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A B S T R A C T   

Vineyard pruning waste (VP) can be converted into a useful char using pyrolysis as part of a valorization strategy. 
This study analyzed the effect of temperature (300 and 600 ◦C) and residence time (1 and 3 h) on an ample 
number of properties of VP derived biochars, including potential negative environmental impacts. The results 
showed a clear influence of temperature on biochar’s properties and a weaker effect of residence time. Increasing 
temperature raised soil pH, electrical conductivity (EC), ash and C contents, aromaticity, specific surface area, 
solid density, mesoporosity and partial graphitization. However, higher pyrolysis temperature reduced O/C and 
N/C ratios, total N, P and Mg, and polycyclic aromatic hydrocarbons (PAHs). Particularly, the concentration of 
water extractable organic carbon (WEOC) decreased dramatically with pyrolysis temperature. Moreover, the 
WEOC fraction of biochars pyrolyzed at 300 ◦C exhibited a larger aromaticity than those pyrolyzed at 600 ◦C. 
Prolonged residence time increased ash content and fixed carbon (FC) and decreased H/C and O/C ratios; 
however, most frequently this parameter affected biochar properties following opposite trends for the two py-
rolysis temperatures. Hydrophysical properties were adequate to consider VP derived biochars as growing media 
component. PAH concentration was much lower than thresholds following international standards. The germi-
nation index increased with temperature and decreased with residence time, so that phytotoxicity was observed 
in VP and in biochars pyrolyzed for 3 h. Our research demonstrates that, besides temperature, residence time can 
be useful to modulate the properties of biochars and that prolonged time effect is temperature-dependent.   

1. Introduction 

Biochar is a carbonaceous material obtained from the thermochem-
ical conversion of biomass. A variety of feedstocks have been used for 
pyrolysis, including wood-based products, organic and industrial 
wastes, among others (Liu et al., 2020). Pyrolysis process parameters 
and feedstocks characteristics influence biochar properties. Broadly, 
biochars can be divided in two groups, those derived from woody 
biomass (lignocellulosic materials) and those produced from non-woody 
biomass. The first one, for example forest residues, possesses a low ash 
content, leading to stable biochars which can be applied for soil carbon 
sequestration (Feng et al., 2020). Meanwhile, non-woody biochars have 
high ash content, for example animal manure, urban and industrial solid 

residues and agricultural waste, and can contribute to an increase in soil 
fertility (Tomczyk et al., 2020). 

Pyrolysis temperature, residence time, heating rate and feedstock are 
crucial to understand the characteristics of the resulted biochars (Devi 
and Saroha, 2015; Wang et al., 2020). Many studies have been devoted 
to the effects of feedstock and temperature, on biochar properties. Bio-
chars consistently have been prepared in the range from 300 to 900 ◦C 
and mostly between 300 and 600 ◦C (Al-Wabel et al., 2013; Banik et al., 
2018; Suliman et al., 2016: Gascó et al., 2018; Cárdenas Aguiar et al., 
2019., Tomczyk et al., 2020; Greco et al., 2021). Temperature rise 
produces biochars with a higher degree of carbonization and aroma-
ticity. This results in increasing pH, electrical conductivity ash content; 
surface area and porosity and decreasing water extractable organic 
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content (Gascó et al., 2018; Cárdenas-Aguiar et al., 2019; Tomczyk et al., 
2020; Wang et al., 2020). 

Residence time has been less frequently considered in the study of 
biochar’s properties. However, a wide range of pyrolysis durations, from 
30 min to 5 h, has been studied (Benavente et al., 2018; Wang et al., 
2020). Similar but weaker effects as those for temperature have been 
reported for prolonged residence time (Wang et al., 2020). This influ-
ence was evident at temperatures below 500 ◦C. For example, extending 
residence time from 30 min to 1 h led to a biochar with higher CEC and 
POlsen (Benavente et al., 2018). 

Biochar addition to soil produces changes in soil properties, partic-
ularly biological and chemical properties (Lehmann et al., 2011). 
However, the influence of biochar addition in soil physical and hy-
draulic properties has been less studied (Blanco-Canqui, 2017) and is 
mostly governed by soil type, biochar feedstock and dosage. In general, 
biochar decreases soil bulk density and increases aggregate stability, 
total porosity, available water holding capacity and saturated hydraulic 
conductivity (Razzaghi et al., 2020). The decrease in soil bulk density 
has been widely reported in all types of soils textures (Głąb et al., 2016; 
Obia et al., 2016). 

Additionally, hydrophysical properties of biochars play an important 
role if biochar is used as growing media component. A previous work 
stated that the mixing of peat with pruning waste derived biochars 
prepared at 300 ◦C and 500 ◦C can increase the bulk density of the 
substrate (Nieto et al., 2016). However, biochars prepared at low tem-
peratures did not show a significant effect in the soil aeration capacity. 

The wine industry generates large amounts of waste that are gener-
ally burnt in the field (Florindo et al., 2022) or directly applied to the soil 
but no added value is considered in this process. For that reason, it is 
important to study some alternatives to manage the large amount of VP 
wastes generated. Vineyard pruning waste derived biochars can be 
suitable approach not only as a valorization strategy but also as growing 
media component or soil amendment. 

The use of vineyard pruning waste derived biochars can provoke 
unintended consequences but in other to avoid these effects, it is 
necessary to determine concentrations and signatures of Polycyclic Ar-
omatic Hydrocarbons (PAHs) yielded by biochars produced under 
different pyrolysis conditions (Bucheli et al., 2019). Several PAHs are 
classified as priority pollutants and are strictly regulated by agencies, 
including US EPA and European Commission. Therefore, concentrations 
of PAHs in biochars are of concern because of their long residence time 
and their potential impact on human health and environmental con-
servation. In addition, seed tests (Zucconi et al., 1985) have been 
commonly used, not only to assess seed quality but also to appraise 
potential phytotoxicity of soil amendments like biochars, thus allowing 
an evaluation of sustainability. Benavente el al., (2018) reported that 
biochar prepared at 300 ◦C resulted in lower germination index values, 
while the biochar prepared at 500 ◦C produced a phytostimulant effect. 

Biochar from pruning vineyard residues has been previously char-
acterized (Egri et al., 2022) using proximate and elemental analysis 
together with several additional techniques. However, there is still room 
for improving knowledge about their structure and properties. For 
example, to our best knowledge, until now fluorescence spectroscopy 
has not been used to study pruning waste biochar. Following the liter-
ature review and previous work (Gascó et al., 2018; Cárdenas-Aguiar, 
2019) four different biochars were prepared at temperatures of 300 and 
600 ◦C and residence times of 1 h and 3 h. In addition to proximate and 
elemental analysis, and analysis of general physical and chemical 
properties we employed a wide series of more advanced technique to 
characterized the biochars produced from pruning waste, including 
thermogravimetric analyses, N2 isotherm, Hg porosimetry, X-ray 
diffraction (XRD), scanning electron microscopy (SEM), infrared spec-
troscopy (FTIR), water extractable organic carbon (WEOC) and fluo-
rescence spectroscopy (EEM); the joint use of this methods for 
characterization of pruning vineyard waste is also novel. 

The main objective of the present work is to study the influence of 

pyrolysis parameters, temperature and residence time, in the chemical 
and physical properties of vineyard pruning waste derived biochars and 
evaluate their potential implications as soil amendment or growing 
media component. Additionally, PAHs content and phytotoxicity test 
was performed in order to prevent potential negative environmental 
impacts brought about by the use of vineyard pruning waste derived 
biochars. 

2. Materials and methods 

2.1. Feedstock selection and biochar fabrication 

The vineyard pruning waste (VP) were collected from a vineyard 
located in the municipality of Paderne, A Coruña, Norwest of Spain. VP 
samples were air dried at 60 ◦C during 48 h and then cut into small 
pieces (<2 cm). Biochars were produced from pyrolysis of VP in a 12- 
PR/400 series 8B furnace (Hobersal, Spain) at 300 and 600 ◦C, using a 
heating rate of 3 ◦C min−1 and two residence times (1 h and 3 h), 
referred to as BVP300-1 h, BVP300-3 h, BVP600-1 h and BVP600-3 h. 

2.2. Characterization of biochars 

2.2.1. Chemical properties 
The four biochars were passed through a 2 mm sieve prior to char-

acterization. The chemical properties were determined as follows: (i) pH 
and electrical conductivity (EC) were measured in an aqueous suspen-
sions of 1:250 (m/v) sample: water, previously stirred for 1 h in a 
Rotabit and Boxcult 230 V stirrer (JP Selecta, Spain), with a micro pH 
2000 (Crison, Spain) and a micro cm 2201 conductivimeter (Crison, 
Spain); (ii) cation exchange capacity (CEC) was measured in a cohex 
extractant solution (0.5:25 m/v) in a Analyst 400 Atomic Absorption 
Spectrophotometer (PerkinElmer, United States) (Ciesielski and 
Sterckeman, 1997); and (iii) the easily oxidized organic carbon (Coxi) 
was calculated using the method by Walkley Black (Nelson and Som-
mers, 1996). 

A DBS-30 halogen moisture analyzer (Kern & Sohn GmbH, Germany) 
was used to determine the moisture content at 105 ◦C until constant 
sample weight. The volatile matter (VM) content was calculate accord-
ing to weight lost after placed covered quartz crucibles at to 900 ◦C for 7 
min in a CR-48 furnace (Hobersal, Spain). The ash content was deter-
mined in a AAF 11/18 furnace (Carbolite Gero, United Kingdom) with 
covered alumina crucibles heated at 900 ◦C for 12 h. The fixed carbon 
(FC) was calculated as follows: FC = 100% − (%VM+ %Ash) (Igalavi-
thana et al., 2017). 

The content of carbon (C), hydrogen (H), nitrogen (N) and sulphur 
(S) were measured in a FlashEA1112 elemental analyzer (Thermo-Fin-
nigan, United States). Oxygen (O) content was calculated by difference 
as O (%) = 100− (C + H + N + S + Ash). 

Total P, K, Ca, Mg, Na, Fe, Mn, Cu and Zn contents were measured 
after the digestion of samples with 3:1 (v/v) of concentrated HCl and 
HNO3 according to the USEPA 3051a method (U.S. EPA, 2007) using 
inductively coupled plasma mass spectrometry (ICP-MS) in an 
ELEMENT XR (Thermo-Finnigan, United States) equipment. The content 
of P2O5, K2O, CaO, MgO, Fe2O3, MnO, CuO, ZnO, SiO2 and SO3S4 were 
measured in the ash of biochars with a PIONEER (Bruker AXS GmbH, 
Germany) wavelength dispersive X-ray fluorescence spectrometer 
(WDXRF) using an X-ray fluorescence (XRF). 

For the infrared spectroscopy 1 µg of sample was weighted and 
ground with 200 µg of KBr (KBr - FTIR grade-Panreac) in order to form 
pellets with 2 MPa of applied pressure with a Specac Mini Pellet Press for 
each sample and replicate. Then the samples were analysed with a 
Thermo Scientific is10 FTIR spectrometer (Thermo-Fisher Scientific, 
United States) in transmission mode with a wavenumber ranged be-
tween: 400 and 4000 cm−1 and a resolution of 1 cm−1. After collection, a 
Savitzky-Golay filter was applied and scatter effects were corrected with 
an Extended Multiplicative Scatter Correction (EMSC) method (Afseth 
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and Kohler, 2012) using R and the package EMSC (Liland, 2021). The 
final spectrum for VP and biochars were the average of 6 corrected 
spectra (3 pellets × 2 spectra from each pellet). 

The water extractable organic carbon (WEOC) was measured with a 
Formacs HT analyzer (Skalar, United States) in aqueous extracts with a 
sample:water ratio 1:4 (m/v), previously stirred for 1 h and posterior 
filtration at 2.5 µm. The UV–Vis absorbance spectra and fluorescence 
EEMs were measured in WEOC extracts in a 1-cm quartz cuvette in the 
200–1000 nm range in 2 nm increments using a Zuzi UV–Vis 4418 
spectrophotometer (Auxilab, Spain). Extracts were diluted when the 
absorbance of the samples was above 1.5, to ensure that the measure-
ments were done in the range of concentrations where Lambert-Beer law 
applies (Kothawala et al., 2013). A commonly index used to characterize 
WEOC, was determined with the specific UV–Vis absorbance at 254 nm 
(SUVA254 index), divided by the optical path (1 cm) and multiplied by 
100. 

Total fluorescence was determined as the sum of all emission in-
tensities in the EEMs. Fluorescence EEMs were measured in WEOC ex-
tracts or their dilutions using a FluoroMax® – 4P spectrofluorometer 
(Horiba, Japan). The excitation and emission wavelengths (λ) were be-
tween 220 and 520 nm, and 224 and 700 nm respectively in 4 nm in-
crements. The S/R ratio was used to account for differences in the 
intensity of the excitation light, meaning that for each excitation 
wavelength, emission intensities (S) were corrected against those 
measured in a reference detector (R). One of the correction correspond 
to the removal of Rayleigh scattering, the second one included the inner 
filter effect correction (Lakowicz, 2013), and the third the subtraction of 
EEMs of blank samples (Borisover et al., 2009). The EEMs were stated in 
Raman units with a water Raman peak intensity at ex/em 300/397 nm 
(Holbrook et al., 2006). 

2.2.2. Physical properties 
Mercury intrusion porosimetry was determined with a Porosimeter 

AutoPore IV Mercury (Micromeritics, United States). The BET surface 
area (SBET) and pore size distributions were determined from N2 
adsorption isotherms by a TriStar II Plus Version 3.00 analyzer 
(Micromeritics, United States). The micropores were defined to be <2 
nm of diameter, mesopores between 2 and 50 nm and macropores >50 
nm (Wong and Ogbonnaya, 2021). For the micropores the data were 
obtained with N2 isotherms and for meso and macropores with Hg 
porsimetry. 

The hydrophysical properties of the biochars were assessed for the 
biochars sieved at 4 mm, using a container with known weight (W0), 
100 mL volume capacity, and a drainage hole sealed at the bottom. The 
container was filled with each dry sample (Wd) and then distillated 
water was added slowly in the surface until complete saturation. The 
container was placed over a sealed plastic tray. The seal was removed 
from the container drain hole, in order to allow all the free water to 
drain out of. Subsequently, the entire content of saturated biochars was 
weighted (Ww), resulting in the water holding capacity (WHC) deter-
mination by the following formula: WHC (%) = [(Wd-(Ww-W0)) ⁄ (100 
mL)] × 100. 

The total porosity (TP) was calculated with the bulk density (BD) and 
solid density (SD) of the samples by TP (%) = (1-(BD/SD))*100. Then 
the aeration capacity (AC) was determined by AC (%)= %TP-%WHC 
(Méndez et al., 2015). The SD was measured with an Accupyc 1340 
helium pycnometer (Micromeritics, United States) and BD was assessed 
with a known volume container filled with the sample and weighted. 

The XRD (X-ray diffraction) analysis were conducted by a JSM 6400 
microscope (JEOL, United States) and D4 Endeavor diffractometer 
(Bruker AXS GmbH, Germany) respectively (Igalavithana et al., 2017). 
Scanning electron micrographs (SEM) of the VP and the BVP300-1 h and 
BVP600-1 h biochars were taken using the JSM 6400 (JEOL, USAS) 
Scanning Electron Microscope (SEM). The instrument was operated at 
with an acceleration voltage of 25 kV (Chia et al., 2012; Suliman et al., 
2016). 

2.2.3. Thermogravimetric analysis (TGA) 
The TGA instrument was operated with a flux of 60 mL min−1 and N2 

atmosphere and each material was heated up to 1000 ◦C using a STA 
449F3 analyzer (Netzsch, Germany) then the TGA and the differential 
thermal analyzer (DTA) graphics were obtained. The samples weight for 
TGA varied between 20 and 30 mg and placed in alumina crucibles DSC/ 
TG pan Al2O3 and with a heating rate of 10 ◦C min−1. 

2.2.4. Environmental implications 
PAHs analysis and germination tests were performed in order to 

evaluate the environmental risk of use VP waste derived biochars. Prior 
to PAHs analysis, biochars were dried, grinded (0.2 mm), homogenized 
and stored at a dry place. Method for PAHs determination in biochar 
generally include three steps: extraction with solvents, cleaning up the 
extracts, and quantitative analysis (Wang et al., 2017). Briefly, a mi-
crowave assisted extraction procedure was used, as this technique heats 
the whole sample fast and simultaneously, thereby reducing extraction 
time and solvent usage. Also, this method provides selective interaction 
with polar molecules, which greatly enhances the extraction efficiency 
of PAHs. A mixture acetone/hexanol 1:1 was used as extractant. Cleanup 
of the biochar extracts was performed by means of liquid–solid chro-
matography, using an alumina column and hexane elution. Quantitative 
determination was carried out by GC/MS, i.e. gas chromatography 
equipped with a fused silica capillary column for separation and a mass 
spectrometer coupled with triple quadrupole (Agilent 7010B); deuter-
ated compounds were used as the internal standards for quantification. 

The 16 PAHs listed as priority pollutants by the United States Envi-
ronmental Protection Agency from here on referred to as ‘‘the 16 EPA 
PAHs” were analyzed. In addition, according to the number of aromatic 
rings the PAHs were classified as: light, medium and heavy (Greco et al., 
2021). 

Germination test was performed in order to assess the phytotoxicity 
of the materials. According to this test (Zucconi et al., 1985) the per-
centage of germination (%G) and the length of the germinated seeds (L) 
were used to calculated the germination index (GI). GI values < 50% 
were classified as highly phytotoxic; GI between 50 and 80% as 
moderately phytotoxic, GI > 80% as non-phytotoxic and GI > 100% as 
phytostimulant. The germination test was performed using Lepidium 
sativum as seed. 

2.2.5. Statistical analysis 
The differences of means for the three replicates of each sample were 

evaluated by the analysis of variance (ANOVA) and the Duncan’s mul-
tiple range test (p < 0.05) with the Statgraphics Centurion XVI.I. 
software. 

3. Results and discussion 

3.1. Chemical properties 

Table 1 summarizes the chemical properties of VP and four derived 
biochars (BVP300-1 h, BVP300-3 h, BVP600-1 h and BVP600-3 h). The 
pH increased after pyrolysis, which is in agreement with previous 
research, due to the separation of alkali salts from organic materials and 
the increase in carbonate content (Mandal et al., 2018). Additionally, 
the loss of carboxylic groups with pyrolysis temperature can contribute 
to this. In general, the pH values were high and positively correlated not 
only with the ash content (Pearsońs r = 0.94, p < 0.01) but also with the 
sum of total K and Na content, i.e. alkali metals (Pearsońs r = 0.91, p <
0.01). The EC also increased with pyrolysis temperature and residence 
time. These results suggest some salt formation and concentration in 
ashes during pyrolysis, due to the breakdown of some organic structures 
increasing salt solubilization (Al-Wabel et al., 2013). 

The CEC values showed an evident diminution for biochars 
compared to the feedstock, without statistically significant differences 
between the four biochars. The results can be related to the loss of O on 
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the surface, low content of polar organic functional groups and the 
presence of aromatic moieties (Banik et al., 2018). The easily oxidizable 
organic carbon (Coxi) decreased with pyrolysis temperature and indi-
cated more carbon stability of biochars obtained at high temperature. 

The proximate analysis showed an increase of FC and ash and a 
decrease of VM with pyrolysis temperature. The low ash content in the 
VP and their increase in the biochars are due to the removing of volatiles 
in the feedstock and the accumulations of inorganic components in the 
ashes (Pituello et al., 2015). VM content decreased after pyrolysis at 
600 ◦C due to dehydration of hydroxyl groups (Ronsse et al., 2013), 
volatilization of light compounds during pyrolysis and changes of cel-
lulose and lignin structures (Tomczyk et al., 2020). 

The N content ranged between 0.63% and 1.24% for VP and BVP300- 
3 h, respectively. The total C was at least 10% greater in the biochars 
fabricated at 600 ◦C than the biochars produced at 300 ◦C. In both py-
rolysis temperatures, the carbon content increased approximately 25% 
in biochars compared to VP. The H content had a markedly behavior 
between pyrolysis temperature with the lowest values for biochars at 
600 ◦C and the S content showed lower values for biochars compare to 
the biomass. The O content presented the following trend: VP >

BVP300-1 h > BVP300-3 h > BVP600-3 h > BVP600-1 h. With the 
aforementioned results, pyrolysis temperature plays a more important 
role in biochars properties compared to residence time. 

The highest H/C ratios were calculated for VP meanwhile the lowest 
was for BVP600-3 h sample. The same behavior was observed for O/C 
ratios. This implies that biochars had a more stable and recalcitrant 
carbon structure with increasing pyrolysis temperature and residence 
time and subsequently biochars obtained at higher temperatures are less 
susceptible to degradation. 

As above-mentioned, the vineyard pruning waste biochars can be 
suitable materials as a soil ameliorant. The use of vineyard pruning 
waste as cover in vineyards have been tested and recommended but 
vineyard pruning waste derived biochars can be directly applied to soil 
and improve soil properties leading to relevant benefits (Egri et al., 
2022). Related to this, it is important to study the biochar content of 
nutrients. Table 2 summarizes the total element content of VP and 
biochars samples. Supplementary information Table 1 provides the 
oxide composition of the ashes for the materials. The total P content 
showed differences between biochars and VP. The highest value corre-
sponded to BVP300-1 h and with the increase of the residence time at the 

same temperature the total P content decreased. The total P in the 
biochars produced at 600 ◦C had lower contents than those produced at 
300 ◦C suggesting that not all the P content was extracted for biochars at 
600 ◦C taking to account that the P2O5 content remains constant in 
biochars at both temperatures. The K contents were similar for biochars 
fabricated at 300 ◦C and the BVP600-3 h sample. The K content for all 
biochars increased compared to the vineyard pruning waste, with the 
highest value for BVP600-1 h related to the presence of more stable 
forms of K (Deng et al., 2018). The oxides composition in ashes of VP and 
the biochars showed that K2O also increased with pyrolysis temperature 
(Supplementary information Table 1). As some authors have been 
stated, the residence time influence was negligible at 400 ◦C in the K 
transformation process (Chen et al., 2017), the same occurred in the 
present work for 300 ◦C biochars. However, at 600 ◦C, the residence 
time influenced with the lowest K value for 3 h. The Ca content 
decreased for BVP300-1 h and BVP600-1 h compared to the vineyard 
pruning waste. However, samples BVP300-3 h and BVP600-3 h show 
similar Ca content than the raw material. The losses of Ca can be due to 
the formation of volatile compounds, which is determined by pyrolysis 
temperature is the determining factor. The differences with the resi-
dence time can be related to the retention of the element in surface of the 
char and the input of oxides (Feng et al., 2021). The percentage of CaO 
(Supplementary information Table 1) also increased for biochars with 
the highest residence time (3 h). The Na content increased for all bio-
chars compared to vineyard pruning waste suggesting that vineyard 
pruning waste derived biochars can enhance the Na content and remain 
in the solid matrix of the material. For Na the residence time did not 
show any influence at 300 ◦C with no statistical differences between 
both biochars but at 600 ◦C the residence time of 3 h showed a higher Na 
value. Mg contents of biochars obtained at 300 ◦C were greater than for 
VP, with statistical differences between residence time (1 h and 3 h). At 
600 ◦C the Mg values were lower compared to the raw material but no 
differences were found between 1 h and 3 h. The Fe, Mn, Cu and Zn 
averages were low, below 0.2 g kg−1 in all cases. 

The highest percentages of oxides in all samples were for P2O5, K2O, 
CaO and MgO (Supplementary information Table 1) that correspond 
with the high content of total P, K, Ca and Mg in the VP and biochars 
(Table 2). The increase of pyrolysis temperature allows the oxides to 
concentrate in the ashes but the changes in the residence time resulted in 
minor changes. 

The concentration of these compounds in the biochars together with 

Table 1 
Chemical properties of VP and vineyard pruning waste derived biochars samples 
(BVP300-1 h, BVP300-3 h, BVP600-1 h and BVP600-3 h). Means with the same 
letter are not significantly different (p > 0.05) using Duncan test for each var-
iable independently.  

Properties VP BVP300- 
1 h 

BVP300- 
3 h 

BVP600- 
1 h 

BVP600- 
3 h 

pH 6.77 ±
0.06a 

8.55 ±
0.12b 

8.88 ±
0.11c 

9.93 ±
0.07d 

9.76 ±
0.11d 

EC (µS 
cm¡1) 

79.03 
± 1.75a 

106.75 ±
2.9b 

104.15 ±
0.78b 

121.23 ±
0.76c 

135.05 ±
0.35d 

CEC (cmolc 
Kg¡1) 

93.51 
± 0.02b 

9.89 ±
3.93a 

16.38 ±
0.98a 

22.89 ±
12.06a 

21.7 ±
1.84a 

Coxi (%) 38.14 
± 1.19d 

15.05 ±
0.27c 

10 ±
0.71b 

2.48 ±
0.16a 

2.85 ±
0.26a 

Moisture 
(%) 

9.84 6.91 7.36 7.72 8.47 

VM (%) 75.02 36.7 34 12 9.3 
Ash (%) 2.18 3.1 3.58 4.71 5.19 
FC (%) 22.80 60.2 62.42 83.29 85.51 
N (%) 0.63 1.22 1.24 1.05 0.98 
C (%) 40.61 67.04 67.68 77.17 76.94 
H (%) 5.71 4.26 3.99 1.77 1.44 
S (%) 0.15 0.03 0.02 0.02 0.02 
O (%) 50.72 24.39 23.51 15.31 15.44 
H/C 1.69 0.76 0.71 0.27 0.22 
O/C 0.94 0.27 0.26 0.15 0.15 
(O þ N)/C 0.95 0.29 0.28 0.16 0.16  

Table 2 
Total element content of VP and vineyard pruning waste derived biochars 
(BVP300-1 h, BVP300-3 h, BVP600-1 h and BVP600-3 h). Means with the same 
letter are not significantly different (p > 0.05) using Duncan test for each var-
iable independently.  

Properties VP BVP300-1 
h 

BVP300-3 
h 

BVP600-1 
h 

BVP600-3 
h 

Total element content (g kg−1) 
P 0.93 ±

0.05a 
2.24 ±
0.11e 

2.11 ±
0.05d 

1.63 ±
0.05c 

1.35 ±
0.05b 

K 5.96 ±
0.01a 

14.37 ±
1.04b 

13.99 ±
0.27b 

15.82 ±
0.86c 

13.67 ±
0.8b 

Ca 5.36 ±
0.33c 

4.67 ±
0.17b 

5.25 ±
0.11c 

4.21 ±
0.14a 

5.16 ±
0.28c 

Na 0.35 ±
0.05a 

0.45 ±
0.04b 

0.44 ±
0.04b 

0.43 ±
0.01b 

0.57 ±
0.05c 

Mg 1.55 ±
0.05b 

1.79 ±
0.1c 

1.93 ±
0.03d 

0.95 ±
0.07a 

0.96 ±
0.09a 

Fe 0.09 ±
0.01b,c 

0.07 ± 0a 0.11 ±
0.02c,d 

0.08 ±
0.01a,b 

0.12 ±
0.02d 

Mn 0.06 ±
0b,c 

0.06 ± 0b 0.07 ± 0c 0.04 ± 0a 0.06 ±
0.01b,c 

Cu 0.04 ±
0c 

0.02 ± 0b 0.02 ± 0b 0.01 ± 0a 0.02 ± 0b 

Zn 0.03 ±
0.0a 

0.05 ± 0b, 
c 

0.05 ± 0c 0.04 ± 0a, 
b 

0.03 ± 0a  
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the higher carbon content compared to the original residue demon-
strates the advantages of using biochar as a soil amendment. 

The FTIR spectra of the VP and derived biochars are presented in 
Fig. 1. The spectrum of the VP shows characteristic of lignocellulosic 
materials: a broad band at 3351 cm−1 corresponding to hydroxyl groups 
(Matamala et al., 2017); aliphatic C–H bonds in 2921 and 2850 cm−1 

(Parikh et al., 2014); a peak at 1737 cm−1, typical of unconjugated 
carboxyl (Parikh et al., 2014); peaks at 1613, 1515, 1455 and 1379 cm−1 

assigned to aromatic skeletons of lignin (Boeriu et al., 2004); a peak at 
1331 cm−1, characteristic of C-O vibrations (Traoré et al., 2016); a 
peakband at 1158 cm−1, typical of C-O asymmetric stretch in carbohy-
drate rings (Abdulla et al., 2010); another peak at 1062 cm−1, typical of 
polysaccharides, resulting from C-O-C and C-OH stretches (Matamala 
et al., 2017; Parikh et al., 2014); the peak at 987 cm−1 results from C-O 
stretching in cellulose and lignin (Traoré et al., 2016) and finally, the 
peak at 839 cm−1 corresponds to C–H out of plane vibrations in aro-
matics (Niemeyer et al., 1992). 

The pyrolysis produced significant changes in the spectral of bio-
chars, altering the initial spectral lignocellulosic signature. These 
changes were dependent on the temperature of the pyrolysis, while the 
residence time had a minor effect. Heating to 300 ◦C produced the 
disappearance of peaks related to the presence of polysaccharides (those 
in the band between 1000 and 1150 cm−1). Other changes include the 
decrease of the intensity of the peak at 1643 cm−1, which is usually 
assigned to C = O carboxyl and amide I (Margenot et al., 2015), and that 
at 1594 cm−1, related to the asymmetric carboxylic stretching (Guo and 
Chorover, 2003). Simultaneously, other bands become more prominent 
after the pyrolysis. These include the bands corresponding to OH groups 
(3351 and 1650 cm−1), those related to C–H aliphatic groups (2921, 
2850, and 1376 cm-1), and that at 1422 cm−1, related to aromatic C = C 
bonds. Increasing the pyrolysis temperature to 600 ◦C produced further 
changes in the materials. Those included the removal of peakbands in 
regions corresponding to OH groups (3100–3600 and 1600–1700 cm−1), 
and those of aliphatic CH. In this case, the spectra are characterized by a 
broad band with peak at 1550 (aromatic C = C), 1372, 1150 and the 
band at 872 cm−1, mostly associated with aromatic C = C, C–H (Artz 
et al., 2008; Ilani et al., 2005). These results are consistent with the 
evolution of the H/C and O/C values with the pyrolysis temperature 
(Table 1). 

Thus, pyrolysis produced the breakdown of lignin and poly-
saccharides, which occur at the lowest temperature, and a progressive 
removal of O-containing functional groups (OH and carboxyl), which 
occur at different temperatures according to its nature. At 300 ◦C, some 
features from the raw material are still present, like the presence of OH 
and carboxylic groups. Simultaneously to the removal of O-containing 

functional groups, an increase in the importance of aromatic structures 
and C–H functional groups, and the reduction of aliphatic functional 
groups was observed. 

Concentrations of WEOC, and UVA254 and SUVA254 values of the VP 
and derived biochars are presented in Fig. 2, together with the EEM 
contour plots. The WEOC of the feedstock was 2.43 g kg−1, i.e. 0.6% of 
the total OC. Pyrolysis produced a pronounced decrease in WEOC con-
centration compared to the original feedstock and this reduction was 
higher as pyrolysis temperature increased from 300 to 600 ◦C. Thus, 
WEOC concentrations of biochar produced by slow pyrolysis decreased 
exponentially as temperature increased. Residence time showed a very 
slight trend to affect WEOC, concentrations, which were of about 10% 
higher after 3 h than after 1 h; these differences can be considered as 
negligible. The absorbance at 254 nm (UVA254) also was highest for the 
VP feedstock and then showed a marked decrease with pyrolysis tem-
perature, even more pronounced than that of WEOC. However, and 
opposite to WEOC, UVA254 clearly decreased with increasing residence 
time. Reduction of WEOC and UVA by increased pyrolysis temperature 
is likely due to a higher degree of carbonization, and subsequently a 
decline in extractable OM. 

Biochar produced at 300 ◦C showed higher SUVA254, when compared 
to feedstock and biochar made at 600 ◦C, and this irrespective of resi-
dence time. This parameter is an indicator of aromaticity in the 
extracted solution (Weishaar et al., 2003), and also has been associated 
to hydrophobicity. Incomplete pyrolysis at 300 ◦C may result in a bio-
char containing more WEOC labile fraction. Therefore, decline in WEOC 
and raise in SUVA254, as observed in BVP300 could result from more 
labile fractions in the water extract, which in turn, could increase the 
proportion of aromatic compounds (Fernández et al., 1997; González- 
Pérez et al., 2004). Remarkably, parallel results were found when 
heating soils at a temperature of 300 ◦C in aerobic conditions (Lado 
et al., 2023; McKay et al., 2020). The Pyrolysis at 600 ◦C, however, 
resulted in a decrease of WEOC aromaticity and hydrophobicity 
compared to pyrolysis at 300 ◦C. 

The effect of residence time was similar to that of temperature; the 
SUVA254 values of WEOC released by BVP300-1 h and BVP300–3 h were 
0.021 and 0.014 L mg C-1 m−1, respectively, while the corresponding 
values for BVP600-1 h and BVP600-3 h were 0.005 and 0.001 L mg C-1 

m−1. Thus, enlarging residence time also results in increasing WEOC 
aromaticity, probably as a result of a restraint in the solubilized labile 
fractions (Knicker, 2007; Trompowsky et al., 2005). 

Fig. 2 shows EEM contours plots of VP and derived biochars. Pyrol-
ysis changed the initial fluorescence signature, characterized by pro-
teinaceous material, polyphenols and/or lignin, reducing the 
contribution of this peak, being indicative of the destruction of these 

Fig. 1. FTIR spectra of VP and vineyard pruning waste derived biochars (BVP300-1 h, BVP300-3 h, BVP600-1 h and BVP600-3 h).  
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compounds during pyrolysis. An increase in red-shifted emission is 
observed at 300 ◦C. It could be assumed that, the longer the emission 
wavelength, the higher the molecular weight of a fluorescent compound 
(Lichtman and Conchello, 2005) and the electronic conjugation within 
the aromatic system is extended over larger-size molecules. Thus, it 
seems that heating at 300 ◦C produced water-extractable compounds 
that are larger, more conjugated molecules than those extracted from 
the original vineyard pruning, with fluorescence in the region 
commonly attributed to humic-like components. However, a further 
increase in the heating temperature to 600 ◦C produces water- 
extractable compounds with fluorescence in the fulvic-like region, and 
therefore with peaks smaller than those characterizing the fluorescence 
of the 300 ◦C biochar extracts. 

Fluorescence contour plots from biochar produced at 600 ◦C shows 
two main peaks, first a more prominent peak at λex/λem 236/420 nm, 
and then a second one at λex/λem 284/420 wavelengths. The former has 
been associated to compounds with low molecular weight, high 
aromaticity, and high O/C ratio, indicating a high degree of oxidation 
(Podgorski et al., 2018), and it has been sometimes considered fluo-
rescence caused by fulvic-like materials (Chen et al., 2003). The latter 
peak has been observed in soils (Hunt and Ohno, 2007), and it has been 
sometimes considered caused by aliphatic compounds with low molec-
ular weight (Lambert et al., 2016; Podgorski et al., 2018). 

In relation to the effect of residence time in the fluorescence signa-
tures, a noticeable change was a further decrease of the contribution of 

the fluorescence in the region of lignin/proteins when the pyrolysis 
duration increased from 1 to 3 h. 

3.2. Physical properties 

Pyrolysis of vineyard VP can produce important modifications on the 
physical properties, in addition to changes in the chemical composition 
and structure. The SBET increased significantly in the biochars fabricated 
at 600 ◦C compared to SBET of VP and biochars pyrolyzed at 300 ◦C 
(Supplementary information Table 2). Microspores volume was low for 
all the biochars and slightly increased for those obtained at 600 ◦C. 
Mesopore volumes was much higher for biochars obtained at 600 ◦C and 
also increased with residence time. The cumulative pore volume (Sup-
plementary Information Fig. 1) clearly showed the lowest values for VP. 
After pyrolysis of VP, the cumulative pore volume increased specially for 
biochars prepared at 600 ◦C. In the range of pore size diameter between 
0.01 and 1 µm, the samples BVP300-1 h, BVP600-1 h and BVP600-3 h 
showed a cumulative pore volume >2 mL g−1 as shown in the Supple-
mentary information Table 2. 

The hydrophysical properties of VP derived biochars are listed in 
Supplementary information Table 3. The BVP300-1 h showed a partic-
ular behavior compared to the other biochars with the lowest WHC and 
the highest AC. The BVP300-1 h presented some hydrophobicity at the 
moment of water saturation. The differences between the pore volume 
reported in Supplementary information Table 2 and the WHC could be 

Fig. 2. Fluorescence EEM contours, WEOC, UVA254 and SUVA254 of vineyard pruning (VP) waste and derived biochars (BVP300-1 h, BVP300-3 h, BVP600-1 h and 
BVP600-3 h). 

E. Cárdenas-Aguiar et al.                                                                                                                                                                                                                      



Waste Management 171 (2023) 452–462

458

related to the different particle size fraction used for the respective 
analysis (hydrophysical properties < 4 mm and cumulative pore volume 
< 2 mm). Nevertheless, the values of BD, TP, WHC and AC are appro-
priate to consider WP derived biochars for component of growing media, 
except in the case of BVP300-1 h, taking into account that commercial 
desirable growing media had the following ranges: TP from 50 to 85%, 
WHC from 45 to 65% and AC from 10 to 30% and BD lower than 0.40 g 
cm−3 (Nieto et al., 2016). 

Fig. 3 shows the X-ray diffraction patterns of VP and derived biochars 
obtained using different pyrolysis conditions. In general, XRD patterns 
are characterized by broad humps, which reflect the amorphous and 
semi- or pseudo crystalline nature of organic structures, while sharp 
peaks, attributed to the presence of inorganic minerals, only are 
observed for biochar pyrolized at 600 ◦C. The XRD of the VP shows 
humps, whose large peaks at 2θ values of 16◦ and 22◦ can be attributed 
to the crystalline region of cellulosic compounds in biomass (Yan et al., 
2021). For biochar produced at 300 ◦C crystalline structure of cellulose 
is partially lost, although microcrystalline or amorphous cellulosic 
compounds may be identified. With increasing pyrolysis temperature at 
600 ◦C these peaks are no more visible in the XRD spectra indicating that 
cellulose disappears by carbonization (Narzari et al., 2017). 

Two broad humps in the range of 2θ = 20◦-30◦ with a peak at about 
2θ = 23◦ and in the range of 2θ = 38◦-50◦ with a peak at about 2θ = 43◦

are observed at all XRD spectra the biochars studied. These indicate the 
presence of graphite aromatic layers. The former broad peak is assigned 
to C (200) and the latter to C (001) diffractions of graphitic and hex-
agonal carbons. 

In the biochars pyrolized at 600 ◦C, a relatively sharp peak can be 
observed, at in the region of 2θ = 29.6 ◦ (Fig. 3), indicative of the 
presence of inorganic components, with higher crystallinity. Also, the 
peak intensity raises, to some degree, with increasing residence time. 
Notwithstanding, the amount of crystalline materials in these two bio-
chars remains rather low. The peak position is compatible with the 
presence of both, calcite and rhombohedral graphite. However, calcite 
has been not detected neither by thermogravimetric analysis nor by 
FTIR spectroscopy. On the other hand, increasing temperature and 
residence time leads to graphitization, defined as the transformation of 
unordered or partially ordered non-crystalline carbon into pure carbon 
with an end member of crystalline graphite (Yan et al., 2021). Overall, 
XRD results, first show the presence of poorly crystalline graphite at the 
nano-size, with significantly broadened peaks. Then, at 600 ◦C, this 
nano-size material is associated with rhombohedral graphite, a less 
stable form than hexagonal graphite. Incomplete graphitization is most 
common and is expressed in the formation of carbon substances with 
varying degrees of structural organization (Narzari et al., 2017). 

The SEM images of mature shoots (canes) and their derived biochars 
(Supplementary information, Fig. 2) showed regular porous structures. 
Cross-section micrographs (Fig. 2, A, B and C in Supplementary infor-
mation) at medium resolutions (250 to 300). Pith and xylem are visible 
in VP and BVP300-1 h images. Limited change to the morphology of the 
initial feedstock can be observed as pyrolysis temperature increases. 
This is in accordance with previous findings (Chia et al., 2012; Suliman 
et al., 2016) and may be attributed to the slow pyrolysis process. 

The xylem in the raw biomass (VP) is surrounded by relatively uni-
form parenchyma, most commonly located between vascular tissue 
bundles or on the outside of vascular bundles, while the biochars 
(BVP300-1 h and BVP600-1 h) are characterized by an open porous 
structure. Therefore, SEM images also suggests that the porous system of 
the biochar is due to the decomposition of cellulose and hemicellulose; 
however, lignin, having a large proportion of aromaticity, forms the 
visible structure in biochars. This is consistent with FTIR results. 

Also average pore diameter increases with increasing temperature. 
The biggest pores observed in sample BVP600-1 h may result from 
collapse of neighboring lignin walls of neighboring xylem cells within a 
bundle. 

The longitudinal SEM image of BVP600-1 h biochar at high- 
resolution (x2500) showed structures resembling graphite. These are 
particles in the range from about 1 to 10 μm with smooth surface, 
contrasting with the rougher surface of biochar particles. The presence 
of graphite-like particles is consistent with the presence of XRD sharp 
peaks attributed to rhombohedral graphite (Gorrazzi et al., 2023; Suli-
man et al., 2016). Incomplete graphitization and graphite-like structures 
are considered as indicators of long term stability. 

The TG and DTA curves showed in all samples the first mass loss 
related to moisture content until 150 ◦C (Supplementary Information 
Fig. 3). Then the VP sample registered a significant mass loss between 
200 and 400 ◦C related to organic matter decomposition during pyrol-
ysis. Biochars obtained at 300 ◦C showed a mass loss in the same tem-
perature range but less intense than for VP. On the contrary, biochars 
fabricated at 600 ◦C showed less mass lost in this range, but it continued 
at higher temperatures. This behavior during TG analysis was related to 
higher stability of biochars obtained at higher temperatures and their 
low VM content. 

3.3. Environmental implications 

During pyrolysis, polycyclic aromatic hydrocarbons (PAHs) can form 
on the surface of biochar (Bochelli et al., 2019; Greco et al., 2021), 
where they remain subsequently. PAHs, are thermally very stable and 
require high reaction energy/high temperatures to break down their 

Fig. 3. X-ray diffraction analysis (XRD) for VP and vineyard pruning waste derived biochars (BVP300-1 h, BVP300-3 h, BVP600-1 h and BVP600-3 h).  
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chemical bonds. Sixteen out of more than thousand PAHs, have been 
designated High Priority Pollutants by the Environmental Protection 
Agency (US-EPA), because they represent the largest group of com-
pounds that may affect human health and environmental conservation. 
(Santodonato et al., 1979;). Standards regulations with thresholds in 
water and environment for PAHs included in the 16 US-EPA list have 
been stablished. 

In the European Biochar Certificate guidelines (EBC, 2012) PAHs 
concentrations in biochar were set under 4 and 12 mg kg−1 dry weight 
(dw) for premium and basic grade biochars, respectively (Schmidt et al., 
2016). The International Biochar Initiative (IBI) developed the “IBI 
Biochar Standards, defined for safe use of biochar in soils (IBI 2015). 

The PAHs concentrations of the VP derived biochars are shown in 
Table 3. The total PAH concentrations were higher for biochars fabri-
cated at 300 ◦C compared to those produced at 600 ◦C. Residence time 
decreased PAH concentration at 300 ◦C and increased it at 600 ◦C. 
Following previous studies, the effect of residence time showed variable 
trends. For example, Wang et al. (2017), found that slow pyrolysis and 
longer residence time result in lower concentrations of PAHs vs fast 
pyrolysis. On opposite, Raclavská et al., (2018) confirmed that increased 
residence time resulted in a higher concentration of PAHs in the biochar. 

DBA was most important accounting for the differences between 
biochars with 64.46 ng g−1 for BVP300-1 h, 33.27 ng g−1 for BVP300-3 
h, 3.30 ng g−1 for BVP-600–1 h and 2.14 ng g−1 for BVP-600–3 h. PHEN 
was relatively abundant in all biochars, ranging from 23.79 to 37.56 ng 
g−1. Light and heavy PAHs concentrations were higher in BVP300-1 h, 
but medium PAHs were higher in BVP600-3 h. PAHs concentrations in 
the derived VP biochars were lower than in other woody biochars or 
manure derived biochars (Greco et al., 2021; Lataf et al., 2022). Wang 
et al. (2017) showed total PAHs varied from < 0.1 to > 10.000 ng g−1, 
which means 5 orders of magnitude in a logarithmic scale. Therefore, 
compared to other studies the PAH abundance of pruning derived bio-
chars are in the middle range of concentrations, following the afore-
mentioned scale. Overall, the total concentrations of 16 EPA PAHs were 
much lower than the threshold of 4000 ng g−1 stablished by the EBC for 
premium grade biochar. 

The relatively low concentration of PAHs in VP derived biochars also 
is consistent with production at slow pyrolysis rates, which promote 
escapes to the atmosphere in gaseous form, avoiding surface capture. 

The feasibility of the use of biochar as growing media component or 
as soil amendment also depends on its chemical and physical properties 
and in addition requires an assessment of the possible presence of 
phytotoxicity. Results of the germination index text are shown in Fig. 4. 
The GI for VP feedstock showed a high phytotoxicity that changed to 

non-phytotoxic for BVP300-1 h and BVP600-1 h. Residence time appears 
to have an important role, as biochars produced with larger residence 
time (3 h) were phytotoxic, while those produced with shorter residence 
time (1 h) showed no phitotoxicity; and this for both experimental 
temperatures. Notwithstanding, the GI values of biochars produced 
during prolonged residence time increased with increasing temperature; 
these values were 10% for VP, 40.6% for BVP300-1 h and 48.7%, for 
BVP300-3 h. Therefore, temperature increased GI, even if the phytotoxic 
effects didn’t disappear at 600◦ C and 3 h residence time. 

Germination index depends on the plant species, biochar feedstock 
and biochar production parameters. Until now, there are few studies 
analyzing phytotoxicity and results are inconclusive. For example, 
Benavente et al, (2018) using bochar from organic urban waste pro-
duced at 300 ◦C and Lactuca sativa as text plant, reported phytotoxic 
effects ranked as high for low residence time and as moderate for 
extended residence time. Phytotoxicity may be caused, roughly, by 
organic compounds contained in biochar or, in specific cases, by heavy 
metals or salinity (Ruzickova et al., 2021); dissolved organic compounds 
have been considered most responsible for phytotoxicity, including, al-
dehydes, ketones, carboxylic acids, PAHs, etc. 

Our results didńt show a parameter robust enough to explain 
phytotoxicity of VP and VP derived biochars. The extreme phytotoxicity 
of VP may be associated with several organic compounds (either resi-
dues of chemicals applied to crop protection or water extractable 
composited in the pruning waste) and also with a notable concentration 
of Cu (40 g kg−1, Table 2), More research is needed to assess phyto-
toxicity provenance of VP and VP derived biochars produced with 
extended residence time. 

4. Conclusions 

Our results showed that vineyard pruning waste biochars can be 
tailored for different environmental applications modifying pyrolysis 
process parameters. In particular, pyrolysis at 600 ◦C or 300 ◦C during 3 
h resulted in valuable chars as a growing media component. Biochars 
prepared at 300 ◦C could improve soil fertility, whereas biochars pre-
pared at 600 ◦C have a larger potential for soil carbon sequestration. 

Pyrolysis at 300 or 600 ◦C, during 1 h, decreased the high phyto-
toxicity of vineyard pruning waste but a larger residence time (3 h) 
again resulted in phytotoxic biochars, at both temperatures. 

Vineyard pruning waste can be converted into useful chars using 
pyrolysis as part of a valorisation strategy. Depending on the final use to 
be given to the pruning waste biochars, it will be necessary to optimize 
the temperature and pyrolysis time. 

Table 3 
PAHs (ng/g) of vineyard pruning waste derived biochars (BVP300-1 h, BVP300-3 h, BVP600-1 h and BVP600-3 h).  

Compounds Abbreviation BVP300-1 h BVP300-3 h BVP600-1 h BVP600-3 h 

Naphthalene NAP  0.03  0.02  0.00  0.00 
Acenaphthylene ANY  0.07  0.07  0.00  0.00 
Acenaphthene ANA  2.02  1.51  1.03  1.59 
Fluorene FLU  2.53  1.39  1.53  2.15 
PAHs light ∑ PAH light  4.65  2.99  2.55  3.75 
Phenanthrene PHEN  24.69  23.70  24.51  37.56 
Anthracene ANT  0.91  0.48  0.56  0.92 
Fluoranthene FLT  6.89  5.95  5.17  9.12 
PAHs medium ∑ PAH medium  32.49  30.13  30.24  47.59 
Pyrene PYR  6.31  5.37  6.09  8.70 
Benz[a]anthracene BaA  4.29  3.27  1.24  5.53 
Chrysene CHR  1.80  0.37  0.40  11.37 
Benzo(b + j)fluoranthene BbF  18.70  0.93  0.84  1.52 
Benzo[k]fluoranthene BkF  15.72  6.33  1.24  5.63 
Benzo[a]pyrene BaP  4.83  1.90  1.26  4.37 
Dibenzo[a,h]anthracene DBA  64.46  33.27  3.30  2.14 
Benzo[g,h,i,]perylene BPE  11.73  12.40  9.37  0.29 
Indeno[1,2,3-cd]pyrene IPY  9.17  10.27  9.27  0.58 
PAHs heavy ∑ PAH heavy  137.02  74.09  33.00  40.12 
PAH Total ∑ PAH  174.15  107.21  65.79  91.46  
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González-Pérez, J.A., González-Vila, F.J., Almendros, G., Knicker, H., 2004. The effect of 
fire on soil organic matter - A review. Environ. Int. 30, 855–870. https://doi.org/ 
10.1016/j.envint.2004.02.003. 

Gorrazzi, S.A., Massazza, D., Pedetta, A., Silva, L., Prados, B., Fouga, G., Bonanni, S., 
2023. Biochar as a substitute for graphite in microbial electrochemical technologies. 
RSC Sustain. 1200–1210 https://doi.org/10.1039/d3su00041a. 

Greco, G., Videgain, M., Di Stasi, C., Pires, E., Manyà, J.J., 2021. Importance of pyrolysis 
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Nieto, A., Gascó, G., Paz-Ferreiro, J., Fernández, J.M., Plaza, C., Méndez, A., 2016. The 
effect of pruning waste and biochar addition on brown peat based growing media 
properties. Sci. Hortic. (Amsterdam) 199, 142–148. https://doi.org/10.1016/j. 
scienta.2015.12.012. 

Obia, A., Mulder, J., Martinsen, V., Cornelissen, G., Børresen, T., 2016. In situ effects of 
biochar on aggregation, water retention and porosity in light-textured tropical soils. 
Soil Tillage Res. 155, 35–44. https://doi.org/10.1016/j.still.2015.08.002. 

Parikh, S.J., Goyne, K.W., Margenot, A.J., Mukome, F.N.D., Calderón, F.J., 2014. Chapter 
One -Soil chemical insights provided through vibrational spectroscopy. In: Sparks, D. 
L. (Ed.), Advances in Agronomy. Academic Press, pp. 1–148. https://doi.org/ 
10.1016/B978-0-12-800132-5.00001-8. 

Pituello, C., Francioso, O., Simonetti, G., Pisi, A., Torreggiani, A., Berti, A., Morari, F., 
2015. Characterization of chemical–physical, structural and morphological 
properties of biochars from biowastes produced at different temperatures. J. Soil. 
Sediment. 15, 792–804. https://doi.org/10.1007/s11368-014-0964-7. 

Podgorski, D.C., Zito, P., McGuire, J.T., Martinovic-Weigelt, D., Cozzarelli, I.M., 
Bekins, B.A., Spencer, R.G.M., 2018. Examining Natural Attenuation and Acute 
Toxicity of Petroleum-Derived Dissolved Organic Matter with Optical Spectroscopy. 
Environ. Sci. Tech. 52, 6157–6166. https://doi.org/10.1021/acs.est.8b00016. 
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