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An a posteriori, efficient, high-spectral resolution

hybrid finite-difference method for compressible flows

Javier Fernández-Fidalgoa,∗, Xesús Nogueiraa,∗, Luis Ramı́reza, Ignasi
Colominasa

aUniversidade da Coruña,Group of Numerical Methods in Engineering, Campus de
Elviña, 15071, A Coruña, Spain

Abstract

A high-order hybrid method consisting of a high-accurate explicit finite-
difference scheme and a Weighted Essentially Non-Oscillatory (WENO) scheme
is proposed in this article. Following this premise, two variants are outlined:
a hybrid made up of a Finite Difference scheme and a compact WENO scheme
(CRWENO 5), and a hybrid made up of a Finite Difference scheme and a
non-compact WENO scheme (WENO 5). The main difference with respect
to similar schemes is its a posteriori nature, based on the Multidimensional
Optimal Order Detection (MOOD) method. To deal with complex geome-
tries, a multi-block approach using Moving Least Squares (MLS) procedure
for communication between meshes is used. The hybrid schemes are val-
idated with several 1D and 2D test cases to illustrate their accuracy and
shock-capturing properties.

Keywords: high-order schemes, compressible flows, overset grids, Finite
Differences.

1. Introduction

The solution of partial differential equations in presence of strong shocks
has always been a difficult task. Several techniques have been explored in
order to achieve high-order results, with the consequential increase of com-
putational cost. In this article we explore a new hybrid technique based on
the a posteriori detection paradigm that combines a Finite Difference (FD)
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scheme and a Weighted Essentially Non-Oscillatory (WENO) scheme. Ob-
viously the methodology presented in this article is not only restricted to
the schemes we present, but can also be applied to any combination of finite
difference and WENO schemes regardless of their order of accuracy and/or
compactness.

The key idea is to combine a fast and accurate scheme that cannot deal
with shocks, with a scheme that can deal with them accurately at the expense
of a higher computational cost. The scheme that can deal with shocks will
only be used on those areas where the fast and accurate scheme is unable
to obtain a quality solution. Thus, it is crucial the accurate and reliable
detection of the problematic zones.

To that matter, several methods combining FD with WENO schemes
have been proposed in the literature. For instance, Costa and Don presented
in [1] a hybrid method composed by a sixth order FD scheme and a fifth
order WENO scheme for the smooth and discontinuous parts of the solution,
respectively. The type of criterion used to switch from one scheme to the
other relies on a sensor that detects the discontinuities in advance (a priori
detection).

The approach proposed by Pirozzoli [2] combines a fifth-order compact
upwind algorithm for the smooth parts of the flow with a fifth-order WENO
scheme to capture discontinuities. The detection criterion is a priori as well,
employing a threshold value to distinguish the smooth from the non-smooth
zones.

As explained in [3], the drawback of these approaches is that the shock
locations are predicted, and related to the a priori guesses there can be a loss
of efficiency due to over-detection of problematic zones. This happens around
critical points, where the denominator of the derivatives approaches zero, and
the method switches to the WENO scheme. To decrease the over-dissipation
associated with such a degeneration, dimensional parameters, which require
tuning for different problems, have been introduced in these a priori ap-
proaches.

In this work, an a posteriori detection criterion based on the Multidimen-
sional Optimal Order Detection (MOOD) method is proposed. The reader
is referred to [4, 5] for details on the MOOD paradigm.

Our approach differs from the original MOOD because of the underlying
schemes we use for the calculations. In the original MOOD method [4], a
single scheme ranging from arbitrary high-order to first order is used, so that
the reconstruction order of the problematic cells is gradually downgraded up
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to first order in case all the others attempts have failed. In our approach,
we combine two methods of similar order, but with a significant difference
in terms of computational cost. The fastest method is not able to deal
with shocks, whereas the other method can handle shock waves at the price
of increasing the overall computational cost. This conceptual difference is
why we do not label the proposed methodology as MOOD, since it is an a
posteriori approach but the order of the chosen schemes is not downgraded.

In this work we also present an approach based on Moving Least Squares
(MLS) to apply the numerical scheme to block-structured meshes.

The structure of the paper is as follows. First, the governing equations
and the different numerical methods used are presented. Then, the a posteri-
ori detection paradigm is introduced. In section 6 we present the MLS-based
technique for multi-block grid, and then we present some numerical exam-
ples to show the accuracy, efficiency and robustness of the proposed hybrid
schemes. Finally, conclusions are drawn.

2. Governing equations

The goal of this article is to solve the two-dimensional Euler equations
in general coordinates for an inviscid, compressible, newtonian fluid. Fol-
lowing the general curvilinear transformation (x, y) → (ξ, η) as in [6], these
equations are written in the following strong conservation form:

∂Û

∂t
+
∂F̂

∂ξ
+
∂Ĝ

∂η
= 0 (1)

where Û denotes the transformed vector of conservative variables, being the
original vector U = (ρ, ρu, ρv, ρE)T and F̂ and Ĝ are the generalized inviscid
flux-vectors. Using the same notation as in [7], these vectors can be expressed
as

Û =
1

J


ρ
ρu
ρv
ρE

 F̂ =
1

J


ρÛ

ρuÛ + ξxp

ρvÛ + ξyp

(ρE + p) Û

 Ĝ =
1

J


ρV̂

ρuV̂ + ηxp

ρvV̂ + ηyp

(ρE + p) V̂

 (2)

where ρ is the density, u and v are the velocity components along the x and
y axes, p is the pressure, and E is the total energy per unit mass expressed
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as

E =
p

ρ (γ − 1)
+

1

2

(
u2 + v2

)
(3)

In (3), γ is the ratio of specific heat coefficients of the gas/fluid (for an
ideal, monatomic gas, γ = 7/5). The quantities ξx, ξy, ηx and ηy are the spa-
tial metrics of the transformation between the physical domain (x, y) and the
computational space (ξ, η), where the subscript denotes partial derivation.

The inverse metrics (xξ, yξ, xη and yη) can be obtained by analytic dif-
ferentiation or finite differences when the exact expression of the mapping
between the physical space and the computational domain, that is,{

x = x (ξ, η)
y = y (ξ, η)

is not available.

The Jacobian of the transformation is denoted as

J =

∣∣∣∣∂ (x, y)

∂ (ξ, η)

∣∣∣∣ =
1

xξyη − xηyξ
(4)

and the following expressions apply:

ξx = Jyη

ξy = −Jxη
ηx = −Jyξ
ηy = Jxξ

(5)

The contravariant velocity components Û and V̂ , are expressed as the
dot product between the velocity vector u = (u, v) and the gradient of each
family of lines, ∇ξ = (ξx, ξy)

T and ∇η = (ηx, ηy)
T .

Û = (ξxu+ ξyv)

V̂ = (ηxu+ ηyv)
(6)

In this work we have used the sixth-order Compact Finite Differences, as
in [8], to obtain the inverse metrics. In [9] it is advised that the scheme used
to calculate these metrics should be at least of the same order of accuracy
as the schemes employed in the calculation. The option of calculating the
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inverse metrics with the (CR)WENO scheme has been also ruled out because
of the use of biased stencils near the boundaries, and the subsequent loss of
accuracy.

3. Base Numerical Methods and Techniques

In this section we review the different schemes we use in our new hybrid
formulation for the resolution of the Euler equations. This scheme is based
on the use of an explicit, Low Dispersion Finite Difference (LDFD) method
for the smooth regions of the flow, and a WENO scheme for the rest of the
domain.

In this work we use two different Weighted Essentially Non-Oscillatory
schemes. Namely, a compact scheme (CRWENO 5) [10] and a non-compact
scheme (WENO 5) [11]. It is worth noting that any other WENO scheme
can be used in our approach.

Dispersion and dissipation diagrams of all the schemes involved are shown
in figure 1, where we also have included the curves for the first order forward
and fourth orden central finite differences for reference. Please note, that the
LDFD scheme, as well as the first and fourth order standard finite differences,
has no inherent dissipation and thus, there is no curve to plot in the diagram.
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Figure 1: Dispersion (left) and dissipation (right) diagrams.
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3.1. The base scheme: Low Dispersion Finite Difference (LDFD) scheme

In this work we have chosen the explicit, fourth order, centered, finite
difference method defined and used by Bogey and Bailly in [12] as the base
scheme. It has low dispersion error compared to the standard fourth order
finite differences at the expense of a wider stencil.

When the LDFD scheme is used, the first derivative of the ξ-direction
flux function F̂ at some interior node, is calculated as:

∂F̂

∂ξ

∣∣∣∣∣
i,j

≈
N∑
p=0

sp

(
F̂i+p,j − F̂i−p,j

)
(7)

The value of the coefficients sp is indicated in table 1. This scheme uses
N = 5 nodes to each side of the central point, making an eleven-point stencil.

The derivative of the flux Ĝ in the η-direction, is calculated using an
analogous expression.

Table 1: Low Dissipation Finite Difference coefficients [12]

s0 0.000000000
s1 0.872756994
s2 -0.286511174
s3 0.090320001
s4 -0.020779406
s5 0.002484595

Due to the possible presence of shocks near or at the boundaries, in this
work the preferred boundary scheme will be the Weighted Essentially Non-
Oscillatory (either compact or non-compact) scheme at all times. Thus, no
one-sided schemes are used here.

3.2. Filtering schemes

The base scheme in this work (LDFD), has not any inherent dissipation,
as seen in figure 1. In order to use this scheme in convection dominant
problems, a mechanism to introduce dissipation is required to stabilize the
scheme. Here, compact filters proposed by Visbal and Gaitonde in [13] are
used.
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The filtered value of a function u, denoted as ū, is obtained by solving a
tridiagonal system.

αf ūi−1 + ūi + αf ūi+1 =
N∑
n=0

an
2

(ui+n + ui−n) (8)

In equation (8), αf is kept as a free parameter and it regulates the amount
of dissipation introduced by the filter, as shown in figure 2. The coefficients
an depend on the order of the filter and can be found in [13] as well. As
the LDFD scheme is not used here for boundary nodes, no special one-sided
formulas are required.

The spectral function of the filter is obtained as [13]

SF(ω) =

N∑
n=0

an cos(nω)

1 + 2αf cos(ω)
(9)
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Figure 2: Spectral functions of a fourth order filter (left) and a tenth order filter (right)
for different values of αf . The horizontal axis has been normalized between 0 and π.

Note that the filtering procedure is included to stabilize the numerical
scheme for convection dominant problems. However, it is not enough to
stabilize the LDFD numerical scheme in presence of shocks.
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Different strategies to stabilize the scheme in presence of shocks have
been proposed in the literature. Visbal and Gaitonde [13, 14], propose to use
an adaptive filtering scheme, systematically reducing the order of the filter
while increasing the value of the parameter αf when approaching a shock
region. Lo et al.[15] follow the same philosophy but they switch to Harten’s
first-order artificial compression method (ACM) [16] within the shock region.
In this context, the use of high-order nonlinear filters for long time integra-
tion of DNS and LES of turbulent flows for both shock-free turbulence and
turbulence-shock waves interactions has been presented in [17, 18]. A dif-
ferent approach consists in introducing numerical dissipation in the form of
artificial diffusivity [19, 20], and solving the regularized system of equations
with a high-order method. Hybrid a priori approaches [2, 21], consist in
detecting the troubled zones around shocks and apply the shock-capturing
schemes only on the detected regions. In order for the shock detectors to
be valid and reliable, one has to be sure that at least all troubled zones are
flagged as invalid. This approach usually sacrifices some efficiency in favour
of the robustness of the algorithm In [22] the interested reader can find a
thorough overview on these strategies.

In this work we propose a different approach, related to the aforemen-
tioned hybrid approaches. We use a WENO-family scheme to deal with
non-smooth regions, as [21], but the region where the WENO scheme is used
is determined a posteriori after the filtering step, only at regions where the
solution is not acceptable. Two different WENO schemes are studied here,
namely, the WENO 5 [10] and CRWENO 5 [11].

In this article, we usually use a tenth order filter for the computations with
a value of αf = 0.45, except where explicitly indicated. A different choice of
the filter and parameter indicates that more dissipation was required.

3.3. WENO 5

The formulation of the WENO 5 scheme used in this article, follows the
original implementation by Jiang and Shu in [11], with the mapping proposed
by Henrick et al. in [23]. The idea is to obtain a high-order interpolation
of the fluxes at the interfaces midway between nodes (noted with half index
values) and calculate the first derivative as

∂F̂

∂ξ

∣∣∣∣∣
i,j

≈
F̂i+1/2,j − F̂i−1/2,j

∆ξ
=

(
F̂+
i + F̂−i+1

)
−
(
F̂+
i−1 + F̂−i

)
∆ξ

(10)
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Because of the flux vector splitting (explained in Appendix A) a right-
biased and a left-biased reconstruction at the interface i + 1/2 have to be
computed (marked with a plus and minus sign, respectively). For brevity,
only the reconstruction procedure for the left-biased reconstruction is ex-
plained in Appendix B. The right-biased reconstruction can be calculated
using a symmetric arrangement of the stencils, as seen in figure 3.

i i + 1 i + 2 i + 3i − 1i − 2i − 3

i + 1
2

i + 3
2

i + 5
2

i − 1
2

i − 3
2

i − 5
2

i i + 1 i + 2 i + 3i − 1i − 2i − 3

i + 1
2

i + 3
2

i + 5
2

i − 1
2

i − 3
2

i − 5
2

Left-biased reconstruction

Right-biased reconstruction

Figure 3: WENO left-biased and right-biased reconstruction stencils.

The chosen implementation is in characteristic form as suggested by [11],
because it is more robust and gives less oscillatory results in the presence of
strong shocks.

3.4. CRWENO 5

The formulation of the CRWENO 5 scheme follows the implementation of
Ghosh and Baeder in [10] with the same mappings proposed by Henrick et al.
in [23]. This scheme follows the same idea as the WENO 5, but the candidate
stencils have the interfaces implicitly related, which means a shorter stencil
on the interior points.

An outline of the CRWENO 5 formulation can be consulted in Appendix
C, and the complete formulation and adaptation to the Euler equations can
be found in [10].
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3.5. Temporal integration

The high-order spatial discretization step leads to a semi-discrete form
that can be written as

∂ (U/J)

∂t
= R = −

(
∂F̂

∂ξ
+
∂Ĝ

∂η

)
(11)

In this article we are not considering deforming or moving meshes so we
can write

∂ (U/J)

∂t
=
∂U

∂t
· 1

J
(12)

and the final form of the ordinary differential equation can be written as

∂U

∂t
= R = −J

(
∂F̂

∂ξ
+
∂Ĝ

∂η

)
(13)

This ODE system can be solved in time with the total variation diminishing
(TVD) three stage Runge Kutta (TVDRK3) as in [11], as follows:

U(1) = Un + ∆tR(Un)

U(2) =
3

4
Un +

1

4
U(1) +

1

4
∆tR(U(1))

Un+1 =
1

3
Un +

2

3
U(2) +

2

3
∆tR(U(2))

(14)

In generealized coordinates, the CFL is given by equation (15):

CFL = ∆t

max
U

(
|ξxu+ ξyv|+ c

√
ξ2x + ξ2y

)
∆ξ

+
max
U

(
|ηxu+ ηyv|+ c

√
η2x + η2y

)
∆η


(15)
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4. A posteriori HFDWENO and HFDCRWENO schemes

4.1. Overview

Since we aim to build a hybrid scheme, we need to develop a robust
criterion capable of detecting the instabilities and shocks in order to switch
from the LDFD scheme to the Weighted Essentially Non-Oscillatory scheme.
In this work, we base the method on a posteriori limiting paradigm [4, 5, 24,
25].

Figure 4 shows schematically our approach. At the beginning of each
Runge-Kutta step, a candidate solution U∗ is computed using the LDFD
scheme, based on the solution obtained on the previous Runge-Kutta step.
The low-pass filtering procedure can be performed in each Runge-Kutta step,
or only at the end of the third step, as explained in [7]. In this work, the latter
strategy is adopted. Next, a number of detectors are run on the candidate
solution to check if it has some desirable properties (that we will discuss
afterwards). If all the detectors are fulfilled, it means the solution at that
point is acceptable and it is assumed as the solution at the next Runge-
Kutta step. Conversely, if any of the detectors flag the solution as invalid,
that point along with some stencil around it (see figure 5), is recalculated
with the WENO 5 or CRWENO 5 scheme.

An extensive description of the usually employed detectors can be con-
sulted in [26], here we will only describe the ones we employ in our formula-
tion, outlined in figure 4.

valid

URK F.D. U∗

PAD

NAD

NO

YES

YES

NO

FOR EACH POINT IN U∗

VALID

URK+1

INVALID

Stencil
recalculation

via
(CR)WENOCandidate 

Solution

FILTER 
  Only used in
 3rd stage of RK ( )

Figure 4: Present a posteriori approach. URK represents a Runge-Kutta step and URK+1

represents the following step of the Runge-Kutta algorithm.

Physical Admissible Detector (PAD): This detector checks that
the solution is physical, that is, all points must have positive density
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and positive pressure at all times. In practice, this detector also iden-
tifies points with NaN values.

Numerical Admissible Detector (NAD) [24]: relaxed version of
the Discrete Maximum Principle (DMP)[4]. It checks that the solution
is monotonic and new extrema are not created. It compares the candi-
date solution with the solution obtained in the previous Runge-Kutta
step. We remark that the superscript n indicates here the previous RK
step, not the previous time step.

min
y∈Vi

(Un (y))− δ 6 U∗(x) 6 max
y∈Vi

(Un (y)) + δ (16)

δ = max

(
10−4, 10−3 ·

(
max
y∈Vi

(Un (y))−min
y∈Vi

(Un (y))

))
(17)

The collection of points Vi represents the set of first neighbours of the
point in consideration.

This implies that the candidate value remains between the local minimum
and local maximum on the previous time step. In this work, the NAD is
checked in the full conservative variables vector as suggested by [5].

The points that do not fulfill any of the employed detectors, are recalcu-
lated along with a stencil around them, as indicated in figure 5. The stencil
size coincides with that of the fast Finite Differences scheme employed to
calculate the candidate solution, and serves as an exclusion zone so that it is
guaranteed that no LDFD stencil containing the flagged point is used across
a shock.

detected point

aux. points aux. points

exclusion zone = FD stencil

(CR)WENO region

Figure 5: (CR)WENO recalculated region.

In figure 5 only the detected point and the nodes represented as solid
brown squares are recalculated, but 3 more points on each end of the region
(represented as green hollow squares) are needed in order to compute all the
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interfaces required by the WENO or CRWENO schemes. The solution values
in these auxiliary points are taken as the ones in the previous Runge-Kutta
step.

If there is a number of detected nodes too close to each other that there
is not enough space to create the region shown in figure 5, one can proceed
as follows:

1 Detect problematic points.

2.1 Form region around point 1.

2.2 Form region around point 2.

...

2.n Form region around point n.

3 Join all regions.

For a better understanding, the previous algorithm is illustrated in figure
6 for just two problematic points, but the generalisation is trivial.

1 2

1

2

1 2

Detect problematic points

Form region 1 around pt. 1

Form region 2 around pt. 2

Join regions 1 and 2

Figure 6: Region overlapping treatment for two points.
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The boundary points that share an interface between (CR)WENO re-
gions and LDFD regions have to be treated carefully in order not to generate
spurious oscillations between the schemes. As seen in figure 7, the hollow
circles denote the boundary points, and the thickest lines denote the bound-
ary interfaces. In our formulation, the derivative of the flux at the nodes
denoted as A− 1 and B + 1 is recalculated as

∂F̂

∂ξ

∣∣∣∣∣
A−1,j

≈
F̂A−1/2,j − F̂A−3/2,j

∆ξ

∂F̂

∂ξ

∣∣∣∣∣
B+1,j

≈
F̂B+3/2,j − F̂B+1/2,j

∆ξ

(18)

(CR)WENO regionLDFD region LDFD region

AA-1 B B+1

A-1/2A-3/2 B+3/2B+1/2

Figure 7: Shared interface treatment between (CR)WENO and LDFD regions.

where F̂A−1/2,j and F̂B+1/2,j are the interface fluxes calculated via the
(CR)WENO scheme, using (10). The computation of the interface fluxes
F̂A−3/2,j and F̂B+3/2,j, which are within the LDFD domain, can be done
either by recasting the LDFD scheme in a finite volume style as presented
in the appendix of [27], or by applying (7) to the discrete primitive of F̂ as
explained in [28].

4.2. Positivity preserving flux limiters for WENO and CRWENO schemes

Given that the Weighted Essentially Non-Oscillatory schemes, that is, the
WENO 5 or the CRWENO 5, are the last reconstruction procedures before
entering the next Runge-Kutta step, we have to be able to guarantee the
positivity of density and pressure after this step.

A possible choice to assure the positivity of density and pressure is to
apply cut-off flux limiters [29] for density and pressure in an a posteriori
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fashion. The basic idea proposed in [29] is to use the first order Lax-Friedrichs
flux which has the positivity preserving property for CFL ≤ 0.5 and perform
a weighted average between the (CR)WENO reconstructed flux and the Lax-
Friedrichs flux so that the positivity of density and pressure is guaranteed.
Here, we use a simpler approach, in which the (CR)WENO computed flux is
completely replaced by the Lax-Friedrichs flux. This choice is less accurate
than that proposed in [29], but it is faster in the computations. We note that
in the test cases we have addressed, the (CR)WENO schemes failed in very
few cells and in rather scarce time steps, so this choice is justified.

The positivity preserving algorithm is only applied if and only if the
WENO or CRWENO schemes fail to produce a physical solution, and it is
not involved in the process of generating the candidate solution.

In the numerical subsections, some quantitative information about the
activation of the positivity preserving technique is given for each test case.

5. Boundary conditions

With regard to the hybrid scheme, seems reasonable to let the WENO
5 or CRWENO 5 schemes handle the boundary treatment because shocks
can be present near the boundaries, and the LDFD scheme would not be
able to properly handle these discontinuities. It is also possible to use one-
sided formulas for the LDFD and the filtering schemes and then apply the
(CR)WENO scheme in the boundary only if the base scheme fails, but this
approach has not been addressed here.

The mesh is placed, as seen in figure 8, so that the physical boundaries
of the domain coincide with the interface midway between mesh nodes. This
arrangement is specially convenient when there is a wall boundary condition.
Because of the WENO and CRWENO schemes, three layers of ghost nodes
on each end of the mesh are needed. The ghost nodes are symmetrically
placed taking the physical boundary as symmetry axis.
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calculated node 
ghost node
physical boundary

Figure 8: Schematic representation of the computational domain and node classification.

To explain some of the implemented boundary conditions, we will employ
the notation shown in figure 9.

G0G−1G−2 GN+1 GN+2 GN+31 2 3 ::: N − 2 N − 1 N

Figure 9: 1D sketch used for notation purposes for B.C.

Farfield boundary conditions: for the precise expressions used for
these conditions, please refer to [30].

Inviscid wall boundary condition: given the special mesh place-
ment, we use the so called “reflection technique”, the values of ρ and
ρE are mirrored using the interface where the values of the derivatives
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should be zero as symmetry axis, as it can be seen in (20). This enforces
the conditions:

∂ρ

∂n
= 0

∂p

∂n
= 0

(19)

Regarding the velocity vector u = (u, v)T , the normal component with
respect to the wall should be zero and the tangential derivative of the
tangential component should be zero as well.

To wrap up, the expressions for the left end of the domain are

ρG1−j = ρj

(ρE)G1−j = (ρE)j

(20)

uG1−j = uj − 2 (ξxuj + ξyvj)
ξx

ξ2x + ξ2y

vG1−j = vj − 2 (ξxuj + ξyvj)
ξy

ξ2x + ξ2y

(21)

where j = 1, 2, 3 and the metrics have to be evaluated in the cor-
responding points, but the index has been omitted for clarity. The
family of metrics involved in the calculations is the family normal to
the wall.

Similar expressions for the right end of the domain can be obtained.

6. Multi-block meshes

For complicated geometries, sometimes it is more useful to employ several
meshes to discretize the domain. This procedure allows us to place the
meshes in a more convenient way for solving the numerical problem. With
this technique, a very important problem arises: accuracy preservation in the
procedure of communication between meshes.
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Given that WENO and CRWENO schemes need three auxiliary nodes
(ghost points) to perform the calculations, we take advantage of those nodes
to communicate both meshes. To approximate the values at the ghost points,
we employ the Moving Least Squares framework outlined in the following
section, as done in [31, 32] for Finite Volume schemes.

6.1. Moving Least Squares (MLS)

This class of approximation methods reconstructs a given function from
scattered, pointwise data [33]. In MLS, an arbitrary function f(x) can be
approximated as:

f (x) ≈ f̂ (x) = pT (x) a (x) =
m∑
i=1

pi (x) ai (x) (22)

where pi (x) are basis functions, m is the total number of terms in basis
functions, and a (x) = [a1 (x) , . . . , am (x)]T is the coefficients vector.

Although the basis functions p (x) = [p1 (x) , . . . , pm (x)]T can be any
kind of traditional function family, we chose them to be polynomials because
of their simplicity. In two dimensions the linear, quadratic and cubic bases
are represented in table 2.

Table 2: MLS 2D polynomial bases

1 x y xy x2 y2 x2y xy2 x3 y3

Linear • • •

Quadratic • • • • • •

Cubic • • • • • • • • • •

The main difference with respect to classic Least Squares (LS) approx-
imation is that the coefficients a (x) vary with x in MLS and are constant
throughout the domain in LS.

The deduction of the MLS coefficients can be seen in [33, 34] and will not
be exposed here. The omitted calculations yield

a (x) =
[
PTWP

]︸ ︷︷ ︸
A(x)

−1 ·
[
PTW

]︸ ︷︷ ︸
B(x)

f (x) = A−1 (x) B (x) f (x) (23)
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where:

f =


f (x1)
f (x2)

...
f (xn)



P =


pT (x1)
pT (x2)

...
pT (xn)

 =


p1 (x1) p2 (x1) · · · pm (x1)
p1 (x2) p2 (x2) · · · pm (x2)

...
...

. . .
...

p1 (xN) p2 (xN) · · · pm (xN)



W =


W1 (x− x1) 0 · · · 0

0 W2 (x− x2) · · · 0
...

...
. . .

...
0 0 · · · WN (x− xN)



(24)

1

2

3

4

5

6

7

8

9

10

11

12

13

GP

Figure 10: Compact support for the point GP using points from both meshes. The
numbers above the nodes denote the order they are arranged in terms of distance to GP.

Finally, we can approximate the initial function as:

f̂ (x) = pT (x) a (x) = pT (x) A−1 (x) B (x)︸ ︷︷ ︸
Φ(x)

f (x) = Φ (x) f (x) (25)
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where Φ (x) is commonly known as the MLS shape functions. We note that
if the mesh position does not change with time, the shape functions do not
vary as well.

Another important ingredient of MLS approximations is the kernel func-
tion W . There are many different kernel functions in the literature, but here
we have used an exponential kernel function [25, 32, 35]. The role of the ker-
nel function is to weight the importance of the different neighboring points
in the approximation. The neighboring points are defined for each point x
by the support of the kernel function. In this case, the support is a circle,
as represented in figure 10 for a given point GP. For stability reasons, the
minimum number of neighbors should be slightly higher than the number of
elements of the polynomial basis. Here we have used a minimum number of
13 neighboring points for the cubic basis. The reader is referred to [32, 35]
for more details.

6.2. Data communication procedure

The employed positioning of two meshes can be seen in figure 11. This
arrangement only requires the interpolation of the ghost points to communi-
cate both meshes. Given that they share a common edge, all real points from
both meshes can be calculated as usual, and share the information between
meshes using solely the ghost points. The reconstruction process uses points
from both meshes, as shown in figure 11.

Figure 11: Mesh positioning schematic. For simplicity we only represent 1 ghost point on
each direction, represented as hollow shapes.
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MLS approximation is performed at a ghost point, using a neighborhood
of points as explained in the previous section (see figure 10). The algorithm
for each ghost point is outlined in table 3. The way the neighbouring points
are selected is locating the nearest point to the ghost point (GP) in both
meshes. Once the two points are located, given the structured nature of
the grids, it is easy to locate a certain amount of neighbours of those points
within their corresponding mesh. Finally we can sort the points from both
meshes with respect to their distance to GP using any of the widely known
sorting algorithms, resulting in the numeration we can see in figure 10.

Table 3: MLS Approximation Algorithm

(1) Initial data: {xi, f(xi)}

(2) Form basis functions p (x) = [p1 (x) , . . . , pm (x)]T and determine matrix P

(3) For each point: form the shape function
a) Select weighting function
b) Form matrix W
c) Obtain matrices A (x) and B (x)
d) Calculate A−1 (x)
e) Form shape function Φ (x)

End For each point

(4) Approximate function using equation (26)

After the computation of the shape functions, the value of any of the
conservative variables at the ghost point, are calculated as:

UGP ≈
N∑
j=1

ΦGP
j Uj (26)

where N stands for the total number of points used to perform the approxi-
mation.

This process has to be done whenever a relative displacement of the
meshes takes place. Meaning that for static meshes, the interpolation nodes
can be stored beforehand and save considerable computational effort.

In order to deal with the possible oscillations that can be generated
throughout the process of approximation, and that can lead to the apparition
of non-physical values in the solution, an analogous detection to that of the
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PAD is performed within the MLS framework. Starting with a high-order d0
polynomial basis, the MLS reconstruction is attempted. If the values of the
density and pressure are physical, the reconstruction is accepted as valid. If
the values are not physical, a lower order reconstruction is attempted. Obvi-
ously, the reconstruction of order 1 cannot produce any non-physical values
given that all the values used in the interpolation are physical. A schematic
explanation of the process can be seen in figure 12.

d = d0 MLS reconstruction
of order d

ρ; p > 0 ok

d = d− 1

yes
no

Figure 12: MLS reconstruction to avoid non-physical values, starting with a d0 order basis.

7. Numerical examples

In this section several numerical examples computed with these new hy-
brid schemes are presented. In the first cases, the WENO 5 and CRWENO
5 (denoted simply as WENO and CRWENO from now on) are compared
with the new hybrid schemes that are denoted as HFDWENO and HFDCR-
WENO, respectively.

For all test cases the value for the ratio of specific heat coefficients of the
ideal gas is γ = 7/5, will be run at a constant CFL = 0.5, using a tenth order
filter for the LDFD with αf = 0.45, and Global Lax-Friedrichs flux splitting
unless otherwise noted.

7.1. Two-dimensional Entropy Wave Advection

This problem reproduces that contained in [36]. It simulates the advection
of a density wave at a constant freestream velocity while the pressure and
velocity remain unchanged. The analytical solution for this problem at a
given time t is given by:

ρ (x, y, t) = ρ∞ + A sin [π (x+ y − (u∞ + v∞)t)]

u (x, y, t) = u∞

v (x, y, t) = v∞

p (x, y, t) = p∞

(27)
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As the analytical solution is known, this example can be used to evaluate
the order of accuracy of the schemes.

To evaluate the order of accuracy we use the following values for the
parameters in equation (27):

A = 0.2 ρ∞ = 1 u∞ = 1 v∞ = 0 p∞ = 1 (28)

Next, we test each of the non-hybrid schemes separately and compute the
L2 norm for the density variable.

We tested two different mesh configurations covering the same domain,
which is a 2 by 2 square, as seen in figure 13. For case A a single mesh
where periodic boundary conditions will be used, whereas case B is run with
two meshes communicated by the MLS procedure previously explained. For
the latter case, periodic boundary conditions are used everywhere except
on the shared side at x = 1, where the MLS procedure is used. A quintic
polynomial basis is employed. In both cases hx = hy = h and we use an
even number of nodes, so that both configurations have the nodes in the
exact same locations. For case B each of the two grids has the same number
of nodes in the vertical direction as the single grid of case A. In order to
keep the same spatial resolution in both configurations, the number of nodes
in the horizontal direction of each mesh will be half of that in the vertical
direction. The simulation is run until t = 2.0.

We use the global Lax-Friedrichs flux splitting explained in Appendix A.
All the simulations are run with a CFL equal to 0.1. Please note that no
detection criterion is activated and the positivity preserving technique does
not activate for any of the cases in this example.
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Figure 13: Two different mesh configurations for testing the order of accuracy in the 2D
Entropy Wave test case. Case A: Single mesh. Case B: Two side-by-side meshes.

In tables 4, 5 and 6 we show the L2 norm of the density error obtained
for cases A and B. As expected, we recover the formal order of accuracy for
the LDFD and WENO schemes, for case A. It is shown that the formal order
of accuracy is not altered significantly employing the Moving Least Squares
approximation for communication between meshes, that is, case B.

We also note that the LDFD scheme is remarkably faster than any of the
WENO schemes, as expected.

Table 4: Entropy wave advection. LDFD results.

Points
Case A Case B

L2 r2 Time (s) L2 r2 Time (s)

20x20 1.5220E-05 — 0.50 1.5219E-05 — 1.08
40x40 1.1683E-06 3.70 3.05 1.1753E-06 3.69 6.47
60x60 2.3942E-07 3.91 9.33 2.3897E-07 3.93 18.54
80x80 7.6729E-08 3.96 21.48 7.7853E-08 3.90 40.42

100x100 3.1614E-08 3.97 39.43 3.2615E-08 3.90 75.48
200x200 1.9916E-09 3.99 342.03 2.1126E-09 3.95 563.34
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Table 5: Entropy wave advection. WENO results.

Points
Case A Case B

L2 r2 Time (s) L2 r2 Time (s)

20x20 1.6663E-04 — 2.53 1.6653E-04 — 3.11
40x40 5.1463E-06 5.02 18.78 5.1400E-06 5.02 21.34
60x60 6.7928E-07 4.99 61.69 6.8215E-07 4.98 69.44
80x80 1.6150E-07 4.99 145.77 1.6066E-07 5.03 165.25

100x100 5.3013E-08 4.99 290.08 5.4367E-08 4.86 324.09
200x200 1.6756E-09 4.98 2442.30 1.7548E-09 4.95 2492.45

Table 6: Entropy wave advection. CRWENO results.

Points
Case A Case B

L2 r2 Time (s) L2 r2 Time (s)

20x20 2.6806E-05 — 8.89 2.9636E-05 — 9.40
40x40 7.4346E-07 5.17 65.14 7.9065E-07 5.23 70.32
60x60 9.6928E-08 5.02 211.67 1.0471E-07 4.99 217.20
80x80 2.3098E-08 4.99 589.06 2.3753E-08 5.16 610.13

100x100 7.6382E-09 4.96 1093.59 8.1425E-09 4.80 1128.21
200x200 2.5680E-10 4.89 7853.94 2.7837E-10 4.87 7895.38

This example illustrates that all the schemes used in this article recover
their optimal order of accuracy for smooth problems. Moreover, the proposed
methodology for multi-block meshes keeps the order of accuracy and the
magnitude of the errors.

For better understanding of the execution times for the different schemes,
in table 7 we show the extrapolated computational time for a given L2 error
of 1E-10.

Table 7: Extrapolated execution times for a given L2 error of 1E-10

Time (s) LDFD WENO CRWENO

Case A 2629 12207 14105

Case B 5248 12899 14271
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7.2. Two Interacting Blast Waves

This one-dimensional problem involves multiple interactions of strong
shocks and rarefactions with each other and with contact discontinuities.
It is specially difficult to solve in a uniform Eulerian grid without the use of
local refinement. The reader is referred to [37] for an in-depth analysis. In
this test case we will test the proposed hybrid scheme and we compare its
results with those obtained with the WENO schemes.

This problem takes place in a [0,1] domain with reflective boundary con-
ditions at both ends, and with the following values for the primitive variables
at t = 0:

(ρ, u, p) =


(ρL, uL, pL) if x ≤ 0.1

(ρM , uM , pM) if 0.1 < x < 0.9
(ρR, uR, pR) if x ≥ 0.9

(29)

where:

(ρL, uL, pL) = (1.0, 0.0, 1000.0)

(ρM , uM , pM) = (1.0, 0.0, 0.01)

(ρR, uR, pR) = (1.0, 0.0, 100.0)

(30)

All the computations have been carried out with a CFL number of 0.5
for seven different grids ranging from 50 to 3200 nodes until t = 0.038.

The computations have been carried out with a tenth order filter with
αf = 0.45

In table 8, we summarize the total computational time for both the non-
hybrid and hybrid schemes, as well as a relative time percentage showing the
actual time saving.

On the coarsest grids, the hybrid schemes can be slower than the original
schemes. The poor space resolution of the mesh causes the detectors PAD
and NAD to flag all the points in the domain for every iteration. The cost
of updating the solution with a WENO or CRWENO scheme over the full
domain is incremented by the cost of previously computing the candidate
solution with the LDFD scheme.

Although this may be the case for coarse meshes, when the mesh is grad-
ually refined the obtained computational time for the hybrid schemes is sig-
nificantly lower than that of the original schemes.
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Table 8: Two Interacting Blast Waves. Time comparative

CFL=0.5 Total Time (s)
Saved Time (%)

Total Time (s)
Saved Time (%)

Nodes WENO HFDWENO CRWENO HFDCRWENO

50 0.03 0.02 — 0.06 0.05 —

100 0.08 0.07 4.87 0.27 0.19 29.41

200 0.31 0.23 25.00 1.11 0.58 47.89

400 1.25 0.83 33.75 4.42 1.78 59.72

800 5.08 2.70 46.77 17.39 5.72 67.12

1600 20.58 9.80 52.39 69.73 19.89 71.48

3200 81.47 37.47 54.01 287.14 71.48 75.10

This difficult test case was designed to illustrate the strong relationship
between the accuracy of the overall flow solution and the sharp resolution
of discontinuities. To this matter, it is shown that the two hybrid schemes
behave very similarly to their corresponding original schemes, with a very
significant difference in terms of computational cost. It is notable the time
saving using both hybrid schemes, being the HFDCRWENO the one with
higher rates of saving due to the fact that the CRWENO method requires
more CPU time than the WENO scheme.

In figures 14 and 15, we present the results for the intermediate mesh
of 400 nodes. In both cases the solution obtained employing the hybrid
scheme, is very similar to the solution computed via the WENO and CR-
WENO schemes, as it can be seen on the zoomed detail on the right of the
figures. In those figures, the reference solution corresponds to the computa-
tion of the WENO scheme for a 21870 node grid. The detected nodes, at the
bottom of the figure, refer to the nodes where the PAD or NAD have been
activated on the last time step.
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Figure 14: Two interacting Blast Waves. 400 nodes. Comparative between the density
results obtained using the WENO scheme and the results obtained using the HFDWENO
scheme (left) and zoomed in density results (right).
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Figure 15: Two interacting Blast Waves. 400 nodes. Comparative between the density
results obtained using the CRWENO scheme and the results obtained using the HFDCR-
WENO scheme (left) and zoomed in density results (right).

In figure 16 we present an efficiency plot in the same manner of [38]. The
error for the sequence of seven meshes is plotted versus the CPU time required
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for the computations. It is observed than the magnitude of errors of the
hybrid schemes is similar to that of the (CR)WENO methods. It is also seen
that the hybrid schemes require less CPU time to obtain a given error. From
the figure we observe that for the coarsest grids, the most efficient scheme is
the HFDWENO. However, as the grid is refined, the HFDCRWENO is the
most efficient scheme.
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Figure 16: Two interacting Blast Waves. Efficiency plot: Error versus CPU time for a
sequence of seven meshes. We also plot the CPU times corresponding to an error=0.1. It
is seen that the hybrid schemes are more efficient than the (CR)WENO schemes.

For this case, the positivity preserving technique does not activate for the
WENO and HFDWENO schemes, and it is only activated in a few nodes for
the CRWENO and HFDCRWENO schemes when the two shocks interact.

7.3. Shock/Density Oscillation Interaction

This one-dimensional test case, proposed in [39], is a Mach 3 shock wave
interacting with upstream sinusoidal density waves. The domain is defined
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in −5 ≤ x ≤ 5 and the boundary conditions are set as inflow at x = −5 and
outflow at x = 5.

The solution is computed with a CFL number equal to 0.5 and the final
time of the simulation is t = 1.8.The computations have been carried out with
a tenth order filter with αf = −0.45. We have chosen to use this parameter in
order to increase the dissipation of the hybrid scheme. We have seen that this
choice obtains the best results for this test case. For this case, the positivity
preserving technique does not activate for any of the studied schemes.

The non-dimensional initial condition is defined as:

(ρ, u, p) =

{
(3.857143, 2.269369, 10.33333) if x < −4

(1 + 0.2 sin(5x), 0, 1) if x ≥ −4
(31)

This test measures the ability of the schemes for capturing both small-
scale smooth flow and shocks. CPU times are shown in Table 9. It shows
that for coarse grids the hybrid schemes are slower than the original ones,
but the time savings are really remarkable when the mesh is refined.

Table 9: Shock/Density Oscillation Interaction. Time comparative

CFL=0.5 Total Time (s)
Saved Time (%)

Total Time (s)
Saved Time (%)

Nodes WENO HFDWENO CRWENO HFDCRWENO

50 0.02 0.02 — 0.05 0.05 —

100 0.05 0.05 — 0.14 0.09 33.33

200 0.19 0.13 33.33 0.59 0.25 57.89

400 0.70 0.36 48.89 2.38 0.70 70.39

800 2.83 1.23 56.35 9.41 2.03 78.41

1600 11.22 4.17 62.81 37.23 5.77 84.52

3200 44.50 15.28 65.66 154.67 18.73 87.89

In figures 17 and 18, it is seen that both hybrid and classical scheme
solutions behave similarly. The reference solution corresponds to the compu-
tation of the WENO scheme for a 12800 node grid. The detected nodes refer
to the nodes that did not pass the detection tests run on the LDFD candidate
solution. No significant differences are observed between the hybrid schemes
and their classic counterparts.
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Figure 17: Shock/density Oscillation Interaction. 400 nodes. Comparative between the
density results obtained using the WENO scheme and the results obtained using the
HFDWENO scheme (left) and zoomed in density results (right).
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Figure 18: Shock/density Oscillation Interaction. 400 nodes. Comparative between the
density results obtained using the CRWENO scheme and the results obtained using the
HFDCRWENO scheme (left) and zoomed in density results (right).

In figure 19 we present the efficiency plot for this test case. The error for
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the sequence of meshes is plotted versus the CPU time required for the com-
putations. It is observed than the magnitude of errors of the hybrid schemes
is similar to that of the (CR)WENO methods. It is also seen that hybrid
schemes require less CPU time to obtain a given error. As in the previous
test case, we observe that for the coarser grids the most efficient scheme is
the HFDWENO, and the HFDCRWENO becomes the most efficient scheme
as the grid is refined.
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Figure 19: Shock/density Oscillation Interaction. Efficiency plot: Error versus CPU time
for a sequence of seven meshes. We also plot the CPU times corresponding to an er-
ror=0.02. It is seen that the hybrid schemes are more efficient than the (CR)WENO
schemes.

7.4. 2D Riemann Problem.

This family of cases takes place in a unitary square divided in four quad-
rants, each sector having different values for the primitive variables. Among
all the possible configurations proposed in [40], we chose case F (re-labelled
as case 12 in [41]).
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In figure 20 the initial configuration is presented. The unit square is
divided into 4 quadrants with different values of the primitive variables gen-
erating shocks and contact discontinuities across the borders. The simulation
is run until t = 0.25, as referenced in [41].

0
BBBBBBBBB@

ρ1

u1

v1

p1

1
CCCCCCCCCA

=

0
BBBBBBBBB@

0:5313

0:0

0:0

0:4

1
CCCCCCCCCA

0
BBBBBBBBB@

ρ2

u2

v2

p2

1
CCCCCCCCCA

=

0
BBBBBBBBB@

1:0

0:7276

0:0

1:0

1
CCCCCCCCCA

0
BBBBBBBBB@

ρ3

u3

v3

p3

1
CCCCCCCCCA

=

0
BBBBBBBBB@

0:8

0:0

0:0

1:0

1
CCCCCCCCCA

0
BBBBBBBBB@

ρ4

u4

v4

p4

1
CCCCCCCCCA

=

0
BBBBBBBBB@

1:0

0:0

0:7276

1:0

1
CCCCCCCCCA

X
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

Y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 20: 2D Riemann Problem. Initial setup.

The positivity preserving technique does not get activated for any of the
studied schemes in the present test case.

The solutions to this configuration are symmetrical with respect to the
y = x diagonal, so this property is expected to be conserved by the numerical
schemes.

As in the previously described cases, in table 10 we show a time com-
parative between the traditional and hybrid schemes. We draw the reader’s
attention to the great reduction in computational time obtained using the
hybrid schemes.
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Table 10: 2D Riemann Problem. Time comparative

CFL=0.5 Total Time (s)
Saved Time (%)

Total Time (s)
Saved Time (%)

Mesh WENO HFDWENO CRWENO HFDCRWENO

100x100 17.94 11.39 36.51 57.99 31.32 46.00

200x200 155.15 73.19 52.82 508.56 168.12 66.94

400x400 1386.74 591.77 57.32 4254.87 926.71 78.22

800x800 11645.15 4665.63 59.93 34999.33 6033.53 82.76

The results for the density field in the finest grid are shown in figure
21, using a tenth order filter with αf = 0.45. It is observed that using the
hybrid schemes vortical structures appear along the contact discontinuities.
According to [42], this solution may not be physical. This kind of structures
appear for very low dissipation schemes. Given the absence of analytic so-
lution to this problem, and following the conclusions of [42], this indicates
that the proposed schemes are a good choice for problems with complicated
structures of multi-scales.

We repeat the computations using a more dissipative filter. In this case,
we choose a fourth order filter with αf = 0.45. The results are shown in figure
22. We observe that the vortical structures along the contact discontinuities
are greatly attenuated.

The PAD and NAD detectors work as expected, being activated around
shock locations and not as much around contact discontinuities. A compar-
ison of the nodes detected with PAD and NAD detectors for each of the
hybrid schemes is shown in figure 23. It is shown that for this test case, for
both hybrid schemes, the detectors are able to identify properly the shock
locations. However, we observe that, at this time step, the most of the con-
tact discontinuities are computed using the LDFD scheme. This behaviour is
explained because of the self-steepening nature of shocks, while the contact
discontinuities tend to get smeared over time.

In figure 24 we plot a zoom of the region [0.38, 0.52]×[0.38, 0.52] using the
different schemes and filters. It is observed the effect of using more dissipative
filters in the solution of the hybrid schemes. The central structure is similar
for all the schemes, although it is seen that the hybrid schemes with the
tenth order filter develop Taylor-Rayleigh instabilities along the tail of the
structure. It is also seen that this structures are incipient for the CRWENO
and HFDCRWENO with the fourth-order filter.
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Figure 21: 2D Riemann Problem. Results obtained with WENO (top-left) and CRWENO
(bottom-left) schemes compared to those of the HFDWENO (top-right)and HFDCR-
WENO (bottom-right) approaches using a tenth order filter with αf = 0.45. We plot
the results for a 800 × 800 mesh, with 30 equally spaced density contours between 0.54
and 1.7 at time t = 0.25.
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Figure 22: 2D Riemann Problem. Results obtained with the hybrid HFDWENO (left)
and HFDCRWENO (right) schemes using a fourth order filter with αf = 0.45. We plot
the results for a 800 × 800 mesh, with 30 equally spaced density contours between 0.54
and 1.7 at time t = 0.25.

Figure 23: 2D Riemann Problem. Detected points by PAD and NAD for the hybrid
HFDWENO (left)and HFDCRWENO (right) schemes using a fourth order filter with
αf = 0.45. We plot the results for a 800 × 800 mesh, with 30 equally spaced density
contours between 0.54 and 1.7 at time t = 0.25.
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Figure 24: 2D Riemann Problem. Zoom of the region [0.38, 0.52] × [0.38, 0.52] using the
WENO (top-left), HFDWENO with fourth order filter (top-right), CRWENO (middle-
left), HFDCRWENO with fourth order filter (middle-right), HFDWENO with tenth order
filter (bottom-left) and HFDCRWENO with tenth order filter (bottom-right) schemes. We
plot the results for a 800× 800 mesh, with 30 equally spaced density contours between 0.8
and 1.35 at time t = 0.25.
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7.5. Double Mach Reflection of a Strong Shock

This two-dimensional test case is used to assess the performance of the
algorithm in the presence of strong discontinuities. It was proposed by Wood-
ward and Colella in [37] as a benchmark for Euler codes.

A Mach 10 strong shock reflects from an inviscid wall resulting in sec-
ondary shock waves and contact discontinuities.

It takes place in a [0, 4]×[0, 1] rectangular domain. The initial condition is
an oblique Mach 10 shock forming 60 degrees with the X axis and intersecting
the bottom boundary (y = 0) at x = 1/6.

The flow conditions upstream and dowstream of the shock are, respec-
tively:

(ρu, uu, vu, pu) = (8.000, 7.145,−4.125, 116.500)

(ρd, ud, vd, pd) = (1.400, 0.000, 0.000, 1.000)
(32)

The bottom boundary (y = 0) is divided in two regions: the first region
(0 < x < 1/6) takes the upstream flow conditions, and the second region
(x > 1/6) is an inviscid wall.

The upper boundary (y = 1) takes the analytic values of a Mach 10
oblique shock.

The left and right boundaries (x = 0 and x = 4) are set to the up- and
downstream flow conditions.

The positivity preserving technique does not activate in the present case
on the WENO and HFDWENO schemes, but it gets activated quite profusely
around the shock location on the first few iterations of the CRWENO and
HFDCRWENO simulations. The frequency of activation decreases drasti-
cally past a few iterations, and only one or two points need the positivity
correction for the rest of the simulation.

In figures 25 and 26 we present the results using the classic schemes versus
the hybrid schemes using a tenth order filter with αf = 0.45. In figure 27,
the nodes detected by the PAD and NAD detectors are shown.
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Figure 25: Double Mach Reflection of a Strong Shock. Results obtained with WENO
(top) and HFDWENO (bottom) schemes. We plot the results for a 960× 240 mesh using
30 equally spaced density contours between 1.731 and 20.920 at time t = 0.2.
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Figure 26: Double Mach Reflection of a Strong Shock. Results obtained with CRWENO
(top) and HFDCRWENO (bottom) schemes. We plot the results for a 960 × 240 mesh
using 30 equally spaced density contours between 1.731 and 20.920 at time t = 0.2.
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Figure 27: Detected points by PAD and NAD for the hybrid HFDWENO (top) and
HFDCRWENO (bottom) schemes using a tenth order filter with αf = 0.45. We plot the
results for a 960× 240 mesh using 30 equally spaced density contours between 1.731 and
20.920 at time t = 0.2.

In figure 28 we present a zoom of the blow-up region for all the employed
schemes.
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Figure 28: Blow-up region detail. 960x240 mesh. 30 equispaced density contours between
1.731 and 20.920 at time t = 0.2. WENO (top left), HFDWENO (top right), CRWENO
(bottom left) and HFDCRWENO (bottom right).

The results obtained for the hybrid schemes are similar to those obtained
for the (CR)WENO schemes. The HFDWENO scheme seems to obtain a less
dissipative result than the WENO scheme, since the vortex roll-up is more
pronounced. CRWENO and the HFDCRWENO obtains comparable results.

We remark the great time reduction obtained using the hybrid schemes,
as shown in table 11.

Table 11: Double Mach Reflection of a Strong Shock. Time comparative

CFL=0.5 Total Time (s)
Saved Time (%)

Total Time (s)
Saved Time (%)

Mesh WENO HFDWENO CRWENO HFDCRWENO

240x60 87.72 66.01 24.75 279.66 160.73 42.52

480x120 755.17 448.18 40.65 2315.51 1026.14 55.68

960x240 6251.02 3535.66 43.43 18929.66 5511.15 70.88

1920x480 54724.75 26938.10 50.77 164006.48 35775.47 78.18
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7.6. Supersonic Flow Around a Cylinder

The aim of this test is to asses the ability of the proposed schemes to be
applied in curvilinear grids. We study the supersonic flow around a cylinder
of unitary radius with freestream Mach number M = 3.0. We take the stand-
off distance normalized by the diameter of the cylinder and the normalized
stagnation pressure p0 as the reference parameters for this case [35].

A sketch of the mesh configuration, boundary conditions and definition
of stand-off distance and stagnation point is shown in figure 29. The mesh
is constructed with 100 divisions in the radial direction and 100 in the cir-
cumferential direction, so both families of lines are orthogonal to each other.
This property makes it easier to impose the inviscid wall boundary condition
at R = 1. At R = Rext = 5R supersonic inflow boundary condition is im-
posed. Supersonic outflow condition is imposed on the rest of the domain.
This particular value of Rext is chosen so that the boundaries are sufficiently
far away from the shock location. The simulation is run until all schemes
have fully converged to the stationary state, using a fourth-order filter with
αf = 0.45.
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Figure 29: Test case definition and boundary conditions (left). Schematic drawing of the
location of the stagnation point and definition of the stand-off distance (right).
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The positivity preserving technique does not get activated for any of the
studied schemes in the present test case.

In figure 30 the pressure contours of the solution are presented for the
studied hybrid schemes.

Figure 30: Supersonic Flow Around a Cylinder test case. Results using the hybrid
HFDWENO (left) and HFDCRWENO (right) schemes using a fourth-order filter with
αf = 0.45. We plot the results for a 100 × 100 mesh using 25 equally spaced density
contours between 0.5 and 9.

In table 12 we present a comparative of the results for the stagnation
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pressure and stand-off distance using the different hybrid and (CR)WENO
schemes. The results obtained by the hybrid schemes are similar to those
obtained for the (CR)WENO schemes.

Table 12: Resulting parameters for the Supersonic Flow Around a Cylinder test case.

Scheme p0/p∞ Stand-off distance / D

WENO 12.003 0.388

HFDWENO 12.001 0.387

CRWENO 12.017 0.402

HFDCRWENO 12.023 0.398

Reference sol. [43] 12.061 —

7.7. Mach 3 Tunnel with a Step

This case will be used as a validation of the MLS communication tech-
nique between grids in the presence of shocks. In order to compare the
results obtained here with those by Woodward and Colella [37], we employed
the same treatment for the expansion corner, following the implementation
indicated in [44].
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Figure 31: Mach 3 Tunnel with a Step. Initial setup and mesh decomposition.

In figure 31 the initial setup of the problem is exposed. A cubic poly-
nomial basis is employed as initial guess for the MLS reconstruction. The
simulation is run until t = 4.0.
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Two different configurations of meshes are tested, namely:

A


Mesh 1: 90× 32
Mesh 2: 105× 120
Mesh 3: 24× 24
Mesh 4: 360× 128
Mesh 5: 24× 104

B


Mesh 1: 120× 80
Mesh 2: 120× 320
Mesh 3: 30× 30
Mesh 4: 450× 320
Mesh 5: 30× 290

In configuration A, the meshes labeled as 1 and 2 are non-conforming with
each other, mesh 2 is not conforming with meshes 3 and 5, and meshes 3, 4
and 5 are conforming. With this mesh placement, the MLS approximation
for communication between meshes is put to the test.

We use a tenth-order filter with αf = 0.45. The positivity preserving
technique does not activate in the present case for the HFDWENO scheme on
neither of the studied configurations. The activation for the HFDCRWENO
scheme is very scarce and it happens around x = 0.6 where the upper shock
meets the upper wall.

In figure 32, we present the results obtained with the hybrid schemes
using the configuration A. Both hybrid methods agree well with the solutions
provided in [37] and [44] for a single 480x160 mesh, which is a grid with an
equivalent resolution to that of configuration A.
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Figure 32: Mach 3 Tunnel with a Step. Results obtained with HFDWENO (top) and
HFDCRWENO (bottom) for configuration A. We plot 30 equally spaced density contours
between 0.257 and 6.607.

In configuration B, although all the meshes are conforming to one another,
the MLS procedure is still employed. The aim of this finer configuration
is to assess the correct capturing and treatment of the Kelvin-Helmholtz
instability that forms around y = 0.8 for x > 0.6. Figure 33 shows that
the hybrid schemes with the multi-block MLS method are able to accurately
capture the Kelvin-Helmholtz instability. Moreover, we remark that the use
of the proposed MLS procedure for multi-block grids does not introduce any
kind of perturbations or alterations in the overall scheme in none of the
configurations.
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Figure 33: Mach 3 Tunnel with a Step. Results obtained with HFDWENO (top) and
HFDCRWENO (bottom) for configuration A. We plot 30 equally spaced density contours
between 0.32 and 6.15.

7.8. Inviscid Strong Vortex-Shock Wave Interaction

This is a two-dimensional unsteady inviscid flow including multiple shock
discontinuities. This case is proposed in the 5th International Workshop on
High-Order CFD Methods (HiOCFD5) [45]. The initial setup is presented
in figure 34.
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Figure 34: Inviscid Strong Vortex-Shock Wave Interaction. Initial setup

There is a stationary shock with Mach number MS = 1.5 located at
x = 0.5. The center of the vortex is located at (xc, yc) = (0.25, 0.5) and the
upstream conditions (everywhere left of the shock except within the vortical
region) are given by:

(ρu, uu, vu, pu) = (1.0,MS
√
γ, 0.0, 1.0) (33)

The downstream flow quantities (ρd, ud, vd, pd) are determined using the
stationary shock conditions and the upstream values of the flow.

ρd = ρu
(γ + 1)M2

S

2 +M2
S (γ − 1)

ud = uu
2 + (γ − 1)M2

S

M2
S (γ + 1)

vd = vu

pd = pu

(
1 +

2γ (M2
S − 1)

γ + 1

)
(34)

The vortex rotates counter-clockwise with angular velocity vθ expressed
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as:

vθ(r) =



vm
r

a
if r 6 a

vm
a

a2 − b2

(
r − b2

r

)
if a 6 r 6 b

0 if r > b

(35)

where r =
√

(x− xc)2 + (y − yc)2 is the distance from the vortex center,

a = 0.075 and b = 0.175. vm is the maximum angular velocity, occurring at
r = a. The ratio MV = vm/

√
γ is taken as a measure of the vortex strength,

in this case MV = 0.7.
The superimposition of the vortex can be regarded as a perturbation

added to the previously calculated upstream values of the flow. Thus, in the
vortical region we have:

uvor(r) = uu −
vmr

a

y − yc
r

vvor(r) = vu +
vmr

a

x− xc
r

(36)

To compute the temperature field inside the vortex, the following ODE
has to be integrated:

dTvor(r)

dr
=
γ − 1

Rγ

v2θ(r)

r
=⇒

∫ b

r

dTvor(r)

dr
dr =

∫ b

r

γ − 1

Rγ

v2θ(r)

r
dr (37)

where R is the gas constant, Tvor(b) = Tu = pu/ρu. With all this data, Tvor(r)
can be calculated.

Finally, the density and pressure inside the vortex are:

ρvor(r) = ρu

(
Tvor(r)

Tu

) 1
γ−1

pvor(r) = pu

(
Tvor(r)

Tu

) γ
γ−1

(38)
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We use a fourth-order filter with αf = 0.45. In this example, the use of
the tenth-order filter gives a very noisy solution. The simulation is run until
t = 0.7 in a 1000 × 500 mesh. The positivity preserving technique does not
activate in the present case for any of the studied schemes.

In figures 35 and 36 we plot the results obtained by the hybrid and the
(CR)WENO schemes.

Figure 35: Inviscid Strong Vortex-Shock Wave Interaction. Density field obtained with
the WENO (top) and HFDWENO schemes (bottom).
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Figure 36: Inviscid Strong Vortex-Shock Wave Interaction. Density field obtained with
the CRWENO (top) and HFDCRWENO schemes (bottom).

The obtained solutions are in agreement with those of [45, 46]. The
HFDCRWENO obtains less dissipative results than the HFDWENO scheme
as expected, and this results in a sharper definition of some of the flow
structures. However, the use of the fourth-order filter causes that the solution
obtained by the hybrid schemes is more dissipative. All the schemes are able
to capture some important features of the flow as the vortex core splitting
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and the Kelvin-Helmholtz instability along the slip layer.
In table 13, it is seen the notable differences in computational time of the

different schemes.

Table 13: Inviscid Strong Vortex-Shock Wave Interaction. Time comparative

CFL=0.5 Total Time (s)
Saved Time (%)

Total Time (s)
Saved Time (%)

Mesh WENO HFDWENO CRWENO HFDCRWENO

1000x500 18830.00 7726.27 58.96 59747.19 10701.44 82.08

8. Conclusions

A new high-order a posteriori hybrid finite-difference scheme has been
presented. It combines the speed of explicit finite difference methods with
the shock-handling capabilities of the Weighted Essentially Non-Oscillatory
schemes.

The validation procedure has illustrated the ability of the algorithm to
capture discontinuities accurately. The solution obtained with the hybrid
methods is comparable to that of the classic schemes, but with significant
time savings in both cases.

In this work we have also presented an approach based on Moving Least
Squares (MLS) to apply the numerical scheme to block-structured meshes.
The proposed MLS framework is proven to be a very useful tool to maintain
the accuracy when passing information between Finite Difference meshes.
It yields very accurate results in flows with shocks, as seen in the Mach 3
Tunnel with a Step problem.

Finally, a very challenging test case such as the Inviscid Strong Vortex-
Shock Wave Interaction is run to fully test our schemes. Given the great
complexity of the flow structures present in this case, the results are satis-
factory because both of the schemes are able to capture the complicated flow
structures this case presents.

The results presented in this work show that the proposed scheme is able
to capture accurately shock waves and also the smooth structures of the flow.
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by the Conselleŕıa de Educación e Ordenación Universitaria of the Xunta

53



de Galicia (grant #GRC2014/039), cofinanced with FEDER funds and the
Universidade da Coruña.

Appendix A. Flux vector splitting procedure

For the WENO 5 and CRWENO 5 interpolation to work properly, given
that they are upwind schemes, the flux function has to be monotone. The
previous statement does not hold for a general flux function, so it is manda-
tory to perform a flux vector splitting (FVS). As an example, we take the
flux on the ξ−direction, F̂.

F̂i+1/2 = F̂+
i + F̂−i+1 A.1

so that
∂F̂+

∂Û
> 0 and

∂F̂−

∂Û
6 0 A.2

The two most common techniques to achieve this, are:

Global Lax-Friedrichs:

F̂±j =
1

2
(F̂j ± αÛj) with α = max

Û

(
max
m

∣∣λ(m)
∣∣) A.3

Local Lax-Friedrichs:

F̂±j =
1

2
(F̂j ± αjÛj) with αj = max

m

∣∣λ(m)
∣∣ A.4

The main difference between A.3 and A.4 is that the α parameter, which
adds dissipation to the scheme, is calculated differently. In A.3 it is calculated
globally as the maximum of the absolute value of the eigenvalues on the
whole or the relevant range of Û, hence more dissipation is added in the
global case when compared to the local case. In A.4 α is calculated locally
as the maximum of the absolute value of the eigenvalues of the point j, using
just the point for the calculation of the dissipation, ensures less dissipation
is added than in the global case.

For a generalized coordinate system, please refer to [47] for the expressions
of λ(m).
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Appendix B. WENO 5 scheme

In this appendix the WENO 5 formulation is expounded. The flux vec-
tor splitting procedure of Appendix A, splits the flux into a positive and a
negative part. The formulation will only be explained for the positive part,
being the other part analogous.

As suggested in [11], the characteristic formulation is more robust when
dealing with problems involving strong shocks. The projection of the calcu-
lated split flux into the characteristic space is done as follows:

F+
p,m = li+1/2,mF̂+

p p = i− 2, . . . , i+ 2 B.1

where F+
p,m denotes the mth characteristic variable of the positive part of

the flux, and li+1/2,m denotes the mth left eigenvector of the Jacobian matrix

∂F̂

∂Û
, computed at i + 1/2 using the Roe-averaged values that can be found

in [48]. Explicit expressions in general coordinates for the eigenvalue matrix
and left and right eigenvectors matrices can be found in [49].

We can write the interface flux reconstruction F+
i+1/2,m as:

F+
i+1/2,m = ω1

i,mF
+,1
i+1/2,m + ω2

i,mF
+,2
i+1/2,m + ω3

i,mF
+,3
i+1/2,m B.2

where F+,k
i+1/2,m stands for the kth candidate polynomial, and ωki,m stands for

its corresponding nonlinear weight.
The expressions for the candidate polynomials are:

F+,1
i+1/2,m =

2

6
F+
i−2,m −

7

6
F+
i−1,m +

11

6
F+
i,m

F+,2
i+1/2,m =

−1

6
F+
i−1,m +

5

6
F+
i,m +

2

6
F+
i+1,m

F+,3
i+1/2,m =

2

6
F+
i,m +

5

6
F+
i+1,m −

1

6
F+
i+2,m

B.3

There exists optimal weights dk such that if ωki,m = dk∀k the resulting
interpolation is of fifth order. The WENO 5 optimal weights are:

d1 = 1/10 d2 = 3/10 d3 = 6/10 B.4
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The WENO limiting causes the nonlinear weights to converge to their optimal
value where the solution is smooth, whereas if the solution has a discontinu-
ity, the weight of the corresponding stencil approaches zero to yield a non
oscillatory flux interpolation. This can be achieved with the aid of smooth-
ness indicators βki,m that serve the purpose of scaling the optimal weights.
They are defined as:

β1
i,m =

13

2

(
F+
i−2,m − 2F+

i−1,m + F+
i,m

)2
+

1

4

(
F+
i−2,m − 4F+

i−1,m + 3F+
i,m

)2
β2
i,m =

13

2

(
F+
i−1,m − 2F+

i,m + F+
i+1,m

)2
+

1

4

(
F+
i−1,m −F+

i+1,m

)2
β3
i,m =

13

2

(
F+
i,m − 2F+

i+1,m + F+
i+2,m

)2
+

1

4

(
3F+

i,m − 4F+
i+1,m + F+

i+2,m

)2
B.5

αki,m =
dk

(βki,m + ε)q
k = 1, 2, 3 B.6

where ε is a small number to avoid division by zero (usually is picked as
10−6), and q ensures that the non-smooth stencil weights approach zero fast
enough. It usually has the value of q = 2 .

To guarantee convexity, the weights αk are normalized as:

ωki,m =
αki,m
3∑
s=1

αks,m

k = 1, 2, 3 B.7

The above weights are excessively dissipative and following the recom-
mendation of [23] we map the weights with the following function, that causes
the weights to converge faster to their optimal values:

gk(ω) =
ω (dk + d2k − 3dkω + ω2)

d2k + ω(1− 2dk)
k = 1, 2, 3 B.8

The new mapped weights, denoted with a hat, are given by:

α̂ki,m = gk(ωk) =
ωk (dk + d2k − 3dkωk + ω2

k)

d2k + ωk(1− 2dk)
k = 1, 2, 3 B.9

Finally, the mapped weights are normalized in the same fashion as B.7
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ω̂ki,m =
α̂ki,m
3∑
s=1

α̂si,m

k = 1, 2, 3 B.10

To sum up, the final form of the WENO 5 interface interpolation, with
mapped weights, is:

F+
i+1/2,m = ω̂1

i,mF
+,1
i+1/2,m + ω̂2

i,mF
+,2
i+1/2,m + ω̂3

i,mF
+,3
i+1/2,m B.11

Afterwards, the F+
i+1/2,m is transformed back into the conservative form

using the right eigenvectors matrix as:

F̂+
i+1/2,j =

∑
m

F+
i+1/2,mri+1/2,m B.12

where ri+1/2,m denotes the mth right eigenvector of the Jacobian matrix
∂F̂

∂Û
,

computed at i + 1/2 using the Roe-averaged values that can be found in
[48]. As said earlier, please refer to [49] for explicit expressions in general
coordinates.

Appendix C. CRWENO 5 scheme

As the WENO 5, the CRWENO 5 is also formulated as a weighted sum of
low-order stencils, but in this case the interpolations are compact. The char-
acteristic form of the CRWENO 5 is implemented, but for brevity and clarity
of exposition, only the component-wise version will be explained. Using the
same notation as above, the candidate stencils are:

2

3
F̂+,1
i−1/2 +

1

3
F̂+,1
i+1/2 =

1

6

(
F̂+,1
i−1 + 5F̂+,1

i

)
1

3
F̂+,1
i−1/2 +

2

3
F̂+,1
i+1/2 =

1

6

(
5F̂+,1

i + F̂+,1
i+1

)
2

3
F̂+,1
i+1/2 +

1

3
F̂+,1
i+3/2 =

1

6

(
F̂+,1
i + 5F̂+,1

i+1

) C.1

The CRWENO 5 optimal weights are:

d1 = 2/10 d2 = 5/10 d3 = 3/10 C.2
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For the calculation of the nonlinear weights, the process is the same as in
the WENO 5, where equations B.6 through B.10 are used. The smoothness
indicators of equation B.5 are used as well.

Multiplying each of the equations in C.2 by its corresponding weight ω̂ki
yields an implicit system of equations:

(
2

3
ω̂1
i +

1

3
ω̂2
i

)
F̂+
i−1/2 +

[
1

3
ω̂1
i +

2

3

(
ω̂2
i + ω̂3

i

)]
F̂+
i+1/2 +

1

3
ω̂3
i F̂

+
i+3/2 =

=
ω̂1
i

6
F̂+
i−1 +

5 (ω̂1
i + ω̂2

i ) + ω̂3
i

6
F̂+
i +

ω̂2
i + 5ω̂3

i

6
F̂+
i+1

C.3

If the characteristic version of the scheme is needed, the same procedure
as in equation B.1 is used, yielding a 4-by-4 block tridiagonal system of
equations.

To be able to solve this system, if non-periodic boundary conditions apply,
the first and last interfaces need to be reconstructed with the non-compact
WENO 5 in order to have the same number of equations and unknowns, in
the style of equation B.11.

After solving the block tridiagonal system, there is no need to use equation
B.12, because the obtained values are already in the conservative variable
space.

For a more detailed description of the algorithm, please refer to [10].
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putation 89 (1-3) (1998) 85–98. doi:https://doi.org/10.1016/S0096-3003(97)

81649-9.

[29] X. Y. Hu, N. A. Adams, C.-W. Shu, Positivity-preserving flux limiters for high-
order conservative schemes, Journal of Computational Physics 242 (2013) 169–180.
doi:10.1016/j.jcp.2013.01.024.

[30] D. Whitfield, Three-dimensional unsteady euler equations solution using flux vector
splitting, in: 17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference, Amer-
ican Institute of Aeronautics and Astronautics, 1984. doi:10.2514/6.1984-1552.

[31] L. Ramı́rez, X. Nogueira, S. Khelladi, J.-C. Chassaing, I. Colominas, A new higher-
order finite volume method based on moving least squares for the resolution of the
incompressible navier–stokes equations on unstructured grids, Computer Methods in
Applied Mechanics and Engineering 278 (2014) 883–901. doi:10.1016/j.cma.2014.
06.028.

[32] L. Ramı́rez, X. Nogueira, P. Ouro, F. Navarrina, S. Khelladi, I. Colominas, A higher-
order chimera method for finite volume schemes, Archives of Computational Methods
in Engineering (2017) . doi:10.1007/s11831-017-9213-8.

[33] P. Lancaster, K. Salkauskas, Surfaces generated by moving least squares meth-
ods, Mathematics of Computation 37 (155) (1981) 141–141. doi:10.1090/

s0025-5718-1981-0616367-1.

[34] H. Zhang, C. Guo, X. Su, C. Zhu, Measurement data fitting based on moving least
squares method, Mathematical Problems in Engineering 2015 (2015) 1–10. doi:

10.1155/2015/195023.

61

http://dx.doi.org/10.1016/j.jcp.2014.08.009
http://dx.doi.org/10.1016/j.cma.2016.06.032
http://dx.doi.org/10.1016/j.cma.2016.06.032
http://dx.doi.org/10.1016/j.compfluid.2011.08.017
http://dx.doi.org/https://doi.org/10.1016/S0096-3003(97)81649-9
http://dx.doi.org/https://doi.org/10.1016/S0096-3003(97)81649-9
http://dx.doi.org/10.1016/j.jcp.2013.01.024
http://dx.doi.org/10.2514/6.1984-1552
http://dx.doi.org/10.1016/j.cma.2014.06.028
http://dx.doi.org/10.1016/j.cma.2014.06.028
http://dx.doi.org/10.1007/s11831-017-9213-8
http://dx.doi.org/10.1090/s0025-5718-1981-0616367-1
http://dx.doi.org/10.1090/s0025-5718-1981-0616367-1
http://dx.doi.org/10.1155/2015/195023
http://dx.doi.org/10.1155/2015/195023
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