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Abstract. There is wide acknowledgement that solar energy is a promising and renewable source of electricity. 
However, complementary sources are sometimes required, due to its limited capacity, in order to satisfy user 
demand. A Hybrid Intelligent System (HIS) is proposed in this paper to optimize the range of possible solar 
energy and power grid combinations. It is designed to predict the energy generated by any given solar thermal 
system. To do so, the novel HIS is based on local models that implement both supervised learning (artificial 
neural networks) and unsupervised learning (clustering). These techniques are combined and applied to a real-
world installation located in Spain. Alternative models are compared and validated in this case study with data 
from a whole year. With an optimum parameter fit, the proposed system managed to calculate the solar energy 
produced by the panel with an error that was lower than 10-4 in 86% of cases.

Keywords: Hybrid Intelligent System, Clustering, Regression, Neural Networks, Solar Energy, Renewable 

Energies.

1 Introduction and Previous Work

Renewable Energy (RE) has a key role to play in the field of increased sustainability and is one of the most relevant 

technologies in that respect [1]. As a consequence, many buildings and especially new ones now incorporate RE facilities. This 

general European trend has also been applicable to Spain over recent years, where the rate of new RE installations, in general, 

and solar thermal energy, in particular, is increasing. One reason is found in the Spanish legal regulation on this matter [2], 

which states that solar system installations are mandatory in new buildings. Obviously, the energy generated by these 

installations implies a saving on other sources of energy that would otherwise have been used for that purpose. If the energy 

needs are known in advance, such information may be used to predict the energy thresholds and when the available energy will 

no longer be demanded. [3]. As a result, it will be possible to take corrective actions with the purpose of reducing the energy 

from non-renewable energy sources. Various works have addressed that challenge in different ways. In [4], a new strategy was 

proposed for the optimal scheduling problem, taking into account the impact of uncertainties in wind, solar PV, and load 

demand forecasts. 

Artificial Intelligence techniques and paradigms have been combined in the Hybrid Intelligent Systems (HIS) and applied to a 

wide variety of problems, ranging from environmental issues [5] [6] [7] to cybersecurity [8] [9].
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The present paper addresses the above-mentioned forecasting problem by proposing the novel HIS, designed to predict the 

energy generated by solar electricity systems. The model works with the information obtained from monitoring radiation and 

consumption. When applied to certain problems, HIS is required to manage a huge amount of information, which implies the 

use of smart computing methods  [10]. 

Intelligent techniques have previously been applied to solar-energy management: the performance of a solar collector system 

using Phase Change Material was experimentally investigated for 1 month in [11]. Useful energy and collector efficiency were 

predicted by means of Artificial Neural Networks (ANN), Adaptive-Network-Based Fuzzy Inference Systems, and Support 

Vector Machines (SVMs). The authors of [12] proposed the application of ANN, Random Forest, and Smart Persistence to 

forecast the three components of solar irradiation (global horizontal, beam normal, and diffuse horizontal). They compared the 

three methods when predicting hourly solar irradiations for time horizons between h+1 and h+6. 

According to [13], machine-learning-based prediction models can be categorized into:

 Global models: a model, based on an available training dataset is obtained, with the aim of optimal error reduction. 

ANN [14] and SVMs [15] are included in the set of techniques that can be considered in this category.

 Local models: the dataset is divided into some groups with similar characteristics, by using the k-means clustering 

algorithm [16], the SOM (Self-Organizing Maps) [17], or neural gas [18]. Local models [19] are considered very 

helpful methods for time-series predictions. 

As previously stated, a local model-based system will be proposed in this research work, in order to make reliable predictions 

of the power generated at a solar thermal plant. Its novelty relies on the application of some regression techniques over 

previously-obtained clusters, to obtain the best performing local model. The k-means clustering algorithm was applied at the 

clustering step.

The content of the following sections of this paper will be organized as follows: the proposed HIS and the applied models will 

be described in Section 2. The case study to which the HIS was applied will be detailed in Section 3; together with the results 

that will be presented in Section 4. Finally, the conclusions to the present study will be outlined in Section 5.

2 Hybrid Intelligent System

As previously stated, both supervised and unsupervised learning models are combined in the framework of an HIS to improve 

regression results. New models are combined to fit this prediction problem from a previously proposed diagram (Fig. 1), 

successfully demonstrated in [20].
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Fig. 1. Hybrid Intelligent System for Solar Energy Prediction.

The model developed in [20] is based on a combination of clustering and prediction algorithms, which obtain local models of 

lower complexity and accuracy than a general model for the whole system. In a first step, a cluster algorithm was applied to the 

dataset to identify clusters of samples with similar behavior. In a second step, a prediction algorithm was trained for each the 

previously identified clusters. The complete process to arrive at the final models can be summarized as follows (see Fig. 1):

 Data Acquisition: the Solar Energy System is sampled and the data are gathered.

 Data Pre-processing:

o Filtering: the dataset is filtered and incorrect (empty and/or negative values) measures are removed.
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o Training and testing: once filtered, the dataset is divided into 2 subsets. There is a subset for training (two 

thirds of the filtered data: 23,091 samples) and another for testing (one third of the filtered data: 11,545 

samples).

 Clustering: a clustering method is applied to the whole dataset. As a result, every training and testing sample is 

assigned to one of the given clusters.

 Regression: using the samples previously assigned to the clusters, a regression model is trained for each cluster and 

the best model is selected on the basis of the testing error.

In the first step of the original formulation of this HIS [20], both Principal Component Analysis (PCA) and the SOM were 

applied for data clustering. In the present paper, clustering was performed by an alternative algorithm: k-means. Both the 

Multilayer Perceptron (MLP) and the Least Square-Support Vector Machine (LS-SVM) were applied as regression models. 

The Radial-Basis Functions Network (RBFN) was introduced as a new regression model and the MLP was once again applied, 

for comparative purposes. In the interests of a comprehensive comparison, 5 different learning algorithms were tested when 

training the MLP. 

As in the original paper, a 10-fold cross validation [21] scheme was followed, in order to carry out exhaustive tests on the 

regression techniques.

2.1 Local Models

When a system presents different behaviors that can be clustered into groups, the application of machine-learning techniques to 

multiple local models will obtain better results than a single global model [13] [20].

In a nutshell, local models can be defined as low-complexity models that are created over small regions of the input space. On 

the contrary, a global model works over the whole input space. Consequently, the knowledge extracted from each local model 

(associated to a certain region of the input space) provides a more comprehensive and interesting vision of the dataset to be 

analyzed. The final system of local models consist of a group of experts with specific training over specific regions of the 

dataset. Then, the final goal function (f(x)) can be seen as the union of the goal functions (fi(x)) of each local model (M), as 

stated in (1).
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In the present research, the local models were based on samples of the system working in a similar area of behavior. For each 

local model, various regression techniques were applied, in order obtain the best fit with the behavior of the real system. 

Local models  [22] can be classified into classical (linear) models and extended (non-linear) models. In this research, the non-

linear local models were applied.
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Several algorithms can be used during the clustering step, to reveal the structure of the analyzed dataset, such as k-means, 

standard winner-take-all competitive learning, SOM, fuzzy competitive learning, and PCA, among others. In the present study, 

the widely-used k-means algorithm was applied to define the clusters from the original dataset that were consequently used for 

training each local model.

2.2 k-means

Cluster analysis organizes data, grouping data samples according to a given criteria (mainly distance). Two individuals in a 

valid group will be much more similar than those in different groups. The clustering k-means algorithm [23] groups data 

samples into a previously defined number of groups. Two input parameters are required, in order to apply it: the number of 

clusters (k) and their initial centroids. Firstly, each data sample is assigned to the cluster with the nearest centroid. Once the 

groups are defined, the centroids are recalculated and a reallocation of the samples takes place. Those steps are repeated until 

there is no further modification of the centroids. The quality criterion to measure the grouping is the Sum of Squared Errors 

(SSE). The algorithm intended to minimize it can be defined as follows:
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where, k is the number of groups, p is the proximity function, cj is the centroid of group j, and n is the number of data samples. 

From among all the proposed distances, the authors applied the main ones, for this clustering algorithm [24]. After comparing 

the results, the Cityblock distance was selected. It is a distance measure where each centroid is placed in the component-wise 

median of all the samples in the group. The distance from point x to each of the centroids was calculated as:
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where, j is an instance of the vector, x.

2.3 Radial-basis Function Network

The RBFN [25] is a neural network  where a centroid is associated with each node in the hidden layer. For each of the input 

vectors, x = (xl, x2, …, xn), it computes the distance between the node centroid and x. The output of the unit is then calculated as 

a non-linear function of this distance. Finally, the output of the hidden nodes is weighted and combined in the nodes of the 

output layer.

In the case of r input nodes and m output nodes, the response function of each one of the output nodes can be calculated [25] 

as: 



- 6 -











 








  M

i i

i
i

M

i i

i
i

zx
gWzxkW

11
**


(4)

where, x is an input vector, M Є ℕ is the number of hidden units; Wi ϵ  ℝm are the weights linking the ith hidden-layer unit to 

the output nodes; K is a kernel function that is radially symmetric; σi is the smoothing factor of the ith kernel node; zi is the 

centroid factor of the ith kernel node; and, g: [0, ∞) ℝ is the activation function. 

2.4 Multilayer Perceptron 

The MLP is a well-known ANN consisting of several layers of nodes. There are weights associated with the connected nodes 

and the output signals are generated by calculating the activation from the sum of the inputs. Its architecture consists of an 

input layer that passes the input vector to the other layers of the network. The terms “input vectors” and “output vectors” refer 

to the inputs and outputs of the MLP and are represented as single vectors [26]. Additionally, an MLP has one or more hidden 

layers, together with the output layer. MLPs are fully connected; that is, every node is connected to each one of the nodes in 

the previous and the following layer. 

During training, the updating of weights is performed with the backpropagation algorithm. In this study, the following 

implementations of this algorithm were applied: Bayesian Regularization (BR); Scaled Conjugate Gradient (SCG); Batch 

Training with bias and weight learning rules (RB); Gradient Descent with adaptive learning rates and momentum (GDX) and, 

the Levenberg-Marquardt (LM) algorithm.

2.5 Multiple Linear Regression

Multiple Linear Regression (MLR) models the relationship between a target variable and some explanatory variables by 

generating a linear equation for the observed data [27]. A value of the target variable (y) is linked to a value of the independent 

variable (x). The regression line for p explanatory variables (x1, x2, ..., xp) is defined as follows:

uy = β 0+ β 1x1+ β 2x2+ ... + β pxp (5)

The fitted values b0, b1, ..., bp estimate the parameters β0, β1, ..., βp of the regression line. Then, equation 5 describes the 

variation of the mean response, uy, according to the explanatory variables. The observed values for y change around the mean 

response, uy, and the same standard deviation is computed (σ).

The model can be expressed as DATA = FIT + RESIDUAL, where the "RESIDUAL" term refers to the deviations of the 

observed values, y, from the mean response, uy, and "FIT" is represented by (5).
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2.6 Multiple Non-Linear Regression

A different type of regression was also applied in this study, called Multiple Non-Linear Regression (MN-LR). Here, the data 

are modelled by a function that depends on (one or more) independent variables [28] where the model parameters are non-

linear combinations. The parameters can be of any type of non-linear function, such as trigonometric, exponential, etc. An 

iterative algorithm is used to determine the non-linear parameter:

    BXfy , (6)

where, X is the criterion variable; B is the non-linear parameter estimate to be computed; and, ε is an error term.

3 Case Study: Solar Energy Prediction

The proposed HIS was used for the prediction of energy obtained from a real-life installation. The system under analysis was a 

solar thermal panel forming part of the RE systems installed in a bioclimatic house in Galicia (north-western Spain). This 

thermal system is shown in Fig. 2 and can be divided into two functional sections: energy capture and energy storage. The 

continuous red line in Fig. 2 demarcates the part of the thermal system that corresponds to hot liquid, while the dotted blue line 

is associated with cold liquid. The solar thermal part is based on solar panels placed on the north façade of the building, 

inclined at 19º. This part is connected to the hot liquid accumulator through a closed circuit employing ethyleneglycol. The 

fluid is circulated by a hydraulic pump that transports the ethyleneglycol to the solar panel inputs (S1 and S2). The solar panels 

are divided into two sections working in parallel, each consisting of four simple thermal solar panels. The ethyleneglycol in 

circulation through the panels makes it possible to capture the heat from the sun. The fluid then flows out through S3 and S4 at 

a higher temperature. After that step, the hot fluid is taken to the heat exchanger of the accumulator (S8) where the heat is 

transferred to the stored water. The liquid is then pumped back to the thermal solar panels as it leaves the accumulator (S6).

https://en.wikipedia.org/wiki/Regression_analysis
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Fig. 2. Case Study under analysis: solar thermal system.

When the bioclimatic house was designed, it was established that the solar thermal installation would cover approximately 

90% of the hot water needs. The performance of the solar panels was 78.1%, and losses of between 5% and 10% were 

estimated, due to their inclination. The specific location of the bioclimatic house required an inclination of 43º. However, the 

criterion was to assume the losses, but taking the same inclination as the roof of the building. 

3.1 Dataset

The proposed HIS was validated with data for one year, after the energy from the power system installed in the previously 

described bioclimatic house had been sampled. These data samples were split into 12 different datasets, by the month of the 

year in which they were collected (from September to December, 2010 and from January to August, 2011).

The equipment used for their measurement was as follows:

 Power meter: Kamstrup type Multichannel 601, capable of measuring temperature, flow, and thermal power.

 Radiation meter: Apogee model PYR-P, capable of measuring solar radiation with a sensitivity of 0.200 mV per 

Wm-2.

The output for each data sample was the thermal power generated (in Watts). On the other hand, the following six inputs were 

associated with each data sample:

 Flow: water flow of the solar thermal system (in m3/h)

 Solar Radiation: measured radiation level over the panels (W/m2)

MULTICHANNEL 
FLOWMETER 601 
with module 24v
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 Ta: input Temperature on the lower panel (ºC)

 Tb: input Temperature on the upper panel (ºC)

 Tc: output Temperature on the lower panel (ºC)

 Td: output Temperature on the upper panel (ºC)

Each component (both input and output) was recorded with a 10-minute measurement period. The dataset analyzed by the HIS 

was previously described in [20]. It was obtained by pre-processing the raw data and removing all outliers, obtaining a final 

dataset composed of 34,636 samples.

In Table 1, the dataset was presented in terms of the diversity and the scale of each variable, representing each variable and its 

maximum, minimum, and average values. Based on those results, a normalization process between [0,1] was needed, as the 

variables presented very different ranges of values.

Table 1. Range of values for each variable: maximum, minimum, average.

Flow
Solar 

Radiation
Ta Tb Tc Td

Maximum 1200.00 1303.69 93.65 110.33 144.95 142.88

Minimum 0.00 -0.24 -7.29 -7.11 -4.13 -3.94

Average 130.30 175.49 20.79 22.36 33.12 34.37

The frequency distribution histograms of each variable are shown in figure 3 (from 3.a to 3.f), in order to present the diversity 

of the dataset variables. Comparing the histograms, it can be concluded that variable flow and solar radiation presented similar 

sample distributions with a remarkable tail to the left of the histogram. It corresponds to periods of time when no power was 

produced (very small flow and very little radiation).
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Figure 3. Frequency distribution histograms of each variable

The correlation matrix between all variables is shown in Table 2. There is only one clear correlation between variables Tc and 

Td.
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Table 2. Variables correlation matrix

Flow
Solar 

Radiation
Ta Tb Tc Td

Flow 1 0.50572176 0.04717336 0.05336151 -0.0574075 -0.0355189

Solar 

Radiation
-- 1 0.18187044 0.18509537 -0.0767962 -0.0431432

Ta -- -- 1 0.23368599 0.25093049 0.27284253

Tb -- -- -- 1 0.22828923 0.24805207

Tc -- -- -- -- 1 0.93438843

Td -- -- -- -- -- 1

Finally, after a normalization process for each variable [0,1], all of them are compared by means of a boxplot in Figure 4. The 

image shows several outliers that are removed in the case of variable flow, to produce the final dataset.
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Figure 4. Boxplot of each variable after the normalization process
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4 Results & Discussion

The HIS described in Section 2 was applied to the different datasets described in Section 3.1:

1. 12 datasets corresponding to the 12 months of the year without grouping the data (12-Month datasets).

2. 36 datasets, three groups for each of the 12 months, resulting from applying the k-means clustering technique to the 

whole dataset (36-Grouped datasets). A value of 3 was selected for the k parameter, as it is the optimum number of 

groups previously identified [20] for the dataset under analysis.

The regression methods were applied to these two datasets, in order to predict the thermal power generated by the solar system. 

They were validated by the n-fold Cross-Validation (CV) scheme. CV is a technique that splits the data, in order to measure 

the error of each algorithm, into two subsets (training and testing). The training samples were used for training each algorithm, 

while the testing samples were used for its validation. Finally, the algorithm with the smallest CV-estimated error was selected 

[29]. The number of the n parameter (data partitions) was set to 10 (standard value) for all the experiments in the present study. 

The total number of samples for each month before and after clustering (with k-means and Cityblock distance measure) are 

shown in Table 3. The data were split in training and testing subsets for the CV.

Table 3. Total number of samples for each month (both training and testing subsets).

Total Cluster 1 Cluster 2 Cluster 3
Month

Train Test Train Test Train Test Train Test

January 2979 331 2716 301 180 20 84 9

February 2977 330 2500 277 267 29 211 23

March 3011 334 2305 256 283 31 423 47

April 2456 272 2328 258 84 9 44 5

May 2717 301 1628 181 532 59 557 61

June 2745 305 1745 194 509 56 500 55

July 2700 300 1813 201 419 46 469 52

August 2699 300 1802 200 451 50 447 49

September 2546 282 1787 198 395 43 365 40

October 1885 209 1241 137 305 34 340 37

November 1767 196 1578 175 152 16 38 4

December 2695 299 2388 265 276 30 32 3
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The process of training the neural models was repeated 10 times (once for each fold). Moreover, training was repeated 10 times 

for each training algorithm with the same combination of parameters in the case of MLP. The main purpose of this repetition 

was to reduce the effect of randomness and obtain more representative results. The Normalized Mean Squared Error (NMSE) 

for all ten folds is presented for all the experiments (Tables 4 to 11). The NMSE is a regression performance metric calculated 

as the mean of the squared errors.

In the case of the MLP and RBFN, experiments with a varying number of hidden neurons (10, 20, and 30) were conducted. For 

the sake of brevity, only the results obtained with a configuration of 10 hidden neurons are shown. The main reason is that 

adding more neurons would significantly increase the execution times, but not the accuracy of the results, according to the 

NMSE. The training algorithm had a stronger influence on the results than the number of neurons in the hidden layer. The best 

balance between execution speed and NMSE was achieved when using 10 hidden neurons. 

A sigmoid activation function in the hidden layer and a linear activation function in the output layer was employed by MLP. A 

radial-basis transfer function was applied in the case of RBFN.

4.1 Results from the 12-month Datasets

The results (considering both NMSE and execution time) of applying the previously described models to the 12-month datasets 

are presented in this section (Tables 4 to 7). To begin with, the results obtained by MLR and MN-LR are shown in Table 4.

Table 4. MLR and MN-LR results for the 12-Month datasets.

MLR MN-LR
Month

NMSE Time (s) NMSE Time (s)

January 2.6E-04 0.1617 7.7E-05 0.2513

February 2.5E-04 0.1270 6.2E-05 0.1777

March 2.3E-04 0.1227 3.9E-05 0.1909

April 3.4E-04 0.1274 3.1E-04 0.2006

May 2.2E-04 0.1214 4.2E-05 0.1929

June 2.3E-04 0.1228 4.1E-05 0.2007

July 2.4E-04 0.1247 4.2E-05 0.2078

August 2.3E-04 0.1242 3.9E-05 0.2013

September 2.6E-04 0.1269 7.5E-05 0.2121

October 3.3E-04 0.1255 5.1E-05 0.1856

November 4.4E-04 0.1234 1.6E-04 0.1800

December 2.8E-04 0.1256 8.3E-05 0.1986
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In Table 4, similar results over the 12-month period may be seen for both regression techniques. The results were constant for 

all the datasets in the case of MLR. The MN-LR technique obtained lower error rates than MLR for all the datasets. On the 

contrary, the execution times of MN-LR were higher than those of MLR. Better values can be observed for both algorithms in 

the NMSE for the spring and summer seasons.

Table 5. RBFN results for the 10 folds of the 12-Month datasets.

NMSE Time (s)
Month

Mean STD Mean STD

January 2.1E-05 6.1E-07 0.0641 0.1270

February 2.3E-05 5.6E-07 0.0374 0.0816

March 1.6E-05 3.2E-07 0.0378 0.0813

April 2.3E-05 1.1E-06 0.0388 0.0836

May 2.3E-05 4.9E-07 0.0384 0.0835

June 2.3E-05 3.5E-07 0.0421 0.0955

July 2.0E-05 3.6E-07 0.0386 0.0837

August 2.1E-05 5.9E-07 0.0403 0.0880

September 3.1E-05 7.5E-07 0.0403 0.0882

October 2.4E-05 6.5E-07 0.0402 0.0879

November 3.0E-05 1.2E-06 0.0404 0.0889

December 2.8E-05 1.0E-06 0.0394 0.0862

In the case of RBFN (Table 5), constant error rates and execution times were obtained for the 12 months. In comparison with 

previous results (Table 4), RBFN obtained lower error rates in all months. Considering the execution times, RBFN also proved 

to be faster than the regression techniques. Likewise, worth noting are the low values of the standard deviation (STD) of the 

NMSE, which confirms the heterogeneity in the results of the 10 folds over all twelve months. The month of March received a 

lower value in the calculation of the NMSE and achieved a lower NMSE, see Table 4.

Table 6. MLP results for the different training algorithms and 10 folds of the 12-Month datasets.

NMSE - Mean and STD

LM GDX RB SCG BRMonth

Mean STD Mean STD Mean STD Mean STD Mean STD
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January 4.2E-06 8.9E-07 9.6E-04 8.2E-04 5.0E-04 3.9E-04 5.4E-06 3.7E-07 3.5E-06 2.9E-07

February 2.4E-06 2.0E-07 2.9E-03 3.1E-03 5.2E-04 4.5E-04 3.8E-06 1.2E-06 2.1E-06 1.9E-07

March 1.4E-06 1.6E-07 2.1E-03 2.0E-03 2.5E-04 1.8E-04 2.5E-06 3.9E-07 1.2E-06 1.1E-07

April 6.3E-07 2.5E-07 2.0E-03 5.2E-04 7.3E-04 1.5E-04 1.7E-06 1.1E-06 6.8E-07 1.2E-07

May 6.6E-06 2.8E-07 1.6E-03 1.3E-03 4.7E-04 2.3E-04 8.1E-06 2.8E-07 6.3E-06 2.6E-07

June 5.4E-06 4.3E-07 1.7E-03 1.4E-03 6.3E-04 5.2E-04 7.7E-06 2.2E-07 5.1E-06 3.3E-07

July 6.0E-06 2.0E-07 2.2E-03 1.5E-03 5.6E-04 2.7E-04 7.5E-06 1.8E-07 5.8E-06 2.5E-07

August 4.4E-06 1.8E-07 1.7E-03 1.8E-03 3.9E-04 2.5E-04 6.7E-06 5.8E-07 4.1E-06 1.2E-07

September 6.0E-06 5.9E-07 4.0E-03 5.5E-03 4.7E-04 2.9E-04 8.9E-06 1.5E-06 5.2E-06 6.8E-07

October 2.6E-06 3.9E-07 1.7E-03 1.5E-03 4.7E-04 2.6E-04 3.4E-06 1.5E-07 2.4E-06 4.4E-07

November 7.2E-06 1.3E-08 1.9E-03 1.6E-03 6.9E-04 3.0E-04 1.0E-05 1.1E-07 6.2E-06 9.5E-09

December 8.9E-06 1.2E-05 2.2E-03 6.6E-04 6.6E-04 3.6E-04 7.2E-06 1.0E-06 4.5E-06 4.6E-07

 

In Table 6, the results obtained by MLP are shown. As can be seen, the best results in the calculation of the NMSE were 

obtained by the BR training algorithm in 11 of the 12 months, with similar results obtained by the LM training algorithms. 

Furthermore, those three training algorithms obtained better results than RBFN (Table 5), in terms of the NMSE. In a similar 

way to the content of Tables 4 and 5, the month of March once again showed the best results in terms of NMSE, which may be 

due to low variability of the input parameters to the solar panel.

Table 7. MLP execution times for the different training algorithms and 10 folds of the 12-month datasets.

Time (s) - Mean and STD

LM GDX RB SCG BRMonth

Mean STD Mean STD Mean STD Mean STD Mean STD

January 0.071 0.105 0.185 0.015 0.414 0.083 0.182 0.015 0,117 0,093

February 0.062 0.070 0.167 0.007 0.335 0.032 0.109 0.008 0.091 0.062

March 0.066 0.072 0.177 0.007 0.332 0.044 0.058 0.011 0.068 0.058

April 0.067 0.069 0.176 0.007 0.328 0.027 0.215 0.028 0.387 0.054

May 0.068 0.064 0.180 0.010 0.351 0.032 0.081 0.006 0.123 0.011

June 0.068 0.071 0.192 0.012 0.349 0.032 0.071 0.011 0.241 0.015

July 0.072 0.062 0.190 0.015 0.359 0.029 0.074 0.009 0.091 0.064

August 0.075 0.056 0.193 0.010 0.411 0.039 0.084 0.011 0.076 0.049

September 0.070 0.067 0.189 0.009 0.381 0.026 0.175 0.028 0.208 0.084
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October 0.070 0.068 0.179 0.010 0.363 0.036 0.080 0.009 0.157 0.025

November 0.070 0.066 0.177 0.009 0.353 0.032 0.058 0.007 0.070 0.024

December 0.072 0.065 0.186 0.010 0.390 0.079 0.179 0.010 0.088 0.118

In Table 7, the results obtained in terms of execution time by the MLP are shown. As can be seen, the LM training algorithm 

obtained the best results over the 12 months. The LM training algorithm also obtained slightly shorter execution times than the 

RBFN algorithm, as can be seen in Table 5. Comparing these results with those shown in Table 6, it can be concluded that the 

LM algorithm achieved good execution times and was one of the most effective at NMSE calculation.

4.2 Results from the 36-Grouped Datasets

The results in terms of NMSE (Tables 8 to 10) and execution time (Table 9), obtained when applying the same models to the 

36-Grouped datasets, are presented below. The results are shown according to the cluster (C1, C2, or C3) to which each data 

item is assigned. First, the results obtained by MLR and MN-LR are shown in Table 8.

Table 8. MLR and MN-LR results for the different clusters in the 36-Grouped datasets.

MLR (NMSE) MN-LR (NMSE)
Month

C1 C2 C3 C1 C2 C3

January 1.8E-04 6.1E-04 8.9E-05 1.6E-04 4.6E-04 8.8E-05

February 1.8E-04 4.1E-04 1.5E-04 1.6E-04 3.4E-04 7.5E-05

March 2.1E-04 3.7E-04 8.9E-05 1.9E-04 3.0E-04 1.9E-05

April 2.4E-05 1.4E-04 2.0E-03 2.4E-05 5.7E-05 6.5E-04

May 2.6E-04 2.1E-04 7.2E-05 2.2E-04 1.6E-04 3.8E-05

June 2.1E-04 2.1E-04 8.3E-05 1.8E-04 1.5E-04 4.3E-05

July 2.4E-04 2.7E-04 7.6E-05 2.1E-04 2.1E-04 3.6E-05

August 2.6E-04 2.5E-04 8.2E-05 2.2E-04 1.6E-04 3.8E-05

September 2.0E-04 3.0E-04 1.2E-04 1.8E-04 2.2E-04 7.4E-05

October 3.8E-04 3.3E-04 1.0E-04 3.4E-04 2.0E-04 3.0E-05

November 3.2E-04 6.4E-04 3.6E-04 2.9E-04 5.4E-04 2.3E-04

December 2.4E-04 4.0E-04 1.9E-04 2.1E-04 2.4E-04 1.8E-04

Comparing the results of these two regression techniques (Table 8), they can be said to be similar for all the months. The best 

results in the calculation of the NMSE were obtained by the MN-LR regression technique for 11 (out of 12) months and in the 
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C3 cluster. Additionally, the regression techniques applied to the grouped data outperformed their application to the 12-month 

datasets (Table 4).

Table 9. RBFN results for the 10 folds of the 36-Grouped datasets.

NMSE - Mean Time (s) - Mean
Month

C1 C2 C3 C1 C2 C3

January 5.6E-05 2.9E-04 7.5E-05 0.0109 0.0107 0.0102

February 5.3E-05 2.2E-04 7.1E-05 0.0103 0.0096 0.0092

March 1.8E-04 2.0E-04 1.8E-05 0.0099 0.0097 0.0099

April 4.2E-06 4.2E-05 5.9E-04 0.0178 0.0103 0.0101

May 1.1E-04 1.2E-04 3.5E-05 0.0096 0.0097 0.0098

June 6.9E-05 1.3E-04 4.0E-05 0.0104 0.0099 0.0096

July 1.8E-04 1.7E-04 3.6E-05 0.0095 0.0095 0.0094

August 8.2E-05 1.3E-04 3.4E-05 0.0099 0.0096 0.0104

September 1.7E-04 1.4E-04 7.3E-05 0.0099 0.0098 0.0097

October 3.2E-04 1.5E-04 2.9E-05 0.0100 0.0107 0.0099

November 2.8E-04 3.1E-04 2.1E-04 0.0096 0.0095 0.0098

December 1.1E-04 1.7E-04 1.6E-04 0.0110 0.0095 0.0093

After analyzing the results of RBFN for the 36-Grouped datasets (Table 9), it can be highlighted that the NMSE values were, 

in general terms, lower than those obtained by the regression techniques on the same data and better than the results obtained 

by RBFN on the 12-Month dataset (Table 5). In a similar way to Table 8, cluster C3 obtained the lowest NMSE in 8 (out of 12) 

months. Obviously, execution times were in this case also smaller, as the data had been split into 3 different clusters. If these 

results are compared with those obtained in Table 4, a better NMSE was only obtained in cluster C3. Once again, the results 

underline that the lowest NMSE values were obtained in March.

Table 10. MLP results for the 10 folds of the 36-Grouped datasets.

NMSE - Mean
Month Cluster

LM GDX RB SCG BR

C1 4.7E-05 1.8E-03 9.5E-04 2.8E-05 3.4E-05

C2 8.2E-05 4.5E-03 8.6E-04 1.0E-04 1.0E-04January

C3 2.3E-05 1.6E-03 3.7E-04 7.1E-06 7.9E-06
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C1 5.5E-05 2.1E-03 8.5E-04 2.4E-05 6.3E-05

C2 5.8E-05 3.0E-03 8.8E-04 7.7E-05 6.1E-05February

C3 6.7E-06 1.3E-03 4.1E-04 6.2E-06 3.6E-06

C1 1.1E-04 1.8E-03 1.1E-03 2.6E-05 8.9E-05

C2 9.1E-05 2.8E-03 6.9E-04 1.1E-04 9.0E-05March

C3 1.0E-06 1.1E-03 2.6E-04 1.8E-06 9.9E-07

C1 8.5E-07 1.8E-03 3.4E-04 1.8E-06 6.9E-07

C2 4.7E-07 9.2E-04 4.6E-04 9.6E-07 5.6E-07April

C3 2.4E-04 3.5E-03 2.3E-03 4.1E-05 8.2E-04

C1 3.1E-05 2.2E-03 9.0E-04 4.4E-05 3.0E-05

C2 4.7E-05 1.3E-03 4.9E-04 6.4E-05 5.5E-05May

C3 1.3E-05 1.1E-03 2.3E-04 2.1E-05 2.0E-05

C1 9.1E-05 3.3E-03 7.7E-04 3.7E-05 2.8E-05

C2 6.9E-05 1.7E-03 5.8E-04 8.1E-05 7.5E-05June

C3 1.5E-05 5.6E-04 2.2E-04 1.5E-05 9.6E-06

C1 3.1E-05 1.8E-03 6.8E-04 3.9E-05 3.1E-05

C2 7.7E-05 1.5E-03 6.2E-04 9.1E-05 8.7E-05July

C3 2.7E-05 1.4E-03 1.9E-04 1.9E-05 1.5E-05

C1 3.3E-05 1.9E-03 1.1E-03 3.4E-05 2.2E-05

C2 5.0E-05 2.7E-03 7.6E-04 6.1E-05 5.4E-05August

C3 1.7E-05 6.9E-04 2.4E-04 1.6E-05 1.1E-05

C1 3.7E-05 1.2E-03 5.4E-04 3.8E-05 2.8E-05

C2 6.9E-05 1.6E-03 4.7E-04 9.2E-05 7.8E-05September

C3 2.0E-05 8.1E-04 2.5E-04 1.9E-05 1.2E-05

C1 1.0E-04 1.4E-03 8.6E-04 4.0E-05 1.5E-04

C2 2.5E-04 1.9E-03 6.4E-04 6.9E-05 6.3E-05October

C3 1.9E-06 1.4E-03 4.3E-04 3.5E-06 2.2E-06

C1 7.0E-05 2.1E-03 1.3E-03 2.9E-05 8.2E-05

C2 3.1E-04 2.1E-03 1.1E-03 1.1E-04 1.4E-04November

C3 9.3E-06 2.4E-03 6.0E-04 2.7E-05 3.2E-05

December C1 5.8E-05 1.4E-03 1.5E-03 2.4E-05 7.2E-05
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C2 1.3E-04 2.4E-03 1.1E-03 4.4E-05 3.9E-05

C3 3.3E-04 2.0E-03 5.6E-04 9.5E-06 1.8E-05

The results of applying the MLP to the 36-Grouped datasets are shown in Table 10. The best results (according to the mean 

NMSE) were obtained when applying the BR algorithm, and similar ones were obtained by the LM algorithm. In a similar way 

to Table 6, both algorithms obtained the best results, with slightly better results from the clustered data (mainly cluster C3).

Figures 5 and 6 show the boxplots corresponding to the data in Table 10. In Figure 5, the results are grouped by cluster 

(including all the months, folds and algorithms) and in Figure 6 they are grouped by training algorithm.

Fig. 5 Boxplot of the results in Table 8, grouped by Clusters.

It can be seen from Fig. 5 that cluster C3 has the lowest mean and deviation, while cluster C1 has the highest deviation and 

cluster C2 the highest mean NMSE.
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Fig. 6 Boxplot of the MLP results (by training algorithm) when applied to the 36-Grouped Datasets.

In Fig. 6, the training algorithms, LM, SCG, and BR with the lowest mean values of NMSE and the smallest deviations can be 

clearly seen.

Fig. 7 shows the fitting between the predicted values (red solid line) and the real output (blue dashed line) for October, when 

applying the MLP with the BR training algorithm. The error for each data point is also shown (black stars).
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Fig. 7: Fit between the October dataset and the BR training algorithm (MLP).

The MLP results in this study (Tables 6 and 10) were better than those obtained by the original HIS. The predicted values were 

also of greater accuracy, thanks to the local model regressions (clustering with k-means algorithm) that were applied. It is 

important to emphasize the differences found between the five training algorithms applied, not only in the execution times but 

in the NMSE that was obtained. Also, the applications of CV techniques together with the multiple executions of each 

experiment, together with the adjustment of the parameters in both RBF and MLP, all contribute to make these results possible.

5 Conclusions and Future Work

The present study has attempted to forecast the energy generated within a solar thermal system by performing a regression on 

the objective feature. 

The dataset (six inputs and an output) has been tested with 2 multiple regression (linear and non-linear) techniques and 2 

neural models (RBFN and MLP trained with different algorithms) have been compared and validated through a 10-fold cross-

validation. All these techniques have been applied to the 12-month datasets and to the 36-gouped datasets (generated by 

applying the k-means clustering technique with the Cityblock distance). 

Some conclusions can be drawn from the results shown in section 4:

1. For the 12-Month datasets, without clustering (Section 4.1), very low and constant values of mean NMSE were 

obtained for the twelve months. The best results were obtained when applying the MLP trained with the BR and 

the LM training algorithms (Table 6). The MLR and MN-LR regression techniques obtained the worst results 

(Table 4).

2. The results for the 36-Grouped datasets, Section 4.2, were in general terms slightly better than those described in 

Section 4.1, The ANNs (RBFN and MLP) obtained better results than the regression techniques (MLR and MN-LR 

in Table 8). As happened for the previous datasets, the best results were obtained by MLP trained with the BR and 

LM algorithms (Table 10).

3. The data split in the clusters led to better results in terms of the mean NMSE for most of the data, but not in all 

cases (with respect to the results on the ungrouped data). The data clustering by k-means greatly improved the 

results when compared to the SOM that was applied in the original HIS.

Future work will focus on predicting the energy generated by some other renewable sources as well as applying more advanced 

regression models to reduce prediction error.

Funding: This research has received no specific grant from funding agencies in the public, commercial, or not-for-profit 

sectors.
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