 verifying that Ō1 ⊆ O.

Definition 3.5. A strong solution for the obstacle problem (10) is a function V ∈ S1
loc(ST ) ∩

C(S̄T ) satisfying min{LV − aV, TD − V } = 0 a.e in ST and the initial condition (8) or (9).

We define the concept of sub-solution to be used for the existence of a strong solution.

Definition 3.6. A sub-solution V of the obstacle problem (10) is a function
V ∈ S1

loc(ST ) ∩ C(S̄T ) which satisfies:{
min{LV− aV, TD −V} ≥ 0, in ST

V(τm = 0,x) ≤ g, x ∈ R× R+.
(13)
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Lemma 3.7. The function V(τm,x) = 0 is a sub-solution for the obstacle problem (10).

Next, we introduce a lemma on the growth and regularity of the obstacle function TD. This
condition provides an upper bound for the second order distributional derivatives of TD. Note
that any C2 function, such as for example (5), satisfies the following hypothesis.

Lemma 3.8. The obstacle TD is a Lipschitz continuous function in S̄T , such that for each
compact subset O, Ō ⊆ ST , there exists a constant c̃ ∈ R satisfying

2∑
i,j=1

ξiξj
∂2TD

∂xi∂xj
≤ c̃|ξ|2 in O, ξ ∈ R× R+,

in the sense of distributions, i.e.

2∑
i,j=1

ξiξj

∫
O
TD

∂2φ

∂xi∂xj
≤ c̃|ξ|2

∫
O
φ, for all ξ ∈ R2 and φ ∈ C∞0 (O), φ ≥ 0.

Proof of Lemma 3.8. Although we state the result in a general form, note that TD does not
depend on x1 and x2. Thus, the proof is trivial.

Next, we need to prove a inequality condition between the functions defining the obstacle and
the initial conditions for the obstacle problems.

3.2. Existence and uniqueness of solution in the bounded domain

We study the existence and uniqueness of a strong solution in a bounded domain for the
problem: {

min{LV − aV, TD − V } = 0 in Q(Tm),

V |∂PQ(Tm) = g̃.
(14)

where Q(Tm) = (0,∆Tm)×Q, Q being a bounded domain in R×R+ and ∂PQ(Tm) = ∂Q(Tm)\
(Q × {∆Tm}) being the parabolic boundary of Q(Tm). As in [6], we use the theory of barrier
functions in [7] to prove that the solution of (14) is continuous up to the boundary.

Hypothesis 3.9. For any point ζ ∈ ∂PQ(Tm), there exists a barrier w ∈ C2(U ∩ Q(Tm);R),
that is

• Lw ≥ 1 ∈ U ∩Q(Tm),

• w > 0 in U ∩Q(Tm) \ {ζ} and w(ζ) = 0

where U is a neighbourhood of ζ.

First, we prove the following auxiliary result.
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Theorem 3.10. If Hypothesis 3.9 is satisfied, g̃ ∈ C(∂PQ(Tm)), g̃ ≤ TD and a ∈ C ∩
L∞(Q(Tm)), then there exists a classical solution V of the problem:{

LV = h(., V ) in Q(Tm),

V |∂PQ(Tm) = g̃.
(15)

where h = h(., V ) is a continuous Lipschitz function in Q(Tm)×R. Moreover, infQ(Tm) |V | ≥ 0.

Proof of Theorem 3.10. Following [11], we use an iterative method starting with V0 = 0 and
take into account that h(., V ) ≤ c1(1+ |V |) for a positive constant c1 which depends on the L∞

norm and the Lipschitz constant of h. Let λ̃ is the Lipschitz constant of h and define recursively
the sequence (Vj)j∈N as the solution of the problem{

LVj − λ̃Vj = h(., Vj−1)− λ̃Vj−1 in Q(Tm),

Vj |∂PQ(Tm) = g̃.
(16)

By induction, we prove that Vj is an increasing sequence. From maximum principle we get
V0 ≤ V1, in fact we have L(V0 − V1)− λ̃(V0 − V1) = LV0 − h(., V0) = c1(1 + V0)− h(., V0) ≥ 0
and V0 ≤ V1 in ∂PQ(Tm). For a fixed j ∈ N, using the induction hypothesis Vj−1 ≤ Vj , we have

L(Vj − Vj+1)− λ̃(Vj − Vj+1) = h(., Vj−1)− h(., Vj)− λ̃(Vj − Vj−1) ≥ 0.

By the maximum principle, Vj = Vj+1 in ∂PQ(Tm) implies Vj ≤ Vj+1 in Q(Tm). Then, we
obtain the increasing sequence Vj , with V0 ≤ Vj ≤ Vj+1 ≤ ‖TD‖L∞ , and passing to the limit
when j →∞ we get {

LV = h(., V ) in Q(Tm),

V |∂PQ(Tm) = g̃.
(17)

Next, to prove that V ∈ C(Q(Tm), we use a barrier function technique as follows. First, we fix
ς ∈ ∂PQ(Tm) and ε > 0. Let U be a neighbourhood of ς, such that |g̃(z) − g̃(ς)| ≤ ε, ∀z ∈
U ∩ ∂PQ(Tm), and let us consider a barrier function w defined as in the Hypothesis 3.9. As in
[6], we set v±(z) = g̃(ς)± (ε+ kεw(z)) for a suitably large positive constant kε independent of
j such that

L(Vj − v+) ≤ h(., Vj−1)− λ̃(Vj−1 − Vj) + kε ≥ 0,

and Vj ≤ v+ in ∂(U ∩Q(Tm)). By the maximum principle Vj ≤ v+ in U ∩Q(Tm). Analogously,
we have that Vj ≥ v− in U ∩Q(Tm) and when j →∞ we obtain

g̃(ς)− ε− kεw(z) ≤ V (z) ≤ g̃(ς) + ε+ kεw(z), z ∈ U ∩Q(Tm).

Then, we have g̃(ς) − ε ≤ lim inf
z→ς

V (z) ≤ lim sup
z→ς

V (z) ≤ g̃(ς) + ε, z ∈ U ∩ Q(Tm). As ε is

arbitrary, we obtain that V ∈ C(Q(T )).

Next, we prove the existence of a strong solution to (14).

Theorem 3.11. If Hypothesis 3.9 is satisfied, g̃ ∈ C(∂PQ(Tm)), g̃ ≤ TD and a ∈ C ∩
L∞(Q(Tm)), then there exists a strong solution V to the obstacle problem (14). In addition,
there exists a positive constant C, depending on L, O, Q(Tm), p and the L∞ norms of g̃ and
TD, such that ‖V ‖Sp(O) ≤ C, where p ≥ 1 and O is a compact subset of Q(Tm).
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Proof of Theorem 3.11. We adapt the penalization technique used in [11]. Thus, we consider
a family of functions (βε)ε∈(0,1) ∈ C∞(R), such that βε is a bounded, increasing function with
bounded first order derivative and satisfying

βε(0) = 0, βε(s) ≥ −ε for s < 0, and lim
ε−→0

βε(s) =∞ for s > 0.

Next, for γ ∈ (0, 1) we denote by TDγ and aγ the regularizations of TD and a, respectively.
Since g̃ ≤ TD in ∂PQ(Tm) we have g̃γ = g̃ − λ̃γ ≤ TDγ in ∂PQ(Tm), where λ̃ is the TD
Lipschitz constant. Then, we pose the following penalized problem:{

LγV − aγV = βε(V − TDγ) in Q(Tm),

V |∂PQ(Tm) = g̃γ .
(18)

Next, we prove that problem (18) has a classical solution Vε,γ by using Theorem 3.10 applied
to function h(., V ) = βε(V − TDγ) + aγV . Finally, we need to check that

|βε(Vε,γ − TDγ)| ≤ c̃

for a constant c̃ depending on ε and γ. Taking into consideration that βε ≥ −ε, we only need to
check that the penalization function βε is bounded from above. For this purpose, let us denote
by ς the maximum point of the function βε(Vε,γ − TDγ) ∈ C(Q(Tm)) and we assume that
βε(Vε,γ(ς) − TDγ(ς)) ≥ 0. If ς ∈ ∂PQ(Tm) then −ε ≤ βε(g̃

γ(ς) − TDγ(ς)) ≤ 0. Nevertheless,
if ς ∈ Q(Tm) then Vε,γ − TDγ also assumes the maximum in ς because βε is an increasing
function. Then,

LγVε,γ(ς)− LγTDγ(ς) ≤ 0 ≤ aγ(ς)(Vε,γ(ς)− TDγ(ς))

By Lemma 3.8, LγTDγ(ς) is bounded from above by a constant independent of γ. Moreover,
we have that

βε(Vε,γ(ς)− TDγ(ς)) = LγVε,γ(ς)− aγ(ς)(Vε,γ(ς) ≤ LγTDγ(ς)− aγ(ς)TDγ(ς) ≤ c̃,

where c̃ is independent of ε and γ. Finally, the sequence Vε,γ converges to the solution V .

Next, we prove a comparison principle and the uniqueness of solution for the obstacle problem
(14). For this purpose, we rewrite Proposition 8.31 in [11] in case we have a sub-solution instead
of a super-solution.

Proposition 3.12. Let V be a strong solution of the obstacle problem (14) and V a sub-
solution, i.e. V ∈ S1

loc(Qn ∪ C(Q̄n)). If{
min{LV− aV, TD −V} ≥ 0 in Qn,

V|∂PQn ≤ g̃n

then V ≥ V in Qn. Therefore, the solution is unique.

Proof of Proposition 3.12. We use a contradiction argument and the maximum principle. If we
assume that the open set F = {z ∈ Qn|V (z) < V(z)} is not empty, then V ≤ V ≤ TD in F
and

LV − aV = 0, LV− aV ≥ 0 in F.

The maximum principle applied to (V−V ) implies that V ≥ V in F and we get a contradiction.
From the maximum principle, uniqueness of solution directly follows.
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3.3. Existence of strong solution in the unbounded domain

Next, we prove the main theorem in the framework of parabolic PDEs with variable coefficients
[11].

Theorem 3.13. If g ≤ TD and there exists a sub-solution V for the problem (10) then we
have a strong solution V ≥ V in ST . Moreover, V ∈ Sploc(ST ) for every p ≥ 1.

Proof of Theorem 3.13. Let Dρ̃(x1, x2) denote the Euclidean ball centered at (x1, x2) ∈ R2,
with radius ρ̃. We consider the sequence of domains On = Dn

(
n+ 1

n , 0
)
∩Dn

(
0, n+ 1

n

)
covering

R×R+. For any n ∈ N, the cylinder Qn = (0,∆Tm)×On is a L-regular domain in the sense that
there exists a barrier function at any point of the parabolic boundary ∂PQn := ∂Qn\({0}×On).
By applying Theorem 3.11 with g̃ = g̃n, for any n ∈ N, there exists a strong solution Vn ∈
Sploc (Qn) ∩ C (Qn ∪ ∂PQn) to problem{

min{LV − aV, TD − V } = 0 in Qn,

V |∂PHn = g̃n.
(19)

Moreover, the following estimate holds: for every p ≥ 1 and Q ⊂⊂ Qn there exists a positive
constant C, only depending on Q,Qn, p, ‖TD‖L∞(Qn) such that ‖Vn‖Sp(Q) ≤ C. Next, we
consider a sequence of cut-off functions χn ∈ C∞0 (R×R+), such that χn = 1 on On−1, χn = 0
on R× R+ \On and 0 ≤ χn ≤ 1. We set

g̃n(τm, x1, x2) = χn(x1, x2)g + (1− χn(x1, x2))V(τm, x1, x2) ,

where V is the sub-solution. By the comparison principle (Proposition 3.12) we have the in-
creasing sequence V ≤ Vn ≤ Vn+1 ≤ g̃ ≤ g ≤ TD.

Then, we can pass to the limit as n→∞, on compact subsets of (0,∆Tm)× R× R+, to get a
strong solution of min{LV − aV, TD−V } = 0 in the space Sploc. A barrier argument similar to
the one used in the proof of Theorem 3.10 shows that V attains the initial condition.

Remark 3.14. Although in Theorem 3.13 we assume that g ≤ TD, for m = M we can proof
that this condition holds. More precisely, at the end of the last month, M , which corresponds
to τM = 0, we have that g(τM = 0, x1, x2) = min(MP, exp(x1)) ≤MP and

TD(τM = 0) = (1 + Ψ)(1 + c∆TM )P (M − 1) = (1 + Ψ)MP,

where Ψ ≥ 0. Next, since MP ≤ (1 + Ψ)MP we have that g(τM = 0, x1, x2) ≤ TD(τM = 0).

However, for any month m, where 1 ≤ m ≤M − 1, we only could check the condition g ≤ TD
numerically. More precisely, we have that

g(τm = 0, x1, x2) = min(V (τm+1 = ∆Tm+1, exp(x1), x
2
2) +MP, exp(x1))

≤ V (τm+1 = ∆Tm+1, exp(x1), x
2
2) +MP.

Moreover, we have that

V (τm+1 = ∆Tm+1, exp(x1), x
2
2) ≤ TD(τm+1 = ∆Tm+1).

So, it only would remain to check that TD(τm+1 = ∆Tm+1) +MP ≤ TD(τm = 0), or equiva-
lently to prove that (1 + Ψ)P (m) +MP ≤ (1 + Ψ)(1 + c∆Tm)P (m−1). By using the numerical
methods proposed in [4] we have numerically checked that these two amounts coincide when
Ψ = 0 or when (1 + Ψ)P (m) + MP < (1 + Ψ)(1 + c∆Tm)P (m− 1) for Ψ 6= 0. Thus, numer-
ically we have checked that g ≤ TD(τm = 0), for m = 1, . . . ,M − 1. However, we could not
prove it theoretically, so that we assume this condition in the theorem statement.
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[12] A. Pascucci, M. Súarez-Taboada, C. Vázquez, Mathematical analysis and numerical methods for a
PDE model of a stock loan pricing problem, Journal of Mathematical Analysis and Applications,
403 (2013), 38-53.

[13] N. J. Sharp, D. P. Newton and P. W. Duck, An Improved Fixed-Rate Mortgage Valuation Method-
ology with Interacting Prepayment and Default Options, Journal of Real Estate Finance and Eco-
nomics, 19 (2008), 49-67.

9


	PAGINA_1.pdf
	This is an ACCEPTED VERSION of the following published document:
	General rights:

	6.cv_FRM_narwa_rev.pdf

