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A B S T R A C T

This work shows an attitude estimator (AE) based on a time-varying Kalman filter (TVKF) and adapted to those
cases where a low-acceleration assumption can be applied. This filter is an extended version of a previously
published time-varying Kalman filter attitude estimator (TVKAE). A comparative analysis of the accuracies of
those two estimators is provided. The efficiencies of both filters are also compared with those of other published
AEs. The results show that the new AE achieves the best overall performance, followed by the original one.
1. Introduction

Magnetic, angular rate, and gravity (MARG) sensors are widely used
in attitude estimation through different sensor fusion implementations.
The majority of those sensor fusion algorithms are either Kalman filters
(KF) or complementary filters (CF). MARGs are devices made up of
triads of magnetometers, accelerometers, and rate-gyros. The most
common method of estimating orientation is by integrating the mea-
sured angular velocity data obtained from those gyroscopes. The initial
conditions for integration are usually computed at rest by estimating
the absolute orientation. For that, the local gravity vector is obtained
from the accelerometer measurements, and the vector of the Earth’s
magnetic field from the magnetometer. However, MARG rate-gyro mea-
surements are known to produce drift in the orientation estimation due
to the integration of two components: a slowly changing bias instability
and a higher frequency noise variable called angular random walk [1].
hat drift is often corrected over time using the accelerometer and
agnetometer measurements. However, accelerometers are sensitive to
oth gravity and acceleration, which is a consequence of the motion
ynamics of the body to which the sensor is attached. Therefore, any
ccelerometer measurement is the sum of gravity and acceleration.
onsequently, any assumption that acceleration measurements come
nly from gravity should lead to a loss of accuracy under dynamic
onditions. However, there are many practical application cases in
hich the low acceleration assumption applies. In those cases, the time-
veraged value of the accelerometer measurement is considered to be
qual to gravity, and the approximation of neglecting the acceleration
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due to motion works well. Examples of these applications range from
industrial [2], medical [3,4], robotics [4,5], human motion and pose
[6–9], or UAV navigation and control [9–11], among others. All these
cases use the gravity value resulting from the direct measurement of ac-
celerometers to estimate the attitude. In other words, in the above cited
works the accelerometer signal is modeled as a noisy measurement of
gravity.

The TVKAE presented in [12] is an AE that represents orientation
and orientation changes using quaternions, models the dynamics of
the process using time-varying matrices, and composes a specific state
vector that is built up of measurable physical quantities, including
acceleration. The original formulation of the Kalman filter [13] does
not prevent the algorithm’s matrices from varying with time. The Time-
Varying Kalman Filter family (TVKF) takes advantage of this fact by
using time-varying matrices to avoid some drawbacks of other non-
linear approaches. For example, the evaluation of nonlinear functions,
nonlinear transformation of the Gaussian Random Variable (GRV),
Jacobian calculations in EKF type implementations, computational time
overhead due to state–vector augmentation in sigma-point implementa-
tions, or cost of stochastic filters computation in 𝑆𝑂(3) in Birmingham
Filters (BF) [14]. The TVKFs have been used in many applications, such
as the estimation of the combustion torque on Diesel engines [15],
predicting the remaining useful life of bearings [16], the dynamic track-
ing in frequency-scanning interferometry [17], or the fault detection in
permanent magnet synchronous generators [18], among others. There
are few examples of the application of TVKFs in attitude estimation,
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such as the work of Bryson [19] or that of Gebre-Egziabher [20]. In
most of the papers just mentioned, the matrices that vary with time
are those of error covariance. Nevertheless, in the case of the TVKAE
in [12], the Kalman gain matrix is also time-varying.

As mentioned before, the TVKAE that concerns the present work
includes the acceleration within its state vector. That can be advanta-
geous in some circumstances, as for estimating the attitude of bodies
having dynamics where the mean of the accelerometer measurements
does not coincide with gravity. However, this convenience is ineffective
in cases of low acceleration where its time-averaged value is zero. That
is often the case in many applications of interest, such as human body
motion tracking and other applications of increasing interest in recent
years. One of the objectives of this work is to present an estimator based
on this TVKAE and adapt it for those cases of low acceleration. To do
this, the initial formulation of that TVKAE is expanded by adding a new
parameter helping to achieve that goal. Switching from the original
formulation to the low-acceleration filter merely requires changing the
value of this parameter from one to zero. In the case of implementing
the new filter inside a MEMS device, it would be possible to simplify its
internal matrices to reduce code size and increase computation speed.
That is not necessary now because the comparisons use a high-level
computing language and intend to be as simple and direct as possible.

The second objective of this work is to compare the behavior of
the two TVKAE estimators, firstly with each other and then with some
other EAs. For this, the two sets of experiments conducted in Deibe et
al. [12] are used, in addition to an extensive comparison based on other
published studies containing data, algorithms, and results for other EAs.

Numerous studies appear in the literature aimed at comparing and
evaluating various sensor fusion algorithms for attitude determination,
such as [21–25]. In general, the results published in these comparative
studies can be quite different from each other. Those divergences arise
from their different experimental conditions and the various settings
on the parameters and operating conditions of the different algorithms.
Among all these studies, the work by Caruso et al. [25] is one of the
most complete and consistent. It also includes an extensive review of
many of these works and presents an exhaustive summary of their
results. In addition, the authors conduct a comprehensive experimental
accuracy benchmarking of ten well-known and accepted attitude es-
timators, establish a normalized tuning method to obtain the optimal
parameters of each filter, and provide a good amount of experimental
data with the corresponding ground truth. These data and methodology
belong to the realm of human body motion tracking and have been
made accessible by their authors in public repositories. Consequently,
the data, methods, and results presented in Caruso’s work perfectly fit
the purpose pursued. Therefore, they are going to be used in this work.

The work by Caruso et al. compares five Kalman and five comple-
mentary filters. The Kalman filters are those presented in [8] (SAB), [7]
(LIG), [26] (VAK), [27] (GUO), and the MathWorks implementation of
[28] (MKF). The complementary filters are those in [29] (MAH), [30]
(MAD), [31] (VAC), [32] (SEL), and the MathWorks implementation of
AC with only two parameters (MCF). The experimental data necessary
or the comparative evaluation of the precision of these ten AEs were
ecorded using three commercial MARG products when performing
hree maneuvers with them at three different rotational speeds. As
round truth, the orientation provided by a stereophotogrammetric
SP) camera system was used. The performance of the AEs was eval-
ated after the adjustment of optimal parameters, minimizing the root
ean square value (RMS) of the orientation error when compared to
he ground truth for each maneuver. Errors obtained using the default
arameter values for each estimator were also calculated. This way,
he impact of using generic and unadjusted parameter values for each
xperimental scenario is highlighted. Additionally, they accomplished
preliminary evaluation of computational efficiency in terms of CPU
ime spent by each AE. The authors have made the sensor fusion
lgorithms publicly available online, along with the complete dataset.
2

The Section 2 briefly describes the estimator, highlighting the rel-
vant aspects for the development of this work and describing the
odifications mentioned earlier in this introduction. In the Section 3,
comparison is first made between the two TVKAE estimators using
he two experiments presented in [12]. Afterwards, Section 4 presents
a comparative test of the accuracy of the two TVKAE and the other
ten filters analyzed in the work of Caruso et al. [25]. Finally, the
conclusions of this work are presented.

2. Filter algorithm

As stated above, the AE presented here is an improved version of
the published TVKAE. This section briefly describes it. More details
on that algorithm can be found in [12]. In addition, the necessary
modifications in the formulation to adapt the filter to situations of
negligible acceleration are introduced.

On each iteration, the algorithm first evaluates the new values of the
time-varying matrices 𝜱𝑘 and 𝐇𝑘. Then, it performs a prediction stage
by following the formulation of the original KF [13]:

𝐱̂−𝑘 = 𝜱𝑘𝐱̂𝑘−1
𝐏−
𝑘 = 𝜱𝑘𝐏𝑘−1𝜱𝑇

𝑘 +𝐐𝑘
(1)

and a correction stage:

𝐊𝑘 = 𝐏−
𝑘𝐇

𝑇
𝑘
(

𝐇𝑘𝐏−
𝑘𝐇

𝑇
𝑘 + 𝐑𝑘

)−1

𝐱̂𝑘 = 𝐱̂−𝑘 +𝐊𝑘
(

𝐳𝑘 −𝐇𝑘𝐱̂−𝑘
)

𝐏𝑘 =
(

𝐈 −𝐊𝑘𝐇𝑘
)

𝐏−
𝑘

(2)

The iteration completes with a normalization stage. This KF algo-
ithm uses this prediction–correction scheme to recursively estimate 𝐱𝑘.
atrices 𝜱𝑘 and 𝐇𝑘 are time-varying and, consequently, 𝐏𝑘 and 𝐊𝑘.
atrices 𝜱𝑘 and 𝐇𝑘 are computed at each time-step without using any
onlinear function.
In the following equations, a left superscript is used to note the

eference system: ∗𝑏 denotes the body and ∗𝑒 the earth systems. The
arth reference is a North-East-Down (NED) local coordinate system
aving the 𝑋 axis (𝐞𝑥) pointing to the magnetic North.
The state vector 𝐱𝑘 is made up of three vectorial quantities that

efine the dynamics of the tracked body: acceleration, orientation, and
otation. It can be expressed as:

𝐱𝑘 =
(

𝐚𝑒 𝑘 𝐪𝑒 𝑘 𝐯𝑏 𝑟,𝑘

)𝑇
(3)

here:

• 𝐚𝑒 𝑘 =
(

𝑎𝑥 𝑎𝑦 𝑎𝑧
)𝑇 is the acceleration vector,

• 𝐪𝑒 𝑘 =
(

𝑞1 𝑞2 𝑞3 𝑞4
)𝑇 is a quaternion keeping track of the

estimation of the body orientation, and
• 𝐯𝑏 𝑟,𝑘 =

(

𝑣𝑥 𝑣𝑦 𝑣𝑧
)𝑇 is the vectorial part of the rotation quater-

nion 𝐪𝑏 𝑟 =
(

𝜔0, 𝐯𝑏 𝑟
)

representing the orientation change in body
coordinates between previous and actual state.

𝐪𝑒 𝑘 and 𝐪𝑏 𝑟 are quaternions expressing orientation and orientation
changes, so the algorithm must ensure that both remain unitary, for
which the final normalization stage of the algorithm has been included.

The measurement vector, 𝐳𝑘, is composed from the outputs of three
triaxial sensors:

𝐳𝑘 =
(

𝒂𝑏 𝑘 𝐦𝑏 𝑘 𝝎𝑏 𝑘
)𝑇 (4)

being

• 𝒂𝑏 𝑘 the outputs of an accelerometer,
• 𝐦𝑏 𝑘 the earth magnetic field measured with a magnetometer, and
• 𝝎𝑏 the vectorial angular velocity from a rate–gyro.
𝑘
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Matrix 𝜱 in Eq. (1) is time-varying. It expresses the predicted
hange in the state vector, and it is built as block diagonal:

= diag(𝜱11 𝜱22 𝜱33) (5)

Block 𝜱11 performs the predicted change in acceleration 𝐚𝑒 𝑘. In the
original formulation the acceleration is assumed to remain constant in
the prediction phase. In the present formulation a new parameter 𝛽 has
been introduced:

𝜱11 = 𝛽 𝐈3×3 ⇒ 𝐚𝑒 𝑘+1 ← 𝛽 𝐚𝑒 𝑘 (6)

This equation matches the original TVKAE filter formulation (TV1
rom now on) only when 𝛽 equals one. That is, when the acceleration
emains constant at the prediction stage. The new formulation, with
= 0 (TV0), implements the low acceleration assumption. In this case,
he 𝜱11 block becomes null. The other two blocks of the 𝜱 matrix
emain the same as in TV1.
The angular velocity is assumed to remain unchanged in the predic-

ion stage. This dictates the expected change in orientation:

22 ⋅ 𝐪𝑒 = 𝐪𝑒 ⊗
(

𝜔0
𝐯𝑏 𝑟

)

=
(

𝜔0 ⋅ 𝐈44 +𝜴
)

⋅ 𝐪𝑒 (7)

The use of quaternions 𝐪𝑒 and 𝐪𝑏 𝑟 instead of, for example, rotation
atrices or Euler angles, is crucial in these steps as it allows express-
ng orientation changes and rotations as vector–matrix products, thus
reserving the original KF formulation:

22 = 𝜔0𝐈44 +𝜴 ⇒ 𝐪𝑒 𝑘+1 ← 𝜱22 ⋅ 𝐪𝑒 𝑘 (8)

changes with 𝐯𝑏 𝑟 (for more details, see [12]).
And finally, 𝜱33 predicts the evolution of the angular velocity.

uring this stage, it is expected to remain constant, as explained, so:

33 = 𝐈3×3 ⇒ 𝐯𝑏 𝑟,𝑘+1 ← 𝐯𝑏 𝑟,𝑘 (9)

The covariance matrix 𝐐 models the process noise. It is composed of
hree blocks corresponding to the three components of the state vector,
𝐚𝑘, 𝐪𝑒 𝑘, and 𝐯𝑏 𝑟,𝑘. Thus:

= diag(𝐐𝑎 𝐐𝑞 𝐐𝑟) (10)

The connection between state and measurement vectors is per-
ormed with the 𝐇 matrix, which is upper triangular and has blocks
hat relate the different parts of both vectors:

𝒂𝑏
𝐦𝑏
𝝎𝑏

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝐇11 𝐇12 𝟎
𝟎 𝐇22 𝟎
𝟎 𝟎 𝐇33

⎞

⎟

⎟

⎠

⋅
⎛

⎜

⎜

⎝

𝐚𝑒
𝐪𝑒
𝐯𝑏 𝑟

⎞

⎟

⎟

⎠

(11)

Matrices 𝐇11 and 𝐇12 depend on the orientation 𝐪𝑒 . The accelerom-
ter output is related to the acceleration vector, the orientation quater-
ion, and the gravity vector:

0
𝒂𝑏
)

= 𝐪𝑒 ∗ ⊗
(

0
𝐚𝑒

)

⊗ 𝐪𝑒 − 𝑔 ⋅ 𝐪𝑒 ∗ ⊗
(

0
𝐞𝑧

)

⊗ 𝐪𝑒 (12)

The value of the gravity vector is estimated at the start of each test,
and is expected to be invariant.

The use of quaternions to express orientation and rotation allows to
write Eq. (12) as matrix–vector and matrix–quaternion products:

𝒂𝑏 = 𝐇11 ⋅ 𝐚𝑒 +𝐇12 ⋅ 𝐪𝑒 (13)

Note that making 𝛽 = 0 in the prediction phase (Eq. (6)) nullifies the
value of the predicted acceleration 𝐚𝑒 , thus rendering the first term of
the right-hand side of Eq. (12) null. That is, if 𝛽 = 0, Eq. (12) become:
(

0
𝒂𝑏
)

= −𝑔 ⋅ 𝐪𝑒 ∗ ⊗
(

0
𝐞𝑧

)

⊗ 𝐪𝑒 = −𝑔 ⋅
(

0
𝐞𝑧𝑏

)

(14)

In this expression, it becomes clear that when 𝛽 = 0 accelerometer
easurements are directly related to the gravity vector, and the accel-
ration is neglected. As has been said, in this case, the accelerometer
3

utput can be considered a noisy measurement of the gravity field.
Fig. 1. Absolute orientation error for TV0 and TV1 and RMS values.

The magnetometer output is estimated by expressing the Earth’s
magnetic field in body coordinates. Thus, by using the orientation
quaternion:

𝐦𝑏 = ℎ ⋅ 𝐪𝑒 ∗ ⊗
(

sin 𝛼
(

0
𝐞𝑥

)

+ cos 𝛼
(

0
𝐞𝑧

))

⊗ 𝐪𝑒 (15)

As explained, 𝐞𝑥 points in the direction of the magnetic north. There-
fore, the vector of the earth magnetic field lies in the 𝑋𝑍 plane.
The angle 𝛼 is measured between the magnetic field vector and 𝐞𝑥 ,
while ℎ measures the strength of the magnetic field. Again, the use of
quaternions makes it possible to write equation (15) as a matrix–vector
roduct:

𝐦 = 𝐇22 ⋅ 𝐪𝑒 (16)

The angular velocity of the tracked body, and thus the change of
rientation in each iteration, which is expressed with quaternion 𝐪𝑏 𝑟,
s directly related to the rate–gyro readings. Only 𝐯𝑏 𝑟, the vectorial part
f 𝐪𝑏 𝑟, is needed to estimate this change in orientation:

𝝎 = 𝐇33 𝐯𝑏 𝑟 (17)

here:

33 =
2
𝛥𝑡

𝐈3×3 (18)

The MATLAB code of this filter has been made publicly available
[33].

3. Proof of concept analysis

In the article presenting TV1 [12], the results of a synthetic and
a real test case were discussed and used as proof of concept for the
estimator. These tests are used here to compare the performance of both
filters, TV0 and TV1.

In the first case, TV0 and TV1 are fed with inertial data coming
from the numerical simulation of a mechanical system: the simulation
is based on a planar double pendulum subjected to high angular speeds
and accelerations. The maneuver is numerically solved to compute the
main static and dynamic magnitudes.

In the real life test case, a MARG attached to a solid is used to sense

its movement during a maneuver.
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Fig. 2. Estimated orientation angle for TV0 and TV1 in a decoupled turn on 𝑌 axis.

3.1. Double pendulum

Consider a double compound pendulum that has its bars linked with
revolute joints. The axis of both joints are horizontal and parallel, so
the movement of both bars is in the same vertical plane. The system is
supposed to be ideal and subjected only to gravity forces. The governing
ODE numerical problem is solved, and the solution is taken as ground
truth. Synthetic measurements from a virtual MARG sensor attached
to the second link are then computed numerically. The MARG sensor
does not have the information that the movement is planar, so the
measurements are made as if it was three-dimensional. More details
about this synthetic test set-up can be found in [12].

The experiment begins with both bars in a horizontal position,
disengaged, and left to evolve freely under the action of gravity. Both
bars are 2 m long and weigh in at 1 kg. The first bar is motionless at
the start of the maneuver; the initial rotational speed of the second bar
is 20 rad s−1. This value is chosen to be high enough to show the effects
of 𝛽 = 0 in an environment of high accelerations. The ODE system is
integrated by means of an implicit second order method with a time
step size of 1 ms. The first 4.5 s of the evolutions of the second bar
are then sampled at 1 ms with a virtual IMU attached to it. Finally,
white, zero–mean, Gaussian noises are added to the sampled signals.
The STD of these noises match those of the real IMU used in the second
experiment.

These synthetic samples feed both attitude estimators, TV0 and TV1.
The estimated orientation quaternion at each time step is compared
against the ground truth. The RMS value of the angular orientation
error is computed for both estimators, leading to 2.51◦ for TV0, and
1.48◦ for TV1. That is, TV0 shows an increment in the error of the
estimated orientation angle of 70% compared to that of TV1. Fig. 1
shows the absolute difference between ground truth and estimated
orientation angle in both cases (TV0 and TV1), and it also depicts the
RMS value for both versions of the estimator.

That is the expected behavior in an experiment under high accel-
eration, jerk, and having a mean of acceleration that does not match
the gravity vector. In this kind of maneuver, assuming 𝛽 = 0 and thus
neglecting acceleration, a sub-optimal estimator outcome is expected.
That is also the case for any attitude estimator that treats accelerometer
signals as a noisy gravity measurement. The original estimator, TV1
(with 𝛽 = 1), is better suited to this scenario.
4

Table 1
RMS error for TV0 and TV1 in decoupled turns around 𝑋, 𝑌 , and 𝑍 axes.

𝑋 𝑌 𝑍 Total

𝛽 = 0 3.2◦ 3.5◦ 4.4◦ 3.3◦
𝛽 = 1 4.3◦ 4.0◦ 6.3◦ 4.3◦

3.2. Consecutive independent turns

The second experiment intends to show the ability to track actual
body movements. Several independent and sequential turning maneu-
vers are performed on a solid box equipped with a MARG sensor. The
evolution of acceleration, angular velocities, and the magnetic field
over time is measured. The ground truth only exists during the times
between turns, in which the solid remains at rest, supported by a fixed
stand. While moving, the only attitude reference is the one provided by
the estimators. Hardware specifications and methods used in this test
are detailed in the article by Deibe et al. [12].

Three independent maneuvers have been carried out in this test.
Each consists of three consecutive turns around one of the three coor-
dinate axes, with 1 s rest intervals between them. It starts with a quarter
turn in the positive direction of the axis, followed by a half turn in the
opposite direction and, again, a positive quarter turn, leaving the solid
in the initial orientation. The turning rate is of around 𝜋∕2 rad s−1.
The maneuver is successively repeated by rotating around each of
the reference axes. Between two consecutive maneuvers, there is an
interval of 5 s at rest. As the maneuvers are by hand, the specified
angles, speed, and times can only be taken as a guide. However, during
the rest intervals, the body remains still, rigidly attached to a support
that guarantees its orientation. These rest intervals are used as ground
truth, starting when the internal IMU stops registering vibrations until
motion is detected again.

Fig. 2 represents one turning maneuver around the 𝑌 axis. The
turning movements around the other two axes are similar to this. It
can be seen that TV0 and TV1 perform very similarly. The red line
represents the ground truth. As stated before, it only exists while the
body is at absolute rest. The accuracy of the ground truth is affected by
different manufacturing tolerances: the case, the circuit board supports,
the circuit itself, and the internal alignment of the MEMS device.
The accuracy is estimated to be within ±1◦. Considering the attitude
estimation error as the difference between the estimation and the
ground truth, the resulting RMS error can be seen in Table 1, for each
of the rotations around 𝑋, 𝑌 , and 𝑍, as well as for the whole maneuver.
As expected, TV0 performs better than TV1 in this type of maneuver.

To compute the attitude estimation error, the difference between
the estimated orientation quaternion and the ground truth quaternion
is computed at each time-step as a product of the first by the conjugate
of the second. From the resulting rotation quaternion, the angle is
extracted and converted to degrees. Then the RMS value of all those
error angles is computed. This method is the same used in [25], and
will be used throughout Section 4.

4. Comparative analysis

As indicated above, the present experimental analysis on the accu-
racy of the TV0 and TV1 estimators uses the information and data1
published in the studies by Caruso et al. [25,34]. Both algorithms are
applied to estimate the attitude using the data of those experimental
scenarios. The results are tested against the published ground truth to
assess their accuracy and compare it with those published for the other
ten algorithms. The methodology used to evaluate the precision of the
other ten AEs is thoroughly followed to obtain those of TV0 and TV1.

1 Version v4 of data files has been used for the present work.
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Table 2
Optimum parameters at minimum error values for each speed/hardware combination for TV0.
Device XSense APDM Shimmer

Maneuver Slow Medium Fast Slow Medium Fast Slow Medium Fast

𝐸𝑟𝑟𝑜𝑟 [◦] 1.3 1.6 1.9 3.2 3.2 4.6 2.9 2.9 5.1

𝜎𝑎 [m s−2] 5.1e−03 1.4e−02 1.6e−03 1.2e+00 5.1e+00 7.9e−10 6.5e−02 2.6e−10 4.8e−02
𝜎𝑞 6.1e−07 8.9e−07 2.7e−08 3.8e−04 4.7e−05 1.2e−07 1.3e−05 9.7e−08 9.8e−06
4.1. Experimental data

In the study by Caruso et al. three commercial MARG devices were
used, namely Xsens, APDM, and Shimmer [25]. Two units of each
were mounted on a flat board and aligned with an alignment error of
fewer than 0.2 degrees. That board was marked with eight reflective
spherical markers to provide orientation references whose trajectories
were acquired by an SP system having 12 infrared cameras. Singular
value decomposition was used to estimate the orientation over time
[35]. The resulting gold standard orientation, or ground truth, has an
accuracy of 0.5 degrees and was expressed using a quaternion.

The ground truth and the data from all the MARGs were stored in
three available dynamic recordings, corresponding to three maneuvers
with three different angular velocity conditions. Those are called slow,
medium, and fast. The board was moved by hand, covering all three
rotational degrees of freedom in all three maneuvers while performing
single and triaxial rotations. Then, the RMS of the rotational speed was
numerically obtained, yielding 120◦ s−1 (slow), 260◦ s−1 (medium),
and 380◦ s−1 (fast). Given the specifications provided and the rotation
speeds indicated, the denominations slow, medium, and fast make sense
when in the realm of human body motion tracking. Consequently,
for all three maneuvers using the low acceleration assumption is still
appropriate. All AEs in the comparison make use of this assumption,
but TV1.

The results obtained when evaluating the performance of these ten
algorithms have also been made available. These published results are
used directly in the present work to compare them with those obtained
for TV0 and TV1. The methodology used to assess the accuracy of the
other ten AEs is also followed to evaluate those two. The first step is to
identify the optimal parameter values. That is, the values that provide
minimum errors for each of those two estimators in the nine possible
combinations of maneuver speeds and MARG hardware.

4.2. Parameter optimization

Any AE requires adjusting some parameters to work accurately. This
setting not only depends on the estimator but also on the type of ma-
neuver performed and the MARG device used. Optimizing the parame-
ters will provide the minimum RMS orientation error in each scenario.
In the reference work [25], the maximum number of parameters to be
optimized was restricted to only two for each AE. Optimization was
performed for each of the nine experimental scenarios using actual SP
attitude data as ground truth.

In the case of the filter presented in Section 2, there are three
relevant parameters that can be adjusted, the standard deviations 𝜎𝑎,
𝜎𝑞 , and 𝜎𝑞𝑟 of acceleration 𝐚𝑒 , orientation quaternion 𝐪𝑒 , and rotation
quaternion 𝐪𝑒 𝑟, respectively. A preliminary sensitivity study has shown
that the most relevant parameters are the standard deviations 𝜎𝑎 and
𝑞 . Therefore, these two parameters are chosen to be optimized in each
xperimental scenario. All other parameters are set to default values.
The first step toward choosing those two parameters is to find an

ptimal tuning setting for each experimental scenario. That is, deter-
ining which pair of values of these two parameters minimize the RMS
rientation error for each case. That allows evaluating what estimator
uning yields the best performance. Table 2 presents the optimal values
f 𝜎𝑎 and 𝜎𝑞 leading to the best overall performance of TV0 in the nine
5

xperimental scenarios. The table also shows the value of that error for
Fig. 3. TV0 optimal regions for the nine experimental scenarios.

each case. The values of 𝜎𝑎 and 𝜎𝑞 presented in the table are those used
in the attitude estimation calculations in each scenario.

An optimal region is defined from the optimal values of the two
chosen parameters. It covers the area in the two-parameter plane for
which the RMS orientation error is less than the lowest error plus
0.5 degrees, which corresponds to the uncertainty of the SP providing
the ground truth. Fig. 3 represents the nine optimal regions for TV0.
Optimal regions are represented with a different color for each scenario.
Those regions have been calculated with an accuracy of ±0.001◦.

In that figure there is no common intersection between all optimal
regions. Which is also the case for all other algorithms but MKF [25].
All this confirms that there are no set of parameters that optimizes
the orientation error for all scenarios. After MKF, TV0 is the one that
presents a better grouping and intersection between the nine optimal
regions.

4.3. Results and discussion of the accuracy comparison test

After identifying the optimal values of the two parameters cor-
responding to each of the nine experimental scenarios for TV0 and
TV1, the absolute errors of attitude estimation have been calculated.
These calculations have followed the same procedure used by Caruso
et al. [25] to compute the orientation estimation error. The results are
compared in Fig. 4 with those published there for the other ten AEs.

As expected, TV0 gives better results than TV1. That is the case in all
experimental scenarios except for medium and fast APDM maneuvers,
where they behave almost similarly. Notably, TV0 is the algorithm
with the highest accuracy. It performs best in all the comparisons,
except in the medium maneuver with APDM, for which it acts worse

than TV1. Also, it matches VAK using Xsens hardware in the slow and
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Table 3
Mean and STD error for each algorithm.
Type TVK Kalman Complementary

AE TV0 TV1 SAB LIG VAK GUO MKF MAH MAD VAC SEL MCF

Mean error [◦] 3.0 3.6 4.8 3.8 4.5 5.8 6.0 4.6 4.8 6.6 5.3 7.1
STD error [◦] 1.3 1.5 2.4 1.4 2.8 3.7 2.2 2.1 2.2 2.9 2.4 2.9
Fig. 4. Comparison of the performance of all AE algorithms.

medium maneuvers and LIG and TV1 in the fast ones, using APDM
and Shimmer, respectively. It is also worth noting that TV1 is among
the best performers, despite being the only one not planned for low
acceleration.

The results of Fig. 4 are collected in Table 3. The showed mean
and STD values of the errors for each algorithm are estimated com-
bining those coming from every hardware–speed combination of the
experiment. This table complements the one published in Caruso [25],
adding the results for TV0 and TV1. As can be seen in Table 3, TV0
is the estimator with the lowest mean error, followed by TV1. Also,
TV1 STD is lower than all but LIG, and TV0 has the lowest STD of all
algorithms.

Fig. 5 shows box plots for the RMS errors (in degrees) of each al-
gorithm over the nine different speed/ hardware combinations. Again,
although TV1 is not well suited for this kind of manoeuvres, it is better
than all algorithms but LIG. TV0 shows the best performance of all
algorithms.

4.4. Computational efficiency

An analysis of the computational efficiency of the filters tested
in this article is performed here by measuring the time each of the
filters needs to execute the complete simulation of one maneuver. A
full simulation comprises all tasks, from reading data to final error
estimation operations. The assessment compares the average time of
each algorithm to finish four complete runs of the slow maneuver. For
all filters except TVKs, the Matlab code provided by Caruso et al. [25],
as found in their repository, is used without any alteration. For the
TVKs, the Matlab code published in the repository [33], is used. Since
in this code there is no difference in terms of computation time when
a specific value of the 𝛽 parameter is chosen in the TVK, the run was
6

performed only for 𝛽 = 0 (TV0). The execution of each code has been
Fig. 5. Box plot for the error of TVKAE, Kalman filter and complementary filter
algorithms.

done on an Intel Core i7-6th Gen @ 4.00 GHz Microsoft Windows 10
computer. Table 4 shows the execution time values, both in absolute
terms and normalized with those required by TV0.

These results cannot be considered a precise measure of efficiency
due to the heterogeneity in the implementations and fundamentals of
each algorithm; and because there was no tuning effort to optimize
the code. Nevertheless, they can be taken as a rough comparison of
efficiency. With this caution, the performance of TVK is remarkable, as
the results show that it is the best Kalman-based AE but GUO. But this
algorithm is explicitly designed by its authors to work fast, although it
is not very precise (see Fig. 4). In general, complementary filters are
faster than Kalman filters due to their mathematical implementation.
Therefore, it is also worth noting that the TVKF performs better than
two of the CFs, even though the MATLAB implementation of TVK is not
optimized by the authors to run fast.

5. Conclusion

This work presents a TVKF-based attitude estimator. The algorithm
is an extended version of the AE by Deibe et al. [12] that adapts
better to negligible acceleration cases. The extended version of the
filter is developed by including a new weighting parameter. When
this weight is unity, the filter retains its original algorithm. Setting it
to zero leads to a version adapted to low acceleration. Additionally,
some peculiarities have been discussed concerning the handling of
acceleration and gravity when this parameter is zero. The MATLAB
code of the resulting TVKF has been made publicly available [33].

The accuracy of the two TVKAEs is first compared using two pub-
lished experiments. The first is a simulation in which the solution of
the ODEs that govern the movement of a compound pendulum is the
ground truth. In this case, the accelerometer measurement does not
match gravity, and TV1 performs 69.7% better than TV0. The second
experiment follows the motion of a solid body rotated by hand. In
this case, the average value of the accelerometer measurements does
coincide with gravity, and it is TV0 that performs 23% better than
TV1. Then, a comprehensive comparative analysis is made with the
published results of other estimators when applied to cases of low
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Table 4
Execution time for every algorithm.
Time TVK Kalman Complementary

[s] SAB LIG VAK GUO MKF MAH MAD VAC SEL MCF

Absolute 1.93 2.20 19.30 2.70 0.92 16.68 0.94 1.02 1.09 2.67 21.24
Relative 1.00 1.14 10.00 1.40 0.48 8.65 0.49 0.53 0.56 1.38 11.01
acceleration. This comparative analysis uses a standard benchmark
corresponding to this field and its data. These have been published
together with the codes and results obtained with ten estimators: five
Kalman filters and five complementary filters. That comparison shows
that the new filter works better than the original. In addition, it has the
best accuracy and STD among the twelve filters used in the assessment.
Remarkably, the original version of the AE ranks second despite being
the only one not devised for low accelerations.

A rough analysis of the computational efficiency is also presented.
This analysis uses the published MATLAB code of all the mentioned
AEs. For this study, the structure of TV0 has been kept identical to that
of TV1. Therefore, the execution of both versions of TVKAE requires
the same number of operations. Thus, in this computational efficiency
study, only one version is used. It has been noted that the code of one
of the KFs is optimized to improve computational speed. All the others,
including TVKAE, have not been optimized in this regard. The analysis
shows that the TVK is quicker than all the KFs, except the optimized
one, and it is also faster than two of the CF.

CRediT authorship contribution statement

Álvaro Deibe Díaz: Conceptualization, Methodology, Software,
Writing – original draft, Writing – review & editing. José A. An-
tón Nacimiento: Software, Validation, Formal analysis, Visualization.
Jesús Cardenal: Software, Validation, Formal analysis, Visualization,
Writing – review & editing. Fernando López Peña: Supervision, Data
curation, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The MATLAB code of the proposed algorithm has been made pub-
licly available [33].

Acknowledgments

This research has been financed by the Xunta de Galicia and the Eu-
ropean Regional Development Funds through grant EDC431C-2021/39,
the Spanish Ministry of Education and Science under grants PID2021-
126220OB-100 and TED2021-129847B-I00.

References

[1] Oliver J. Woodman, An Introduction To Inertial Navigation, Technical Report
696, University of Cambridge, Computer Laboratory, 2007.

[2] Weijie Zhang, Jun Xiao, HePing Chen, YuMing Zhang, Measurement of three-
dimensional welding torch orientation for manual arc welding process, Meas.
Sci. Technol. 25 (3) (2014) 035010, http://dx.doi.org/10.1088/0957-0233/25/
3/035010.

[3] Nima Enayati, Elena De Momi, Giancarlo Ferrigno, A quaternion-based unscented
Kalman filter for robust optical/inertial motion tracking in computer-assisted
surgery, IEEE Trans. Instrum. Meas. 64 (8) (2015) 2291–2301, http://dx.doi.
org/10.1109/TIM.2015.2390832.

[4] M.H. Korayem, M.A. Madihi, V. Vahidifar, Controlling surgical robot arm using
leap motion controller with Kalman filter, Measurement (ISSN: 0263-2241) 178
(2021) 109372, http://dx.doi.org/10.1016/j.measurement.2021.109372.
7

[5] Alexander McGregor, Gordon Dobie, Neil R. Pearson, Charles N. MacLeod,
Anthony Gachagan, Determining position and orientation of a 3-wheel robot
on a pipe using an accelerometer, IEEE Sens. J. (ISSN: 1530-437X) 20
(9) (2020) 5061–5071, http://dx.doi.org/10.1109/JSEN.2020.2964619, (2379)
1558-1748-9153.

[6] Nasim Hajati, Amin Rezaeizadeh, A wearable pedestrian localization and gait
identification system using Kalman filtered inertial data, IEEE Trans. Instrum.
Meas. 70 (2021) 1–8, http://dx.doi.org/10.1109/TIM.2021.3073440.

[7] Gabriele Ligorio, Angelo M. Sabatini, A novel Kalman filter for human motion
tracking with an inertial-based dynamic inclinometer, IEEE Trans. Biomed. Eng.
62 (8) (2015) 2033–2043, http://dx.doi.org/10.1109/TBME.2015.2411431.

[8] Angelo Maria Sabatini, Estimating three-dimensional orientation of human body
parts by inertial/magnetic sensing, Sensors (ISSN: 1424-8220) 11 (2) (2011)
1489–1525, http://dx.doi.org/10.3390/s110201489.

[9] Zeyang Dai, Lei Jing, Lightweight extended kalman filter for marg sensors
attitude estimation, IEEE Sens. J. 21 (13) (2021) 14749–14758, http://dx.doi.
org/10.1109/JSEN.2021.3072887.

[10] Chingiz Hajiyev, Demet Cilden-Guler, Ulviye Hacizade, Two-stage Kalman filter
for fault tolerant estimation of wind speed and uav flight parameters, Meas. Sci.
Rev. 20 (1) (2020) 35–42, http://dx.doi.org/10.2478/msr-2020-0005.

[11] Dingjie Wang, Yi Dong, Qingsong Li, Jie Wu, Yule Wen, Estimation of small uav
position and attitude with reliable in-flight initial alignment for mems inertial
sensors, Metrol. Meas. Syst. 25 (3) (2018) 603–616, http://dx.doi.org/10.24425/
123904.

[12] Álvaro Deibe, José Augusto Antón Nacimiento, Jesús Cardenal, Fernando
López Peña, A Kalman filter for nonlinear attitude estimation using time variable
matrices and quaternions, Sensors 20 (23) (2020) 6731, http://dx.doi.org/10.
3390/s20236731.

[13] Rudolph Emil Kalman, A new approach to linear filtering and prediction
problems, Trans. ASME (ISSN: 0021-9223) 82 (Series D) (1960) 35–45, http:
//dx.doi.org/10.1115/1.3662552.

[14] Weixin Wang, Peter G. Adamczyk, Comparison of bingham filter and extended
kalman filter in imu attitude estimation, IEEE Sens. J. 19 (19) (2019) 8845–8854,
http://dx.doi.org/10.1109/JSEN.2019.2922321.

[15] Jonathan Chauvin, Gilles Corde, Philippe Moulin, Michel Castagne, N. Petit,
Pierre Rouchon, Real-time combustion torque estimation on a diesel engine test
bench using time-varying Kalman filtering, in: Proceedings of the 43rd IEEE
Conference on Decision and Control (CDC) (IEEE Cat. No. 04CH37601), Volume
2, ISBN: 0-7803-8682-5, 2004, pp. 1688–1694, http://dx.doi.org/10.1109/CDC.
2004.1430287.

[16] Lingli Cui, Xin Wang, Huaqing Wang, Jianfeng Ma, Research on remaining useful
life prediction of rolling element bearings based on time-varying Kalman filter,
IEEE Trans. Instrum. Meas. 69 (6) (2020) 2858–2867, http://dx.doi.org/10.1109/
TIM.2019.2924509.

[17] Xingyu Jia, Zhigang Liu, Long Tao, Zhongwen Deng, Frequency-scanning interfer-
ometry using a time-varying Kalman filter for dynamic tracking measurements,
Opt. Express 25 (21) (2017) 25782–25796, http://dx.doi.org/10.1364/OE.25.
025782.

[18] Karim Beddek, Adel Merabet, Mohamed Kesraoui, Aman A. Tanvir, Rachid
Beguenane, Signal-based sensor fault detection and isolation for PMSG in wind
energy conversion systems, IEEE Trans. Instrum. Meas. 66 (9) (2017) 2403–2412,
http://dx.doi.org/10.1109/TIM.2017.2700138.

[19] Arthur E. Bryson, Kalman filter divergence and aircraft motion estimators, J.
Guid. Control 1 (1) (1978) 71–79, http://dx.doi.org/10.2514/3.55745.

[20] D. Gebre-Egziabher, G.H. Elkaim, J.D. Powell, B.W. Parkinson, A gyro-free
quaternion-based attitude determination system suitable for implementation us-
ing low cost sensors, in: IEEE 2000. Position Location and Navigation Symposium
(Cat. No. 00CH37062), 2000, pp. 185–192, http://dx.doi.org/10.1109/PLANS.
2000.838301.

[21] Alexander David Young, Comparison of orientation filter algorithms for realtime
wireless inertial posture tracking, in: 2009 Sixth International Workshop on
Wearable and Implantable Body Sensor Networks, IEEE, 2009, pp. 59–64, http:
//dx.doi.org/10.1109/BSN.2009.25.

[22] Panos Marantos, Yannis Koveos, Kostas J. Kyriakopoulos, Uav state estimation
using adaptive complementary filters, IEEE Trans. Control Syst. Technol. 24 (4)
(2016) 1214–1226, http://dx.doi.org/10.1109/TCST.2015.2480012.

[23] Elena Bergamini, Gabriele Ligorio, Aurora Summa, Giuseppe Vannozzi, Aurelio
Cappozzo, Angelo Maria Sabatini, Estimating orientation using magnetic and
inertial sensors and different sensor fusion approaches: Accuracy assessment
in manual and locomotion tasks, Sensors (ISSN: 1424-8220) 14 (10) (2014)
18625–18649, http://dx.doi.org/10.3390/s141018625.

http://refhub.elsevier.com/S0263-2241(23)00293-2/sb1
http://refhub.elsevier.com/S0263-2241(23)00293-2/sb1
http://refhub.elsevier.com/S0263-2241(23)00293-2/sb1
http://dx.doi.org/10.1088/0957-0233/25/3/035010
http://dx.doi.org/10.1088/0957-0233/25/3/035010
http://dx.doi.org/10.1088/0957-0233/25/3/035010
http://dx.doi.org/10.1109/TIM.2015.2390832
http://dx.doi.org/10.1109/TIM.2015.2390832
http://dx.doi.org/10.1109/TIM.2015.2390832
http://dx.doi.org/10.1016/j.measurement.2021.109372
http://dx.doi.org/10.1109/JSEN.2020.2964619
http://dx.doi.org/10.1109/TIM.2021.3073440
http://dx.doi.org/10.1109/TBME.2015.2411431
http://dx.doi.org/10.3390/s110201489
http://dx.doi.org/10.1109/JSEN.2021.3072887
http://dx.doi.org/10.1109/JSEN.2021.3072887
http://dx.doi.org/10.1109/JSEN.2021.3072887
http://dx.doi.org/10.2478/msr-2020-0005
http://dx.doi.org/10.24425/123904
http://dx.doi.org/10.24425/123904
http://dx.doi.org/10.24425/123904
http://dx.doi.org/10.3390/s20236731
http://dx.doi.org/10.3390/s20236731
http://dx.doi.org/10.3390/s20236731
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1109/JSEN.2019.2922321
http://dx.doi.org/10.1109/CDC.2004.1430287
http://dx.doi.org/10.1109/CDC.2004.1430287
http://dx.doi.org/10.1109/CDC.2004.1430287
http://dx.doi.org/10.1109/TIM.2019.2924509
http://dx.doi.org/10.1109/TIM.2019.2924509
http://dx.doi.org/10.1109/TIM.2019.2924509
http://dx.doi.org/10.1364/OE.25.025782
http://dx.doi.org/10.1364/OE.25.025782
http://dx.doi.org/10.1364/OE.25.025782
http://dx.doi.org/10.1109/TIM.2017.2700138
http://dx.doi.org/10.2514/3.55745
http://dx.doi.org/10.1109/PLANS.2000.838301
http://dx.doi.org/10.1109/PLANS.2000.838301
http://dx.doi.org/10.1109/PLANS.2000.838301
http://dx.doi.org/10.1109/BSN.2009.25
http://dx.doi.org/10.1109/BSN.2009.25
http://dx.doi.org/10.1109/BSN.2009.25
http://dx.doi.org/10.1109/TCST.2015.2480012
http://dx.doi.org/10.3390/s141018625


Measurement 213 (2023) 112729Á. Deibe Díaz et al.
[24] Milad Nazarahari, Hossein Rouhani, 40 Years of sensor fusion for orientation
tracking via magnetic and inertial measurement units: Methods, lessons learned,
and future challenges, Inf. Fusion (ISSN: 1566-2535) 68 (2021) 67–84, http:
//dx.doi.org/10.1016/j.inffus.2020.10.018.

[25] Marco Caruso, Angelo Maria Sabatini, Daniel Laidig, Thomas Seel, Marco
Knaflitz, Ugo Della Croce, Andrea Cereatti, Analysis of the accuracy of ten
algorithms for orientation estimation using inertial and magnetic sensing under
optimal conditions: One size does not fit all, Sensors (ISSN: 1424-8220) 21 (7)
(2021) 2543, http://dx.doi.org/10.3390/s21072543.

[26] Roberto G. Valenti, Ivan Dryanovski, Jizhong Xiao, A linear Kalman filter for
marg orientation estimation using the algebraic quaternion algorithm, IEEE
Trans. Instrum. Meas. 65 (2) (2016) 467–481, http://dx.doi.org/10.1109/TIM.
2015.2498998.

[27] Siwen Guo, Jin Wu, Zuocai Wang, Jide Qian, Novel MARG-sensor orientation
estimation algorithm using fast Kalman filter, J. Sensors (ISSN: 1687-725X) 2017
(2017) 8542153, http://dx.doi.org/10.1155/2017/8542153.

[28] Daniel Roetenberg, Henk Luinge, Christian T.M. Baten, Peter H. Veltink, Com-
pensation of magnetic disturbances improves inertial and magnetic sensing of
human body segment orientation, IEEE Trans. Neural Syst. Rehabil. Eng. 13
(2005) 395–405, http://dx.doi.org/10.1109/TNSRE.2005.847353.

[29] Robert Mahony, Tarek Hamel, Jean-Michel Pflimlin, Nonlinear complementary
filters on the special orthogonal group, IEEE Trans. Automat. Control 53 (5)
(2008) 1203–1218, http://dx.doi.org/10.1109/TAC.2008.923738.
8

[30] Sebastian O.H. Madgwick, Andrew J.L. Harrison, Ravi Vaidyanathan, Estimation
of imu and marg orientation using a gradient descent algorithm, in: 2011
IEEE International Conference on Rehabilitation Robotics, 2011, pp. 1–7, http:
//dx.doi.org/10.1109/ICORR.2011.5975346.

[31] Roberto G. Valenti, Ivan Dryanovski, Jizhong Xiao, Keeping a good at-
titude: A quaternion-based orientation filter for imus and margs, Sensors
(ISSN: 1424-8220) 15 (8) (2015) 19302–19330, http://dx.doi.org/10.3390/
s150819302.

[32] Thomas Seel, Stefan Ruppin, Eliminating the effect of magnetic disturbances on
the inclination estimates of inertial sensors, IFAC-PapersOnLine (ISSN: 2405-
8963) 50 (1) (2017) 8798–8803, http://dx.doi.org/10.1016/j.ifacol.2017.08.
1534.

[33] Álvaro Deibe, José Augusto Antón Nacimiento, Jesús Cardenal, Fernando
López Peña, Time-Varying Kalman Attitude Estimator (TVKAE), GitHub
repository (2023) https://github.com/GII/TVKAE.

[34] Marco Caruso, Angelo Maria Sabatini, Marco Knaflitz, Marco Gazzoni, Ugo Della
Croce, Andrea Cereatti, Orientation estimation through magneto-inertial sensor
fusion: A heuristic approach for suboptimal parameters tuning, IEEE Sens. J. 21
(3) (2021) 3408–3419, http://dx.doi.org/10.1109/JSEN.2020.3024806.

[35] A. Cappozzo, A. Cappello, U.D. Croce, F. Pensalfini, Surface-marker cluster design
criteria for 3-d bone movement reconstruction, IEEE Trans. Biomed. Eng. (ISSN:
1558-2531) 44 (12) (1997) 1165–1174, http://dx.doi.org/10.1109/10.649988.

http://dx.doi.org/10.1016/j.inffus.2020.10.018
http://dx.doi.org/10.1016/j.inffus.2020.10.018
http://dx.doi.org/10.1016/j.inffus.2020.10.018
http://dx.doi.org/10.3390/s21072543
http://dx.doi.org/10.1109/TIM.2015.2498998
http://dx.doi.org/10.1109/TIM.2015.2498998
http://dx.doi.org/10.1109/TIM.2015.2498998
http://dx.doi.org/10.1155/2017/8542153
http://dx.doi.org/10.1109/TNSRE.2005.847353
http://dx.doi.org/10.1109/TAC.2008.923738
http://dx.doi.org/10.1109/ICORR.2011.5975346
http://dx.doi.org/10.1109/ICORR.2011.5975346
http://dx.doi.org/10.1109/ICORR.2011.5975346
http://dx.doi.org/10.3390/s150819302
http://dx.doi.org/10.3390/s150819302
http://dx.doi.org/10.3390/s150819302
http://dx.doi.org/10.1016/j.ifacol.2017.08.1534
http://dx.doi.org/10.1016/j.ifacol.2017.08.1534
http://dx.doi.org/10.1016/j.ifacol.2017.08.1534
https://github.com/GII/TVKAE
http://dx.doi.org/10.1109/JSEN.2020.3024806
http://dx.doi.org/10.1109/10.649988

	A time-varying Kalman filter for low-acceleration attitude estimation
	Introduction
	Filter algorithm
	Proof of concept analysis
	Double Pendulum
	Consecutive Independent Turns

	Comparative analysis
	Experimental data
	Parameter optimization
	Results and discussion of the accuracy comparison test
	Computational efficiency

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References




