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Abstract 

The main objective of this work is to explore the use of infrared spectrometry 
combined with the application of multivariate chemometric models to the 
quantification of the major components of natural gas and to the identification of 
plastic samples, both artificially aged and collected from coastal ecosystems. The 
articles presented here deal with different themes related with these topics. In 
particular: the application of IR-inert gases to improve the spectra of other gases 
of interest; a report evidencing a general absence of important specifications of 
the instrumental setup of environmental studies on microplastics, suggesting a 
minimum of information to be offered; and a study of the effects of aging in both 
the surface morphology and the spectral characteristics of polyamide 6.6. Finally, 
chemometric models have been developed to identify the main constituent 
polymers of microplastics and to quantify the major components of natural gas 
samples, as well as their Wobbe index. 

Resumen 

El principal objetivo de este trabajo es explorar el uso de la espectrometría 
infrarroja combinada con la aplicación de modelos quimiométricos multivariables 
para cuantificar de la composición mayoritaria de muestras de gas natural y para 
identificar muestras de plásticos, tanto envejecidos de forma artificial como 
recolectados de ecosistemas costeros. Los artículos presentados tratan sobre 
diversos aspectos relacionados con estos temas. En concreto: el uso de gases 
inertes a la radiación infrarroja para mejorar los espectros de otros gases de interés; 
un informe que evidenciando una importante ausencia de especificaciones 
instrumentales básicas en los estudios medioambientales sobre microplásticos, 
donde se sugiriere un mínimo de información a aportar; y un estudio de los efectos 
del envejecimiento en la morfología y características espectrales de la poliamida 
6.6. Finalmente, se han desarrollado modelos quimiométricos capaces de 
identificar los principales polímeros constituyentes de microplásticos y de 
cuantificar los componentes mayoritarios de muestras de gas natural, así como su 
índice Wobbe. 



Resumo 

O obxectivo principal deste traballo é explorar o uso da espectrometría 
infravermella combinada coa aplicación de modelos quimiométricos 
multivariabeis para a cuantificación da composición maioritaria de mostras de gas 
natural e a identificación de plástico, tanto envellecidos artificialmente como 
recollido de ecosistemas costeiros. Os diferentes artigos presentados tratan 
diversos aspectos relacionados con estes temas. Nomeadamente: a aplicación de 
gases inertes á radiación infravermella para mellorar os espectros doutros gases 
de interese; unha recompilación onde se constata a ausencia xeral especificacións 
instrumentais fundamentais nos estudos medioambientais de microplásticos, 
suxerindo un mínimo de información a aportar; e un estudo dos efectos do 
envellecemento na morfoloxía e características espectrais na poliamida 6.6. 
Finalmente, desenvolvéronse modelos quimiométricos capaces de identificar os 
polímeros constituíntes de microplásticos e de cuantificar os principais 
compoñentes de mostras de gas natural, ademais do seu índice de Wobbe. 
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Foreword 

 

Our Society faces analytical chemists with very diverse challenges. 
Some could be considered as more methodological, like the search for 
new sensors or analytical procedures, while others have a more 
pragmatic scope, like the quality control of industrial products. 

In this Doctoral Thesis both aspects are considered, and the suggested 
solutions combine vibrational spectrometry and chemometric 
multivariate methods to process raw data into useful information, so that 
adequate decisions can be proposed. The two studied fields are very 
different, as a consequence of the various interests and projects in which 
the Grupo de Química Analítica Aplicada (QANAP) of the University 
of A Coruña is, or has been, involved with. Both are somehow related to 
the petrochemical industry and are environmentally relevant for different 
reasons: 

1) The efficient monitoring of the quality and composition of 
natural gas for its use as an energy source. This is especially 
important in Galicia, having one of the most important 
regasification plants in Spain: Reganosa, located in Mugardos 
(Ferrol). The QANAP group has collaborated closely with them 
including a participation in the LNG 3 (16ENG09, “Metrological 
support for LNG and LBG as transport fuel”) European project, 
within the EMPIR III program. 

2) The study of the occurrence of microscopic polymeric fragments 
(microplastics) in environmental matrices is nowadays a relevant 
topic. However, their characterization in such complex matrices 
can be cumbersome, in particular because of the difficulties that 
their weathering poses in their identification. QANAP has been 
involved in several national and international projects that 
studied how to address this issue (BASEMAN (JPI Oceans 
PCIN2015-170C0202), MICROPLASTIX (PCI2020-112145), 
LABPLAS (H2020,101003954)). 
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These are the two analytical fields of study that shaped the main 
objectives of this Doctoral Thesis. 
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Objectives 

 

The major objective of this Doctoral Thesis can be summarized as the 
implementation of reliable and validated analytical methods capable of 
offering useful information by combining mid-infrared spectrometry and 
several chemometric tools. The two fields of study and their particular 
working objectives are: 

a) Natural gas 
o To improve the intensity and sensitivity of the infrared 

spectra of natural gas samples by adding inert gases. 
o To develop chemometric regression models able to 

predict the chemical composition and the Wobbe index of 
different blends of commercial natural gas samples from 
their spectra. 

b) Microplastics: 
o To identify polymers in various weathering stages using 

chemometric classification models developed from their 
reflectance and ATR infrared spectra. 

o To propose a way to standardize published information 
regarding the mid-infrared instrumental setup employed 
for microplastic studies. 

o To study the effects of weathering on the spectra of 
polyamide 6.6 (or nylon 6.6). 
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Quintáns1, Purificación López-Mahía1, Soledad Muniategui-Lorenzo1, 
María Rey-Garrote2, Cristina Vázquez-Padín2, Carlos Vales2.  

Affiliation: 

1 Grupo de Química Analítica Aplicada (QANAP), Facultade de 
Ciencias, Universidade de A Coruña, Campus da Zapateira s/n, 15071 A 
Coruña, España. 
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s/n, Mugardos, 15071 A Coruña, España. 
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Reference (APA): 

Ferreiro, B., Andrade, J. M., Paz-Quintáns, C., López-Mahía, P., 
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(2019). Improved Sensitivity of Natural Gas Infrared Measurements 
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https://doi.org/10.1021/acs.energyfuels.9b00549 

 

Article 2: New Ways for the Advanced Quality Control of Liquefied 
Natural Gas. 
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Affiliation: 
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Journal: Fuel 

Impact factor JCR: 8.035 (2022) (Q1) 
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Ferreiro, B., Andrade, J., López-Mahía, P., Muniategui, S., Vázquez, C., 
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Authors: Verónica Fernández-González, José Andrade, Borja Ferreiro, 
Purificación López-Mahía, Soledad Muniategui-Lorenzo  
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1. Overview 

 

The common thread of the publications in this Doctoral Thesis is the use 
of infrared (IR) spectrometry in the medium region (4000-400 cm-1) 
combined with multivariate regression methods for the analysis of 
complex samples. Some of them are related to an industrial setting, 
where this methodology is uncommon, while the others correspond to a 
relatively recent topic in environmental studies. Various IR techniques 
and instruments were used: “traditional” transmission Fourier-transform 
IR (FTIR) spectrometry and FTIR microscopy, in reflectance and 
attenuated total reflectance (ATR) modes. 

The explored applications are: 

 The determination of the main chemical components and the 
Wobbe index in different blends of natural gas (NG), as an 
alternative to gas chromatography (GC); which is a slower and 
more expensive method (Chapters 2, 3 and 4). 

 The analysis of micro- and macroplastics, both in field samples and 
samples weathered in laboratory controlled conditions, simulating 
seawater and sunlight exposition (Chapters 5, 6 and 7). 

Regarding NG, its analysis and monitoring is usually performed by GC. 
This is a well-established technique, with an ISO standard1, showing 
good accuracy, and low limits of detection and quantification. However, 
it has a few drawbacks, like its high analysis time, the required staff 
dedication, the consumption of reagents, and its associated economic 
cost. IR spectrometry is, however, an interesting alternative, cheaper and 
faster. Its main disadvantage, however, is the high complexity of the 
resulting spectra, generally yielding higher errors than GC in the 
quantifications and the impossibility to predict minor components 
(pentanes and hexanes), because of their low concentrations in the 
samples. To mitigate this problem, the “gas broadening effect” was 
exploited, which establishes that after mixing a gaseous sample with a 
gas inert to IR radiation (like nitrogen or argon), the recorded spectra are 
more defined and more intense2. 
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Chemometric models were developed to accurately predict the 
composition of the NG, as well as the Wobbe index, an important 
parameter that relates to the miscibility of blends of NG with different 
origins and/or compositions. Variable reduction methods were applied, 
greatly reducing the wavenumbers required to develop successful 
models. 

In microplastic analysis, a collection of nine of the most common plastics 
(both in production and applications) were studied. They were 
specifically fabricated for the BASEMAN project3. The objectives are to 
develop chemical identification methods for microplastics using mid-IR 
spectrometry, especially for those encountered in marine environments, 
as well as to standardize the information required for an adequate 
publication of the experimental setup in this field. In addition, models 
were developed to differentiate the nine types of polymers using their IR 
spectra and several multivariate chemometric methods. 

Reviewing the literature referring to microplastic analysis (up to 2020) a 
remarkable lack of homogeneity was observed in the description of the 
experimental sections. In some cases, important parameters were 
omitted, like the instrument or data processing used. This is probably due 
to the lack of standardized methods or well defined guidelines, for being 
a field of relatively recent creation and the arrival of many researchers 
with from different backgrounds with no experience in chemistry or 
spectrometry. 

Finally, chemometric variable reduction methods were applied with the 
intention of reducing the necessary wavenumber range and suppressing 
redundant variables that can hinder the correct identification or 
quantification of the polymers. 
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2. Natural gas 

2.1. Introduction 

Natural gas (NG) is a colourless, odourless fossil gas used mainly as fuel 
for domestic and industrial heating, and as a reagent in the manufacturing 
of products like ethylene, ammonia (mainly for fertilizers), sulphur or 
black carbon. It is formed by the decomposition of biologic matter under 
extreme conditions of temperature and pressure, under the Earth’s 
cortex, similarly to petroleum or coal. In fact, it is common for them to 
appear in the same or adjacent deposits. It can also be generated from 
volcanic activity. 

It was first discovered in Sichuan, China, around 500 BC, but the first 
exploitations were performed by William Hart in Fredonia, USA in 1821, 
where it was used mainly as a light source4. Nowadays it is a viable and 
environmentally interesting alternative to other fossil fuels in many 
applications, as it burns with low emissions of CO2, NOx and SOx. In 
Figure 1 a comparison between the most common emissions from the 
combustion of fossil fuels per kiloJoule is shown5.  

 

Figure 1: Common fossil fuel emissions per unit of energy (kiloJoule) 
generated in combustion5. 
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2.2. Global market 

Global NG production has been steadily increasing for at least 70 years 
(with the exceptions of the 2008 economic crisis and the 2020 COVID 
pandemic). The largest estimated reserves of NG are currently located 
mainly in Asia and North America. Currently, the United States is the 
largest producer and consumer of NG with 1006 billion cubic meters 
produced in 2022, consuming almost 90% of it (ca. 887 billion cubic 
meters). Its low pollution impact and general abundance made it a 
suitable option for the EU decarbonisation plans6. However, the main 
exporter, mainly to Europe and China, is Russia. Since the onset of their 
war and the EU support to Ukraine, gas prices have increased 
significantly, as it has been used as a strategic resource, and the markets 
have become unstable. In response, the EU is steadily reducing its 
imports, with the intention of fully stopping them by 20277. 

 

2.3. Sources and composition 

NG is found mainly in subterranean deposits, confined by impermeable 
stone, generally in a dome-shaped structure above the gas, which blocks 
its escape into the atmosphere. In these deposits NG is generated 
following one or several of three processes: thermogenesis, biogenesis 
and abiogenesis4. 

NG produced by thermogenic processes (also denominated 
thermogenic methane) is generated by the high pressures and 
temperatures present in the Earth´s cortex. Generally, this kind of 
deposits occur due to the transformation of biomass buried by 
sedimentation processes. Under these conditions, and in the absence of 
oxygen, organic matter is slowly decomposed, generating a kerogene 
residue that is accumulated in the sediments. This material can be 
degraded following several processes, depending on temperature, 
generating carbohydrates, as well as CO2, H2S, H2 and N2 and 
pyrobitumen (a mineraloid composed mainly of carbon). 

Biogenic processes involve methanogenic bacteria in the degradation of 
organic matter. These bacteria are usually found in anoxic sediments 
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(anaerobic digesters, anoxic sediments or flooded soils) or in the 
gastrointestinal tract of the fauna. This process has different phases, 
which involve different kinds of microorganisms. During the 
acidogenesis stage, complex molecules are degraded into simpler 
products, like sugars, fatty acids or alcohols. In acetogenesis, those 
products are fermented, forming acetates, H2 and CO2. During 
methanogenesis, these products react to produce mainly methane4. 

Unlike the previous cases, NG produced by abiogenic processes doesn´t 
have organic matter as a precursor, but volcanic gases. These gases, rich 
in CO2, are chemically reduced when the magma is cooled, notably when 
it interacts with seawater, generating NG. 

Those formation processes are relevant, as they have an impact on the 
composition of the generated gas. Another critical factor is the type of 
deposit where NG is found: as an independent reservoir, associated with 
coal or petroleum (either dissolved or as two separate phases), enmeshed 
in low-permeability minerals, as a hydrate, etc. 

NG is mainly composed of a mixture of organic gases in different 
concentrations: methane (75-99 %), ethane (0-20 %), propane, butanes, 
pentanes and hexanes (<10 %). It can also contain other eluent gases 
(CO2, N2, H2, O2, H2O or noble gases), contaminants (Hg, As, or sulphur 
compounds) and solids in suspension.  

During the NG industrial processing it is desirable to remove all these 
additional compounds, leaving only the lighter hydrocarbons, as they are 
the main source of energy for its combustion. The concentrations of the 
different components are important, as they affect the combustion 
properties. This is especially relevant in motors, as they are optimized 
for a specific mixture of gases. An inadequate composition can provoke 
knocking effects8,9, i.e. an incomplete combustion of the fuel in the 
cylinders of the engine, generating high-pressure oscilations10. This does 
not only affect its power, but also generates vibrations, noise and can 
damage the engine, reducing its durability. This effect is measured by 
the Methane number, an analogous parameter to the octane number in 
gasoline or the cetane number in diesel, and it is an important 
characteristic to monitor, especially in vehicular applications11. 
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Another important property of natural gas is the Wobbe index, a 
parameter that serves as a criterion for the interchangeability between 
combustion gases, especially relevant when blending natural gases with 
different origins and compositions. It can be interpreted as the heating 
value of the fuel that would flow through an orifice of a given size (as in 
a burner, for example) in a given amount of time12. It varies with the 
composition of the blend and the presence of eluent gases like CO2 and 
N2. Typical values in commercial liquefied natural gas range between 
13.1-15.2 kWh/Nm3. 

 

2.4. Processing 

NG cannot be used directly from the gas reservoir. It usually carries high 
amounts of contaminants or other products, generally associated with 
other types of fossil fuels, which need to be separated. The most common 
contaminants are4: 

 Gaseous water, helium and nitrogen, which affect the calorific 
output of NG combustion, decreasing its efficiency as a fuel. 

 In associated reservoirs it needs to be separated from petroleum 
and other fuels. 

 Hydrogen sulphide and other sulphur-related compounds (well-
known atmospheric pollutants). 

 Mercury, a very toxic substance, which can also deteriorate some 
of the equipment of industrial plants. 

 Higher hydrocarbons or natural gas liquids (NGL). 
 Naturally occurring radioactive material, like radium-226 and -

228, lead-210 or radon can accumulate in the storage tanks and 
processing units of industrial facilities, endangering exposed 
employees. 

During processing, most contaminants are eliminated or reduced to an 
acceptable concentration and several products and by-products, like 
sulphur, mercury or different hydrocarbons can be obtained. Figure 2 
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offers a general idea of a NG processing workflow, with examples of 
some of the treatments that can be employed4,13–15.  

Figure 2: General workflow of NG industrial processing4,13–15. *Optional, 
mainly used for associated reservoirs. PSA: Pressure swing absorption; NGL: 
Natural gas liquids 
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2.5. Spectrometric measurements 

Traditionally, the most common technique for NG chemical 
characterization and monitoring is GC1. Its high sensitivity allows for 
more thorough quantifications than spectrometry in its current state. 
However, GC instruments are usually voluminous, with high running 
costs (as they require more reagents, staff dedication, frequent 
calibration) and maintenance and are not very suitable for on-line 

systems (although dedicated micro-GC systems exist, they still need a 
rack of carrier gases close to the measuring site). For these reasons, IR 
spectrometry has become an interesting alternative, being able to reduce 
the analysis times from ~150 min to less than 30 min, with a negligible 
consumption of reagents, if any. 

To improve the sensitivity of IR spectrometry when measuring gases, the 
“gas broadening” effect was exploited, a physical phenomenon 
discovered in the 1950s. When a sample gas is “dissolved” in another 
gas, invisible to IR radiation, its spectral features are magnified, yielding 
more intense spectra, not altering the results otherwise16,17. 
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3. Microplastics

3.1. Introduction 

“Plastic” is a general term that encompasses an extensive collection of 
materials used widely in modern Society. Their high stability, versatility, 
malleability, and low cost of production makes them very attractive for 
a large variety of applications18–20. Plastics (polymers in general) are 
composed of long chains of hydrocarbons, in which every link is a 
“monomer”. They can be as simple as a repetition of an ethane molecule 
in polyethylene (PE), or have complex structures with heteroatoms and 
aromatic groups as in polyurethane (PUR). These monomers determine 
most of their physical properties, like physical and thermal resistance, 
density or flexibility.  

Around 391 million tonnes of plastics were produced worldwide in 
202121, of which, around 44 % were destined to packaging, mostly 
single-use. In terms of production, the most prevalent polymers are PP 
(19.3 %) and PE (LDPE: 14.4 %; HDPE: 12.5 %). In Figure 3 the most 
produced polymers worldwide are shown. 

Figure 3: Global plastic production by polymer21. 

Some of the most common plastics, their monomers and some examples 
of their commercial applications are summarized in Table 1. 
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Table 1: Most produced polymers, with their chemical structure and 
some examples of their applications. 

Polymer Structure Applications 
Polypropylene 

(PP) 
Rope, nets, stationery 

supplies 
Low-density 
polyethylene 

(LDPE) 

Single use bags, electric 
cable insulation, straws, 

fishing nets 
Polyvinyl 
chloride 
(PVC) 

Food, household cleaning, 
medicine, hygiene products 

packaging 
High-density 
polyethylene 

(HDPE) 

Household cleaning and 
food packaging, bottles 

Polyethylene 
terephthalate 

(PET) 
Bottles and food packaging 

Polyurethane 
(PUR) 

Construction (sealants, 
insulators, firestoppers), 
vehicle parts, sponges, 

adhesives 

Polystyrene 
(PS) 

Disposable cutlery, food and 
medicine packaging, 

insulation 

Polyamide 
(PA) 

Textile, mechanical 
engineering supplies, 
medical applications 

Polymethyl-
methacrylate 

(PMMA) 

Windows, bulkheads, 
screens 

Polycarbonate 
(PC) 

Electronic and construction 
materials, 3D printing 

Styrene-
butadiene 

rubber (SBR) 
Tyres 

Butadiene 
rubber (BR) 

Tyres 
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Initially, in the 1930´s and 40´s, most plastics were developed and 
produced for military applications during WWII, ranging from 
parachutes and ropes to airplane windows. Having proved its 
applicability, their mass production began in the decade of the 1950s for 
commercial purposes, substituting other materials, like wood, steel, horn 
or glass for a large number of products22, and their demand has increased 
exponentially since then. 

This huge plastic production, along with the fact that an important 
number of applications are single-use, generates a high quantity of 
residues. Many of them are not collected or recycled properly, ending up 
in domestic garbage, landfills or, simply, spilled into the environment. 
As a pollutant, plastics have some concerning properties: they degrade 
very slowly, often lasting for hundreds or thousands of years, which 
derives in a high prevalence in the environment, and can break down into 
“microplastics”, which generate a new set of associated problems. 

Specifically, microplastics (MPs) are defined by ISO as polymeric 
fragments or fibres with sizes between 5 mm and 1 µm23 and they can 
appear as primary or secondary microplastics. Primary microplastics are 
produced in certain industries, such as cosmetics or pharmaceutical 
(personal care and cosmetic products, like sunscreen, toothpaste, 
eyeshadow, etc.), and also for industrial abrasion/polishing. However, 
relevant measures are being taken to reduce them in personal care 
products in some countries, like UK, USA, Thailand or the EU24. Also, 
it is common to find small pre-production pellets or “nurdles” in the 
environment, of around 3-5 mm diameter. Those are the fundamental 
constituents for most industrial applications where thermoplastics are 
used, by melting and casting them into different appliances. Accidents 
or mismanagement in storage or during transport25–27 can spill large 
quantities of these particles, often ending up in sediments and beaches. 

Secondary microplastics are produced by the fragmentation of bigger 
plastic items (bags, fishing equipment, packaging, bottles, etc.), mostly 
after photodegradation28 (reactions produced by the long exposure to UV 
radiation), but also biological action, erosion and other factors. Landfills, 
construction sites, littering, mismanaged waste and equipment from 
fishing and transport vessels as well as polymeric fibres from clothing 
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and TRWP are some of the major sources of secondary microplastics in 
the environment29. 

Weathering occurs mostly on the surface and affects every polymer 
differently, but some common mechanisms are involved30. Thermal or 
photochemical reactions can break chemical bonds and release atoms or 
functional groups, depolymerize into its monomers or suffer scissions at 
random points in its chain. They can also oxidize or hydrolyse in contact 
with water (especially polymers with esters, amides or acetyl groups in 
their structures). All these reactions modify the superficial structure of 
the plastic item and weaken its integrity, favouring the occurrence of 
microplastics.  

Further degradation generates nanoplastics (particles of less than 1 µm). 
Their smaller size allows them to penetrate cellular membranes, 
potentially affecting their functions, and can transport more adsorbed 
contaminants by mass than their larger counterparts, due to their higher 
surface/volume ratio. Even though there is not extensive literature about 
them due to the lack of adequate methods of analysis and detection, there 
are already some articles documenting their effects on various 
organisms, like zebrafish31, sea urchins32, zooplankton (Daphia magna33 
and Daphia pulex34) and algae (Chlorella, scenedesmus35,36).  

3.2. Environmental effects 

Around 77 % of the EU plastic waste is recycled or used for energy 
recovery21, while the remaining 23 % end up in landfills. If poorly 
managed, these plastics can escape via wastewater, wind and torrential 
transport. It is estimated that ca. 10 % of all produced plastics ultimately 
reach the oceans37. Tyre and road wear particles (TRWP) are an 
important contributor to polymer pollution, mostly as suspended 
particulate matter. Flakes of old paint, fishing equipment fragments or 
textile fibres are also potential polymeric residues that can easily enter 
different ecosystems. 

As plastic residues tend to wash out into seas and oceans, a great deal of 
research has been undergone to study them in this specific 
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ecosystem19,38–42. Other studies have focused on the effects of plastics 
and microplastics in other media, like agricultural soil43–45 or the 
atmosphere 46,47, both indoor and outdoor.  

MPs are present in most environmental compartments worldwide. It has 
been proven that they have detrimental effects in soil and fauna48,49, and 
can easily enter and spread through the marine trophic chain and even 
reach humans. Several studies argue that the ingestion of microplastics 
has a detrimental effect on the nervous system. However, the most 
harmful properties are not attributed to the polymers themselves50–52, at 
least in current concentrations in the environment. The main concern are 
the multiple chemicals that are used during their production, like 
additives, flame retardants or pigments, as well as the contaminants and 
biota that get adsorbed at their surface while in the environment. In 
certain environments, it is common for plastics to loose additives like 
plasticizers or hardness and resistance enhancers, further accelerating 
their fragmentation and increasing their pollution potential. For example, 
for PC production and other resins it is common to use Bisphenol A as a 
co-monomer, which is a potential endocrine disruptor and carcinogen53. 
Some phthalates (esters of phthalic acid), like di-(2-ethylhexyl)phthalate 
(DEHP), mostly used in PVC production, are widely used as plasticizers 
and additives, used to modify different physical properties in plastic, like 
durability or flexibility, and have been proved to have detrimental effects 
in the endocrine and reproductive systems54. 

Most research is centred on the marine environment, as most residues 
tend to end up there via rivers, floods, rain and atmospheric transport. 
Even, due to their small size, they can pass through most wastewater 
treatment facilities, so it is virtually impossible to avoid them nowadays. 
There are plastics in all oceans and seas, and in most lakes and rivers, 
even in remote locations like lake Hobsgol, in Mongolia55, lake Dimon, 
in the Carnic Alps (Italy)56, sparsely populated shorelines57, the Arctic 
and Antarctic coasts58–61 or deep sea sediments62. One of the most 
striking examples of the magnitude of plastic pollution is the great 
oceanic garbage patches found in the Pacific, Atlantic and Indian 
oceans63, as floating solid matter tends to accumulate in “gyres” (circular 
oceanic currents). Specifically in the North Pacific Gyre, the largest of 
these patches, an estimated 79000 tonnes of plastic are floating at the 
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surface of the ocean, of which around 8 % in mass are thought to be 
microplastics64. 

Depending on their density, plastics and microplastics can float at the 
water´s surface or sink and embed themselves in the sediments. Thus 
they become easily accessible for the local fauna and it is common for 
small fragments to be ingested by plankton and fish, entering the trophic 
chain. The amount of literature addressing the occurrence of 
microplastics in marine flora and fauna is very extensive: algae, fish, 
marine mammals and birds, bivalves and other macro- and microbiota 
have been studied in over 1500 publications dealing with microplastic 
occurrence in marine organisms since 201065. 

Microplastics can affect organisms that regulate organic matter 
decomposition in soils and sediments. This poses an ecological risk, as 
decomposers recycle nutrients necessary for plant growth and 
development, potentially disrupting an important part of the 
ecosystem44,66. Also, as in the previous scenario, they can be easily 
introduced into the trophic chain through different animals. Some 
authors studied the effects and occurrence of microplastics in fauna, like 
earthworms67, springtails68, snails69, nematodes70, isopods71, enchytraeid 
worms72 and oribatid mites73. Some of these publications show some 
negative effects, like histopathological damage, oxidative stress, genetic 
and reproductive damage, neurotoxicity and other metabolic and 
digestive disorders49. The occurrence of microplastics in soil is mostly 
derived from agricultural activity and waste treatment. In agricultural 
soil the most common sources of microplastic pollution are film 
mulching (a practice consisting of covering the crops with a plastic film, 
often PE or PP, to better regulate temperature and humidity and avoid 
weed proliferation), the use of sewage sludge as compost, atmospheric 
deposition, runoff, littering, etc43,49,74. In urban and peri-urban soils, 
TRWP derived from vehicular traffic has a larger impact. 

Atmospheric microplastics are held in suspension in the air, being 
transported by the wind. In this medium, like oceanic microplastics, they 
can travel long distances, as proved by the presence of microplastic 
particles in remote places with no nearby population nuclei, like 
mountains, glaciers or polar regions59,75,76. There are numerous 
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anthropogenic sources, the most important ones being textile fibres from 
clothing, both indoor and outdoor, releasing mostly PS, PA and acrylic. 
Also, TRWP and other urban and industrial activities can add to this type 
of pollution. Eventually, the largest and heaviest airborne particles 
deposit, substantially adding to the previously discussed soil and marine 
pollution. Their permanence in the atmosphere depends also on several 
external factors, like wind, rain, the presence of physical obstacles (like 
buildings), temperature, etc46,77, being more prevalent in urban areas. 

A source of concern are particles smaller than <20 μm, which can go 
through cell membranes, potentially disrupting its functions, but then 
again, more information is needed to assess the nature and extent of these 
effects.  

 

3.3. Spectrometric measurements 

Nowadays, vibrational spectrometry is one of the most common 
techniques to identify and monitor environmental (micro)plastic 
residues20. As for most carbon based-compounds, each polymer has a 
unique infrared spectrum. Weathering has also an impact on the shape of 
the spectra as it modifies the polymeric chains in the surface, although it 
is hard to identify the specific processes taking place. This is due to the 
different environmental conditions they can be subject to and the 
chemical reactions they have undergone, not only on their polymeric 
chain, but also on the pigments, additives or plasticizers present on their 
surface. 

A problem that arose while studying the existing literature in the 
microplastics field was that, being a relatively young field of study, the 
information reported about the infrared instrumental setup in 
publications was often unclear, incomplete or insufficient, as they often 
obviate important information, like the measuring technique, 
instrumental characteristics, conditions or data treatment used. These 
shortcomings showed the need to establish some sort of standardization 
in the information provided in the publications, so the studies can be 
reproducible and comparable. 
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4. Infrared spectrometry

4.1. History 

Infrared (IR) spectrometry has been developed throughout several 
centuries2,78–83, after William Herschel discovered IR radiation in 1800. 
Using a prism to divide the different wavelengths of sunlight and with 
highly sensible thermometers, he observed that the temperature outside 
the visible part of the spectrum increased. He named this effect “calorific 
rays”. In Figure 4, a diagram of this experiment is shown, where it can 
be seen that the temperature of the thermometer augments as the 
wavelength decreases (to the left of the picture).  

Figure 4: Schematic of Herschel´s experiment. 
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However, it was almost a century later that this effect began to be studied 
more thoroughly. Several scientists made some advancements in the 
technique, especially after the decade of the 1880s, summarized in 
Figure 581,84,85. It wasn´t until the mid-20th century, bolstered by WW-
II, that the technology was developed for more commercial applications, 
like the industrial analysis of endorphins and synthetic rubber. Since 
then, applications and publications employing IR spectrometry have 
increased exponentially. Because of that, new methods and techniques 
were developed, allowing IR spectrometry to be applied to an immense 
quantity of fields like medicine, pharmacy, environmental studies or 
different industrial applications.  

Figure 5. Some major milestones in vibrational spectrometry. 
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4.2. Fundamentals 

Spectrometry is based on the measurement of the interaction of 
electromagnetic radiation with matter. However, different kinds of 
radiation have different interactions with it, with several wavelength (λ) 
intervals being especially interesting from an analytical point of view. 
Thus, different types of spectrometry have been developed: IR, UV-Vis, 
X-ray, etc., each of them with different applications, advantages and 
limitations. The IR region is usually measured in wavenumbers (1/ λ) 
and is situated between 14000 and 4 cm-1, subdivided into Far-IR (400-
4 cm-1), Mid-IR (4000-400 cm-1) and Near-IR (14000-4000 cm-1). 

IR spectrometry is one of the most used analytical techniques worldwide, 
as it can be applied to almost any kind of sample: solid, liquid or gaseous, 
both organic and inorganic (though, for the latter, their spectra can be 
difficult to interpret, being X-Ray spectrometry more convenient). 
Absorbed IR radiation excites the vibrational and rotational levels of the 
bonds in the molecules of the sample. The only molecules invisible in 
the IR region are homopolar diatomic gases (O2, H2, N2) and noble gases, 
and it can´t differentiate optical isomers. Besides those exceptions, an IR 
spectrum is unique for each substance, which makes IR spectrometry a 
very useful tool. 

Molecules are not static structures, they are in continuous movement, 
both the constituent atoms and the length and orientation of its chemical 
bonds. There are different kinds of movements in these bonds: stretching, 
bending, rocking and other deformations. Those are called “vibrations”, 
and, when the molecule is struck with IR radiation, their energy states 
change. A molecule with different kinds of bonds and a high number or 
diversity of atoms tends to exhibit complex vibrational and rotational 
transitions. This usually translates into a higher number of peaks or bands 
in the spectra. The so-called normal modes of vibration are 3n-6 (3n-5 in 
linear molecules), being n the number of atoms. In addition, there are 
combination bands (when the same wavenumber excites two different 
kinds of vibrations), overtones (multiples of a previous active 
wavelength) or “hot” bands (a transition between two excited states)82. 

When radiation interacts with a sample, the different wavelengths are 
either reflected or absorbed to a certain degree. By measuring their 
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relative variations and plotting them against some frequency scale 
spectra can be obtained.  

In IR spectrometry, transmitted or reflected radiation is directed towards 
a detector, which measures its energy after interacting with the sample. 
This is generally expressed in % of transmittance, reflectance, or, most 
commonly, absorbance (that part of the radiation retained by the sample 
to change its energy state). Depending on how the radiation interacts with 
the sample several kinds of IR techniques exist. Some of the most usual 
ones are shown in Figure 6.  

They are: 

Transmission: The most traditional measuring mode. The radiation 
beam goes through the sample to the detector. In this mode, the most 
difficult part is often to prepare the sample. It can be in several different 
configurations, like in solution, forming a thin film, embedded in KBr 
pellets or as mulls. In the case of gases, a cell with IR transparent 
windows is often used. 

In any case, the objective is to prepare a sample with a given thickness 
or concentration that allows the passage of the radiation through it, and 

Figure 6: Typical IR working modes. 
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allows to establish a relationship between the measured spectrum and the 
analyte(s) to be identified or its concentration. This technique has been 
used to analyse microplastics, although its main problem is that the light 
paths of the particles are different and not necessarily homogeneous 
through them. 

Reflectance: It is a very useful mode to characterize opaque or thick 
solid samples. Instead of the transmitted light, it is the reflected radiation 
what is measured. Depending on the surface morphology of the sample, 
the radiation can behave in two different ways: samples with an irregular 
surface or in powder form lead to diffuse reflectance, while samples with 
a bright, flat and homogeneous surface produce specular reflectance. 

In diffuse reflectance the IR beams are scattered by the sample´s surface 
in different directions. This hinders the ability to establish a correlation 
between the intensity of the peaks and the actual quantity of reflected 
radiation, often yielding almost unidentifiable spectra. To mitigate this 
effect, a Kubelka–Munk mathematical correction can be applied. In 
essence, it modifies the raw spectrum taking into account the absorption 
coefficients and the scattering factor of the sample. This transforms the 
reflectance spectrum to a transmission-like spectrum, in which a direct 
relation between the spectrum and the analyte (or its concentration) can 
be established (following Bouguer-Lambert-Beer´s law). Diffuse 
radiation usually requires the use of an adequate accessory to collect all 
radiation. 

In the case of specular reflectance, the radiation reflects in a singular 
direction, as it would in a mirror. In this situation the angle of reflectance 
is identical to the angle of incidence. Spectra obtained this way have the 
appearance of a 1st derivative, with a positive maximum and a negative 
minimum for each peak, known as “restrahlen”. Very briefly, this is due 
to the partially “imaginary” nature of the equation of the refractive index: 𝑁 = 𝑛 + 𝑖𝑘, where N is the complex refractive index, n the real 

refractive index, k the absorption coefficient and 𝑖 = √−1. A spectrum 
is the representation of N with the wavenumber. However, n varies 
drastically at wavenumbers where the sample absorbs radiation, 
generating this derivative shape, while a k vs wavenumber plot is 
identical in shape to the absorbance spectrum. To correct this effect a 
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Kramers-Kronig transformation is used, so the n and k influence on the 
spectrum can be separated81. 

Unfortunately, real samples don´t have an exclusively specular or diffuse 
reflectance, because their surface will neither be perfectly flat nor will 
disperse the radiation homogeneously in every direction, so it is the 
user´s responsibility to decide which processing will be more adequate 
in each situation. 

Attenuated total reflectance (ATR): This technique is somewhat more 
complex than the previous ones. It is based on the behaviour of the 
radiation when it hits in an interphase between two materials with 
different refractive indexes85. When a beam traverses through a material 
h and impacts in another material j part of the radiation is reflected back 
and part is transmitted to j, following the equation: 

𝑅 =  (𝑛𝑗 − 𝑛ℎ)2 (𝑛ℎ + 𝑛𝑗)2  

Where R (reflectivity) is the portion of the radiation that is reflected back 
to material h and nh and nj are the refraction indexes of both materials. 
Also, the angle of the transmitted beam can be calculated using Snell´s 
law: 𝑛ℎ ∗ 𝑠𝑒𝑛 𝜃 = 𝑛𝑗 ∗ sen𝜙 

Being 𝜃 and 𝜙 the angles in which the radiation is reflected to the 
material h and transmitted to the material j, respectively, with a plane 
perpendicular to the interphase between them. When 𝜙 = 90° most of 
the radiation is not transmitted to j, as it would follow the plane of the 
interphase, and the corresponding 𝜃 angle is denominated critical 
angle 𝜃𝑐. At values of 𝜃≥𝜃𝑐 only internal reflection occurs, and the 
radiation is not transmitted to the material j. This preserves virtually all 
the radiation in each reflection within h, allowing a high quantity of 
reflections, as the only energy losses would be due to the absorption of 
the material h. However, even though the beam is reflected at the surface 
of the interphase, part of the electrical field of the radiation penetrates 
slightly in the material j, about 0.1 to 5 µm, before being reflected. This 
phenomenon is called evanescent wave, and is where the sample 
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(material j in this case) interacts with the radiation. In ATR spectrometry 
material j is the sample, and material h a medium with a high refraction 
index (diamond, Germanium, ZnSe or ZnS). As the evanescent wave 
occurs at the surface of the sample, part of the radiation is absorbed, thus 
enabling the acquisition of its spectrum.  

As the only energy absorbed is part of this evanescent wave, ATR spectra 
usually have less intensity than the transmittance or reflectance spectra. 
However, as the sample is pressed against the crystal, no specular or 
diffuse effects appear and, unlike transmittance, opaque or thick samples 
pose no measuring problem. 

Besides these different modes of operation, it is also common to 
hyphenate FTIR spectrometry with other techniques to gain more 
information, obtain better results or measure different kinds of samples. 
The most common combinations are with chromatographic and 
thermogravimetric techniques. Here, the spectra of the different 
molecules, already separated by the chromatograph or thermal events are 
registered, offering additional insight into the sample composition. 
These combinations, however, will not be discussed in this Doctoral 
Thesis. 

Another hyphenated technique is IR microscopy81. The combination of 
a microscope with a FTIR spectrometer is especially useful for the 
visualization and analysis of small particles (down to 10 µm2 in modern 
instruments). IR microscopy, or micro-IR, can work in either 
transmittance, reflectance and/or ATR modes. This enables the 
measurement of not only small items but very heterogeneous ones (e.g. 
composite materials), greatly increasing the applicability of the 
technique. Some examples are biological and forensic applications, 
quality control, or, as in this Doctoral Thesis, microplastic analysis. 

In Figure 7 the modes of operation of an IR microscope are depicted. 
The light is reflected from the source by a toroidal mirror to another 
mirror that aligns it vertically. For transmittance mode, it is reflected 
upwards, while in reflectance and ATR, downwards. In any case, the 
beam goes through a Cassegrain, a pair of concave and convex mirrors 
that focuses the beam on the surface of the sample or the ATR crystal. 
Once transmitted or reflected after interacting with the sample, the beam 
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is redirected via mirrors and Cassegrains to the detector, usually a 
Mercury Cadmium Telluride (MCT), encased in a deposit with liquid 
nitrogen. 

 

Figure 7. Schematics of the different modes of operation of an IR 
microscope. Adapted from Spotlight 200 User´s Guide86 

 

A practical limitation of most IR microscopes nowadays is related to the 
focusing capabilities of the IR beams, as they can be focused only up to 
ca. 5-10 µm (their wavelength size). Besides, the edges of the mechanical 
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mask (apertures) that have to be adapted to the dimensions of the sample 
before measurement, which can create polychromatic radiation, known 
as “slit effect” in typical monochromators. In most instruments, this 
implies that particles lower than 20 µm cannot be measured accurately, 
as the S/N ratio decreases considerably. The number of scans can be 
increased to reduce the noise, but the signal is usually still of low quality, 
and the measurement times can increase considerably, making it 
impractical when the number of particles to be measured is large. As a 
result, particles lower than 30 µm are not easy to measure by classical 
micro-IR spectroscopy. 

4.3. State of the art 

Vibrational spectrometry is a highly innovative field. From quantum 
laser radiation sources to detectors able to register a spectrum for every 
pixel in an image, IR spectrometry has come a long way since its 
inception87.  

Initially developed for satellites, hyperspectral imaging (HSI)88 cameras 
(detectors) are designed to register a full spectrum of each pixel from an 
image of a sample. The result is a tridimensional data space, a hypercube, 
with a spatial x-y image and a z dimension as the spectra of a specific 
wavenumber range (which can be in the visible or IR regions). This is 
useful not only to determine the composition of an analyte, but to 
ascertain its spatial distribution in the case of heterogeneous samples. Its 
main drawback at present is its resolution, limited to 300-100 µm for 
laboratory applications. Nevertheless, they have been successfully 
applied in fields like biomedicine89,90, product quality and contaminant 
monitoring91,92 or military surveillance93,94. 

Quantum cascade lasers (QCL) are a novel kind of semiconductor laser 
emitting diodes in the mid- to far- IR radiation range. The laser is 
composed of a series of adjacent thin films of different semiconductor 
materials. This creates a succession of quantum wells (a potential well 
with discreet energy values) where an electron can go from a high energy 
state to a fundamental state in a quantum well, then tunnel to a 
contiguous quantum well, where it would be in a high energy state, 
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transition to a fundamental state, and so on, emitting a photon in each of 
these “jumps”95, thus generating a beam of directed, collimated, high 
intensity light. By selecting the width and material of the different films 
it is possible to establish the spectral range of the laser, which is much 
easier than in traditional lasers. It is also smaller, yields more intense 
radiation than traditional sources and can be used at room temperature in 
combination with a Peltier cooling system (so no liquid nitrogen is 
necessary). Its use as a radiation source for vibrational spectrometry for 
commercially available instruments has increased, e.g. Agilent´s Laser 
Direct IR chemical imaging system (LDIR)96, Bruker´s Hyperion II 
microscope97 or Daylights´ Solutions ChemDetect Analyzer98 and Spero 
Chemical Imaging Microscope99. A basic diagram of a LDIR instrument 
is shown in Figure 8. 

Figure 8. Conceptual diagram of an LDIR imaging system. 
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5. Chemometrics 

Even though IR spectrometry is a very versatile and useful technique, 
sometimes it is insufficient by itself to solve a problem. For example, in 
the analysis of NG, the spectra are too complex to be interpreted without 
adequate tools to generate information. NG is composed of a mixture of 
different gases, very similar structurally and spectrally, making the 
resulting spectra hard to interpret, with a multitude of overlapping peaks 
belonging to different gas components, some of them with 
concentrations lower than 0.1 %. Chemometrics can help mitigate this 
problem. 

Chemometrics is defined as the application of statistical, mathematical 
and formal logic techniques to both experimental design and 
interpretation of chemical data100. As for IUPAC, “Chemometrics is the 
application of statistics to the analysis of chemical data (from organic, 
analytical or medicinal chemistry) and design of chemical experiments 
and simulations”101. In this work it is used in combination with IR 
spectrometry, but it can be used in other fields: mass spectrometry, 
atomic spectrometry, high-performance liquid chromatography (HPLC), 
gas chromatography-mass spectrometry (GC-MS), etc. 

Its development started in the 1970s, with pioneers like Herman and 
Svante Wold, Bruce Kowalski, Paul Geladi or Michele Forina. In the 
beginning it was a purely theoretical discipline, and was intimately tied 
to computational science and the development of analytical instruments. 
In the 80s the first publications dedicated to applied chemometrics 
appeared, solving simple problems, mainly in IR spectrometry and 
chromatographic applications.  

In subsequent years its relevance grew, both in applications and the 
complexity of the problems being solved, attracting funding from 
pharmaceutical or alimentary industries. Nowadays its applicability also 
encompasses petrochemistry, metabolomics, genetics, forensics, 
biology, medicine, environmental data, etc. 

There are two main branches of chemometrics depending on their area 
of application: experimental design and multivariate analysis. The first 
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focuses mainly on the optimization of parameters in an experimental 
process (a synthesis, for example). Its main objective is to obtain the 
most information with the minimum number of experiments possible. 
This not only allows for a reduction in time and costs of the process but 
offers insight into the synergies between the different parameters. 

Multivariate analysis, on the other hand, is used to extract as much 
information as possible from datasets. Once the experimental part of a 
study is performed, a high quantity of information might be obtained. 
For instance, in spectrometry or chromatography it is not uncommon to 
have datasets containing several thousand variables and hundreds of 
samples. This immense quantity of data might be difficult to interpret, 
and relevant details might be overlooked. Whether the objective of the 
study is to identify a compound, ascertain the concentration of a certain 
reagent or detect anomalous samples, the problems associated with the 
gathering of information from the raw data can be mitigated by using 
chemometric techniques which help extract relevant information and 
interpret it.

5.1. Fundamentals 

In recent decades, a large number of chemometric techniques have been 
developed for classification, quantification and pattern recognition. In 
the publications presented in this Doctoral Thesis (Chapters 2 to 7) four 
methods were used: principal component analysis, partial least squares 
regression, classification and regression trees and support vector 
machines102–111. They are to be introduced briefly in the next paragraphs: 

Principal component analysis (PCA) is one of the most used 
techniques in chemometrics107–109. It is an unsupervised exploratory data 
analysis method developed by Pearson in 1901112, although the 
fundamentals had already been developed in the fields of mathematics 
and physics decades before. However, it was barely used in chemometric 
applications until the decade of the 1970s, thanks to the increase in the 
use of computers and the subsequent improvements in computation 
power. It is applied in unsupervised multivariate analysis to a matrix 
composed of several independent variables (p) (or X-block) measured on 
a collection of specimens of interest (n). The conceptual basis of the 
technique is that it is possible to concentrate the information of the X-
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block in a reduced set of new mathematical variables. These are 
denominated Principal Components (PCs) which, in essence, are linear 
combinations of the measured variables. Each PC explains part of the 
information, or variance, of the original dataset. 

Initially, mean centring of the data is usually performed (𝑿𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 =𝑿 − �̅�). Then the variance is calculated for each of the variables 

(𝑣𝑎𝑟(𝑋) = 1𝑛−1 ∑ (𝑿𝑖 − �̅�𝑖)2𝑛𝑖 ) and the covariance between them

(cov(𝑿𝒊, 𝑿𝒋) = 1𝑛−1 ∑ (𝑿𝑖 − �̅�𝑖)(𝑿𝒋 − �̅�𝑗)𝑛𝑖=1 ), obtaining a square matrix 

(of size p,p): 

(
𝑣𝑎𝑟𝑋1 𝑐𝑜𝑣𝑋1𝑋2 ⋯ 𝑐𝑜𝑣𝑋1𝑋𝑝𝑐𝑜𝑣𝑋2𝑋1 𝑣𝑎𝑟𝑋2 ⋯ 𝑐𝑜𝑣𝑋2𝑋𝑝⋮ ⋮ ⋱ ⋮𝑐𝑜𝑣𝑋𝑝𝑋1 𝑐𝑜𝑣𝑋𝑝𝑋2 ⋯ 𝑣𝑎𝑟𝑋𝑝 )

Its z (z=min(n,p)) eigenvalues (ev) and associated eigenvectors (𝑒𝑣⃗⃗⃗⃗ ) 
(with size (1,p)) are calculated (for more technical details some 
references can be consulted113). Here, each element of the eigenvectors 
is the weight (w) of the corresponding p variable in that specific PC, and 
it represents (in absolute value) the importance of each of the variables 
to define that specific PC. Being a symmetrical matrix, all 𝑒𝑣⃗⃗⃗⃗  are 
orthogonal to each other. Then, the 𝑒𝑣⃗⃗⃗⃗  are ordered from highest to lowest 
based on their ev and are normalized to 1. Being extracted from the 
covariance matrix, it is implied that the higher this value is, the higher 
the variance it explains, thus offering more information. These 𝑒𝑣⃗⃗⃗⃗  are 
compiled into a matrix and they can be multiplied times the original 
(centered) dataset. The columns of the resulting matrix correspond to the 
so-called principal components, being each of the values the “score” (s) 
for a given sample on a specific PC: 

(𝑋1,1 ⋯ 𝑋1,𝑝⋮ ⋱ ⋮𝑋𝑛,1 ⋯ 𝑋𝑛,𝑝)(𝑒𝑣⃗⃗⃗⃗ 1,1 ⋯ 𝑒𝑣⃗⃗⃗⃗ 𝑧,1⋮ ⋱ ⋮𝑒𝑣⃗⃗⃗⃗ 1,𝑝 ⋯ 𝑒𝑣⃗⃗⃗⃗ 𝑧,𝑝) = (𝑠1,𝑃𝑐1 ⋯ 𝑠1,𝑃𝑐𝑧⋮ ⋱ ⋮𝑠𝑛,𝑃𝑐1 ⋯ 𝑠𝑛,𝑃𝑐𝑧) 

If the PCi weights are multiplied by the square root of their 
corresponding eigenvalue, a new “loadings” vector can be obtained 

(𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑒𝑣⃗⃗⃗⃗ ∗ √𝑒𝑣), and its elements correspond to the Pearson´s
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correlation coefficient between each variable and PCz. Thus, a PC is 
composed of an eigenvalue, a vector of loadings and a vector of scores. 

The user has to select the number of PCs to be included in the model by 
considering, among other factors, the variance explained by each PC. A 
graphical representation of the scores of two or three principal 
components (usually those with the most explained variance) would 
reveal clusters of data points corresponding to the samples, if there are 
real differences between them and the model is adequate. Samples with 
similar characteristics will be close to each other, thus allowing their 
grouping or ascertaining of patterns in the dataset. 

Partial Least Squares regression (PLS-R) was developed initially by 
Herman Wold as an empirical algorithm in 1975110. It is a supervised 
multivariate analysis technique, useful for applications where it is 
required to correlate two sets of data corresponding to the same 
specimens of study. PLS-R is especially suitable to those cases where the 
number of measured X variables (predictors) is significantly larger than 
the number of predictands (i.e. the parameters to be predicted), like in 
spectroscopy or chromatography. The versatility of PLS-R has granted it 
myriads of applications, not only in chemometry, but bioinformatics and 
machine learning114. 

Some variability exists in the PLS-R algorithms currently in use, but the 
most common one, and the basis for many others, is the orthogonal score 

PLS-R114. There is also a difference in the algorithm if there are multiple 
predictands (PLS2) or just one (PLS1, or just PLS). In the publications 
presented in this thesis only PLS1 will be considered. The process is 
somehow similar to a PCA decomposition, in the sense that it reduces 
the number of experimental variables to a few uncorrelated 
combinations, in this case called “latent variables” (LV) or “PLS 
components”. However, to define this LVs, PLS takes into account the 
Y value instead of the variance of the predictors when calculating the 
weights. This is done by the algorithm in such a way that the LVs 
establish the maximum possible covariance between the X-block and the 
Y-block. Once the weights are calculated, the LVs scores are calculated 
analogously to the PC scores in PCA. This results in a series of LVs, 
ordered from highest to lowest covariance with the Y values to be 
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predicted. The final number of LVs has to be selected by the users. Then 
a regression equation is created: 𝒀 = 𝛽0 + 𝛽1𝑳𝑽1 + ⋯𝛽𝑧𝑳𝑽𝑧 

There, 𝛽0 would be the y-intercept (𝛽0 = 0 in mean centred data) and 𝛽𝑧 
the parameters defining the multivariate slopes. Once the model is 
developed it is important to reassess the number of selected LVs. If there 
are enough samples, it is recommended to prepare a validation subset to 
check the errors in the predictions. In most programs, a cross-validation 
protocol is applied automatically. It develops models with the calibration 
samples, but separating one or several samples, which will then be used 
to evaluate the model. Then, those samples are reincorporated in the 
overall dataset and another subset is extracted. A model is constructed 
again and the error in the predictions is evaluated again. This procedure 
continues until all samples have been used for calibration and validation. 
In general, the adequacy of a model is assessed by looking at three 
average error parameters: the root-mean-square of prediction (RMSEP), 
when using a validation subset, the root-mean-square of cross-validation 
(RMSECV), when cross-validation is applied, and the root-mean-square 
of calibration (RMSEC), which is the error in the predictions of the 
samples used to calibrate the models. For a model to be acceptable, all 
those error figures should be low and similar to each other. Optimally, 
the number of selected LVs would also be low as to avoid “overfitting” 
the model to the calibration samples. 

PLS-R has become a de-facto standard for multivariate regression, very 
useful for predicting properties when they are more difficult to measure 
directly (or if the technique necessary is costlier, time-consuming, prone 
to errors, etc.), using other experimental data like chromatograms or 
spectra of samples used for environmental studies or quality control. 

Classification and Regression Trees (CART) can be used as a simple 
method of classification, based on the Theta Automatic Interaction 
Detection (THAID) algorithm, the first tree-based classification 
algorithm115. CART is a supervised technique based on the creation of 
binary partitions between the specimens of interest in a tree-like 
structure, in which, each partition, or “node” is divided in two different 
branches. In each of these nodes a condition is described116, e.g. a 
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wavenumber and a specific intensity. The samples are separated between 
those which surpass that intensity value and those which do not, 
assigning each of them to one or several categories. The process is 
repeated until, ideally, all categories are separated or other user-
established conditions are met. The conditions of each node are defined 
by an impurity function I, being the optimal condition the one that 
minimizes I in the sub-nodes. 

For regression, the process is similar, but considering continuous Y 
values instead of discrete classes. For regression purposes, the node 
impurity function I is calculated as the sum of squared deviations of the 
means of the node prediction and the real value of Y116.  

Support Vector Machines (SVM) is a supervised classification 
algorithm (though it can also be used for regression and outlier detection) 
111,117–119 developed by Boser, Guyon and Vapnik120 in 1992. Originally, 
the algorithm develops just a binary separation (with categories coded as 
+1 and -1). Hence, in cases with multiple classes, a model would be
developed for each of them in a one-vs-all approach. There are SVM
algorithms capable of separating multiple classes at the same time
(present in programs like Multid´s Genex121 or PLS Toolbox122),
however, in most cases, they tend to yield slightly worse results than the
classic, binary approach. SVM works by developing a separating
boundary between the different categories (a line, a plane or a hyperplane
when higher dimensions are considered) in a space defined by the
original p variables (thus, with p dimensions). The boundary is placed so
that its distance (margin) from the nearest data points (of each class) is
maximized. A peculiarity of this algorithm is that only the datapoints
closest to the boundary (the “support vectors” that inspire the name of 
the technique) are taken into account, being the ones that define both the 
boundary and the margins. The optimal hyperplane is obtained by 
calculating the weights of the support vectors and creating linear 
combinations: 𝑤𝑋𝑖 + 𝑏 = 𝑦, where b represents the bias of the 
model117,118. This equation, however, has to maximize the margins 

(𝑚𝑎𝑟𝑔𝑖𝑛 = 2||𝑤||) while respecting the constraints:

 𝑓(𝑋) = 𝑤𝑇𝑋𝑖 + 𝑏 ≥ 1 For samples with class +1 
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 𝑓(𝑋) = 𝑤𝑇𝑋𝑖 + 𝑏 ≤ 1 For samples with class -1 

This defines what is called a “hard margin SVM”, however, this is not 
very adequate for datasets with outliers or overlapping, as it does not 
allow for errors in the models, which is not feasible in most real 
problems. To mitigate this, new “slack variables” (a sort of error 
variables, 𝜉𝑖) and a cost parameter (C) are included in the algorythm. The 
insertion of 𝜉𝑖 allows some flexibility in the constraints of the margins, 
while C is a user-selected value that, in essence, takes into account the 
number of errors in classification and penalizes them. In this new “soft 
margin SVM” model the margins have to be maximized under the 
constraint that the empirical classification error must be minimized117,118: 

𝑚𝑎𝑟𝑔𝑖𝑛 = 2||𝑤|| + 𝐶 ∑𝜉𝑖𝑛
𝑖=1

Despite working well with linearly separable datasets, however its full 
potential is found when considering non-linearly separable groups. For 
this, the original dimensionality (i.e. the number of original variables) is 
augmented mathematically by using the so-called “kernel trick”. This is 
based on the calculation of new mathematical variables using a function 
of the original variables. There are several options, with linear, 
polynomial or radial basis (RBF) functions being the most common. 
Hence, conceptually, SVM is a mathematical method developed to add 
more dimensions to the original space by combining the original 
variables. This is done in hopes that a higher dimensional space would 
allow for a separation among the groups, even when that may not have 
been possible using only the original dimensions. 

5.2. Variable selection methods 

Another relevant application of chemometrics is to determine the most 
important variables of a dataset for a given purpose. Many techniques 
can be used for this. The ones used in the studies presented in this 
Doctoral Thesis (Chapters 3, 4 and 7) are: 
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In interval partial least squares (iPLS)123 the original variables are 
divided into intervals of a width selected by the user, and a PLS model 
is performed with each one. The interval with the best prediction 
capabilities is selected and kept through. Then, a new interval is added 
using the same methodology, but using a combination of the first 
selection and each of the other intervals to develop the PLS models. The 
process is repeated recursively and the number of retained intervals 
increase as far as the result improve or the maximum number of intervals 
is reached. The selection can be performed forward or backwards, if the 
intervals are added successively (and so, the number of variables 
increases after each step) or reduced continuously (i.e. intervals of 
variables are discarded after each iteration), respectively. Each strategy 
may yield different selections. The final set of variables should reflect 
the most relevant information to address the problem or the interferences 
conveyed by each interval123. The user can set the total number of 
intervals and the interval width, thus allowing the reduction of a large 
dataset to a controlled number of variables. The major drawback of this 
approach is that it may need high processing capabilities and time. This 
is especially acute when selecting small intervals of variables, as it forces 
the computer to perform a higher number of PLS models. iPLS can be a 
very useful and powerful technique with an adequate selection of 
parameters. 

The Selectivity ratio index (SRI) measures the ratio between the 
explained and the residual variance for each variable103,124. SRI can be 
considered as a measure of the capability of a variable to predict a 
specific property under study in a PLS model125. A scores (𝑡𝑇𝑃) and a 
loadings (𝑝𝑇𝑃) vectors are calculated as: 𝑡𝑇𝑃 = 𝑋 ∗ 𝑏/||𝑏|| and 𝑝𝑇𝑃 =𝑋𝑇 ∗ 𝑡𝑇𝑃/(𝑡𝑇𝑃𝑇 ∗ 𝑡𝑇𝑃) where b is the regression coefficient vector
(calculated as 𝑏 = (𝑋𝑇 ∗ 𝑋)−1 ∗ 𝑋), the operator || || represents the 
module or magnitude and the T superscript denotes a transposed matrix 
or vector. The SRI is then calculated as the ratio of variance that 𝑡𝑇𝑃 can 
explain (𝑣𝑒𝑥𝑝𝑙) versus the variance that cannot (𝑣𝑟𝑒𝑠) for every variable 
j:  𝑆𝑅𝐼 = 𝑣𝑒𝑥𝑝𝑙,𝑗/𝑣𝑟𝑒𝑠,𝑗 = ||𝑡𝑇𝑃 ∗ 𝑝𝑇𝑃,𝑗𝑇 ||2/||𝐸𝑇𝑃,𝑗||2
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Where 𝐸𝑇𝑃,𝑗 is the residuals vector. The SRI is thus proportional to the 

importance of a specific variable in a PLS prediction. This is not a 
variable selection tool itself, but a parameter that evaluates the relevance 
of the different variables for a model, which then can be sorted and 
selected manually. The variables with a SRI over 1 have a positive ratio 
of explained variance, thus making them eligible to be selected. The 
biggest downside of this method is, precisely, that all variables are 
evaluated individually, ignoring the possible interactions that can occur 
between two or more variables. 

A Variable Importance in Projection (VIP)126 score is calculated for 
each variable j as the sum of its PLS weights values weighted by the 
percentage of explained Y variance of each specific latent variable127,128. 
It was first published as a variable selection method by Svante Wold et 
al.129 It is calculated following the following equation: 

𝑉𝐼𝑃𝑗 = √∑ 𝑤𝑗𝑓2 ∗  𝑆𝑆𝑌𝑓 ∗ 𝑝𝐹𝑓=1𝑆𝑆𝑌𝑡𝑜𝑡𝑎𝑙 ∗ 𝐹
Where F is the total number of latent variables in the model, w is the 
weight value of variable j for latent variable f, SSYf is the sum of squares 
of explained variance for the latent variable f and p is the total number 
of variables. 

This score is used to rank the variables according to their importance in 
predicting a property in PLS: values greater than 1 highlight very 
informative variables while values close to 0 indicate irrelevant ones. As 
for SRI, the variables with the highest VIPs are selected ad-hoc.  

Monte-Carlo uninformative variable elimination (MCUVE)103,130 is 
a modified version of the UVE method130, using a Monte Carlo approach 
to randomly create a large number of subsets of samples from the 
calibration dataset. PLS models are developed for each of the subsets. 
The regression coefficients associated with each variable in each model 
are collected into a vector c, and, then a reliability index is calculated for 
each of the variables: 𝑅𝐼 = 𝑚𝑒𝑎𝑛(𝑐)/𝑆𝐷(𝑐). The ones with the highest 
RI values are then selected as more informative. This approach is useful 
in reducing the possible overfitting of the model when the whole 



47 

calibration dataset is used, as it develops different models with different 
subsets of samples. 

Random Frog is based on the comparison of several PLS 
models developed with randomly selected variables103. An initial 
model is developed using w variables, and its cross-validation error is 
calculated. Then, a new model with a subset of those variables is 
developed. If the cross-validation error is superior to the initial, 
the new model is discarded; if not, it replaces the previous. This 
process is repeated a fixed number of iterations, selected by the user 
(preferably as high as possible, usually no less than 2000, though this 
increases the processing time) and a selection probability index is 
calculated for each variable depending on the number of times it was 
included in an accepted model. 

iPLS, SRI and VIP are included in PLS_Toolbox MATLAB package, 
while MCUVE and random frog are from the libPLS package103. 

While a Manual selection of the highest loadings is not a variable 
reduction method in itself, it is possible to use the PCA loadings matrix 
to ascertain the most important variables in a dataset. If a PCA 
is performed with the full dataset, the scores plots allow the user to 
see which PCs separate better each category. Then, it is possible to 
identify the highest loadings of these PCs and retain the corresponding 
variables. This hopefully yields a dataset with only the variables 
that best differentiate the different categories. The main 
drawback of this approach is the inherent subjectivity of the selection 
and the fact that the loadings are obtained considering all variables. 

Dynamic PCA is based on performing a Student´s t–test for each 
variable. The test evaluates the significance (p-value) of each variable 
when a group of interest is compared against all other samples (one-vs-
all approach). Then, all statistically significant variables are used to 
perform a new PCA.  

Traditional scores plots will show immediately after the selection the 
separation between the categories, allowing the scientist to evaluate the 
goodness of the selection and, so, select the minimum number 
of variables that yield a satisfactory separation between both classes. 
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This algorithm is available in the commercial software GenEx (MultiD, 
Götemburg, Sweden). 

 

5.3. Applications in natural gas analysis 

In NG analysis, the primary objective is to determine the concentration 
of the different components of the gas mixture, as well as the Wobbe 
index. The chemometric method applied in this study was PLS 
regression on gas phase mid-IR spectra, combined with several variable 
reduction strategies: MCUVE, iPLS, random frog and VIP. 

However, in IR spectrometry it is impossible to determine the N2 
concentration in the samples, which is inversely proportional to the 
Wobbe index, hindering its prediction. NG blends with less nitrogen 
show higher Wobbe index values so acceptable predictions were 
possible, but at higher N2 concentrations the errors in the predictions 
increased significantly. Therefore, it was only possible to predict the 
Wobbe index in a reduced experimental range (14.8-15.3 kWh/Nm3). 
Besides, given the lower sensitivity of IR spectrometry when compared 
to GC (the most used analytical technique in NG quality control), it was 
not possible to develop methods to predict the concentrations of the 
components with the lowest concentrations (pentanes and hexanes, <1 
%). Nevertheless, it was possible to adequately ascertain the 
concentrations of the other NG components. As IR spectrometry is not a 
common method of analysis for natural gas, related literature is scarce. 
The few publications regarding chemometric methods combined with 
vibrational spectroscopy in NG analysis are summarized in Table 2. 

Table 2: Publications combining spectrometric measurements and 
chemometric models for the analysis of natural gas 

Algorithm Technique Sample (analyte) Ref. 
PLS FT-NIR Natural gas 131 
PLS Handheld NIR Natural gas, biogas 132 
PLS iHWG*-µNIR Synthetic mix. (CH4-C4H10) 133 
PLS FT-NIR Natural gas (CO2) 134 

PLS, PCR FT-MIR and FT-NIR Synthetic mix. (CH4, C2H6, C3H8) 135 

*Substrate-integrated hollow waveguide 
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5.4. Applications in microplastic analysis 

For plastic and microplastic analysis, several multivariate pattern 
recognition and classification techniques were tried (PCA, SVM and 
CART) with the purpose of creating models able to identify the different 
plastics independently to their aging, both in seawater and dry (shoreline) 
conditions. 

In recent years, there has been a significant increase in the number of 
publications regarding the evaluation of microplastic determination in 
combination with the aid of different chemometric techniques. Their 
scope however encompasses a variety of environmental matrices and/or 
artificial scenarios as well as theoretical studies. In Table 3 some 
relevant publications regarding this trend are summarized. 
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Table 3: Examples of publications combining spectrometric 
measurements and chemometric models for the identification or 
characterisation of microplastics 

Algorithm Technique Sample Ref. 

PCA 
ATR-FTIR and Raman micro-

spectrometry 
Fish stomach 

content 
136 

PCA 
FTIR, Scanning electron 

microscopy/energy dispersive 
spectrometry 

Seawater 137 

PCA ATR-FTIR Chicken meat 138 

PCA Raman imaging 
Printed 

microplastics 
139 

PCA and UMAP* Hyperspectral imaging 
Soil and 

wastewater 
140 

SVM, kNN, LDA 
and combinations 

with PCA 

ATR-FTIR, NIR spectrometry, 
LIBS*, and X-Ray 

fluorescence 

Consumer 
plastics, marine 
plastic debris 

141 

PCA, SVM and 
LDA 

Raman spectrometry 

Consumer 
products 

breakdown 
microplastics 

142 

PCA ATR-FTIR 
Artificially aged 

plastics 
143 

PCA Raman imaging 

Pristine 
microplastic and 
garden trimmer 

lines 

144 

PCA 
Raman imaging and MALDI-

MS* 
Ink 145 

PCA Micro-FTIR 
Microplastic 

biofilms 
146 

PCA, PLS 
Micro-NIR, Raman 

spectrometry 
Consumer 

plastics 
147 

LDA, collinear 
analysis 

Metabolomics 
Plastic mulch 

residues 
148 

1D-CNN* Raman spectrometry 
Pristine 

microplastics 
149 

PLS-DA, SVM NIR spectrometry Soil 150 
PLS-DA, SIMCA μ-FTIR Sediment 151 

SVM, NN, LS-
SVM, PLS-DA 

Vis. Hyperspectral imaging 
In-situ 

underwater 
microplastics 

152 
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PLS-DA Hyperspectral imaging 
Marine 

microplastics 
153 

PLS-DA ATR-FTIR Seafood 154 

PLS-PM* 
UV-Vis Raman and X-ray 
photoelectron spectrometry 

Mulch film 
microplastics 

155 

ANN, kNN, 
LDA, PCA, PLS-

DA, SIMCA, 
SVM 

ATR-FTIR 
Pristine 

microplastics 
156 

PCA, PLS-R ATR-FTIR 
Pristine and 

recycled 
microplastics 

157 

Two-dimensional 
correlation 

analysis 
Fluorescence spectrometry 

Dissolved 
organic matter 

158 

SVM, MD*, ML* Hyperspectral imaging Soil 159 
Hierarchical 

cluster analysis 
ATR-FTIR Cellulose fibres 160 

SVM Hyperspectral imaging 
Artificially 
weathered 

microplastics 

161 

DT*, SVM, 
CNN* 

Hyperspectral imaging Farmland soil 162 

SIMCA* Hyperspectral imaging 
Environmental 

samples 
163 

MCR-ALS* Raman hyperspectral imaging 
Sand and fish 

faeces 
164 

Sub-kNN, BDT* 
DBSCAN* 

LDIR 
Pristine and 
weathered 

microplastics 

165 

* UMAP: uniform manifold approximation and projection. LIBS: Laser-
induced breakdown spectroscopy. MALDI-MS: Matrix-assisted laser 
desorption/ionisation mass spectroscopy. 1D-CNN: one-dimensional neural 
network. LDA: Linear discriminant analysis. PLS-DA: Partial least squares 
discriminant analysis. PLS-PM: Partial least squares path modelling. DT: 
Decision tree. CNN: convolutional neural network. MD: Mahalanobis distance. 
ML: maximum likelihood. SIMCA: soft independent modelling of class 
analogy. MCR-ALS: Multivariate curve resolution-alternating least squares. 
BDT: Boosted Decision Tree. DBSCAN: Density-based Spatial Clustering of 
Applications with Noise. 
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6. Overview of the NG-related publications in 

this Doctoral Thesis 

In Chapter 2, the use of several inert gases was studied in order to take 
advantage of the gas broadening effect. More defined and intense spectra 
were obtained, where smaller peaks can be visualized, increasing the 
information that can be surmised. The working hypothesis was that this 
would allow the development of more efficient multivariate 
chemometric regression models. That was precisely the objective of 
Chapters 3 and 4, where PLS regression was used to create models in 
order to predict the composition of a series of real, commercial NG 
samples. There, the use of variable selection methods (MCUVE, iPLS, 
SR and random frog) was explored in order to get rid of variables with 
no useful information or that hindered the models. 
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7. Overview of the microplastic-related 

publications in this Doctoral Thesis 

The general aim of the papers presented here, besides their specific 
objectives, is to maximize the usefulness of the spectrometric 
information used to identify microplastics gathered from environmental 
samples. Because of this, it is of paramount importance to offer reliable 
methods of analysis to characterize, identify and quantify them. 
Specifically, the premise of Chapter 5 is to address the aforementioned 
lack of instrumental information presented in most microplastic-related 
publications, as well as to propose a unified way to present it. Chapter 6 
studies the effects of weathering in the mid-IR spectra of PA. Artificially 
weathered pellets and powder were analysed by ATR, micro-reflectance 
and Scanning Electron Microscopy (SEM). There, the effects of 
photodegradation are studied considering both the evolution of the 
spectral profile of IR spectra and the morphologic characteristics seen in 
SEM images. In Chapter 7, the spectra of 9 of the most commonly-
produced polymers were obtained in various instrumental configurations 
and weathering stages. Then, variable reduction methods and 
multivariate chemometric modelling tools were applied to predict the 
major polymeric constituent of several fragments, in both artificially-
aged and field samples. 
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8. General conclusion 

As a general conclusion, the publications that constitute this Doctoral 
Thesis focus on applying different FTIR spectrometry and chemometric 
techniques to address relevant questions in two environmentally relevant 
fields of study, with the intention of improving already existing 
measuring processes, or suggesting new ones. In general, novel 
analytical procedures were developed, with varying degrees of success. 
In the case of NG, the minor components could not be quantified. The 
Wobbe index couldn´t be determined in the full range of the commercial 
products due to its nitrogen dependency. The concentrations of the main 
components of commercial NG have been determined with acceptable 
errors, with a methodology that offers faster results and less cost of 
reagents and workload than the chromatographic standards. 

For plastic and microplastic characterisation, several models were 
developed, able to predict the polymeric composition of artificially aged 
plastics. Even though the results for environmental samples were not 
satisfactory using reflectance techniques, those for ATR show promising 
performance parameters. The weathering behaviour of polyamide was 
also studied and compared with previous partial studies found in 
literature. Finally, an outline for the standardization of the information 
reported in publications dealing with microplastic analysis was proposed 
in order to address a serious lack of information observed in many 
articles. 

In both fields more work can be done, but this Doctoral Thesis 
demonstrates that the combination of IR spectrometry and chemometrics 
is a powerful tool to open new working methods with relatively moderate 
costs, short turnaround times and very low consumption of reagents. 
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ABSTRACT: European trends to get greener cities and protect the environment imply substituting traditional diesel/gasoline
engines for gas (gas-hybrid) powered engines. To accomplish this, straightforward quality control of liquefied and/or
compressed natural gas is needed. This communication shows that the broadening effect of an auxiliary inert gas (Ar) enhances
their infrared (IR) gaseous spectra and improves usual analytical performance parameters by 50%, which paves the way to use
IR routinely to assess the composition of natural gas samples.

1. INTRODUCTION

The direct measurement of gaseous samples is becoming
increasingly important due to society’s needs for monitoring
atmospheric pollutants,1 industrial applications,2 and the steady
commercial use of energetic gaseous resources (biogas, natural
gas, hydrogen, etc.).
Focusing on the latter issue, a typical field where accurate and

fast measuring methods are needed is the natural gas industry.
The European Commission seeks to replace current oil-derived
fuels for alternative fuels, such as compressed natural gas,
electricity, hydrogen, etc. In particular, when heavy-duty
vehicles andmaritime transport are considered, the EU objective
is to change traditional diesel engines for liquefied natural gas
(LNG) propellers, and it was planned to deploy the
corresponding facilities on maritime ports and several points
on land along the Trans-European Transport Networks by the
end of year 2025.3 Also relevant, the trend for changing
traditional personal vehicles to alternative fuel vehicles
(considering both compressed natural gas and gas-hybrid
engines) is gaining momentum rapidly as most European
capitals strongly limit the circulation of traditional vehicles
through their city centers.
The key parameters of natural gas are important to know for

transportation and efficient consumption.4 Therefore, the
properties of natural gas must be determined in order for
large-scale shipments to be used at energetic facilities,
particularly for LNG energy custody transfer purposes. To
achieve this goal, it is critical to accurately measure the
composition of the gas so its properties can be assessed. A
paradigmatic example is the determination of the “methane
number” (MN), whose concept is analogue to the octane
number in gasolines or the cetane number in diesel oils.5 It is
used to determine the “knock” rating of the natural gas when
used in a motor (“engine knocking” occurs when small pockets
of air and fuel ignite irregularly out of the optimum moment in
the cylinder, potentially damaging engines6). As an alternative to
the use of engines, this property is estimated using the chemical

composition of the natural gas, although the equations
themselves are a matter of debate.6

The most used technique for gas quality assessment is gas
chromatography (GC), combined with detection by either mass
spectrometry (MS)7 or, more usually, thermal conductivity
(ISO 6974-5:20148). GC allows for highly accurate quantitative
measurements, although it has several drawbacks when used
offline (the size of the instruments, although modern in-line CG
devices became very small, the need for dedicated installations,
supply of auxiliary gases, the need for a sampling stage, etc.).
Several alternatives were proposed instead, such as pellistors,
semiconductor gas sensors, or electrochemical devices; however,
they still have several problems, such as cross-responses,
sensitivity to humidity, and drifts.9

In contrast, optical measuring systems, specifically Fourier
transform infrared (FTIR) spectrometry, do not require special
setups and additional reagents, are rather cheap, fast, and very
stable, and yield high turnaround times (some practical details
are given in the last section of this paper). Hence, they seem an
appealing alternative for measuring gases both for industrial
and/or environmental applications.
The main disadvantage of FTIR when analyzing natural gas

samples is the complexity of the resulting spectra and so their
detailed chemical interpretation. This is because the spectral
bands of the components (from methane to hexane plus some
isomers) overlap hugely because, after all, the unique functional
groups are those related to C−H moieties. In such cases,
quantitative analysis of the samples requires multivariate
chemometric algorithms.10−12 However, for these method-
ologies to be really useful, we need to first measure the best
possible IR spectra.
A way to get this is to enhance the weak IR spectral bands

exploiting the “pressure broadening effect”. Reported as early as
in 1965,13 this effect arises as a consequence of the collision
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between molecules, which degenerates the energetic rotational
and vibrational levels of the molecules, and it also reduces the
lifetime of the excited states of the molecules.14 When the
instrument operates at resolutions wider than the theoretical
individual absorption line widths, as it is common for most
commercial spectrophotometers, the polychromatic limitation
of the Beer’s law makes the absorption band to be weak.
However, intermolecular collisions degenerate the transitions
(absorption widths become broader with increasing pressure),
enhancing the signal. The increase depends on the total pressure
within the cell, the wavenumber, and, to some extent, the
accompanying inert gas.13

Some authors applied this effect successfully using nitrogen as
the filling gas, although without detailed explanations in the final
reports.10 Varanasi et al.15 studied the broadening effect when
analyzing the ν3-fundamental band (asymmetric stretching, ca.
3019 cm−1) in methane standards using H2 and He. The
broadening of the P-branch of the same band due to N2, O2, H2,
He, Ar, and CO2 was also studied by Es-sebbar and Farooq.16

McDermitt et al.17 considered N2, O2, H2, and other filling gases
when measuring atmospheric CO2. More recently, Frankenberg
et al. studied the broadening of the NIR bands of methane using
N2 as the filling gas.

18 However, these applications do not deal
with routine natural gas measurements at an industrial scale.
The objective of this paper is to develop an FTIR-based

analytical procedure that maximizes the signals recorded for
LNG samples in industrial laboratories. This is the first step in an
ongoing effort to set mid-IR spectrometry as a simple-to-use and
fast framework to predict the chemical composition of liquefied
natural gases. To set the analytical procedure, the influence of
three common and readily available gases (nitrogen, helium, and
argon) as pressurizing media in FTIR measurements is studied.

2. MATERIALS AND METHODS

2.1. Equipment. All measurements were made with an 8400S
Shimadzu FTIR spectrometer and a 10 cm fixed-path gas cell. The cell
setup required customizing a temperature-controlled, 10 cm path,
stainless steel Harrick gas cell (Harrick Scientific, USA) with 2 mm-
thick, 25 mm-diameter ZnSe windows. Figure 1 shows a conceptual

scheme of the cell setup designed in our laboratory ready for use (we
added two external Viton O-rings to assure tightness without
compromising the optical path). The exhaust tube of the gas cell was
connected to a laboratory fume cupboard, which helps evacuating the
cell. The software used throughout was the Shimadzu IR Solutions 1.30.
The operating conditions of the spectrometer are given in Table 1.
2.2. Reagents and Samples. All pressurizing gases (Ar, He, and

N2) were obtained from Carburos Metaĺicos (Barcelona, Spain) with

99.9992% purity (the terms “filling”, “pressurizing”, or “broadening” are
used here as synonymous).

The sample used to perform the studies was a standard developed to
mimic a natural gas mixture (ready for its final use) provided by
Reganosa (Regasificadora del Noroeste, Mugardos, Spain). Its
composition is shown in Table 2.

3. RESULTS AND DISCUSSION

The influence of each broadening gas was studied by comparing
a series of spectra obtained at different total pressures (between
0.2 and 1.8 bar; see Table 3). All experiments were performed at

20± 1 °C in an air-conditioned room (humidity: 35± 2%). The
protocol used to obtain the spectra had five steps (in all the
experiments, the broadening gas and the samples were already
thermostated at room temperature, and no further stabilization
was required):

1. Purge the systemwith the broadening gas for 1min (using
a 0.5 bar pressure, the background did not change after
this time).

2. Record the background with the pressurizing gas at 0.5
bar.

3. Purge with the natural gas sample for 1 min.
4. Measure the sample at 0.2 bar.

Figure 1. Scheme of the sample cell and its setup.

Table 1. Spectrometer Operational Settings

mode absorbance

apodization Happ−Genzel
scans/spectrum 200

nominal resolution 8 cm−1

range 5500−480 cm−1

backgrounda Ar/He/N2 0.5 bar
aThe corresponding filling gas was used to record the background.

Table 2. Composition (as %) of the Natural Gas Standard
Used To Check the Pressure Effect

component concentration (%)

N2 1.002

CO2 0.500

methane 92.000

ethane 4.997

propane 1.000

i-butane 0.150

n-butane 0.200

neopentane 0.000

i-pentane 0.049

n-pentane 0.049

n-hexane 0.049

Table 3. Gas Mixtures Used in the Experiments (Given as the
Partial Pressure of each Gas)a

sample (bar) added Ar, He, or N2 (bar)

0.2 0.0

0.3

0.8

1.3

1.6
aThe total final pressure was the sum of both pressures.
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5. Add the broadening gas to the sample up to the target
pressure (Table 3) and record the spectrum of the
mixture.

The spectra thus obtained showed a clear general increment
on their peak intensities, larger as the pressure increased. In
Figure 2, the spectrum of the original natural gas sample is
compared to the spectra obtained after adding the broadening
gases (1.8 bar total pressure). The broadening effects are
different for each band and also vary from the center of the band
to its sides.19 They were more dramatic at the C−H bending
region (ca. 1600−1200 cm−1), where the bands at 1250 and
1350 cm−1 doubled their absorbance. However, despite that the
three filling gases yielded essentially the same increments in the
most intense bands, there were differences at some weak bands
(not visible in the general overview of Figure 2). The relevant

issue is that some of those bands may relate to specific vibrations
of particular components of the sample, as a matter of example:

1. The band from 1820 to 1750 cm−1 corresponds to the
characteristic signal of methane (ν2, C−H asymmetric
bending) although interfered by the C−H bending of
other gas components (all typical ones but ethane).

2. Some peaks at the 3900 to 3500 cm−1 range relate to
methane (3ν4, third overtone of the C−H symmetric
bending).20

3. The peaks at the 1200 to 1120 cm−1 range can be
attributed to a suite of components: isopentane,
isobutene, butane, and propane (as for comparison
against NIST public databases21).

To assess the effects of the different broadening gases, some of
the weakest recorded spectral peaks were chosen. These are

Figure 2. Superposition of the spectra of a 0.2 bar standard (gray), without the filling gas, and the same standard with three pressurizing gases (total
pressure: 1.8 bar): N2 (red), He (green), and Ar (blue).

Figure 3. Examples of IR bands whose intensity increased most after adding the broadening gasesHe (green), N2 (red), and Ar (blue)to the
natural gas sample (top subplots) and graphical resume of the absorbance recorded as a function of the total pressure (lower subplots).
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mostly secondary bands (P or R bands), with less intensity than
theQ bands.16As they originally have very small absorbance, it is
relevant to improve the sensitivity of the measurements here by
means of a broadening gas before proceeding with further
quantitation studies. It was observed (Figure 3) that Ar yielded
higher increments than the other two filling gases whenever very
weak peaks (<0.05 absorbance units (a.u.) in the original natural
gas sample) were considered.
For example, a ca. 3-fold improvement was obtained at 1640

cm−1 (Figure 3, top left panel), a band that can be attributed to
the C−H bending of methane.
Since this region may be influenced by atmospheric humidity,

we made all efforts to avoid such a negative participation. First,
samples do not contain water. They proceed from expanded
liquefied natural gas (under controlled pressure and absence of
air using conditions that avoid condensation). On the other
hand, even if the broadening gases contain trace humidity, the
signals are recorded in the background and subtracted
automatically from the samples. Atmospheric air is also
considered in the background because the extremes of the gas
cell do not adjust tightly to the sample compartment walls. The
air conditioning system of the room controls the humidity, so we
were confident that no relevant changes occurred there.
Furthermore, some minute peaks, which do not appear while

using other broadening gases (in the original sample, they would
hardly be considered as “peaks”), became quite clear when Ar
was selected instead (see augmented views at the top of Figure
3). This was attributed to the higher atomic mass of Ar,13 which
makes the collisions between the molecules of the natural gas
constituents and the broadening gas more efficient, and so, the
degeneration of the energetic rotational and vibrational levels of
the former.
To illustrate how these signal enhancements can improve the

analytical performance of future measurements, precision (as
repeatability) and the classical limits of detection were evaluated
before and after using the broadening gas; see Table 4 (at the
selected 1.8 bar total pressure).
To calculate the repeatability (r = 2·SD·√2), seven repeats

were measured on the same working session on the original
natural gas sample and on the sample plus the filling gas mixture,
and the SD was calculated at different points. The most intense
signal was at 4216.5 cm−1 (ca. 0.7 a.u.); that at 2824 cm−1 was
next (ca. 0.48 a.u.), and the weakest one was at 1470 cm−1 (ca.
0.33 a.u.), all of them before using the broadening gas. It can be
seen (Table 4) that the repeatability reduced when the filling gas
was used up to a remarkable 50% when the weak signal at 1470
cm−1 was considered. The RSDs (relative standard deviations,
%) at those wavenumbers are not too different among them,
although it is seen that the more intense the signal is, the better
the relative precision becomes, as expected.
Table 5 resumes the classical limits of detection (LOD) of

some natural gas components (high, medium, and low
concentration levels). They were calculated considering the
background noise as closely as possible to their peaks and the

slope of a one-point calibration line (the certified standard
shown in Table 2).
Despite that this approach yields narrow calibration ranges, it

is acceptable (indeed it can be better than other approaches, see
ref22 and others cited therein) as long as the one-point
calibration is used to quantify very close signals. Only those
compounds for which a peak can be assigned unambiguously (by
comparison with NIST spectra21) were considered. The
calculations shown here correspond to the 1.8 bar total pressure
situation (Table 2) as this was the setup selected finally.
The results show that, as expected, the LOD improved in all

cases. Not too significantly for methane, because the enlarge-
ment of its intense associated band was small, but by a
remarkable 50% for ethane and n-pentane (owing to the increase
in the sensitivity on their weak bands, and so on the slope).

4. CONCLUSIONS

The use of a broadening, inert gas presents relevant advantages
for the FTIR measurement of natural gas samples since the
absorbance of otherwise weak bands (e.g., <0.05 a.u.) may
double. This, in turn, increases the sensitivity and reduces both
the repeatability and the limits of detection even by ca. 50%.
Those improvements were more remarkable when the heaviest
filling gas (argon) was employed as it even allowed the
visualization of tiny (in the original sample) spectral character-
istics. In addition, the presence of Ar in natural gas samples is
negligible (contrary toN2, whichmight amount up to 5.5%), and
it is cheaper than He. Therefore, Ar seems to be the best choice
to enhance the FTIR measurement of natural gas samples. All
these characteristics suggest that the use of a filling (or
broadening) gas to measure commercial natural gas samples
opens ways for more sensitive determinations of their
composition and, eventually, related properties. A positive
point is that inert gases were employed satisfactorily. This
contrasts with other proposals where H2 and O2 were
suggested,16 which might present hazards concerns.
Finally, some comments on the practical and financial aspects

of the chromatographic (GC) and infrared (FTIR) systems can
be presented. The laboratory space occupied by the two systems
is similar. The initial purchase costs are higher for the
standardized GC system, and it needs more gas installments
(ca. three times the cost of the FTIR device used here). The

Table 4. Repeatability, Standard Deviation (within Brackets), and Relative Standard Deviations (%RSD, in Parentheses) at
Different Peak Positionsa

band (cm−1) sample gas at 0.2 bar, n = 7 sample + pressurizing gas at 1.8 bar, n = 7

4216.5 6.2 × 10−2 [2.2 × 10−2] (3.1%) 5.3 × 10−2 [1.9 × 10−2] (2.4%)

2824 5.3 × 10−2 [1.9 × 10−2] (4.3%) 4.5 × 10−2 [1.6 × 10−2] (3.1%)

1470 6.8 × 10−2 [2.4 × 10−2] (7.8%) 3.1 × 10−2 [1.1 × 10−2] (3.3%)
ar and SD are in absorbance units (a.u.).

Table 5. Classical Limits of Detection (as %) for Some
Natural Gas Componentsa

component (cm−1) LODb LODc

methane
(2959 cm−1)

1.8 × 10−3 (7.9 × 10−3) 1.6 × 10−3 (3.1 × 10−2)

ethane (2365 cm−1) 2.2 × 10−5 (1.1 × 10−2) 1.0 × 10−5 (4.0 × 10−1)

n-pentane
(1470 cm−1)

4.2 × 10−6 (5.9) 2.1 × 10−6 (11.7)

aThe slopes of the one-point calibrations are given in parentheses
(a.u./% of component). bConsidering the natural gas sample alone.
cConsidering the natural gas sample plus the filling gas.
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turnaround time (offline analyses) is ca. 150 and 10 min for GC
and FTIR, respectively (only instrumental analysis and basic
processing; CG includes a blank, quality controls, and initial and
final instrument verification). Routine GCmeasurements need a
permanent carrier and detector gas (He), whereas FTIR only
needs a small amount of Ar per sample (a bottle lasted for >100
samples). A major difference between GC and FTIR is due to
staff dedication to calibrate and sample signal treatment (more
exhaustive for GC). Roughly speaking, our estimations showed
that a chromatographic quantification of hydrocarbons costs
€600/sample, whereas less than €200/sample can be established
for FTIR (equipment and amortization excluded; in FTIR, the
cost of developing multivariate chemometric models was
considered).
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empirical approach to update multivariate regression models intended
for routine industrial use. Fuel 2000, 79, 1823−1832.
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Abstract: Currently, gas chromatography is the most common analytical technique for natural gas

(NG) analysis as it offers very precise results, with very low limits of detection and quantification.

However, it has several drawbacks, such as low turnaround times and high cost per analysis, as

well as difficulties for on-line implementation. With NG applications rising, mostly thanks to its

reduced gaseous emissions in comparison with other fossil fuels, the necessity for more versatile,

fast, and economic analytical methods has augmented. This work summarizes the latest advances to

determine the composition and physico-chemical properties of regasified liquid natural gas, focusing

on infrared spectroscopy-based techniques, as well as on data processing (chemometric techniques),

necessary to obtain adequate predictions of NG properties.

Keywords: natural gas composition; natural gas analysis; quality control; FTIR; multivariate

regression; PLS

1. Introduction

The increasing number of new natural gas (NG) applications, such as in maritime
transport and large trucks, demand faster and more versatile ways to determine its qual-
ity. Today, the standardized analytical characterization of the NG composition requires
gas chromatography (GC). This is a well-established analytical methodology, capable of
measuring accurately and reliably the NG components at very low concentrations (e.g., ca.
0.01% (v/v) [1]). On-line gas chromatographs are currently being implemented for routine
measurements and quality control. They are fast (ca. 5 min/sample) but still rely on bench-
top instruments for their validation (and frequent revalidation). That is time-consuming
and not straightforward. In addition, contractual agreements usually focus on standardized
benchtop chromatographs, whose overall running cost per sample is high [2–5].

In light of the rise of natural gas consumption in the last few decades (though mitigated
recently by the COVID-19 pandemic) [6] and the new applications being proposed [7], it is
expected that NG production will keep increasing for, at least, the next two decades [8],
even considering the most optimistic predictions for the use of renewable energies.

This favors the development of new, faster, and versatile quality control methods.
Some of them are based on physical measurements, such as combustion energy, speed of
sound, or density, and they have been applied to determine the heating value [9], the lower
heating value plus the Wobbe index (WI), and the stoichiometric air–fuel ratio [10], as well
as the Methane number, WI, and CH4, C2H6, and CO2 concentrations [5,9–11]. Noteworthy,
these methods require complex instrumentation.

Small electrochemical sensors offer a very appealing and convenient solution (likely,
portable in a near future) for routine measurements, although they are still under de-
velopment and have not been commercialized. Some of them are based on capacitive
transducers whose signals depend on the presence (and quantity) of specific NG composi-
tional gases [12–14].
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In addition, different kinds of convenient spectroscopic measurements (although
not fully portable, still) were proposed for NG quality control, mostly based on the use
of infrared radiation [3]. They ranged from tunable-filter near infrared radiation [12]
to common Fourier transform IR spectrometry (FTIR), both in the near region (NIR,
12500–4000 cm−1, [15,16] because it contains the 1st and 2nd overtone regions –5700 and
8300 cm−1, respectively, plus the 1st overtone of the combination mode of hydrocarbons,
7150 cm−1), and in the medium region (MIR, 4000–450 cm−1). Although NIR was initially
suggested as an optimal spectral region, this has been shown not to be the case always and
MIR provided very advantageous, as well [2].

Raman spectrometry has also been suggested to measure the chemical composition of
gases [4,17,18] and was applied to evaluate the composition of NG and biogas [19] and fuel
gas [20] (from CH4 to C4H10).

It is worth noting that several difficulties arise when using IR and Raman spectrometry.
In effect, as NG is composed of a variety of molecules, the resulting spectra are a complex
combination of overlapping peaks and/or broad bands corresponding, more often than
not, to several compounds (for example, the peaks around 2950 cm−1 correspond to the
C-H stretching vibrational mode, which belongs to every aliphatic molecule in the gas).
The use of chemometric methods has been demonstrated to be useful to circumvent this
problem [2].

The main objective of this work is to offer tutorial guidelines on how to develop
an advanced MIR-based quality control methodology to estimate NG quality control
parameters. The approach detailed here is based on measuring gaseous infrared spectra
of regasified liquefied natural gas (LNG) and coupling them with multivariate statistical
modeling. Details are given on the experimental setup used to gather reliable results and
the workflow to get a sound prediction model.

2. Materials and Methods

2.1. Instrumentation

A relevant issue when analyzing NG is the gas cell. The most important factors
defining it are the pressure it can withstand, the optical length, and the material of the
windows. The first may affect the seals and the cell windows since an excessive pressure
may cause leaks and damage the usually expensive and fragile cell crystals (windows),
also creating security concerns, as NG is flammable. In our experience, a sample pressure
around 0.2 bar is enough to obtain well-defined spectra, although the signals are improved
using additional an inert gas, as explained in Section 2.2.

The optical path impacts directly on the intensity of the spectral peaks (so, on the
Lambert-Beer-Bouguer’s law). Single-pass, multireflection, and hollow-core fiber cells can
be used to study NG. The first type is very straightforward, as it only consists of a capsule
(the simplest one made of glass) with IR-transparent windows, which the IR beam traverses
linearly. Such a cell tends to be not very long, often not exceeding 10 cm, thus yielding a
relatively short optical pathlength. More robust 10-cm single-pass cells are of stainless steel
and might be thermostatized, as well [21–23].

Multireflection cells contain a series of internal mirrors that reflect the IR incident beam,
augmenting the pathlength. The limiting factor in these cells is the reflection coefficient of
the mirrors, which determines the maximum number of reflections. Typical pathlengths
can range between 1 and 15 m [21–24].

A hollow-core fiber cell consists of a hollow internal-reflection fiber filled with the
gas (Figure 1). A laser beam (usually from a quantum cascade laser [25]) is focused on the
hollow core space and travels inside the coil to the detector, with a pathlength equal to the
longitude of the fiber. The main limitation is the loss of energy in the beam as it travels
through, which is affected by both the length and the curvature of the fiber [24]. Typical
pathlengths are between 0.1 and 5 m. Even though there have been some studies with
methane samples [26], hollow-core fibers are not still of common usage; so, we will focus
on traditional cells.
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Figure 1. Basic diagram of a hollow-core fiber cell internal structure. Source: guidingphotonics.com

(accessed on 20 November 2021) [24].

At first, multireflection cells may appear as a good choice because of the many reflec-
tions they have, which increase the S/N (signal to noise) ratio. However, they might not be
the best option, as they are very expensive and need large sample quantities, not only for
the measurement itself but for the previous purge required to avoid cross-contamination.
In addition, major sample components might be an issue because their signals can saturate
the spectrum. In addition, those cells are quite fragile because of their glass body, and the
mirrors need regular realignment (not difficult, but time-consuming).

Figure 2 compares two spectra of a regasified LNG sample measured with a 10 cm
pathlength single-pass cell and with a 1 m pathlength multireflection cell. It can be seen
that even though the intensity is considerably higher for the latter (indeed, too high, with
absorbances up to 2.5), the general spectral profiles are identical, and no peaks were lost
when the short cell was used.

− −

Figure 2. Comparison of spectra obtained using a multireflection gas cell (1 m pathlength) with CaF2

windows (yellow) and a single-pass gas cell (10 cm) with ZnSe windows. The region in the box shows

the influence of the windows (see text for details).

Nevertheless, for a simple and straightforward working protocol, the single-pass cell
can (and should) be customized so that the filling and emptying of the cell become simple,
and the backgrounds are recorded easily. Figure 3 shows an example that we have used
quite successfully. It consists of a 10 cm path, stainless steel Harrick gas cell (Harrick
Scientific, Pleasantville, NY, USA) with 2 mm-thick, 25 mm-diameter ZnSe windows, an
input tube with a Swagelock 3-way valve, an exhaust tube, and an internal pressure gauge.

As for any traditional IR application, the material of the windows is a very impor-
tant parameter, as it can reduce the range of wavenumbers in which the analysis can be
performed. This is also exemplified in Figure 2. The spectra obtained for the short cell
with ZnSe windows is well defined in the 500–950 cm−1 region, which is totally obscure
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when CaF2 windows were used in the multireflection cell. This region is relevant when
studying hydrocarbons. For the sake of information, the most common window materials
are summarized in Table 1, along with their effective wavenumbers working ranges [27–29].

− −

Figure 3. Conceptual scheme of the 10 cm-path gas cell tailored for measuring regasified LNG samples.

Table 1. Some common gas cell window materials and their transmission working range [27–29]

(there may be slight discrepancies in the wavenumbers among the references).

Window Material
Effective Range

(cm−1)
Window Material

Effective Range
(cm−1)

AgCl 25,000–360 KBr 40,000–340
AMTIR (GeAsSe) 11,000–625 KRS-5 (TlBr + TlI) 16,600–250

BaF2 50,000–740 NaCl 40,000–625
CaF2 50,000–1025 Sapphire (Al2O3) 50,000–1525

Chalcogenide (AsSeTe) 4000–900 Si 8000–660
CsI 33,000–200 SiO2 50,000–2500

Diamond 40,000–12.5 ZnS 17,000–690
Ge 5500–475 ZnSe 10,000–550

When selecting an instrument to perform IR measurements several important param-
eters need to be addressed. A first factor to take into consideration is the wavenumbers
range, ideally from 5000 to 450 cm−1 so it includes the 3rd methane overtone around
4400 cm−1 and the aliphatic C-C skeletal vibrations around 600 cm−1. A basic setup might
be the one depicted in Figure 4, with a Shimadzu 8400S Spectrometer (Shimadzu, Kyoto,
Japan) and the gas cell depicted in Figure 3.

A second issue is the nominal spectral resolution. In gas analysis, this is a particularly
relevant parameter as gas spectra contain very narrow rotovibrational peaks very close to
each other. Resolution can be defined as the wavenumber interval at which two consecutive
datapoints are recorded. A high resolution means small intervals (closely adjacent intensity
signals), more data, well defined spectra, and less overlap between peaks. However, it
also decreases the speed of the analysis and reduces the S/N ratio, which implies that
a higher number of scans is required to get a satisfactory spectrum [30]. A minimum
1 cm−1 resolution is required to resolve the signals; otherwise, the spectral bands will
overlap in excess (see Figure 5). Such a resolution is easily attainable by most modern
FTIR instruments, and they even offer much better ones (current benchtop instruments
offer up to 0.25 cm−1 resolution). However, one must be sure that the wealth of data per
spectrum can be retrieved and saved fast (more than 15,000 digitized values per spectrum
for highest resolutions) and handled by statistical software, which is not always the case. So,
depending on the available instruments and computers, a compromise might be needed.
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√

Figure 4. Instrumental setup with a gas cylinder connected to the 3-way valve so that the sample and

the broadening gas can be introduced into the cell.

− −Figure 5. Effect of the nominal resolution on the IR natural gas spectra. Black: 1 cm−1; Red:

8 cm−1 resolution.

There are more thorough definitions of resolution, based on the Rayleigh or the full
width at half-height (FWHH) criteria. The Rayleigh criterion states that two adjacent
spectral lines (with a sinc2(x) form and equal intensity) “are considered to be just resolved
when the center of one line is at the same frequency as the first zero value of the other” [31].
Visually, a slight drop (approximately 20%) between the two maxima can be seen. On
the other hand, the FWHH criterion states that two triangular shaped lines are resolved
when the spacing between the lines is greater than the FWHH of either line [31]. This latter
definition, however, is not very appropriate for FTIR devices [31]. The nominal resolution
is going to affect the required time of analysis, so a trade-off between time and quality of
the spectra must be obtained.

A third issue is the number of scans recorded by the instrument to get the final
spectrum. It influences the time required to retrieve the final spectrum, as well as its quality.
As for any instrumental device, there is always a certain degree of variability in the signal
due, in part, to the motion of the gaseous molecules in the sample, which causes many IR
bands/peaks to be of low intensity [30], but also due to instrumental noise [32,33]. Too
few scans will yield a spectrum with a poor S/N ratio, whereas a high amount of scans
helps in removing this variability by averaging out random noisy signals, thus offering
a more precise result. However, recall that noise gets only reduced by a factor of 1/

√
n

(n = number of scans) [32,33]. The optimal number of scans depends on several factors,
such as the physical state of the sample (gases need more scans than solids), temperature
control of the room, externally caused bench vibrations, real-time processing capabilities
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of the microprocessors, etc. In our experience (room temperature controlled to ±1 ◦C),
around 200 scans per spectrum offer an optimal result, though 100 scans yielded suitable
final spectra many times.

A well-known point for all IR practitioners is the need to background-correct the
spectra. However, the stressing environment of industrial laboratories, with tight delivering
times, much workload, and adjusted personnel, may tempt analysts to measure gas samples
in a ‘continuous mode’ without recording new backgrounds. Now, taking into account
that 200 scans (1 sample) need ca. 15 min to be recorded (this obviously depends on
the instrument being used and the number of scans and resolution), it is clear that the
atmosphere of the laboratory is prone to fluctuate; thus, the background after 15, 30, . . . min
will definitely not be constant. Therefore, it is critical to perform a background before every
sample is measured, especially whenever extensive recording times are needed. Failure in
doing so will lead to ‘tilted’ spectra and more intense peaks associated to environmental
water, CO, and CO2 (at least, but any organic volatile solvent from the laboratory can also
be detected). This will be more dramatic as time goes by (Figure 6) and becomes very
important as soon as after 60 min. A way to avoid this is to tightly close the space where
the gas cell was installed and continuously purge with N2, which is not always feasible as
it happens in Figure 4.

Figure 6. Baseline evolution of the spectrum of a sample during 1 h without background correction.

Finally, apodization is a mathematical operation applied after the Fourier transform
that minimizes the appearance of secondary peaks at both sides of the actual peak [34]. For
natural gas analysis, medium-strong functions, such as Happ-Genzel or Beer-Norton, are
used commonly. The strongest the function is, the lower the secondary, undesired, peaks
are, but, also, the required signal of interest decreases, as well. To select the best level of
apodization preliminary trials have to be performed considering the various possibilities of
the instrument-controlling software. Different vendors offer different algorithms, although
the ‘strong’ functions are good many times. It is recommended to report the apodiza-
tion function applied in your particular study and maintain the selection throughout all
the measurements.

2.2. Gas Broadening

A typical problem when measuring LNG is that the product contains major con-
stituents (>75%, v/v concentrations, e.g., methane) and minor components (<1%, v/v con-
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centrations, e.g., butanes and pentanes), all of them being of importance for quality control
purposes. Hence, there is some difficulty in obtaining representative signals for each
compound, despite the overall spectrum has visually nice characteristics (low noise, well-
shaped bands, etc.). A way to address this problem consists of boosting the less intense
bands using a so-called broadening gas (or filling gas). That consists of an inert gas that,
when added to the gas sample, enhances the signal of weakest peaks. The effect has been
known since the first half of the 20th century [35–37] but not too applied in routine quality
control measurements. Briefly, the molecules of the inert gas collide with those of the
sample compounds, momentarily blocking the rotation of the atoms in the moment of
the collision. This enhances the analytical signal of the rotational modes, increasing the
intensity of the spectral peaks.

The operational procedure when dealing with a broadening gas is not difficult and
we found nice results considering the next steps [38]: (i) purge the cell with the filling gas
(0.5 bar, 1 min); (ii) record background; (iii) purge with a small flow of the sample gas;
(iv) fill the cell with the sample (0.2 bar), and, then, add the broadening gas until a total
pressure of 1.5 bar; and (v) record spectra.

In previous studies [38] a suite of inert gases (N2, He, and Ar) was evaluated to
determine which improves most the sensitivity of selected weak bands when measuring
commercial LNG samples. Out of them, Ar arose as the most adequate one to enhance the
low intensity peaks (as shown in Figure 7), while N2 and He just increased the signal of the
overall spectra equally.

−

−

−

−

Figure 7. Exemplification of the effect of a broadening gas (Ar) on the intensity of a weak peak of

an LNG sample (named B4X) at 1716 cm−1 (attributed to CH bending). The inset shows the ratio of

variation of the signal as a function of the pressure of Ar. The pressure of the sample was always

0.2 bar, whereas the total pressure is indicated in the labels.

2.3. Peak Identification

Determining the components of LNG is a major issue for industries, customers, and
interested parties. They are relevant to evaluate the combustion properties for its use in
engines (measured experimentally by the motor methane number); for trade and energy
custody activities and billing; and to evaluate the interchangeability of different gas mix-
tures (measured experimentally by the Wobbe index). IR spectra contain much information
on the nature of the chemical constituents but, unfortunately, their spectral peaks overlap
strongly because all of them have just unsubstituted hydrocarbon chains (methane, ethane,
propane, butanes (i- and n-), pentanes, and, scarcely, hexane). Therefore, it is not easy to dif-
ferentiate each constituent or characterize each and every compound by a unique distinctive
wavenumber. Some chemical interpretation of the spectra can be obtained using reference
databases, as that from NIST [39]. For example, the band at 2800–3200 cm−1 (Figure 8,
blue rectangle) has contributions from all the aliphatic molecules, as it corresponds to the
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C-H bond stretching, which is present in all components. The band at 1200–1380 cm−1

(Figure 8, green rectangle) corresponds only to methane, while the band at 1380–1550 cm−1

(Figure 8, red rectangle) has, again, contributions from all the other aliphatic compounds as
it corresponds to the CH bending.

−

−

−

−

Figure 8. Comparison between the spectra of regasified LNG and its main aliphatic components (as

stated in Reference [39]).

In the close-up image of the 1300–500 cm−1 region (Figure 9), the peaks corresponding
to ethane and propane can be seen. The band between 800–750 cm−1 is mainly due to
ethane, but for a small peak at 795 cm−1 corresponding to isobutane, which is not possible
to appreciate visually in the LNG spectrum. For propane, the small peaks around 750 cm−1

(CH2 and CH3, twisting, rocking), 950–900 cm−1 (CH3, CCH deformation), and 1075–
1025 cm−1 (C-C, asymmetric stretching) can be seen. It is very difficult to visualize the
butane peaks in the NG spectra due to its very low concentrations although, nevertheless,
a small band can be ascertained at 1000–950 cm−1 (corresponding to n-butane), but it could
only be observed in those samples with the highest concentrations of butane (usually not
exceeding 0.4%). Table 2 compiles the usual positions (wavenumbers) of some relevant
vibrational peaks of the constituents of a LNG sample.

2.4. Chemometric Predictive Models

The IR spectra of complex gas mixtures are too complicated to interpret by usual
means. The large number of peaks and their interactions makes it almost impossible to
apply simple calibration techniques and the typical Labert-Beer-Bouguer’s direct correlation
is not feasible. Some of the minor components cannot be quantified directly using a
specific peak, and even those with highest concentrations have a considerable number of
overlapping spectral features, as seen at Figures 8 and 9. Thus, considering both the full
spectrum and multivariate calibration to gather relevant information is a must.

Here, the statistical and data treatment methods included in the ‘chemometrics’ field
take the lead. Unfortunately, introducing the various multivariate regression methods
(even only the most frequent ones) would be too lengthy, and it is out of the scope of this
manuscript. Interested readers are kindly directed to some introductory texts [45–48]. It is
worth citing a few important methods, namely Principal Components regression (PCR),
Locally Weighted Regression (LWR), Support Vector Machines Regression (SVM(R)), or
Artificial Neural Networks (ANN). Noticeably, ANNs [49] and SVM [50] were applied
for quality control of natural gas, though none was applied to determine its composition.
Our focus here will concentrate on the commonest, widely applied, one: PLS (partial least
squares) regression, which has become a standard [2,15,51,52]. As a matter of example,
PLS regression allowed the prediction of a mechanical/engine property, the methane
number [53] with average prediction errors (or RMSEP) < 0.2 [16], the concentrations of
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ethane (error < 0.19 [16]), propane (error < 0.03 [2]), and iso and n-butane (error < 0.012 [16]),
as well as the Wobbe index, a combustion property [2]. Multivariate regression models
can be developed using different commercial software, such as, for instance, MATLAB’s
PLS_Toolbox [54], Grams [55], Unscrambler [56], GenEx [57], SPSS [58], or Statgraphics [59],
to cite some common ones. Other packages are available as freeOpen Source, e.g., CAT [60].

− −Figure 9. Close-up view of the 1300–500 cm−1 (a) and 1600–1340 cm−1 (b) regions of a LNG spectrum

(depicted in Figure 8).

2.4.1. Samples

Every multivariate regression method requires a collection of samples to develop the
model. In industrial environments, this can be achieved by collecting samples during a pe-
riod broad enough to get a sound representation of the typical samples received/processed
by the units. Different raw materials and finalized products are also welcome. This collec-
tion is then subdivided in, at least, two datasets: one for modeling and one for validating
the proposed model (it is crucial to remember that the latter should always be used inde-
pendently of the former). If enough samples are available, a third independent test set is
advised, in order to determine the optimal number of factors. These samples have to be
characterized using both the infrared procedure and the official analytical methods associ-
ated to the properties we want to predict. The absorbance of the different IR wavenumbers
will act as the predictors within the models, whereas the results of the official methods will
be the predictands (i.e., the values of the property to be predicted). As a rule of thumb,
the proportion of samples should be around 70% for calibration, 20% for validation, and
10% for the test dataset. No doubt, it is strongly advised that all datasets represent the
concentration working ranges (values of the property of interest).
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Table 2. Collection of the most relevant MIR spectral peaks, and their chemical assignations, for

typical hydrocarbon constituents of LNG.

Methane [40] Ethane [41] Propane [42,43]

Description ῦ (cm−1) Description ῦ (cm−1) Description ῦ (cm−1) Description ῦ (cm−1)

CH asymmetric
stretch

3019
CH3 asymmetric

stretch
2985 CH stretch 2957 CH3 & CH2

rocking 1186

CH symmetric
stretch

2917
CH3 symmetric

stretch
2895 CH stretch 2870

CH3 wagging,
deformation

1155

CH symmetric
bend

1543
CH3 Asymmetric

deformation
1469 CH3 & CH2

scissoring 1466
C-C asymmetric

stretch
1051

CH asymmetric
bend

1311
CH Symmetric

deformation
1379

CH3 & CH
wagging (in

phase)
1384 CH3 & CCH

deformation 919

CH3 rocking 821
CH3 & CH

wagging (out
of phase)

1368
C-C symmetric

stretching
869

CH2 & CH
wagging 1331 CH2 & CH3

twisting & rocking 746

n-Butane [41] i-Butane [44]

Description ῦ (cm−1) Description ῦ (cm−1)

CH3 asymmetric stretch 2968 CH3 asymmetric stretch 2968
CH3 asymmetric stretch 2965 CH3 symmetric stretch 2956
CH3 asymmetric stretch 2912 CH3 symmetric stretch 2894
CH3 symmetric stretch 2872 CH asymmetric stretch 2872
CH2 symmetric stretch 2853 CH3 asymmetric stretch 2748

CH3 asymmetric deformation 1460 CH3 symmetric stretch 2629
CH3 scissoring 1442 CH3 asymmetric stretch 1477
CH3 twisting 1300 CH3 asymmetric bend 1379
CH3 rocking 1151 CH asymmetric bend 1334
CC stretching 1059 CCH3 bend 1177
CC stretching 837 CC stretch 925

CC bend 797

2.4.2. Simplified Workflow for Model Development

In order to depict how to get a reasonable PLS model, it must be stressed from the
very beginning that, although we tried to separate the workflow in individual steps for the
sake of simplicity, developing a predictive regression model is an iterative and ongoing
process where decisions are taken and models reformulated until a satisfactory one is
obtained. This is nicely explained in public documents related to the pharmaceutical
arena, where these methods are quite common today. Some of them can be of interest as
introductory texts [61–63]. The basic steps when developing a predictive PLS model are
schematized below:

• Stage 1: Preliminary assays: it is always important to visualize the spectra in order to
evaluate gross differences among them, unusual signals, potential range of variables
to be considered, presence of outlying samples, etc. A preliminary model can also be
done to feel what its results look like and whether the samples spread through the
working range of interest.

• Stage 2: spectra usually need what is called data pre-processing. This step attempts to
get rid of useless information or undesired characteristics that may be detrimental for
the predictions. For instance, baseline correction or noise filtering are typical steps be-
fore developing models. Very common pre-processings are the first derivative [16,64]
(sometimes the 2nd derivative is also used) and mean centering [2]. Combinations of
pre-processings are also common. Several options used for LNG modeling are shown
in Table 3. This stage of model development is in general recommended, although
some applications argued that no pre-processing was needed [4]. There is not a defini-
tive answer to this issue, and the unique ‘true’ advice is to try different pre-processings
and see which one improves the models.
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• Stage 3: A critical point to develop a satisfactory PLS model (also critical for many other
techniques that use abstract factors) is to ascertain the number of factors that must
be included in the model (this is called model dimensionality). Although including
many factors to take account of the majority of the variance (consider variance and
information as synonymous for this purpose) contained into the spectra might seem
to be a good idea, it is worth considering that those factors might be unrelated to
the property of interest. They might be related to baseline effects or some spurious
behavior of a peak, contributing to bad predictions. Of course, we also assume that too
few factors will not be sufficient to extract enough relevant information to get a sound
model. So, we need to equilibrate overfitting (too many factors) with underfitting (too
few factors). One of the best options for this, though not perfect, consists of performing
cross-validation. This empirically evaluates a cost function so that a minimum in the
error is searched for [65]. Cross-validation is iterative and sometimes takes some
computer time. Its conceptual idea can be resumed in a pseudo-code as follows:

1. Fix a number of factors, let us say 1.
2. Extract, momentarily, a reduced set of samples (spectra) from the data set as-

signed to ‘calibration’. Several approaches can be used for this purpose, such as
‘leave-one-out’, ‘venetian blinds’, and ‘random selection of the subsets’ [66,67].

3. Develop a model, and test how well it predicts those samples left out of it. The
error can be stored in the computer memory.

4. Reintegrate those spectra to the calibration set and extract another small subset
of samples.

5. Develop a model, test it with the second set of left-out spectra, and sum the error
to the previous one.

6. Continue the process until all samples (or possible subsets of samples) are ex-
cluded from the calibration stage and predicted afterwards. The summed errors
yield the overall prediction error (=RMSECV).

7. Return to 1 and increase the number of factors by one, and repeat the pro-
cess again.

8. At the end of a number of factors (for example, 20), a plot of the prediction errors
will show which number of factors leads to the lowest overall prediction error
(Figure 10). More details can be consulted elsewhere [65].

′

Figure 10. Examples of RMSEC-RMSECV plots for decision-making. The best number of factors

(Latent Variables) is indicated with an arrow. Note that the RMSEC (root mean square error in

calibration) diminishes monotonically; so it is useless to select the dimensionality of the models.

RMSECV stands for root mean square error in cross-validation.
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Table 3. Pre-processing options used by several authors before LNG multivariate modeling.

Author Pre-Processing

Haghi et al. [16]
1st derivative (Savitzky–Golay algorithm), smoothing over
five points plus orthogonal signal correction (OSC).

Ferreiro et al. [2]
Iterative baseline correction (automatic weighted least
squares, using a polynomial of order 2), spectral
normalization (total area = 1), and mean centring.

Barbosa et al. [4]
2nd derivative with Savitzky-Golay smoothing using
21-point windows and a 2nd order polynomial.

Rohwedder et al. [64]
1st derivative (Savitzky–Golay algorithm) employing a
7-points window, 2nd order polynomial for baseline
correction and smoothing.

Nurida et al. [52] Baseline correction and mean center (for CO2 absorption).

The procedure thus schematized is also termed ‘internal validation’, but it can still
yield models that overfit the calibration set. The best way to avoid this problem is to use
an external test set, if it is possible, or an external validation set (mentioned at the very
beginning of this section). If the errors obtained for the internal validation (RMSECV) and
the external validation (RMSEP) are similar, we can assume that the model does not overfit.
That would be our best number of factors for the model (or latent variables, as it is a more
correct denomination for PLS). Unfortunately, in many occasions, a clear minimum is not
seen, and an inflection point where from the error do not decrease significantly has to
be selected.

A nice and conceptually simple alternative to avoid overfitting without resorting to
cross-validation or excluding samples consists of performing randomization. In essence,
it breaks the ‘natural’ relation between spectra and their corresponding reference values
(obtained after analyzing the samples with the reference methodologies), so that they are
now related randomly. Then, PLS regression models that should reflect the absence of a
real association between the X- and Y-variables are calculated. The randomization step is
repeated a large number of times to get a sound significance, and a test statistic is calculated
from all of them. Then, a critical value is derived from the distribution of those statistics.
Finally, the statistic obtained for the model with the (not randomized) original data for
a given number of factors is calculated. Both values are compared. A significant factor
should lead to a statistic greater than the critical one. This is done successively for each
factor being introduced into the model so that it is possible to decide when new factors are
useless [68,69].

• Stage 4: A reason why developing a model is an iterative process is because we have
to check for the existence of outlying samples. If they are present, all the previous
stage is biased, and the model is not reliable. The problem is how to detect them.
Likely, in the same way as you detect wrong points in a traditional calibration plot:
by calculating statistics to evaluate the behavior of the samples into the model. Two
of the most important and useful ones are the ‘Q residuals’ and the ‘Hotelling’s T2′

statistics [70] (another usual statistic is the leverage, although it is closely related to the
T2 one). The former detects whether a spectrum has some new or different spectral
characteristic(s) that could not be modeled with the present model (note: ‘different’
refers to its comparison with the residuals of the other calibration spectra in the model),
whereas the second evaluates how close the spectrum is to the average spectrum of
the calibration set. Clearly, we would like samples with spectra close to the average
and without new spectral characteristics.

From a practical viewpoint inspect graphical outputs such as, typically, the ‘Q residuals
versus Hotelling’s T2 plot’ and the ‘Y_residuals (predicted minus actual values for the
property) versus leverage plot’. Briefly, an outlier at the former plot (a point further away
from the statistical limits), such as that shown in Figure 11a (red point), will have either
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spectral characteristics not considered at the calibration set or much higher/lower amounts
of one/several components. An outlier on the latter plot (Figure 11b) will have a high
residual value, either positive or negative, which denotes that it contains more unmodeled
spectral characteristics than the calibration samples do. Finally, samples deemed to be
outliers should be deleted and the model reformulated (and validated) again.

• Stage 5: The external validation set of samples is of use not only to assess that the
model yields no overfitting but to evaluate how good the predictions of new samples
are. A typical plot, such as that in Figure 12, is of most information as it yields insight
on the closeness of the individual predictions to the true values, and samples predicted
badly (possible outliers?), in addition to the overall average error.

Figure 11. (a) Hotelling’s T2 versus Q residuals plot and (b) Y_residuals versus leverage plot. One of

the outlying samples is shown in red.

∑

∑
−

α

νν Χ
Χ Χ ν

Figure 12. Typical comparison between the PLS-predicted values and the reference or ‘true’ ones. See

text for the different studies that can be derived from it.
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If the slope of the regression line calculated using the pairs of data in Figure 12 is
statistically equal to one, both methods lead to statistically comparable results, but, for a
possible background, which is given by the intercept (although it may not always hold a
true significance, for instance, when large extrapolations to the zero are required). If the
intercept is statistically different from zero, it indicates that there is a general offset in the
predictions towards higher or lower values (when compared to the reference ones).

Furthermore, the ‘actual versus predicted’ regression line (Figure 12) is of use to
calculate the procedural bias and the average precision of the multivariate model. Bias can

be, simply,
∑(xpred−xtrue)

m , (m = number of samples). Repeatability precision can be evaluated
quite easily as the standard error of the regression line (sy/x), just assuming that the error
in the reference values is negligible in comparison to the PLS predictions [65,71]. That is
true when using standardized chromatographic methodologies but not so evident when
complex methods, such as the motor methane number, are used. Reproducibility precision

can be roughly the average prediction error, calculated as RMSEP = (

√

∑(xpred−xtrue)
2

m ),

m = number of validation samples, and ‘pred’ stands for predicted. This term can be bias-
corrected considering RMSEPcorrected = RMSEP − bias (if bias is zero, the usual statement
that RMSEP is the reproducibility precision holds fine).

It is also worth noting that Figure 12 can be used to calculate figures or merit related
to the modern limits of detection (where the risks of false positives and false negatives
are controlled [72–76]) and to derive a sample-specific confidence interval associated to
each prediction. Calculations for the former topic are not trivial, and readers are kindly
forwarded to the references given above. As a snapshot, the classical, old (1970s decade)
limit of detection is today termed critical limit, and it only takes account for the risk of
false positives. It can be estimated as xc = (t(α,N-2)·w0·sy/x)/b, with t = one-tail Student’s
statistic, and w0·sy/x = standard error at zero concentration derived from the ‘predicted
versus actual’ regression; b is the slope [72,74]. The ‘limit of detection’ (indeed, this term
has been superseded, and it should be now called capability of detection or minimum
detectable net concentration) has a very similar equation, although using a non-central
t distribution instead of the current Student’s one in order to consider the risks of false
positives and false negatives simultaneously (both at 95% confidence level).

With regard to the second topic, in simple terms, the sample-specific confidence
interval can be formulated as [predicted value ± t·Sxo], where t is the Student’s t value for
ν degrees of freedom at a 95% confidence level. Sxo is the specific standard error of the

prediction [77,78], which can be estimated as
[

(1 + hi)·RMSEC2 − S2
re f ·

(

ν

X2

)]1/2
, where

hi is the leverage for sample i, RMSEC is the standard error of the calibration, Sref is the
measurement error in the reference value, and X2 is the X2 statistic (ν degrees of freedom
and 95% confidence level) used to avoid overcorrection of the bias term [79]. The fact
that the equation includes the leverage of the sample (which depends on its position in
the factorial space of the model) particularizes the equation for each sample. Hence, the
denomination sample-specific as it calculates a different confidence interval for each sample.
Note also that it takes account of the error in the reference values.

3. Conclusions

The new analytical methodology proposed in this work for routine LNG quality
control is composed of two major steps: infrared spectral measurement of a gaseous sample
and chemometric model development. It was reviewed that the most important parameters
that affect the measurements are the instrument (spectral range, operational characteristics,
such as resolution, number of scans, apodization, and background collection) and the gas
cell (pathlength, internal pressure, broadening gas, windows). The tiered development of a
chemometric model was reviewed, and it was found to be composed of several intertwined
steps: pre-processing, outlier detection, regression method, cross-validation, and validation.
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The combination of the spectrometric and chemometric methods has some interesting
advantages for routine quality control: high speed, reduced costs, reduced use of reagents,
and high flexibility (as the same spectrum can be used to predict several LNG properties).
Hence, the hybridization of FTIR and multivariate regression (in particular, PLS) yields
a reliable, powerful alternative to the traditional, standardized Gas Chromatography
approach for routine measurements.
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36. Jabloński, A. General Theory of Pressure Broadening of Spectral Lines. Phys. Rev. 1945, 68, 78–93. [CrossRef]

37. Margenau, H.; Watson, W.W. Pressure effects of foreign gases on the sodium D-lines. Phys. Rev. 1933, 44, 92–98. [CrossRef]

38. Ferreiro, B.; Andrade, J.M.; Paz-Quintáns, C.; López-Mahía, P.; Muniategui-Lorenzo, S.; Rey-Garrote, M.; Vázquez-Padín, C.;

Vales, C. Improved Sensitivity of Natural Gas Infrared Measurements Using a Filling Gas. Energy Fuels 2019, 33, 6929–6933.

[CrossRef]

39. NIST Public. IR Spectra Database. Available online: https://webbook.nist.gov/chemistry/name-ser/ (accessed on 25 November 2021).

40. Es-Sebar, E.; Farooq, A. Intensities, broadening and narrowing parameters in the ν3 band of methane. J. Quant. Spectrosc. Radiat.

Transf. 2014, 149, 241–252. [CrossRef]

41. Shimanouchi, T. Tables of Molecular Vibrational Frequencies: Part 6. J. Phys. Chem. Ref. Data 1973, 2, 121–162. [CrossRef]

42. Gough, K.M.; Murphy, W.F.; Raghavachari, K. The harmonic force field of propane. J. Chem. Phys. 1987, 87, 3332–3340. [CrossRef]

43. Hudson, R.L.; Gerakines, P.A.; Yarnall, Y.Y.; Coones, R.T. Infrared spectra and optical constants of astronomical ices: III. Propane,

propylene, and propyne. Icarus 2021, 354, 114033. [CrossRef]

44. Evans, J.C.; Bernstein, H.J. The vibrational spectra of isobutane and isobutane-d1. Can. J. Chem. 1956, 34, 1037–1045. [CrossRef]

45. Brereton, R.G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant; John Wiley & Sons: Chichester, UK, 2003; ISBN

0470845740.

46. Otto, M. Chemometrics: Statistics and Computer Application in Analytical Chemistry; John Wiley & Sons: Chichester, UK, 2016; ISBN

3527340971.

47. Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [CrossRef]

48. Martens, H. Reliable and relevant modelling of real world data: A personal account of the development of PLS Regression.

Chemom. Intell. Lab. Syst. 2001, 58, 85–95. [CrossRef]



Energies 2022, 15, 359 17 of 18

49. Gupta, S.K.; Mittal, M. Predicting the methane number of gaseous fuels using an artificial neural network. Biofuels 2019, 12,

1191–1198. [CrossRef]

50. Bai, P.; Duan, X.; He, C.; Li, Y. Natural gas infrared spectrum analysis based on multi-level and SVM-subset. In Proceedings of the

2009 IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems, Hong

Kong, 11–13 May 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 336–339.

51. Udina, S.; Carmona, M.; Pardo, A.; Calaza, C.; Santander, J.; Fonseca, L.; Marco, S. A micromachined thermoelectric sensor for

natural gas analysis: Multivariate calibration results. Sens. Actuators B Chem. 2012, 166–167, 338–348. [CrossRef]

52. Nurida, M.Y.; Norfadilah, D.; Aishah, M.R.S.; Phak, C.Z.; Saleh, S.M. Monitoring of CO2 Absorption Solvent in Natural Gas

Process Using Fourier Transform Near-Infrared Spectrometry. Int. J. Anal. Chem. 2020, 2020, 1–9. [CrossRef]

53. Ponte, S.; Andrade, J.M.; Vázquez, C.; Ferreiro, B.; Cobas, C.; Pérez, A.; Rey, M.; Vales, C.; Pellitero, J.; Santacruz, B.; et al.

Prediction of the methane number of commercial liquefied natural gas samples using mid-IR gas spectrometry and PLS regression.

J. Nat. Gas Sci. Eng. 2021, 90, 103944. [CrossRef]

54. Wise, B.M.; Gallagher, N.B.; Bro, R.; Shaver, J.; Windig, W.; Koch, J. PLS_Toolbox; Eigenvector Research Inc.: Manson, WA, USA, 2006.

55. ThermoFisher Scientific. Available online: https://www.thermofisher.com/order/catalog/product/INF-15004 (accessed on

25 November 2021).

56. Aspen Technology Inc. Unscrambler. Available online: https://www.aspentech.com/en/products/msc/aspen-unscrambler

(accessed on 24 November 2021).

57. MultiD Analyses, B.D. Genex. Available online: https://multid.se/genex/ (accessed on 24 November 2021).

58. IBM Co. IBM SPSS Software. Available online: https://www.ibm.com/es-es/analytics/spss-statistics-software (accessed on

24 November 2021).

59. Statgraphics Technologies, Inc. Available online: https://www.statgraphics.com/ (accessed on 24 November 2021).

60. Leardi, R.; Melzi, C.; Polotti, G. CAT (Chemometric Agile Tool), Freely. Available online: http://gruppochemiometria.it/index.

php/software (accessed on 4 November 2021).

61. Broad, N.; Graham, P.; Hailey, P.; Hardy, A.; Holland, S.; Hughes, S.; Lee, D.; Prebble, K.; Salton, N.; Warren, P. Guidelines for the

Development and Validation of Near-Infrared Spectroscopic Methods in the Pharmaceutical Industry. In Handbook of Vibrational

Spectroscopy; John Wiley & Sons: Chichester, UK, 2002; Volume 5, pp. 3590–3610.

62. Validation of Analytical Procedures: Text and Methodology. In ICH Harmonised Tripartite Guideline; Somatek Inc.: San Diego, CA,

USA, 2014.

63. European Medicines Agency Guideline on the Use of Near Infrared Spectroscopy (NIRS) by the Pharmaceutical Industry and the

Data Requirements for New Submissions and Variations. 2012. Available online: https://www.ema.europa.eu/en/use-near-

infrared-spectroscopy-nirs-pharmaceutical-industry-data-requirements-new-submissions (accessed on 25 November 2021).

64. Rohwedder, J.J.R.; Pasquini, C.; Fortes, P.R.; Raimundo, I.M.; Wilk, A.; Mizaikoff, B. iHWG-µNIR: A miniaturised near-infrared

gas sensor based on substrate-integrated hollow waveguides coupled to a micro-NIR-spectrophotometer. Analyst 2014, 139, 3572.

[CrossRef]

65. Andrade-Garda, J.M.; Carlosena-Zubieta, A.; Boqué-Martí, R.; Ferré-Baldrich, J. Partial Least Squares Regression. In Basic

Chemometric Techniques in Atomic Spectroscopy; Andrade-Garda, J.M., Ed.; Royal Society of Chemistry: Cambridge, UK, 2013;

pp. 280–347. ISBN 1849737967.

66. Malinowski, E.R.; Howery, D.G. Factor Analysis in Chemistry; Wiley: Hoboken, NJ, USA, 1980; ISBN 0471058815.

67. Eigenvector Research Eigenvector Wiki. Available online: https://www.wiki.eigenvector.com/index.php?title=Confusionmatrix

(accessed on 14 May 2021).

68. Faber, N.M.; Rajkó, R. How to avoid over-fitting in multivariate calibration-The conventional validation approach and an

alternative. Anal. Chim. Acta 2007, 595, 98–106. [CrossRef]

69. Wiklund, S.; Nilsson, D.; Eriksson, L.; Sjöström, M.; Wold, S.; Faber, K. A randomization test for PLS component selection. J.

Chemom. 2007, 21, 427–439. [CrossRef]

70. Vinzi, V.E.; Chin, W.W.; Henseler, J.; Wang, H. Handbook of Partial Least Squares; Springer: Berlin/Heidelberg, Germany, 2010; ISBN

978-3-540-32825-4.

71. Sanz, M.B.; Sarabia, L.A.; Herrero, A.; Ortiz, M.C. Multivariate analytical sensitivity in the determination of selenium, copper,

lead and cadmium by stripping voltammetry when using soft calibration. Anal. Chim. Acta 2003, 489, 85–94. [CrossRef]

72. Ortiz, M.C.; Sarabia, L.A.; Sánchez, M.S. Tutorial on evaluation of type I and type II errors in chemical analyses: From the

analytical detection to authentication of products and process control. Anal. Chim. Acta 2010, 674, 123–142. [CrossRef]

73. Ortiz, M.C.; Sarabia, L.A.; Herrero, A.; Sánchez, M.S.; Sanz, M.B.; Rueda, M.E.; Giménez, D.; Meléndez, M.E. Capability of

detection of an analytical method evaluating false positive and false negative (ISO 11843) with partial least squares. Chemom.

Intell. Lab. Syst. 2003, 69, 21–33. [CrossRef]

74. ISO 11843. Capability of Detection–Part 2: Methodology in the Linear Calibration Case; ISO: Geneva, Switzerland, 2008.

75. SANCO/2004/2726 Guidelines for the Implementation of Decision 2002/657/EC. Rev 4-December 2008. Available online: https:

//ec.europa.eu/food/system/files/2016-10/cs_vet-med-residues_cons_2004-2726rev4_en.pdf (accessed on 25 November 2021).

76. European Commission. Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC

concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Communities 2002, 50, 8–36.



Energies 2022, 15, 359 18 of 18

77. Faber, K.; Kowalski, B.R. Prediction error in least squares regression: Further critique on the deviation used in The Unscrambler.

Chemom. Intell. Lab. Syst. 1996, 34, 283–292. [CrossRef]

78. Faber, N.M.; Schreutelkamp, F.H.; Vedder, H.W. Estimation of prediction uncertainty for a multivariate calibration model.

Spectrosc. Eur. 2004, 16, 17–21.

79. Faber, K.; Kowalski, B.R. Improved prediction error estimates for multivariate calibration by correcting for the measurement error

in the reference values. Appl. Spectrosc. 1997, 51, 660–665. [CrossRef]



103 

 

 

Chapter 4: Fast Quality Control 
of Natural Gas for Commercial 
Supply and Transport Utilities. 



 



Fuel 305 (2021) 121500

Available online 28 July 2021
0016-2361/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Full Length Article 
Fast quality control of natural gas for commercial supply and 
transport utilities 
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A B S T R A C T   

Quality control of natural gas frequently relies on off-line slow standardized chromatographic techniques. Pre-
vious implementations of new measurement approaches focused of synthetic mixtures without extensive in-
dustrial validation. Here, a fast alternative based on infrared spectra is presented to predict the gas constituents 
and a physical parameter, the Wobbe index. Commercial samples instead of synthetic mixtures were used to 
develop predictive models. Method performance parameters were calculated and ca. 100 % of the sample- 
specific confidence intervals for the predictions overlapped with those of the reference values and the 
approach was unbiased and precise. The limits of detection and quantification (classical and considering errors of 
type I and II) outperformed other approaches. Validation included commercial samples and primary mixtures. 
Furthermore, prediction models considering reduced sets of variables were sought for using Markov-chain Monte 
Carlo guided searches (uninformative variable elimination and random frog) and common (iPLS, UVE and SR) 
approaches. The prediction errors and limits of detection of these ‘reduced’ models outperformed those from 
other approaches. The methodology takes only minutes to analyse a sample, requires few sample and no reagents 
(only some argon), making this approach cost-effective and environmentally-friendly.   

1. Introduction 

Despite petroleum being a non-renewable resource its distillates are 
still critical as energetic and raw material sources. Unfortunately, their 
combustion lead to atmospheric pollution [1], which constitutes one of 
the strongest causes of global climate change. Many countries adopted 
policies to reduce the carbon footprint and pollution by empowering the 
use of greener energies. Obvious renewable energy sources (wind, sun, 
etc.) should be complemented with natural gas (NG) to change smoothly 
some energetic paradigms as its combustion leads to reduced emissions 
of CO2, NOx and SOx [2]. Besides, massive deposits have been discov-
ered, many of which are still under-exploited. Nowadays NG is 
employed mainly to generate electric power and to industrial and do-
mestic applications. Its use in transportation is not as prevalent, mainly 
due to the low energy density (for liquefied NG, ca. half that of gasoline) 
which would require bigger fuel tanks, so that hybrid and electric en-
gines are preferred in most cases [3]. However, the EU promoted it as a 
suitable fuel for heavy-duty vehicles and maritime transport [4]. The EU 

objective is to change traditional diesel engines for liquefied natural gas 
(LNG) propellers, and it was planned to deploy the corresponding fa-
cilities on maritime ports and on land along the Trans-European 
Transport Networks by the end of 2025. The trend of changing tradi-
tional personal vehicles to alternative fuel vehicles (considering com-
pressed natural gas and gas-hybrid engines) is also rising. The EU 
directive [5] is gaining momentum rapidly as most European capitals 
strongly limit the circulation of traditional vehicles through their city 
centers. 

The growing use of NG requires reliable quality control methodolo-
gies to determine its composition and energetic properties. They depend 
on the geological deposit where the NG comes from. NG is composed 
mainly of methane (75–99 %), mixed with other light hydrocarbons, like 
ethane (0–20 %), propane, butanes and pentanes, plus nitrogen and/or 
carbon dioxide (all of them ≪ 10 %). Sometimes, hexane isomers could 
be present at trace levels. Hence, the composition of the NG must be 
known to evaluate its physical properties and combustion power. In 
particular: 
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i) The methane number, MN, is an analogue to the octane number in 
gasoline or the cetane number in diesel. Its determination is 
controversial [6–8] and there exist different algorithms to estimate 
its value once the NG composition is known. Recently an IR-based 
alternative without that need has been proposed [9].  

ii) The Wobbe index, WI, evaluates the combustion energy of the NG 
using standardized formulae and its composition and represents the 
volume-basis calorific value, at specified reference conditions, 
divided by the square root of the relative density at the same speci-
fied metering reference conditions. The WI is said to be gross or net 
(sometimes, lower or higher) according to whether the calorific 
value used is the gross or net calorific value (in common usage, the 
WI as employed here refers to the gross index) [10,11]. The WI is the 
primary gas interchangeability criterion for residential and com-
mercial appliances as well as for some large-scale combustion 
equipment in industry and power generation. 

Currently, the NG composition is measured by standardized gas 
chromatography (GC) procedures [12]. However, GC is difficult to adapt 
to online devices and small facilities [13], and is costly (overall, ca. 600 
€ per sample) [14]. Modern on-line devices are relatively rapid (ca. 4 
min/sample) but they still need frequent time-consuming calibrations 
and verifications. GC off-line systems need ca. 150 min to get a full, 
validated result [14], which may delay pipeline distribution and energy 
custody transfer activities (shipments, storage, etc.). Thus, faster and 
cheaper methods are required to simplify and accelerate NG routine 
quality control. 

Published alternatives rely mostly on IR (infrared) measurements 
(although molecular fluorescence was also proposed [15]), with notable 
reductions in costs (e.g., less than 200 € per sample, in total [14]). Note 
that although the IR region can reflect accurately the NG composition 
[16,17] gas spectra are pretty hard to interpret due to the strong overlap 
of the peaks and so multivariate chemometric treatments are required to 
get predictions, typically by partial least squares regression (PLS) 
[13,18]. 

Very scarce papers applied multivariate regression to deal with the 
prediction of NG properties. To the best of the authors’ knowledge, the 
most relevant examples are reviewed herein. The two typical IR regions, 
near and medium (NIR and MIR) were used, although the former was 
more common. 

Likely, one of the very first studies considered methane-ethane- 
propane ternary mixtures and NIR and MIR measurements combined 
with PLS and PCR (principal components regression) [18]. Only two 
pipeline NG samples were considered to test the models, with good 
agreements for methane and ethane and worst results for propane. The 
MIR models doubled the errors of the NIR ones and the latter were 
selected. On the contrary, another report proposed MIR to predict the 
concentrations of 12 light hydrocarbons (C1-C4) when studying the 
catalytic degradation of butane [19], with most errors around ± 10 % 
(relative standard deviation). Noteworthy, ethane and propane could 
not be determined individually but their sum was predicted accurately. 

A fast screening NIR-based method for methane in NG was imple-
mented considering classification by SIMCA (soft independent model-
ling of class analogy) instead of a regression because the interest was on 
ascertaining whether the samples had a minimum methane content 
[16]. Models were developed using synthetic gas mixtures and validated 
with a collection of 55 commercial NG samples. Similar to this approach, 
a very fast microNIR system using hollow waveguides was proposed to 
determine methane, ethane, propane and total butane in synthetic 
mixtures using PLS regression [20]. That study was amplified next 
considering a microNIR advanced system and an acoustic-optical 
tunable filter device [21]; although only synthetic mixtures were 
considered, not truly NG samples. In another report, the NIR spectra of 
31 synthetic mixtures were used to develop PLS models that were vali-
dated using synthetic mixtures and one additional certified gas mixture 
[13]. The authors studied the impact of temperature and pressure 

fluctuations in the models and derived some performance parameters 
(figures-of-merit). In these studies no commercial NG samples were 
analyzed. 

The flue gas of a NG-fired generator was studied to determine 
methane, CO and CO2 using NIR spectra, non-linear PLS regression and 
real samples of flue gas (reference values determined by GC) [22]. 
Finally, a US patent [23] was issued for a NIR-based system (coupled to a 
PCA-PLS computing module) to be deployed in gas fields and/or trans-
mission infrastructures to monitor the gas composition and WI of several 
wells. 

Very recently two different sensors comprising either six electro-
chemical detectors and a tunable mid-IR photometer were proposed to 
determine the composition of NG-like standard mixtures [7], although 
they are not still on the market. 

With regards to the WI, to the best of our knowledge, only a handful 
of publications evaluated it without resorting to the composition of the 
gas [24] or other physical parameters [25–27]. A relevant, seminal 
approach predicted the energy content of NG by combining NIR and PLS 
[28]. There, synthetic mixtures of the NG components (including N2 and 
CO2) were used to get a model that was validated using a certified 
standard gas mixture. In another work, a micromachined thermoelectric 
sensor was proposed to measure several NG properties [29], including 
the WI, methane and ethane using PLS. Synthetic mixtures composed of 
methane, ethane, CO2 and N2 were used for calibration, and this 
involved a degradation on the performance of the Wobbe models when 
typical levels of propane were considered. Also, fiber-enhanced Raman 
spectroscopy [30] was employed to determine a partial composition of 
the sample (C1-nC4, N2 and CO2) used subsequently to calculate the WI 
in real time. 

From this review it is concluded that true commercial and/or in-
dustrial NG samples have scarcely being considered into the studies. 
From the pragmatic viewpoint of industrial and quality control labora-
tories, this is a relevant drawback that should be addressed. In addition, 
almost no synthetic samples contained N2 nor heavier compounds than 
butane (although they are indeed present in NG) and most reports did 
not differentiate between i- and n-butane. 

The major aim of this paper is to develop and validate a methodology 
to determine the composition and the Wobbe index of NG samples by 
hybridizing their gas-phase MIR spectra with multivariate regression. 
Our working hypothesis was that having enough industrial samples to 
build a sound model, the composition of unknown samples can be pre-
dicted with remarkable accuracy and, even, complex physical parame-
ters (the Wobbe index) can be addressed. Further, should the approach 
be satisfactory enough, industrial laboratories can avoid the preparation 
(purchase) of a huge number of synthetic gas mixtures to develop cali-
bration models. A second objective is to reduce the time required for the 
analyses as much as possible and make them robust to uninformative 
variables. For this, a suite of spectral variable reduction methods have 
been applied to select the most relevant wavenumbers, although without 
compromising the predictions. 

2. Experimental 

2.1. Samples 

The routine-operation NG samples used throughout correspond to a 
one-year-collection of ca. 120 samples in the Reganosa regasification 
plant (Mugardos, A Coruña, Spain) in 500 cm3 stainless steel cylinders. 
They were NG, vaporized liquefied NG (LNG), and boil-off-gas (BOG) 
samples. LNG samples from tanks at the terminal harbour were also 
taken. In the following only the term NG will be used for all samples for 
the sake of simplicity. Most samples had been employed in the European 
EMPIR LNGIII project [9] although it did not include the objectives 
addressed here. 

As an additional validation set, 27 mixtures specially developed by 
Nippon Gases (formerly Praxair) and Linde Gas Benelux B.V. during the 
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European EURAMET-EMRP LNG II and EURAMET-EMPIR LNG III 
research projects were employed. Their compositions were determined 
by standardized methods [9]. 

2.2. Apparatus 

Gas-phase IR measurements were made with an 8400S Shimadzu 
FTIR spectrometer. The cell setup consisted of a 10 cm path, stainless 
steel Harrick gas cell (Harrick Scientific, USA) with 2 mm- thick, 47 mm- 
diameter ZnSe windows, an input tube with a Swagelock 3 way valve, an 
exhaust tube and an internal pressure gauge (see Fig. 1). The resolution 
used was 1 cm−1, with a spectral range from 5500 to 480 cm−1 and 
Happ-Genzel apodization. A background was made before each sample, 
using 0.5 bar of the broadening gas (Argon, Carburos Metálicos (Bar-
celona, Spain), 99.9992 % purity). All measurements were done at 25 ±
1 ◦C, mixing 0.2 bar of the selected sample (ca. 500 mL were enough to 
perform the studies) and 1.3 bar of argon, employed as broadening gas 
to enhance the intensity of the spectral features, more comprehensive 
details and explanations on this issue and the use of broadening gases 
were detailed previously [14]. The chemical composition of the samples 
was determined by the ISO-17025-accredited Reganosa laboratory using 
a protocol based on ISO 6974–4 [12] (more details can be found else-
where [14]). 

2.3. Software and chemometrics 

The spectrometer was controlled by the Shimadzu IR Solutions 
software, v.1.30. The raw spectra were digitized to 9375 data points per 
spectrum (from 5000 to 480 cm−1, 1 datum per ca. 0.5 cm−1). The 
spectral treatments and developments of multivariate models used the 
PLS Toolbox (Eigenvector Co, WA, USA). Different preprocessings were 
studied and the selected one consisted of an iterative baseline correction 
(automatic weighted least squares, using a polynomial of order 2), fol-
lowed by spectral normalization (total area = 1) and mean centring. 
Variable selection was made using the PLS_Toolbox and a collection of 
routines for Monte Carlo natural computation presented recently [31], 
the latter complemented with in-house Matlab routines. 

For the purposes of this manuscript, PLS can be described concep-
tually as a powerful regression method where both the spectral infor-
mation (X-space) and each of the properties to be predicted (Y-space) are 
maximally related by means of a set of abstract factors (termed latent 
variables or, just, factors). PLS has become a de-facto standard and, 
hence, it was considered here; technical details can be found elsewhere 
[32,33]. Roughly, PLS modelling consists of a calibration (training) and 
a validation stage. The latter verifies that neither underfitting (i.e., a 

model with a lack of predictive capability due to a lack of information) 
nor overfitting (i.e., a model with a lack of predictive capability due to 
memorization of too particular information associated to the training 
samples, e.g., some minor spectral characteristics) occur. Noteworthy, 
the latter problem is pretty much frequent than the former [34]. See 
Supplementary Material for practical details. The usual practice by 
which a minimum in the internal validation procedure (Supplementary 
Material) is used to fix the number of latent variables can lead to 
overfitting [34] and, so, it is highly advisable to compare the average 
error in cross-validation (RMSECV, root mean square error of cross- 
validation when calibrating) and the average error in a ‘true’ external 
prediction set of new samples –RMSEP- (root mean square error of 
prediction). Sometimes, this set of samples is called the fine-tuning set, 
as it is used to refine the selection of the number of LV. Ideally, RMSECV 
and RMSEP should be of the same order, which results from a trade-off 
among fitting and prediction [35]. A final external validation set of 
samples is needed to accurately check how the model behaves (some-
times it is called testing set). Hence, two ‘validation’ steps were under-
gone here, both with external new samples: a first one to fine-tune the 
model after a number of factors was suggested by internal cross vali-
dation, and a final one to validate the model. 

2.3.1. Variable reduction methods and performance parameters 
A model can be refined by avoiding those spectral variables that do 

not contribute to the predictions. Variable selection methods, thus, play 
an important role in potentially improving model robustness and/or 
allowing for the development of dedicated instruments. In this paper we 
selected five strategies. The first three are applied frequently and are 
broadly available; the other two are based on exhaustive ‘natural 
computation algorithms’ (population-driven or Bayesian approaches) 
and constitute quite new developments [31]; however, they were not 
applied in quality control. A conceptual overview of each of them is 
presented in the Supplementary Material. 

After developing the models several statistical performance param-
eters [34] must be calculated to assess their adequacy (details are given 
in the Supplementary Material): the coefficient of determination (R2), 
bias, the standard error of performance (SEP) (if bias is statistically 
negligible, the value of SEP equals the RMSEP and, so the latter is 
interpreted as a standard deviation), and the ratio of prediction to de-
viation (RPD) [34]. In addition, the modern IUPAC, EU and ISO limits of 
detection and quantification (i.e., including both the risks of type I –false 
positives- and type II -number of false negatives) [36–39,40,41] were 
employed. 

Here, both the classical and the modern limits of detection were 
calculated for ethane, propane, n-butane and i-butane because they have 
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Fig. 1. a) Measurement setup, 8400S Shimazdu FTIR spectrometer and connections to a synthetic NG-like mixture container. b) Experimental setup diagram (the 
grey background indicates the parts of the Shimadzu 8400S spectrometer). 
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concentrations close to zero, whereas methane and the WI values remain 
far apart from the origin and, so, they would require large extrapolations 
which would render unreasonable figures. Noteworthy, the modern 
limits have not still been reported for usual NG analysis. 

3. Results and discussion 

3.1. Predictive model for % of methane 

The model to predict the percentage molar volume concentration, 
vol%, of Methane was developed from a calibration set of 71 samples 
whose concentrations spread evenly between 89 % and 99 %. During our 

sampling period (ca. one year) only 4 samples with percentages between 
68 % and 85 % methane were collected and, thus, the models could not 
predict them reliably and they were discarded. The model selected 
finally considered 5 latent variables (LV), see Fig. 2, and was quite 
satisfactory. Note that this methodology can definitely be adequate to 
other ranges of values (typically, around 75 % which are common in 
many deposits worldwide) as long as enough samples are available to get 
a calibration, which was not the case here. 

The external validation set to fine-tune the model consisted of 13 
external samples, not included in the model at all, which confirmed its 
good predictive properties. It takes account of a large amount of infor-
mation in the spectra and in the parameter of interest (methane), and 

Fig. 2. Global average errors for different PLS models on calibration and validation for each studied parameter. The boxes indicate the number of latent variables 
selected for each model. RMSEC = root mean square error of calibration, RMSECV = root mean square error of cross-validation, RMSEP = root mean square error of 
prediction (fine-tuning external set), all them in vol%. 
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yields a high coefficient of determination, 98.5 % (Table 1), so that a 
huge amount of information related to methane is explained. 

Fig. 3 presents the typical accuracy line (‘actual vs predicted’ line) 
for calibration, which summarizes the predictive performance of the 
model. The average overall error for calibration, measured as RMSEC, 
was ca. 0.3 vol% methane. The model has not a statistical bias (Table 1 
and Fig. 3) nor relevant outliers, as seen at Figure SM1 (supplementary 
material), which shows two common diagnostic statistics, the Q re-
siduals and the Hotelling T2 statistics (they two yield the so-called, 
applicability domain) [13]. 

Further validation with an external test set comprising 20 NG sam-
ples distributed throughout the working range was also satisfactory. 
Fig. 4 presents its predictions and Table 1 resumes some relevant asso-
ciated statistics. The RPD index (>3) shows that accurate predictions 
can be expected throughout the working range, without bias and a 
predictive average standard error ca. 0.4 vol% of methane. The RMSEC 
and RMSEP values can be compared directly with the precision of the GC 
method (method-reproducibility) thanks to the absence of bias. They are 
of the same order as the 0.37–0.39 vol% reproducibility values obtained 
for methane using the chromatographic method in this range (Table 2). 

Indeed, 95 % of the external validation samples yield prediction 
differences (=predicted – reference) smaller than the maximum GC 
reproducibility allowed by the ISO 6975:1997 [42]. Fig. 5 depicts the 
reference compositional values derived from the GC measurement, 
along with their 95 % confidence intervals, superimposed to the MIR +
PLS predicted values, also with their sample-specific 95 % PLS confi-
dence intervals (calculated as formulated elsewhere [43]). The key idea 
is that to get statistically unbiased predictions both confidence intervals 
must overlap and this occurs for 100 % of the validation samples. A note 
about the interpretation of Table 2 and Fig. 5 is in order: note that the 
reproducibility values given in table 2 act as confidence intervals of the 
GC values alone. When the number of predictions that are excluded from 
this range are counted, a ‘worst scenario’ situation is considered. In ef-
fect, as the PLS predictions themselves have associated confidence in-
tervals it may happen that even when a PLS prediction is out of the GC 
reproducibility range the PLS-predicted and GC-values do agree (sta-
tistically), when both confidence intervals overlap. Hence, the use of 
sample-specific intervals for the predictions are of most importance 

(Fig. 5). 
The average predictive error (RMSEP) obtained in this model com-

pares nicely to literature, see Table 3, mostly considering that we used 
true NG samples whereas the other approaches considered mostly syn-
thetic mixtures. 

3.2. Predictive model for % of ethane 

The model established to predict the vol% of ethane considered a 
calibration set with 73 industrial LNG samples in the 0 – 6 % volume 
molar range concentration and 7 LV (see Fig. 2). It yielded a good 
calibration (Fig. 3) with reasonably good statistics (Table 1). Although a 
slight improvement could be seen for the fine-tuning test set when 8 LV 
were considered (Fig. 2) it was only marginal and was not observed for 
the external validation set. The model explained ca. 99 % of the infor-
mation in the spectral and concentration domains, and the coefficient of 
determination was very high (99.4 %), as well as the RPD index (>11). 

No obvious suspicious samples were seen on the applicability domain 
plot (Figure SM1, supplementary material). No bias was observed 
neither for calibration (Table 1 and Fig. 3), nor for validation (Table 1 
and Fig. 4) and, so, it is worth noting that the average prediction errors 
for the samples of the calibration, fine-tuning and external validation 
sets (i.e., 0.2 vol% ethane, Table 1) were comparable to the GC method- 
reproducibility range (Table 2). When the external validation set of 
samples was considered, only 37.5 % of them yielded predictions within 
the ISO 6975:1997 maximum GC reproducibility values. However, Fig. 5 
indicates that 96 % of the 95 % confidence intervals associated to the 
reference and predicted values overlap. Two samples gave bad pre-
dictions although their behaviour was very good for the other parame-
ters so we could not find a reason for that point. In addition, the average 
error (RMSEP) obtained when validating this model is of the same order 
as the best ones reported using NIR (Table 3). 

Both the modern and classical limits of detection and quantification 
(xd and xq, and LOD and LOQ, respectively; see Supplementary Ma-
terial) were calculated (see Table 1). The classical limits were calculated 
following the Eurachem Guide [44] which recommends using the 10 
samples with the lowest concentration values, along with blanks or 
samples without the analyte. As there were no industrial samples with 

Table 1 
Performance parameters associated to each selected model for calibration and validation; N = number of samples used in the model after removing outliers. X rep-
resents the spectra and Y represents the parameter of interest, see text for more details. The parameters specified for the selected variable reduction method are shown 
between brackets.   

C1 C2 C3 n-C4 i-C4 Wobbe Index 
Calibration N 71 73 65 60 50 65 

LVs (PLS) 5 7 11 5 4 9 
RMSEC (vol%) 0.3  

[SR: 0.4] 
0.1  
[SR: 0.2] 

0.03  
[SR: 0.04] 

0.02  
[iPLS: 0.007] 

0.03  
[iPLS: 0.004] 

0.02  
[SR: 0.05] 

RMSECV (vol%) 0.4  
[SR: 0.4] 

0.2  
[SR: 0.4] 

0.06  
[SR: 0.05] 

0.03  
[iPLS: 0.009] 

0.05  
[iPLS: 0.009] 

0.03  
[SR: 0.07] 

Total % info explained in X 93.40 98.86 99.44 81.58 78.83 93.42 
Total % info explained in Y 98.49 99.46 99.80 95.63 92.48 99.16 
R2 0.985 0.994 0.998 0.956 0.894 0.992 
BIAS 0 0 0 0 0 0 
LOD (vol%) – 0.264  

[SR: 0.161] 
0.052  
[SR: 0.033] 

0.020  
[iPLS: 0.0072] 

0.024  
[iPLS: 0.0064] 

– 

LOQ (vol%) – 0.880  
[SR: 0.458] 

0.174  
[SR: 0.097] 

0.067  
[iPLS: 0.019] 

0.082  
[iPLS: 0.018] 

– 

xd (vol%) – 1.11 0.27 0.107 0.108 – 

xq (vol%) – 3.24 0.80 0.331 0.336 – 

1st Validation (fine-tuning) N 13 15 12 11 16 14 
RMSEP (vol%) 0.2 0.2 0.1 0.02 0.04 0.05 
RPD 2.84 11.01 3.40 4.80 2.79 3.38 
R2 0.993 0.993 0.932 0.962 0.873 0.913 

External Validation N 20 24 17 18 27 20 
RMSEP (vol%) 0.4  

[SR: 0.4] 
0.2  
[SR: 0.3] 

0.03  
[SR: 0.03] 

0.03  
[iPLS: 0.008] 

0.05  
[iPLS: 0.007] 

0.03  
[SR: 0.03] 

RPD 5.83 11.8 15.7 3.38 2.38 4.85 
R2 0.971 0.991 0.990 0.919 0.847 0.959  
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0 % ethane concentration the samples used as ‘zero’ had concentrations 
ranging from 0.01 to 0.027 vol% ethane. With respect to the classical 
limit of detection (LOD) very few comparisons could be established with 
literature because of the scarcity of reported values, and none of them 
reported the modern definitions (xd, xq). All LODs are clearly higher than 
the chromatographic ones (Table 3), which is the reference methodol-
ogy. However, positively enough, the mid-IR approach leads to lower 
LODs than the NIR ones. 

3.3. Predictive model for % of propane 

The model to predict the concentration of propane was developed 
using a calibration set consisting of 78 LNG samples in a range between 
0 and 2.1 % volume molar concentration of propane. A model with 11 
LVs (see Fig. 2) yielded a good calibration (Fig. 3 and Table 1). The need 
for this rather high number of LVs was attributed to the requirement for 
considering minor spectral signals which can correlate positively with 
propane (likely because its spectral bands overlap strongly with those 
from other NG components). In fact, a bit more than 99 % of the 
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information in the spectral domain was required to explain the con-
centration of propane (R2 

= 0.998, Table 1). No obvious suspicious 
samples were seen on the applicability domain plot (Figure SM1, sup-
plementary material) and no relevant bias was observed for calibration 
or validation (Figs. 3 and 4, and Table 1). 

The model was validated using external NG samples. The RMSEP 
values were similar to the RMSECV one (0.03 vol% – 0.1 vol%) so no 
overfitting occurred. The model was not biased (Table 1) and its preci-
sion was comparable to the GC reproducibility (Table 2). In fact, 73.3 % 
of the predictions of the validation samples where within the ISO 

6975:1997 maximum GC reproducibility and, also, 100 % of them 
overlapped their confidence sample-specific intervals with the GC ones 
(Fig. 5). 

The limits of detection and quantification were calculated (Table 1). 
As for ethane, there were not enough industrial samples with zero pro-
pane concentration. Thus, the LOD and LOQ were calculated considering 
samples with concentrations ranging from 0 to 0.004 vol%. The LOD was 
higher than the GC ones although quite similar to that reported by Haghi 
et al [13] and much better that that of Rivessi et al [21] (Table 3). The 
average error (RMSEP) obtained when validating this model is clearly 
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better than those reported for NIR (Table 3). 

3.4. Predictive model for % of Butane. 

The models to predict the concentrations of n- and i-butane were 
developed using calibration sets including 60 and 50 industrial LNG 
samples, respectively, whose concentration ranges were between 0 % 
and 0.3 vol%, and between 0 and 0.4 vol%, each. The optimized models 
considered 5 LVs for n-butane, and 4 LVs for i-butane (see Fig. 2). They 
yielded good calibrations, without bias and quite good performance 
parameters (Fig. 3 and Table 1). No obvious outliers were seen on the 
models (Figure SM1, supplementary material). The models were vali-
dated using external fine-tuning and test sets. The RMSEP values were 
similar to the RMSECV ones (0.02 vol%–0.03 vol%, n-butane, and 0.05 
vol%–0.06 vol%, i-butane) so no overfitting occurred. In addition, those 
values were similar to the ISO 6975:1997 maximum GC reproducibility 
precision, being the number of predictions within those figures 77.8 % of 
the external validation samples for n-butane, and 63.0 % for i-butane 
(Table 2). Fig. 5 shows that 100 % of the confidence intervals overlap for 
the validation samples. 

Despite quite good models were obtained, they have low RPDs (ca. 3, 
Table 1), which seems to be caused mainly by the reduced working 
ranges. The average errors (RMSEP) obtained when validating this 
model with true NG samples are slightly higher (although of the same 
order) than those reported using NIR using synthetic mixtures [13] 
although much better than those reported for the sum of i + n butanes 
[20,21] (Table 3). The limits of detection and quantification were also 
calculated (see Table 1). In this case there were 15 production samples 
without butane, so that they constituted a true zero. The LODs were 
better than those reported for NIR [13,21]; all IR-based approaches had 
bigger LODs than the GC ones (Table 3). 

3.5. Predictive model for the Wobbe index 

The model developed for the Wobbe index considered 65 NG samples 
ranging from 14.5 to 15.5 kWh/Nm3. This interval does not include the 
low values associated to some samples, that can be as low as 12.6 kWh/ 
Nm3 in some countries [45]. Despite some very few samples had WIs 
between 13.0 and 14.5 kWh/Nm3 they disrupted the models. This was 
attributed to their contents on N2 as it decreases dramatically the WI. 
The problem here is that N2 is transparent to the mid-IR radiation, thus 
making it hard for the models to take it into account. This yielded a 
broad dispersion of the predictions at the lowest values of the calibra-
tion. Therefore, those particular samples were not considered in the 
models. 

After several preliminary studies (Fig. 2 was not conclusive by itself) 
with the fine-tuning dataset 6 LV were fixed, which yielded a good 
calibration (Fig. 3 and Table 1), without bias and no outliers 
(Figure SM1, supplementary material). The RMSECV and RMSEP 
average errors for the calibration and the fine-tuning and external 
validation sets (Fig. 4) were similar (ca. 0.03–0.05 kWh/Nm3), sug-
gesting that overfitting did not occur. These errors (0.28 % as relative 

error, for the experimental range of values) compare very well to other 
publications reporting relative errors between 1 % and 0.03 % [25]. 
Other authors reported even higher relative errors, like 1.5 % [29] or 14 
% [27]. Although Brown et al [28] reported average errors around 0.5 
%, those corresponded to energy predictions, using BTU units. 

As ISO 6975:1997 does not contemplate the WI, the precision figures 
calculated for this parameter using the MIR+PLS approach were 
compared to the experimental reproducibility (strictly, intermediate 
precision) obtained by Reganosa using GC (ca. 0.04 kWh/Nm3). They 
are similar (Table 2), and 80 % of the predictions of the validation 
samples became within the reproducibility range. Notwithstanding, 100 
% of the sample-specific confidence intervals of the validation samples 
overlaped with the reference ones (Fig. 5). 

3.6. Validation with synthetic gas mixtures 

As mentioned in the experimental part, 27 gas mixtures from two 
European projects were considered. Some of them were used to check 
two new sensors, one based on electrochemical membranes and a TFIR 
system [7]. Despite some of these mixtures were only binary or ternary 
ones (and, so, quite different from the industrial NG samples employed 
in the models above), it was considered interesting to predict them as a 
benchmark activity to see whether the MIR + PLS approach could pre-
dict them. Table 3 summarizes the average prediction errors (as RMSEP) 
and despite they are of somewhat lower quality than those from the real 
NG samples (as expected because of the spectral differences), they are 
very encouraging. The RMSEPs (as they had not bias, they can be 
immediately compared with standard deviations) for methane and 
ethane are midway between those of the other two methods [7] while 
for propane, the MIR-PLS approach yields slightly better results. The 
predictions for the two isomers of butane yielded only semiquantitative 
results because many synthetic mixtures were out of the calibration 
range of the models and they contained much more butanes (0–2 vol% 
range) than our usual NG samples (0–0.45 vol% range). 

3.7. Variable reduction methods 

As mentioned in the experimental section, the spectra measured in 
this work contain as many as 9375 variables/spectrum because of the 
need to register the sharp IR spectral peaks of the gaseous components at 
high resolution. This can be a problem when time is an issue (here, at 
least 30 min/spectrum were needed to get a high signal/noise ratio, 
including the background), when implementing probes or portable 
equipment, or when some of those wavenumbers offer no relevant in-
formation and degrade the predictions. Hence, spectral variable reduc-
tion appears as a nice option. Disappointingly, as mentioned in the 
Supplementary Material, many variable selection strategies do not set 
absolute thresholds for their statistics [46] and these have to be estab-
lished ad-hoc. Here, we took advantage of the many trials the algorithms 
performed to set a strategy rooted on classical quality control. As for 
traditional quality control charts, average values of the statistics asso-
ciated to all the variables (e.g., the reliability (of the MCUVE approach) 

Table 2 
Range-dependent overall-method reproducibility values calculated for the gas chromatography reference method (indicated as the reproducibility for the lowest and 
highest concentrations of each component). The percentages between parentheses indicate the number of external samples whose predictions using gas-phase FTIR +
PLS are within these reproducibility values, for the full-spectrum and reduced models.   

GC calibration range(Vol.% or kWh/Nm3) GC method ISO 6975:1997 reproducibility values(% of predictions within the reproducibility ranges) 
Methane 99.850–93.220 0.37–0.39 (PLS: 95; SR: 100) 
Ethane 3.002–0.010 0.0092–0.11 (PLS: 37.5; SR: 42) 
Propane 3.115–0.003 0.0032–0.56 (PLS: 73.3; SR: 53) 
n-Butane 0.717–0.002 0.0032–0.034 (PLS: 77.8; iPLS: 83) 
i-Butane 0.722–0.002 0.0032–0.038 (PLS: 63.0; iPLS: 96]) 
Wobbe index 14.866–14.552 0.04 (PLS: 80; SR: 85])  
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and the selection probability (for random frog) can be calculated, along 
with their 2 and 3 standard deviation upper limits. Hence, any variable 
outside the upper control limit is deem to be selected; see next para-
graphs for an example. 

The number of selected spectral variables was varied from 10 to 400 
for all five approaches and all analytical parameters (composition plus 
Wobbe index). Further, the number of latent variables was also opti-
mized for each trial. As this generates a very large number of models, to 
choose a final one we proceeded as follows (for each analytical param-
eter): first, for each selection strategy the number of spectral variables 
leading to best predictions was chosen among the different trials (the 
number of latent variables in each PLS models were optimized as well); 
second, the best candidates of the five variable reduction methods were 

compared; third, whenever several ‘best’ candidate models performed 
approximately the same, that with less spectral variables and/or with 
the spectral variables more concentrated in particular spectral regions 
would be preferred. This criterion was applied at the final stage of the 
selection because one of our objectives was to simplify the measuring 
stage in the industrial laboratory, which is trivial whenever the selected 
variables become close to each other. 

As a general result, it was found that many models considering 
reduced suites of variables outperformed those considering full-spectra. 
However, the ‘best’ models disagreed on the number of wavenumbers 
they considered, as expected because of the different criteria involved in 
the approaches (see Supplementary Material), and they varied also 
with the property under consideration (as it is logical because relevant 

Fig. 5. Reference (blue asterisk) with the ISO 6975:1997 max. reproducibility (Reganosás in the case of the Wobbe index) and predicted (red circle) values with their 
respective 95 % confidence intervals for the external calibration samples. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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variables for methane may not be so for –e.g.- i-butane). This compli-
cates any comparison and makes it difficult to decide which approach is 
best in an absolute sense. As a consequence, a trade-off was made for 
each analytical parameter. 

Table 1 depicts the variable reduction method of choice for each 
property, their RMSEC, RMSECV, RMSEP, and limits of detection and 
quantification. First of all, note the improvements achieved when the 
variable subsets are used as those performance parameters became half 
or a third those of the full-spectrum ones. Of most importance is the very 
large enhancement associated to i- and n-butane, which are particularly 
difficult to address because their bands overlap not only among them but 
with methane and ethane. 

The feature reduction method selected for methane, ethane, propane 
and WI was SR (the selectivity ratio index, see Supplementary Mate-
rial), with 3 LV (50 wavenumbers), 6 LV (100 wavenumbers), 6 LV (50 
wavenumbers) and 6 LV (250 wavenumbers), respectively (see Fig. 6 
and Figure SM2, supplementary material). Despite the wavenumbers 
selected for methane became not too grouped (Fig. 7), they indeed 
formed nice, definite regions for ethane, propane and WI (Figure SM3, 
supplementary material). 

A good alternative for the former three properties may be VIP (var-
iable importance in projection, Supplementary Material) as it chose 
limited spectral ranges (Fig. 7 and Figure SM3, supplementary mate-
rial) although with slightly higher prediction errors. For the WI good 

alternatives might be random frog or common PLS (although all the 
spectrum needs to be measured). iPLS performs quite well although at 
the expense of selecting very sparse sets of variables (so all the full 
spectrum would still be required). Random frog yielded also sparse se-
lections while MCUVE (Monte Carlo uninformative variable elimina-
tion, Supplementary Material) and VIP lead to two very well defined 
groups around variables 5000–5500 and 1500–1800 (i.e., 2650–2900 
and 4430–4580 cm−1, respectively). See Supplementary Material for a 
general chemical interpretation of the most relevant regions. Fig. 8 ex-
emplifies how thresholds for MCUVE and random frog were set 
following the ‘quality control chart’ criterion depicted above. 

Note the very stable predictions SR yields for ethane and Wobbe 
index, where the dimensionality is not a critical factor (Figure SM2, 
Supplementary Material, in the figure it is called SRI to stress its 
indexing nature). This is a very possitive result for quality control pur-
poses as parsimony can be applied, however in this paper we only 
focused on absolute minima to simplify the comparisons and 
discussions. 

Analogous situations were found for the other analytical parameters 
(Supplementary Material, Figures SM2 and SM3), i- and n-butane are 
predicted nicely by iPLS (200 wavenumbers and 6 LV in both cases; 
4500–2450 cm−1 for i-butane and 4100–950 cm−1 for n-butane). The 
alternative for i-butane (although with higher RMSEP) was random frog 
(10 wavenumbers), with a very stable behaviour when dimensionality is 

Table 3 
Average errors obtained in this work (RMSEP) compared to those reported in literature using NIR and other methods. The LODs are shown between parentheses (when 
available) and the calibration ranges, as percentage, between brackets. The chromatographic LODs are shown as a reference. All values represent vol% molar con-
centration of the constituent. Note that RMSEPs can be related to SD because the models in this work are not biased (see text for details). SD means standard deviation.   

Range  C1 C2 C3 i-C4 n-C4 
LNG samples in this work MIR:(PLS) RMSEP 0.4 0.2 0.03 0.03 0.05 

(LOD) – [99–89] (0.26)[6–0] (0.05)[2–0] (0.02)[0.4–0] (0.02)[0.4–0] 
MIR (reduced) RMSEP SR: 0.4[99–89] SR: 0.3[6–0] SR: 0.04[2–0] iPLS: 0.008[0.4–0] iPLS: 0.007[0.4–0] 

(LOD) – [99–89] SR: 0.161[6–0] SR: 0.033[2–0] iPLS: 0.0072[0.4–0] iPLS: 0.0064[0.4–0] 
SyntheticMixtures in this work MIR: RMSEP 1.04[95–89] 0.49[14–0] 0.28[5–0] – 

Electrochemical sensor (SD) [7] MIR: SD 0.58[95–89] 0.62[10–0] 0.34[5–0] 0.15[2–0] 0.22[2–0] 
TF-IR sensor (SD) [7] MIR SD 1.23[95–89] 0.13[10–0] 0.44[5–0] 0.34[2–0] 0.07[2–0] 
Haghi et al [13] NIR RMSEP 0.20 0.19 0.16 0.012 0.012 

(LOD) (0.90)[100–80] (0.39)[12–0] (0.33)[8–0] (0.13)[2–0] (0.15)[2–0] 
Rohwedder et al[20] NIR RMSEP 0.37[82–69] 0.36[17–6] 0.67[14–5] 0.37[7–2] 
Makhoukhi et al[18] MIR/NIR RMSEP 0.2[96–85] 0.2[10–2] 0.1[4–0] – 

Ribessi et al [21] NIR RMSEP 0.77 0.75 1.63 0.54 
(LOD) (0.42)[90–30] (0.59)[50–10] (1.42)[30–3] (1.67)[20–1] 

Cao et al [22] NIR RMSEP 0.95[0.46–0 ppm] – – – 

Udina et al [29] Thermic sensor RMSEP 0.6[100–72] 1.0[20–0] – – 

GC method – LOD – [99–68] 0.01[12–0] 0.003[3–0] 0.002[0.7–0] 0.002[0.7–0]  
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considered and an average error almost as good. Nevertheless, those 10 
variables spanned throughout the overall original spectrum, whereas for 
iPLS the intervals were collateral. For n-butane, SR (50 wavenumbers) 

may be a reasonable alternative, although with ca. 50 % more error. 
As a final remark, it is worth noting the very ‘homogeneous’ overall 

performance of iPLS throughout the various analytical parameters as it 
had a quite good behaviour almost always, but for the Wobbe index. 
However, it required high processing times (>8h for a 9375 to 400 
variables reduction) and it can only select intervals of variables. SR and 
VIP performed rather similarly to iPLS although much faster and, 
indeed, SR was the method of choice for methane, ethane and propane, 
mostly because it ‘clustered’ the selected wavenumbers (see, e.g. Fig. 7) 
and it appeared also as a good alternative for n-butane. 

MCUVE and Random frog demonstrated an intermediate behaviour, 
often similar to iPLS, with the advantages that they required much 
reduced computing times and can select discreet variables. The former 
tends to group them slightly more than iPLS, while random frog tended 
to select much more dispersed wavenumbers. 

4. Conclusions 

This work demonstrates that the combination of mid-IR spectrometry 
and PLS regression yields regression models that predict the primary 
composition of natural gas reliably. The approach is cost effective 
because it requires standard laboratory instrumentation, industrial 
samples (not standard mixtures) and requires ca. 45 min to get the main 
composition of natural gas, along with an important physicochemical 
property, the Wobbe index (this included recording the sample spec-
trum, ca. 35 min, plus the software application to run the models). 
Further, it can be considered a green method because it does not demand 
chemicals (but some argon), uses very little sample (ca. 500 mL) and 
does not generate residues nor cleaning steps. 

The models were unbiased in the typical industrial working ranges, 
with precisions comparable to the chromatographic reference method. 
The mid-IR-PLS approach compares advantageously to other NIR-based 
methods, with better average errors and better limits of detection (or, in 
the worst case, similar to the best NIR ones). 

The models developed with reduced sets of variables clearly 
decreased the average predictions errors and limits of detection and 
quantification and, so, outperformed previous reports using other 
spectral regions. As a trade-off solution, the selectivity ratio index, SR, 
seemed the most satisfactory alternative because it was selected for four 
parameters and could be a good alternative for another one. iPLS 
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Fig. 7. Selected variables for each of the tested methods for the methane determination.  

a) 

b) 

Fig. 8. Exemplification of how a selection threshold can be set considering the 
average and classical upper quality control limits (±3SD) for the MCUVE (a) 
and random frog (b) indices calculated for methane (SD stands for standard 
deviation). See text for details. 
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behaved also very well, achieving the lowest errors to determine the 
butanes (although it selects variables across all the spectrum). The 
prediction capabilities of the advanced random frog method were good 
but it selected very sparse variables. 
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SUPPLEMENTARY MATERIAL 

SOFTWARE AND PARTICULAR CHEMOMETRIC DETAILS 

From an operative viewpoint, validation can be internal (i.e., using a part of the samples employed 

during model development; typically this involves some form of cross-validation) or external (i.e., 

using new samples whose properties are known in advance). Both approaches were employed 

throughout this paper.  

Undoubtedly, the critical step in PLS modelling is to set the adequate number of latent variables or 

factors (LV) to model the system. An efficient approach is to check for a minimum in the internal 

cross-validation procedure (where the number of LV is systematically varied). That was made by 

splitting randomly the training dataset in 10 subsets so that each one is predicted after all other nine 
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subsets were used to construct a PLS model. Dissapointingly this still may lead to overfitting models 

and truly new samples are required for a correct validation. 

 

When it comes about spectral variable selection, five methods were studied here: 

 Interval partial least squares (iPLS) works by dividing the data in spectral intervals (of a given 

width, that needs to be optimized or selected in advance) and performs a PLS model on each 

one. The interval that shows the best prediction capabilities is selected and ‘retained’. Then, 

other intervals can be added to the former and new models are studied to see whether the 

synergies between two intervals improve the model [46]. The process can be continued in the 

same way with more intervals. The final selection reflects the amount of information provided 

or the interferences conveyed by each interval (spectral region). The user can select a specific 

number of intervals and the interval width, thus allowing the reduction of a full spectrum to a 

controlled number of variables.  

 Selectivity ratio index (SR or SRI) is the ratio between the explained and the residual variance 

for each variable. It shows the capability of a variable to discriminate specific properties of the 

analyte under study [SM1]. The larger the SR parameter is, the more important the variable 

becomes for the prediction. The variables with the highest SRs are selected ad-hoc. 

 Variable Importance in Projection (VIP) is used to rank the variables according to their 

importance to predict a property; values greater than 1 highlight important variables while 

values close to 0 indicate not important ones. A VIP score is calculated for each variable as the 

sum, over the latent variables considered into the model, of its PLS-weight value weighted by 

the percentage of explained Y variance by each specific LV [SM2,SM3]. As for SR, the variables 

with the highest VIPs are selected ad-hoc.  
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 Monte-Carlo uninformative variable elimination (MCUVE) builds a very large number of 

models by randomly selecting the calibration samples (following a Monte Carlo sampling 

approach). Then, the stability of the correlation coefficient of each variable is studied by means 

of a reliability index, which evaluates the amount of systematic information that each variable 

offers. Uninformative variables are those with the more unstable coefficients [31,SM4]. 

 Random Frog is based on a special form of Monte Carlo-based search called ‘reversible jump 

Markov Chain Monte Carlo’ that allows this approach to search in the model space through 

moves between different models (dimensionality, etc.). The algorithm can be visualized as 

composed of three major stages [31]. First, a variable subset [VS]0 containing w wavenumbers 

from the overall spectrum is initiated randomly (1<w<p, p = total number total of 

wavenumbers). Second, propose another candidate variable subset [VS]* with w’ 

wavenumbers (w’ is chosen randomly from a normal distribution centred on w) and evaluate 

whether [VS]* can substitute [VS]0. For this, compute the cross-validation prediction error 

using both subsets and if error([VS]*)<error([VS]0) set [VS]* as [VS]1 and replace [VS]0. Even 

if error([VS]*)>error([VS]0) by a maximum percentage [VS]* can still be accepted as [VS]1. 

The process is repeated many times (e.g. 10000). Finally, calculate a selection probability for 

each variable (e.g. number of models that include such a variable divided by the total number 

of iterations). 

iPLS, SR and VIP were from the PLS_Toolbox, while MCUVE and random frog were from the 

libPLS package [31].  

A relevant problem when reducing the number of variables is to set a sort of threshold to consider 

only the most important ones. None of the five selection strategies employed here establish a final 

number of variables per se (although VIP can be the exception if all variables with VIP>1 are 

considered important) and, so, different trials varying the metaparameters controlling the algorithms 
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and the number of selected variables must be done and the prediction capabilities of the different 

models tested and compared. This is especially cumbersome for the Monte Carlo-based approaches. 

The original developments did not define selection thresholds (see [46] and references cited therein) 

and, so, a pragmatic one was established here taking advantage of the many trials the algorithms 

perform. We used the concept of control charts, as detailed in section 3.7 of the main text. 

 

The performance of the prediction models can be evaluated using the following statistics: 

 The coefficient of determination (R2) measures the proportion of variance of the dependent 

variable (here, the vol% of a compound in the mixture or the Wobbe index) that can be 

predicted from the predictor (or independent) variables (here, the spectra). 

 Bias is the average difference between the predicted and reference ‘y’ values of the property 

under investigation. It measures the tendency of the model to predict the average component 

concentration over or under the average measured concentration.  

 The standard error of performance (SEP) evaluates the overall precision of the predictions. It 

is a bias-corrected error of prediction.  

 The ratio of prediction to deviation (RPD) is the quotient between the standard deviation of 

the predicted values and the standard error of performance (𝑅𝑃𝐷 = 𝑆𝐷𝑆𝐸𝑃 𝑜𝑟 𝑆𝐷𝑅𝑀𝑆𝐸𝑃 ). It gives 

insight on the capability of the model to give an accurate prediction in the working range, being 

a value <3 an indicative of a weak model [34]. 

 The so-called limits of detection and quantification are two traditional parameters linked to 

calibration tasks. However, there was controversy on how to calculate them. Put simply, the -

formerly called- limit of detection (LOD) and limit of quantification (LOQ) represent ‘…the 

lowest concentration of the analyte that can be detected by a method at a specified level of 

confidence’ and ‘…the lowest level at which the performance of the prediction is acceptable 
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for a typical application’, respectively [44]. Although still quite common nowadays, those old 

IUPAC definitions (that can be formulated as LOD=3S0 and LOQ=10S0, being S0 the standard 

deviation of a blank) were superseded on 2002 (harmonized by IUPAC, ISO and the EU) and 

nowadays the risk type II -number of false negatives- must be taken into consideration [36–

39]. The new limits (xd and xq, limits of decision and quantification –respectively-, considering 

the risk of false positives and false negatives simultaneously) are more realistic, 

comprehensive and secure for most applications, although they yield higher numerical values 

than the simpler, classical equations where only the risk for false positives is taken into 

account. Of most relevance here is that those calculations can be applied straightforwardly to 

multivariate regressions models using the simple accuracy line (the traditional ‘real vs 

predicted’ plot), as demonstrated elsewhere [40,41]. The only requirement is to have a 

collection of samples for which the reference values of the property under investigation are 

regressed against the model-predicted ones. 

 

With respect to the chemical interpretation of the most relevant spectral regions for the reduced 

models, some general comments can be given although it is very difficult to interpret every selected 

wavenumber (as explained in the main text), not only because all compounds contain only C and H 

but because the IR band tables do not detail the positions of the bands for gas-phase compounds.  

i- For the Wobbe Index, only two small spectral regions were needed; essentially related to 

the classical CH regions: 1399-1524 cm-1, linked to CH3 asymmetric bending overlapped 

with the CH2 bending scissoring; 2877-2997 cm-1, the symmetric and asymmetric CH 

stretching peaks for CH2 and CH3 moieties. 

ii- For methane, the spectral areas selected for the model are: ca. 750 cm-1, corresponding to 

the CH rocking; 1303-1306 cm-1, associated to the CH2 bending (wagging); 1340-1380 cm-
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1, related to the CH3 symmetric bending; 1440-1480 cm-1, corresponding to the CH3 

symmetric bending overlapped with the CH2 bending scissoring; 2925-2985 cm-1, linked 

to the CH2 and CH3 symmetric and asymmetric stretching, whose bands overlap (ca. 2950 

cm-1 asymmetric stretching and ca. 2860 cm-1 symmetric stretching). In addition, the model 

uses some wavenumbers from a broad band centred at ca. 4300 cm-1 which seems a 1st 

overtone of the CH2 asymmetric stretching plus CH2 bending [SM5,SM6]. 

iii- For ethane, the model selected the following bands: ca. 750-780 cm-1, corresponding to the 

CH rocking; 1430-1522 cm-1, associated to the CH3 symmetric bending overlapped with 

the CH2 bending scissoring; 2996-3034 cm-1, CH3 asymmetric stretching 

iv- For propane, four bands were used: ca. 745-760 cm-1, corresponding to the CH rocking; a 

wide region ca. 1389-1501 cm-1, related to the CH3 asymmetric bending overlapped with 

the CH2 bending scissoring, and the symmetric bending of CH3 (ca. 1380 cm-1); 2837-2992, 

CH3 and CH2 symmetric and asymmetric stretching. The model considered also the 3185-

3188 cm-1 region, without a clear chemical assignation, although it might be a 2nd overtone 

of the 1132-1141 cm-1 CH3 bending (rocking). 

v- For i-butane, the relevant bands were: 2428-2683 cm-1, associated to the 1st overtone of the 

CH3 symmetric bending (ca. 1306 cm-1); 2828-2833 cm-1, related to the CH stretching of 

the C(CH3)2 moiety [SM7]; 3730-3797 and 3860-3864 cm-1, which corresponds to the 3rd 

overtone of the CH symmetric bending [SM8]; 4313-4317 cm-1, which corresponds to the 

broad band centred at ca. 4300 cm-1, that can be interpreted as the 1st overtone of the CH2 

asymmetric stretching plus CH2 bending [SM5,SM6]. 

vi- For n-butane, the model selected a collection of small ranges in many regions: 1083-1203 

cm-1, which corresponds to the CH3 bending (rocking) overlapped with the C-C stretching 

[SM7]; 1377-1381 cm-1, associated to the CH3 symmetric bending; 1473-1478 cm-1, related 

to CH3 asymmetric bending overlapped with the CH2 bending scissoring; 3585-3864 cm-1, 
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mainly related to the 3rd overtone of the CH symmetric bending [SM8]; 4313-4318 cm-1, 

which corresponds to the broad band centred at ca. 4300 cm-1, that can be interpreted as the 

1st overtone of the CH2 asymmetric stretching plus CH2 bending [SM5,SM6]. 
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Figure SM 1: Applicability domain for each of the studied parameters (Q vs. Hotelling-T2 statistics, 
at 95 % confidence level) for the studied parameters. 
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Figure SM2: Errors of prediction (RMSEP, as vol%) as a function of the model selected from each 
variable reduction strategy and the dimensionality. 
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Figure SM3: Distribution of the best 250 variables chosen by each feature selection method. 
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A B S T R A C T

Infrared spectrometry (IR) became a workhorse to characterize microplastics (MPs) worldwide. However, re-
ports on the experimental conditions to measure them decreased alarmingly. As complete, relevant information
on the instrumental setup determining IR spectra is crucial for scientific reproducibility, ca. 50% of the papers
that reported FTIR to measure MPs were evaluated and it was found that most studies cannot be replicated due
to missing experimental details. To ameliorate this, the most critical parameters influencing IR spectra are
depicted, their impact when matching a spectrum against databases exemplified, and, following efforts from
other scientific fields, a minimum information for publication of IR-related data on MPs characterization (MIPIR-
MP) is proposed, along with a brief, simple paragraph to resume the most critical information to be reported.
This can be used to improve the worrying figures that point out to a reproducibility crisis in the field, as disclosed
by the survey.

1. Introduction

The ever increasing use of plastics in most commodities and the
elevated time required for them to (bio)degrade (hundreds of years
depending of the item) makes them one of the most common residues of
mankind nowadays. Between 4.8 and 12.7 million metric tons of plastic
enter the marine environment annually (Wang et al., 2016), which is
one of the most affected ecosystems. This will continue to happen until
drastic legislation is established (like the ban adopted by different
countries on one-use plastics (Nielsen et al., 2019)). However even then
oceans will remain affected for years because of the plastics slow de-
gradation there (Andrady, 2003). This long residence time of plastics in
the marine environment favors their fragmentation, generating micro-
plastics (< 5 mm particles) (Löder and Gerdts, 2015) which amount to
the already spilled primary microplastics (Huppertsberg and Knepper,
2018), like those from certain toothpastes, deodorants, lotions, etc.

Therefore, plastic and microplastic (MP) monitoring needs to be
addressed in routine environmental assessments. Regardless of how this
is done, validated analytical methodologies can never be given up.
However, unfortunately, validation is a difficult issue because at pre-
sent none of the usual metrological ways to assess trueness (Harris,
2003) is available: certified reference materials (CRMs) have not been
fabricated, standardized analytical protocols have not been agreed
upon and analytical recoveries or studies on the biota rely on nice

“synthetic” particles (mostly spherical, white/transparent, made of
homogeneous and of only some specific plastic types, etc.) (Kühn et al.,
2018).

No doubt, the scientific community working at the so mass-media-
resonant “microplastics field” is aware of how anxious Society is about
reliable and useful information. Scientists cannot deny our responsi-
bility on the final decisions taken by politicians with the data we gen-
erate and, unfortunately, the real fact is that data on MPs is not too
adequate for decision-making (SAPEA, 2018). Letting aside that un-
doubtedly more studies need to be done to understand many aspects of
this relatively recent problem, there is a growing concern among poli-
ticians and scientists on the lack of reliable and comparable data about
the amount, types, mass, etc. of MPs in the environment (SAM, 2019;
SAPEA, 2018). Any rough estimation in a sample (or set of samples)
may lead to conclusions that may differ in tens of millions of tons. The
plethora of analytical approaches to measure MPs from visual counting
to cutting-edge instrumental systems and the huge variety of sample
treatments need strict quality control, validation and standardization.
This was at the root of the first JPI-Oceans European microplastics re-
search program, and other ongoing standardization and research efforts
in the European Union. If you ever tried unsuccessfully to replicate a
published methodology and you thought it was not 100% your fault …
then you experienced a lack of validation problem. Now, think about
decision-makers and how big their problems might be (SAPEA, 2018).
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At present, the most widely accepted instrumental analytical tech-
nique to characterize plastics and MPs is infrared spectrometry (IR).
Many papers support their results on some form of IR measurement
and, so, it is imperative to reflect on the minimum information for
publication that should be given when reporting scientific data on
microplastics based on IR measurements (MIPIR-MP). Hence, the ob-
jective of this paper is to review the main instrumental parameters af-
fecting common IR measurements, show how they can affect the
characterization of MPs and draw attention on the need for reporting
them. The paper is structured in 5 parts. Section 2 reflects on the ul-
timate reason for gathering scientific data and how important correct
reporting is for scientific comparisons and adequate decision-making.
Current publishing practices got controversial in many scientific fields,
which degraded the quality of the reported information, and some ef-
forts are trying to ameliorate this. In Section 3 a survey on the reported
instrumental IR parameters when MPs were analyzed is done and
conclusions are gathered from it. As a natural follow-up, Sections 4 and
5 review conceptually the relevance of some instrumental parameters
on IR measurements, with some examples. Finally, a paragraph that
complies with MIPIR-MP is suggested.

2. Reported scientific data can (should?) be questioned

The term “reproducibility crisis” or “replication crisis” has been
coined to summarize a complex phenomenon by which some top
journals withdrew a number of papers whose results were impossible to
reproduce. Some were discovered to be partially invented and others
did not yield conclusive results when repeated by the authors (Berg,
2018). The term(s) appeared by 2012 (Fidler and Wilcox, 2018) and it
expanded since then.

Indeed, a seminal survey from Baker –ca. 1500 respondents- was a
big “burst” to the scientific community (as a whole) that highlighted the
problem of not being able to replicate published studies (Baker, 2016).
Recently, in October 2018, Nature collected a series of reflections, pa-
pers and discussions in an on-line special issue titled “Challenges in
irreproducible research” that comprises discussions from the high-en-
ergy physics community to biology (Nature, 2018).

In the analytical field the issue is not unknown unfortunately and
some discussions have already been presented. In 2017, Krull focused
on the lack of method validation (and lack of statistical data) in ana-
lytical chemistry papers –where this problem should not exist! (Krull,
2017). Not long ago, in a nice paper discussing preanalytical errors in
the clinic laboratories (where an analytical error can be dramatic),
Compton (Compton, 2018) recalled that up to 50% published biome-
dical data cannot be reproduced due to either a lack of reproducibility
or bad (wrong) data. It is clear that non reported experimental data can
indeed be a reason for not repeating the findings. An argument devel-
oped also by Stark (Stark, 2018) who stated an interesting idea: “science
should be show me not trust me”. He also suggested the use of a new word
“preproducibility” to denote scientific papers that do describe the
analysis properly with sufficient detail, because this is a prerequisite for
reproducibility.

“Justifications” to this problem range from fraud to inconclusive
results which are interpreted poorly (Kissinger, 2019). But there are
several issues which relate to the instrumental measurement side of the
problem: instruments that are trusted but not calibrated, the use of
inadequately validated methods, little training, important variables
which are not accounted for because researchers are unaware of them,
lack of care regarding the measurement experimental setup or the blind
adoption of black-box methods (Bean, 2019). As many readers may
have noticed, the methods sections (including instrumental details)
have been shortened in many journals (and their typographical size
diminished so that it is even hard to read them!) and this means that “it
is often impossible to reproduce a published protocol without some degree of

guesswork” (Kissinger, 2019).
The problem is complex and, hence, solutions are not trivial. A way

to reduce it consists of reinforcing the need for an epistemological and
ethical metrological approach in every science. Publishers should be
more specific in their standards for methods sections and reviewers
must critically read those sections and ask for missing information
(Bean, 2019). Despite in Analytical Chemistry uncertainty calculations
are gaining momentum, this is not so in other fields. Thus, an in-
troductory metrological perspective was presented to biological-related
fields (Plant et al., 2018) where the uncertainty terms are not simple to
apply following the GUM guide (ISO, 2008).

An exemplifying case study is worth noting: the ever-growing bio-
chemical and genomics field, which received multi-million investments,
faced the challenge of reaching a consensus on how to perform and
interpret the experiments undergone with a relevant workhorse (q-PCR,
quantitative real-time polymerase chain reaction). Then, the idea of
requesting a collection of data for minimum information for publication
arose (Bustin et al., 2009). Quoting one of their reflections about lack of
reliable data “[…] is exacerbated by the lack of information that char-

acterizes most reports of studies that have used this technology, with many

publications not providing sufficient experimental detail to permit the reader

to critically evaluate the quality of the results presented or to repeat the

experiments”. Nowadays, the “Minimum Information about a Biomedical

or Biological Investigation” project (Taylor et al., 2008), links ca. 40
“minimum information standards”; specific details can be searched by
free at (Sansone et al., 2009).

The prestigious journals Science and Nature adopted new rules. The
former set out an editorial principle by which “all data and materials

necessary to understand, assess, and extend the conclusions of the manu-

script must be available” (Berg, 2018). This is included in a set of
“transparency and openness promotion” guidelines (Nosek et al., 2015)
and, although they were developed primarily by social scientists, their
essentials can be applicable to many other fields. Nature has also set
some guidelines for the life sciences, behavioural & social sciences and
ecology, evolution & environmental sciences fields (Nature, 2020). In
relation to the environmental field, Nature stresses the need to report
carefully on experimental and analytical design. The guidelines again
point out the need for available and clear supporting information to
editors and readers. The main chapters of the reporting summary are
sampling strategy (including samples, field collection and transport),
data collection, data exclusions, reproducibility studies, statistics,
software and code and availability of data. Noteworthy, preprocessing,
statistical modelling and inference, and multivariate analyses are also
considered.

Despite relevant journals are reacting to reduce the reproducibility
crisis, others merely look for profit in a difficult situation. The so-called
predatory journals flourished after the open-source wave but they do not
perform serious peer-reviewing, the quality of the reported information
is poor and, even, prejudice the scientific level of developing countries
(AlAhmad et al., 2019).

Likely, in our view, the main conclusion gathered from these (and
other) studies is that enough data should be presented so that the reader
can visualize what it was really done and decide (not figure out or
guess) whether a/some relevant variable/s was/were not properly ad-
dressed.

The situation in the “MPs field” is not much better, as it will be
shown in Section 3 below by means of an empirical survey carried out
on 100 published papers that reported infrared spectrometry as their
main analytical technique. The results found here are compared to
other studies discussing on the quality of MPs results.

3. A survey on the reported IR parameters

3.1. Working methodology

In order to evaluate whether the MPs research field suffers from the
reproducibility (or replication) crisis, an extensive search comprising
100 papers was done. To select them, the Web of Science search
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algorithms were used (years 2006–2020). First, the key word micro-
plastics was searched for into the title, obtaining 1247 papers (the
majority in the last 4 years); they were refined to contain also FTIR (and
FT-IR), with only 112 entries. To widen the search both key words were
searched for in the theme field, which yielded 241 entries. Most of them
(206) were classified in the environmental sciences and ecology field, as
expected. The journals showing most publications were: Mar. Poll. Bull.
(57), Environ. Poll. (42), Sci. Tot. Environ. (36), Environ. Sci. Poll. Res.
(28), Environ. Sci. Technol. (14), Chemosphere (11), Anal. Methods (9)
and up to 44 papers were published in other journals.

The number of publications including the two key words showed an
exponential raising trend. From only one or two publications per year
(2006 to 2013), to 36 in 2017, 68 in 2018 and 109 during 2019 (this
year has not still been closed). After the overall search, we randomly
selected 10 publications of each of the most relevant journals cited
above, plus a number of papers from other sources so as to cover ca.
50% of all papers included in the Web of Science results. The overall
search with the associated raw data is presented in the Supplementary
material.

The 100 papers considered in this study fit the only condition that
FTIR had been used to derive results and conclusions. This was assessed
by reviewing each paper (sometimes the supplementary materials) and
whenever a paper did not fulfil this condition it was not considered (in
most occasions that corresponded to comments or quotes from litera-
ture).

Further, all the posters of an international conference devoted only
to studying MPs were visited to assess whether relevant FTIR in-
formation was offered to conferees (Micro2018, 19–23 November 2018,
Lanzarote (Canary Islands), Spain).

We definitely agree with Hermsen et al. (Hermsen et al., 2018) in
that this kind of studies do not judge the value of the reports. They only
reflect the compliance of the papers/presentations with reliability cri-
teria as perceived by the authors. Misjudgements and/or mis-
interpretations, as well as mistakes during data collection were avoided
as far as possible, but they cannot be totally excluded; should that be
the case, our most sincere and deepest apologies.

3.2. Results and discussion

Table 1 resumes the overall results of the survey where the basic
FTIR instrumental parameters were searched for. A brief comment
about FTIR microspectrometry: despite a specific entry is not given into
the table, it was seen that almost 100% of the reports mentioned the
numerical aperture employed to register the spectra; however, on the

contrary, it was rarely specified whether it changed throughout the
different particles (and this is a relevant issue), and it was not always
clear the measurement mode (transmittance or reflectance), this latter
issue was considered under the heading “working technique”.

Positive facts were that 97% of the reports specified the brand and
model of the equipment and that 86% of the reports specified the
measurement technique employed throughout. The latter figure should
nevertheless be increased to avoid the readers to figure out experi-
mental conditions or to spend time looking for what was done (some-
times this is absolutely impossible from the only available data).

Not so nice percentages of good practices were found for reports on
the number of scans per spectrum (66%) and nominal resolution (59%).
Although these two figures are not totally good, it is strange that these
parameters are given in so “many” occasions while others (at least as
important as them) are not even reported. This suggests that they were
given just by routine and, so, that there might be a lack of under-
standing of the real importance of the other variables in the final re-
sults. Thus, only an incredibly low 17% of the reports specified how the
background was made (even, whether it was made at all) and, worst,
only 8% of the papers indicated whether the background was repeated
periodically and/or per sample. Given the sensitivity of FTIR to the
ambient conditions avoiding information on the backgrounds is a re-
levant bad practice to be avoided (see next section for an example).
Despite the apodization is, likely, a variable that exerts less influence on
the measurement of solids than on gases or liquids, it has been totally
neglected by the authors as only 2% reported on its use and/or the
function employed to perform it (in another 4 times this function is not
required).

After the IR spectra are obtained, many times some kind of spectral
treatment is needed, as detailed in the next sections. Again, we have
very bad figures here as only 31% of the papers delivered information;
with scarcely 14% ones reporting clearly the spectral treatments (an-
other 4% avoided the problem by using ATR databases). We can sum up
here 17 cases where transmittance measurements were explicitly done
(N/A in the column headed as ‘transformation’ in Table S1,
Supplementary Information) which do not require dedicated transfor-
mations, although even in this case baseline treatments might be ap-
plied, which in general is not indicated. Absolutely worrying is the fact
that out of the 59 papers that used ATR only 7 declared to correct the
spectra for radiation penetration (this information is not explicit in
Table S1, Supplementary Information). This is of huge concern because
many authors claimed that the ATR spectra were compared directly
with databases, whose usual spectra are in transmittance (absorbance)
units, and they based the assignments on the correlation coefficient.
Further, in one case transmittance is said to be used throughout the
paper instead of the correct term reflectance , which is a serious mistake
and that, unfortunately, was overlooked throughout the publication
process. Therefore, serious concerns appear on the correctness of the
MPs identifications and the corresponding mass- or counting-balances;
and scientists have to reflect seriously on how useful the publications
can be for good science and decision-making.

Finally, despite only 2% of the papers have no information on the
instrumental setup at all (this is a good figure, per se) the real per-
centage is much worse as 10% of the reports supplied only the brand
and model of the equipment (no experimental details), and another
13% of reports include only the measurement technique. So in total, up
to 25% of the papers have no useful information at all about the in-
strumental setup. This high value (also very cumbersome for the con-
ference, as discussed next) does not seem an oversight, but a bad
practice that should be avoided at all cost. To state that FTIR mea-
surements were done with an equipment is not enough, even though
spectra are presented.

With regards to the poster communications in a conference devoted
to microplastics studies, despite we acknowledge that the overall
quantity of FTIR-based posters was very limited (16 in total), the figures
can be useful to –at least- envision the situation. Table 1 indicates that

Table 1

General statistics derived from the 100 reviewed papers and 16 poster com-
munications presented at two international conferences to assess the lack of
information on the experimental setup used when FTIR spectrometry is used to
characterize microplastics.

Parameter reported? Papers Conferences

Yes No Yes No

Equipment (brand, model, etc.) 97 3 3 6
Working technique (transmission, ATR, reflectance,

anvil cell, etc.)
86 14 6 3

Nominal spectral resolution 59 41 2 7
Number of scans per spectrum 66 34 3 6
Background 17 83 2 7
Background per sample (background periodicity) 8 92 1 8
Apodization mode 6 94 1 8
Spectral treatment: ATR correction/Kubelka-Munk/

Kramers-Kronig, other
31a 69 1 8

No information at all 2b 7

a Including 17 papers reporting transmittance measurements where no
dedicated transformations are required.

b 10 cases reported only brand and model.
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the circumstances are not much better than for the papers and, in some
issues, much worse. There was a huge lack of information on basic
instrumental parameters so that scientific reproducibility is totally
compromised. In total, a shocking 78% of the communications reported
no measurement information at all. The less affected parameter was the
measurement technique with “only” 19% of the total posters lacking it
(or one third of the posters which contain other IR information). The
omission of other parameters amounts from two thirds of the posters
(e.g., not even the instrument brand and model was mentioned) up to
89% (e.g., background periodicity or ATR apodization are almost not
even mentioned). The basic reason for this problem is not space as most
of the information can be covered with only two or three sentences, as it
will be exemplified in the final section.

The worrying situation depicted by the results above agrees quite
well with a handful of very recent surveys of published papers reporting
on the quality of MPs studies. In one of them the reliability of the data
about the ingestion of microplastics by biota was investigated (Hermsen
et al., 2018) and a relevant conclusion was the lack of essential in-
formation that made some studies irreproducible. The authors pointed
out the need for a standardized way to report information. In other
study the authors (Koelmans et al., 2019) reviewed 50 papers reporting
plastics on different matrices and proposed some working practices to
sample, extract and detect microplastics, and provide some quality as-
sessment. Only 4 out of 50 studies (8%) received positive scores for all
proposed quality criteria and, so, they concluded that more high quality
data is needed on the occurrence of microplastics in water. Another
bibliographical study considered four major stages when quantifying
MPs in sediments; namely, sampling, extraction, quantitation and
quality control (Hanvey et al., 2017), and found out that only 6 papers
out of 43 (ca. 14%) reported laboratory control samples or validation
trials, with variable recoveries (higher for larger plastics); and only 3
papers (ca. 7%) reported laboratory blanks.

Some other papers dealt with lack of information on quality con-
trol/quality assurance issues. A study provided guidance to improve the
reliability and relevance of MPs ecotoxicological studies for regulatory
and broader environmental assessments (Connors et al., 2017). They
stated that from an objective viewpoint “much of the existing hazard

literature is unusable in a risk assessment framework […] because of […]

limited methodological details”. Some reports were closely related to the
analytical side of the work, as the analytical characterization of the test
particles and analytical verification of test concentrations, for which
details of the instrumental setup are indeed a must. Wesch et al. (Wesch
et al., 2017) focused on how to avoid aerial microfiber contamination.
Finally, Silva et al. (Silva et al., 2018) reviewed different steps of cur-
rent methodologies to characterize MPs and reflected on major diffi-
culties that nowadays have to be confronted to improve analytical
performance when characterizing them.

Lack of reported information on method validation is an issue in its
own, as reported by Hanvey et al. (Hanvey et al., 2017), who pointed
out the need for both extensive validation trials and laboratory control
samples. In particular, they stressed that, as a general rule, inter-
laboratory proficiency testing should be undergone. We fully agree with
this idea, as it is common practice in Analytical Chemistry. This ap-
proach is not so expensive and, on the contrary, is highly rewarding in
terms of reported information and knowledge management. Inter-
laboratory exercises are envisaged as a must, especially as far as we still
do not have certified reference materials nor standardized analytical
methods for MPs.

Those issues support the opinion of several experts that analytical
approaches applied to measuring plastic debris in environmental sam-
ples are underdeveloped (GESAMP, 2015). Somehow this could be due
to the huge drawback of the (very) heterogeneous distribution of MPs in
the samples and, of course, in natural systems (GESAMP, 2015).
However, all the reports cited above concluded that analytical protocols
used commonly to characterize MPs are far from being able to deal with
the EU statements (Silva et al., 2018) to set the performance

characteristics (European Commission, 2002) of many analytical
methods.

4. IR spectrometry in a nutshell

The results above make it necessary a brief, conceptual resume on
the basics behind the FTIR technique (specific details can be found in
any classical introductory textbook; e.g., (Smith, 2011)) as they are
crucial to understand why some parameters have to be optimized/re-
ported. The following section reviews typical parameters that affect the
quality of IR spectra and shows that when overlooked, they can pre-
judice the visualization of weak spectral bands/peaks and affect the
interpretation of a spectrum and/or its match with spectral databases.
Therefore, it should be mandatory to report them.

IR spectrometry (denoted as such because nowadays benchtop dis-
persive instruments are not used so no confusion is possible) has be-
come an established and powerful analytical workhorse in many qua-
litative and quantitative applications, both at industry and research
(Doyle, 1992). It is a ubiquitous tool for the study and quality control of
industrial materials (ingredients, primary and secondary products, re-
sidues, etc.); food, forensics, environmental and pharmaceutical ana-
lyses; organic molecules (Chalmers and Griffiths, 2002; Lin-Vien et al.,
1991); and thermal imaging (Vollmer and Möllmann, 2017). It has also
been used to develop sensing techniques in atmospheric composition
analysis (Laj et al., 2009); surface analysis (Belfer et al., 2000); biolo-
gical and medical applications (Krafft and Sergo, 2006).

Indeed, IR spectrometry is one of the best options to characterize the
structure and degradation of polymers and MPs. At present IR and
Raman spectrometry are the most used techniques to identify MPs
(Mukherjee and Gowen, 2015). Some of its advantageous character-
istics are its high turnaround time, selectivity and its relatively
straightforward combination with microscopes (Renner et al., 2017).

Unfortunately, when a scientific field develops as rapidly as MPs
analysis did, and an analytical technique becomes a workhorse to get
relevant information there is a risk that the basic and/or fundamental
parameters become overlooked or partially neglected. This may have
detrimental consequences not only for the experimental work at hand,
but for others willing to carry out a similar study.

IR spectrometry is based on the interaction of an infrared light beam
with the sample molecules by modifying their rotational and vibra-
tional energy levels when the Plank's equation is satisfied. When mul-
tifrequency radiation is used, each bond of each molecule in the sample
can attenuate the beam (as far as its dipole changes when the rotational
or vibrational mode changes, making nonpolar molecules transparent
to IR radiation). As a consequence, when the recorded beam is pro-
cessed it contains information about each and every molecule in the
sample. Accordingly, be cautious when interpreting the spectrum, un-
less it is known that only one type of molecules is present in the sample.

The core of any IR spectrometer is the interferometer, where a
continuously moving mirror is the key. Its purpose is to create wave
interferences, most of them destructive, so that the polychromatic ra-
diation gets modulated and the total power reaching the detector can be
registered as a function of the displacement (distance or time) of the
moving mirror. Each time this mirror moves back and forth the in-
strument registers a full interferogram, or scan, which is a very complex
power fringe, not interpretable visually (hence the need for the com-
puterized Fourier transform, FT). The interferograms are averaged to
increase the signal-to-noise ratio (S/N). The difference between the
interferograms obtained before and after the sample is placed at the IR
radiation path yields the net interferogram. Next, the FT algorithm
leads to the net spectrum of the sample, expressed in classical units. A
misunderstanding appearing in several reports has to be clarified:
classical units to set the “x-axis” of the spectra are cm−1 and this cor-
responds to wavenumbers, ∼ν , not wavelengths, λ.

Different IR sources yield different light intensities and different
detectors have different efficiencies, so it is worth specifying them
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when reporting results (although most times this is implicit when spe-
cifying the brand and model).

5. Common basic parameters for IR measurements

To organize this section as simply as possible, the parameters re-
quired to inform on the IR experimental set up employed in a MPs study
can be classified in two types: instrumental- and software-related
(spectral treatments).

5.1. Instrumental

5.1.1. Wavenumber range

The frequency range or, more commonly, the wavenumber range
defines the minimum and maximum frequency points used in the
analysis. Its selection is of utmost importance for the measurements as
each analyte has a range in which the characteristic peaks caused by its
bonds and functional groups appear. The medium range, Mid-IR (or
simply, IR), 4000–400 cm−1 is most commonly considered because the
near region (NIR, 4000–14,000 cm−1) yields very broad, overlapping
bands not easy to interpret and differentiate. The far or terahertz IR
region (FAR, 400–10 cm−1) has not still been applied to determine MPs
as instruments have been developed recently. Declaring the working
range in the reports is necessary and almost always done.

5.1.2. Number of scans

The number of scans (NoS) is not considered in many works, as it
should be. It is the number of times the interferogram (scan) is repeated
to get a spectrum. Currently the software averages all the inter-
ferograms and then applies FFT (Fast Fourier Transform) to yield the
spectrum. As noise is random, increasing the NoS per spectrum im-
proves the S/N ratio (by a factor of NoS (Smith, 2011)), although at
the expense of correspondingly increasing the time needed for the
analysis. From a practical viewpoint, the analyst should decide the NoS

after a preliminary study where the S/N ratio is plotted against the NoS
for a typical sample and setup configuration. Fig. 1 shows an example
where a polystyrene pellet was measured by ATR. Of course, the more
scans we register the better the signal will be, so a trade-off between S/
N ratio and time has to be sought for. In the figure, a clear stabilization
of the S/N ratio is seen after at least 30 scans, further improvements are
not highly relevant and they consume time (e.g., 200 scans in this
particular configuration took around 20 min per sample, while 30 scans
required only 5 min). Note also that the S/N ratio changes for different
absorption peaks so it is worth testing several, or the one of interest.

5.1.3. Background

Every spectroscopic measurement is affected by many contributions
besides that from the sample. Ambient conditions like temperature,
humidity, CO2 and other vapors present in the laboratory can largely
affect the IR spectrum. To correct them it is necessary to record them
(as a background) and subtract them from the gross spectrum of the
sample (this final step is done automatically by the controlling soft-
ware). In general, when the measurements take time (e.g., due to a high
NoS) or whenever a series of samples have to be measured it is not a
good practice to record only one background for all the samples (for it
only represents the initial conditions in the laboratory) but, instead, it is
recommended to make several backgrounds through the working ses-
sion; ideally, a background per sample. When the analyst has to stay
near the instrument during the measurements, as is often the case, it is
mandatory to make a background before each sample to ensure accu-
rate results.

Fig. 2a shows the spectrum of air recorded over a reduced time
frame (< 1 h) in a small room without the presence of working staff.
The baseline and the peaks associated to H2O and CO2 (vapors) change
substantially, as it is usual. Unless this is corrected for, the baselines of
the spectra registered will show a sloppy trend with time that will
difficult the identification of the item under study with the spectra of
the databases. Recall again that the reflectance measurements may

Fig. 1. Measurement of a polystyrene pellet by ATR and evaluation of the number of scans to register a spectrum (see text for details).
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require different backgrounds (see next sections).
Fig. 2b shows the spectra of a PA6.6 pellet measured throughout 1 h

(at 20 min intervals) and whose comparison against a commercial da-
tabase degraded with time (from 0.9109, original measurement, to
0.9007 at 60 min) because of a lack of background correction (recall
that no analyst was breathing in the room, so this is an optimistic re-
sult).

5.1.4. Resolution

Resolution defines the frequency with which the spectrometer takes
an experimental readout. The higher the resolution is, the lower the
interval between successive experimentally-registered data points be-
comes (Smith, 2011). This generates spectra with more information, but
it also increases spectral complexity, decreases the speed of the analysis
and reduces the S/N ratio. It is worth noting that “high resolution”
means setting lower figures. For instance, 1 cm−1 denotes an 8-fold

Fig. 2. (a) Typical sloppy trend of the IR baseline when the background is not corrected for during a working period of 1 h; (b) Spectra of a PA.6.6 pellet registered
each 20 min, background uncorrected, whose match against the database degraded from 0.9109 (t = 0), to 0.9084 (t = 20) and 0.9007 (t = 60), see text for details.

J.M. Andrade, et al. Marine Pollution Bulletin 154 (2020) 111035

6



better resolution than 8 cm−1. As a consequence, the selection of the
resolution will determine the shape of a spectrum. From a pragmatic
viewpoint, resolution can be defined as the ability of an instrument to
differentiate two different spectral features that are close together
(Harris, 2003). This is an especially important parameter when spectral
peaks of interest are close and there is a need to differentiate them. No
doubt, its relevance on the study of gaseous samples is paramount, as
their spectrum is usually composed of a multitude of very narrow peaks.

As an example Fig. 3a shows the difference between the spectra of the
same gaseous sample using two different resolutions. A preliminary
evaluation is required to select the best resolution for a particular study.
Common nominal resolutions for liquid and solid samples are 4 and
8 cm−1 in order not to miss the sharpest spectral peaks. Note that the
lower the resolution is (e.g., 32 cm−1), the higher the risk of missing
sharp peaks becomes. Fig. 3b shows the spectra of a PA6.6 pellet
measured at two nominal resolutions and whose identification against a

Fig. 3. (a) Spectra of a gaseous sample recorded at nominal resolutions of 1 cm−1 (black) and 16 cm−1 (red) denoting clear differences in the less intense bands; (b)
resolution affected the identification of a PA6.6 pellet whose spectrum was registered at 2 (r = 0.9190) and 16 cm−1 (r = 0.8707). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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commercial database became degraded when the resolution increased
too much. Unfortunately, the resolutions employed in the databases are
unknown so we have to consider that they used the most common ones
(typically, from 2 to 8 cm−1), but this remains a bit obscure. Hence, it is
relevant to indicate the experimental nominal working resolution.

5.1.5. Apodization

Strictly speaking, the computation of the FFT involves a complex
integral whose limits are±∞. However the mobile mirror can move
only a finite distance (± d), thus the limits of the integral are restricted
to± d. This prejudices the computations and alters the resulting spec-
trum (even when modern algorithms to compute the Fourier transform
are used) by generating secondary peaks, or lobes, adjacent to the main
spectral peak. Those side peaks difficult the interpretation of the
spectrum, as they can overlap with the true signals, broadening them or
modifying their shape. To correct this, a so-called “apodization” func-
tion is used. It consists of a mathematical function applied after the FFT
one to remove the sides of the peaks in the spectrum. There are nu-
merous apodization functions, some of them proprietary of the instru-
mental companies. In general, the most aggressive functions are used
for gas analysis. Fig. 4 presents some typical apodization functions and
their effect on a spectral peak. The user can change the apodization
function in the controlling software and, so, it is important to report the
function used in a study and its related parameters, when they can be
modified.

5.1.6. Measuring technique

The enormous versatility of infrared spectrometry led to a wealth of
different IR-based working techniques, with different experimental
setups and parameters to fix. As a consequence, it is of paramount
importance to report all the variables involved in the measurement at
hand. For the sake of simplicity, the major techniques are:

5.1.6.1. Transmission. No doubt this is the most common approach to
measure gases, pure liquids, solutions and flat, thin, transparent solids.
It corresponds to the most basic configuration of any IR spectrometer

and it records the total energy exiting the sample layer. To make
quantitative measurements the pathlength should be fixed although
normalization by the thickness of the absorbing medium can be done (if
this is unknown, it can be calculated easily from the interference fringes
of the spectra (Smith, 2011)).

5.1.6.2. Reflectance. In order for too thick, too absorbing or opaque
samples be studied surface reflectance methods need to be used, such as
Attenuated Total Reflectance (ATR), Diffuse Reflectance Infrared
Transform Spectrometry (DRIFTS) or photoacoustic spectrometry
(PAS). All three require additional accessories, increasing the cost of
the instrument.

ATR is the general choice when measuring MPs and, following, we
will consider here some more details than for the other options. The
sample is put in close contact with an internal reflection element (IRE),
usually a crystal of a material with a high refractive index (like silicon,
germanium, zinc selenide or diamond). Depending on the experimental
setup the IR beam can be reflected back multiple times (commonly, 1, 5
or 10 reflections) at the crystal-sample interface. Each time it impacts
on the sample, part of the electromagnetic energy of the beam (the so-
called evanescent wave) penetrates into it. The interaction between the
wave and the sample allows us to obtain a quite good IR spectrum in
otherwise unpractical conditions. The depth of penetration (dp) of the
wave depends of the specific sample and the wavelength under con-
sideration, and it can be calculated easily, Eq. (1) (Harris, 2003). The
pathlength is the number of reflections times dp.

=
−

d
λ

πn sen θ n In2 ( )
p

c s c
2 2 (1)

There, λ is the wavelength, in mm; nc is the refractive index of the
crystal (for diamonds is ca. 2.4 at 1000 cm−1); ns is the refractive index
of the sample (for common transparent plastics –PC, PS, PMMA, etc.- it
is ca. 1.5) and θ is the incidence angle of the radiation on the crystal. An
excellent compilation of refractive indexes of polymers can be found at
(Polyanskiy, 2020).

The final spectrum depends on the experimental setup and,

Fig. 4. Graphical concept of different apodization functions and their effects on an IR peak obtained after FT transformation of the interferogram.
(Adapted from (Bruker Optics, 2020).
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therefore it is important to report the nature of the crystal and the
number of reflections of the beam in the sample, along with some value
for the penetration depth in our sample. The reflectance spectrum thus
obtained suffers the problem that the intensity of the recorded signal
varies with the frequency. Longer wavelengths (lower wavenumbers)
penetrate more than shorter wavelengths (higher wavenumbers), see
Fig. 5. Further, as the refractive index of a sample changes sharply close
to the absorption peaks, the peaks can be shifted (Smith, 2011) re-
garding their positions in absorbance spectra. As the reflectance spec-
trum is not directly comparable to a typical absorbance one, it is
common practice to modify the ATR spectrum so that it looks like an
absorbance spectrum and it can be compared to typical databases. Al-
though different commercial brands have slightly different proprietary
algorithms, in general the correction modifies each original ATR re-
flectance by a factor inversely proportional to the wavelength and,
eventually, a penalty parameter. Such a penalty stems from the fact that
for this technique to work effectively the crystal and the sample must be
perfectly in contact with each other so a piston is usually needed. For
liquid samples the penalty parameter is set to zero (perfect contact
between sample and crystal), but if improper contact is suspected (like
in the case of plastic pellets or fragments), it might be adequate to study
different penalty values (and report the selection).

Therefore, report always whether the ATR spectrum was corrected
and the penalty parameter (even if it is zero). Note that the identifi-
cation of a polymer against a database can be affected seriously if the
ATR correction is not considered (see Fig. 5 for an example).

For solids with a rough surface, fibers or powders it is more ap-
propriate to use DRIFTS. Here, the light that falls upon the sample is
reflected back in multiple directions, which is called diffuse reflectance.
The DRIFTS accessory is designed to redirect all the light reflected from
the sample to the detector. The diffuse reflectance spectra may po-
tentiate certain peaks in comparison with a usual absorption/trans-
mission spectra. To correct for this effect the Kubelka-Munk equation

can be used (Stuart, 2015). The background here can be made either
with an aluminum-coated silicon abrasive pad or with KBr or KCl
powder.

If the surface of the sample is flat and smooth, the reflectance of
light is more like than that of a polished surface and it is said to be
“specular” reflectance. If the thickness of the sample allows the IR light
to traverse all the sample layer and reflect back on the solid holder and
exit the sample, transflectance (when the films are rather thick) or re-
flection-absorption (when the films are thin) are more suited terms.
This can happen when flat films of polymers are deposited over re-
flective (e.g., gold) surfaces. Band intensity ratios and band positions
can be severely affected depending on the thickness of the sample, al-
though these effects are generally overlooked (see (Mayerhöfer et al.,
2018) for a more profound and technical discussion). Note that re-
flectance measurements need a proper background, which is generally
made using a reflective, flat, golden polished surface.

5.1.6.3. Microspectrometry. This technique is applied whenever
microscopic samples are to be analyzed. It consists of a FTIR device
whose modulated beam is diverted to an adjacent microscope setup,
adapted for the IR light. Micrometers-sized samples can be analyzed
and chemically mapped. The microscope is situated over the sampling
plate, on a mobile stage. IR radiation is focused onto the sample using a
combination of convex and concave mirrors (Cassegrains) that redirect
the image to the barrel of the microscope (Larkin, 2017; Perkin Elmer,
2015). These instruments generally allow for transmission, reflectance
and ATR measurements so clarifying which mode was used to perform
the MPs characterization is a must in any report. If ATR is used in a
microscope (also termed micro-ATR), report how, and how often,
cleaning of the ATR tip is done.

The quality of the spectra and the spectral resolution attainable with
an IR microscope relies strongly on the amount of energy received by
the sample, which in turns depends on the size of the area of the sample

Fig. 5. Example of the influence of the ATR correction on the appearance of a spectrum from a PA6.6 pellet. Correction by depth penetration yielded a 0.9900 match
with an in-house database whereas no correction reduced the match to 0.9421.
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illuminated by the IR beam. This is controlled by a mechanical system
that has to be modified by the analyst: the aperture. Using a traditional
MCT detector, the spatial resolution is related to the infrared beam
aperture dimension which cannot be lower than the theoretical dif-
fraction limit of about 10 μm, although for some systems this could be
up to 20 μm (Kanno, 2008). However, the S/N ratio at this limit will be
quite poor and so at least a 20 × 20 μm aperture is needed to obtain
enough energy (Bhargava and Levin, 2007; Prati et al., 2010). The
optimal aperture depends also on the detector type under use; between
10 and 100 μm for MCT detectors, between 10 and 200 μm for InGaAs
detectors and between 50 and 200 μm for DTGS detectors (Perkin
Elmer, 2015). Accordingly, reporting on the aperture (or apertures)
used to study the particle(s) and the detector employed therein is
needed.

5.1.7. IR hyphenation

A relevant, general advantage of FTIR spectrometers is their rela-
tively simple combination (hyphenation) with dedicated accessories or
other analytical techniques, such as chromatography or thermal ana-
lysis. Both GC-FTIR and TGA-FTIR require the spectrometer to con-
tinually scan the gas cell and to combine/integrate the band(s) during
some time. For quantitative purposes the Gram-Schmidt orthogonali-
zation algorithms are really needed (Namba, 1990; Robertson and
Lawson-wood, 2017; Sparks et al., 1982).

The GC-IR hyphenation leads to evolving gas analysis as the gases
eluting from the chromatographic column are introduced in a gas flow
cell of the IR spectrometer to identify them, yielding information on the
components that exit the column (Villberg et al., 1997) or volatiles
entrained in polymers (Schmidt et al., 1988).

The main purpose of the hyphenation between IR spectrometry and
thermal analysis is to obtain information on the chemical processes that
take place on a sample when subdued to a temperature variation. The
TGA instrument records the loss of mass as a function of time or tem-
perature while IR spectrometry generates information about the
evolved gases of the combustion/pyrolysis. Physical properties, che-
mical changes and degradation pathways of polymers and copolymers
can be studied (Lin, 2016; Loría-Bastarrachea et al., 2011); for instance,
to characterize PVC and PS microplastics (Yu et al., 2019).

5.2. Spectral treatment parameters

In addition to the parameters above, spectra are usually treated to
improve their quality and/or avoid undesired artifacts. Some typical
treatments are resumed below (note that they are not the unique pos-
sibilities, although they are probably the most frequent ones):

5.2.1. Baseline correction

Currently, the general shape of the IR baseline (which ideally should
be flat) can be modified by the dispersion of the IR beam, changes in the
atmosphere of the laboratory, temperature variations, instrumental
drifts, the sample itself (scattering powder, inhomogeneous composi-
tion, etc.) or other unwanted effects. Hence, it is necessary to suppress
unwanted slopes and curvatures, while maintaining the band in-
tensities. The process of baseline correction varies greatly between
different software and in some cases it can be corrected manually, se-
lecting the points of the spectrum that will be bound to zero (be careful
and set always the same baseline correction points). Both the correction
points (number and position) and the correction function (linear,
polynomial, etc.) are relevant information that should be reported.
Whenever the baseline is not corrected for its effect on the identifica-
tion of eventual polymers using databases will be similar to that of not
correcting for the background.

5.2.2. Smoothing

This correction is applied to spectra with low S/N ratios so that
noise is reduced, making it easier to discern the different peaks while

creating more visually appealing plots. There are different smoothing
functions, such as Box-Car, triangle, Savitsky-Golay (this is the most
common option), etc. Be aware that while smoothing can help differ-
entiating a real signal from noise, the intensities of relevant spectral
features for your problem may be reduced (smoothed) as well because
smoothing decreases the intensity of the overall spectrum and, in ex-
treme cases, the signal of interest can be completely eliminated. Also,
neighbor weak peaks or bands can merge and, so, the resolution of the
spectrum reduces. Preliminary trials are needed to fix the smoothing
parameters, where the key point is not to affect the intensity and shape
of the peaks of interest. Changing the parameters involved in the
smoothing function can largely affect the spectrum and, so, they must
be reported (e.g. the selected function and the window width).

5.2.3. Kramers-Kronig

When using a specular reflectance accessory, spectra containing
regions with derivative shapes (called reststrahlen) (Smith, 2011) are
obtained frequently. This is so because the refractive index of the
sample depends of the wavelength. To correct for this the so-called
Kramers-Kronig equations are applied to transform a specular re-
flectance spectrum in an absorbance-like spectrum. This is useful be-
cause most IR databases contain transmission/absorbance spectra. This
transformation is only advised on samples with a smooth and shiny
surface. The samples with rough surface can have a reflectance that is
partly specular and part diffuse, which can distort the resulting spectra
(termed k). The set of equations are rather complex and exceeds the
scope of this tutorial; more interested readers can consult (Warwick and
Eda, 2014) and the basic ideas depicted nicely at (Shimadzu, 2008),
which are exemplified with two spectra of black rubber and a plastic
slab.

5.2.4. Kubelka Munk

This treatment is applied when diffuse reflectance occurs primarily
and/or when using a DRIFTS accessory, generally on spectra with low
absorption, so that the transformed spectrum obeys the Bouguer-
Lambert-Beer's law. Spectra that undergo this transformation (see Eq.
(2)) are expressed in Kubelka-Munk (K-M) units, where KM is the
spectrum in K-M units and R is the absolute reflectance of the sample
(Smith, 2011).

=
−

KM
R

R

(1 )

2

2

(2)

This equation can also be expressed as

=KM
a c

s

2.303· ·

(3)

where s is the scattering factor, a is the absorptivity and c the con-
centration of the sample. In this equation the only unknown variable is
the scattering factor, which depends on the distribution of the sample
(size, shape, packing, etc.) (Smith, 2011). As the IR beam penetrates
between 1 and 10 μm in the sample, this equation assumes the thickness
of the sample to be infinite.

5.2.5. Deconvolution

It is a function used to enhance the resolution of the spectra by
allowing the differentiation of overlapping peaks mathematically when
it is not possible on the original spectra. It uses the Fourier transform to
diminish the broadening of the band. While it can enhance the re-
solution of a band or peak, it can never be better than the spectral
resolution used to obtain the data. Deconvolution comprises 3 steps
(Smith, 2011): The first consists of selecting the band to be modified.
Then, a Fourier transform is applied, generating a partial interferogram
called cepstrum. This interferogram is altered to increase the intensity of
its “wings”. This way, when the Fourier transform is applied again the
peaks constituting the overlapped band are narrowed and, hopefully,
differentiated. The main problems this treatment can produce are due
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to overdeconvolution, by increasing the resolution so much that it can
generate secondary lateral peaks as well as increment noise, baseline
fluctuations and creation of other non-existing spectral features. De-
convolution is a relevant issue when defining functional group indexes
unambiguously; e.g., to study PA6.6 degradation (Vasanthan and
Salem, 2000), interactions between components in polyester/poly-
styrene blends (Gordon et al., 2015), to quantify the crystalline phase in
poly(vinyl)alcohol (Tretinnikov and Zagorskaya, 2012), study cellulose
crystallinity after enzymatic digestion (Kruer-Zerhusen et al., 2018) or
evaluate mixtures of plastics (Fuller and Gautam, 2016; Miller et al.,
2017).

6. Conclusions

This paper demonstrated the huge importance of adequately de-
tailing the minimum experimental conditions required to replicate the
IR studies undergone to seek for the occurrence of microplastics in
environmental matrices. A survey was made covering approximately
50% of the papers where microplastics were assessed by FTIR spec-
trometry and a very important lack of information regarding the ex-
perimental setup was found. In addition, the results gathered from the
survey suggest that some microplastics identifications might be com-
promised, thus affecting mass- or counting-balances. For instance, up to
25% of the published papers do not reported relevant instrumental
operational details, and only 12% of the papers that used ATR reported
that the difference on the depth of penetration of the IR radiation was
corrected for, which is a serious conceptual pitfall. Similarly, the typical
IR background drift has been largely overlooked as scarcely 17% of the
papers reported on it and, worse, only 8% of the papers indicated
whether the background was periodic (as it should be).

As a consequence, a brief tutorial on the most important funda-
mentals of FTIR and the influence of the most common parameters on
the spectra was presented, where from it was concluded that some kind
of standardization of the Minimum Information for Publication of IR-
related data when microplastics (MP) are characterized (MIPIR-MP) is
required urgently, as in other scientific fields. This would allow inter-
ested parties to gain confidence in the reported data and decision-
making can be done according to trustworthy scientific data. The si-
tuation depicted in this study agreed quite well with other previous
reports dealing with MPs analyses where a poor 8% of studies received
positive scores for quality criteria and only 14% reported control
samples and validation trials.

We encourage authors, reviewers and editors to demand MIPIR-IR
data in every study of microplastics as this will translate in social ad-
vancements and avoiding discredit of the scientists involved in the
study of this major pollution issue. In our opinion, a viable simple
paragraph that covers most requisites could be something like (in each
case, tailor it):

Measurements were made using a FTIR spectrometer (Model XXX,
Commercial Brand), equipped with a […] (Model and Brand –if
needed- of the device used to measure, including detector and
aperture when microspectrometry is used), operating in the AAA-
BBB cm−1 mid-IR (or NIR) region, YY scans/sample, apodization
ABC (type, check software), ZZ cm−1 nominal resolution. All spectra
were corrected for light-reflectance penetration and baseline dis-
placement. Background (empty and clean system) was done before
[…] (e.g., measuring each sample). When needed, mention whether
Kubelka-Munk or Kramers-Kronig corrections were applied; also
specify spectra normalization, spectral treatment and other details
that assure reproducibility of the measurements.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.marpolbul.2020.111035.
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� Nylon microplastics identification

may be defective if weathering is

neglected.

� Usual databases do not contain

spectra of environmentally relevant

polymers.

� Polyamide weathering was

monitored and interpreted

chemically.

� A collection of IR indexes reflect

overall weathering routes.
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a b s t r a c t

The EU goal to reduce marine plastic litter by ca. 30% by 2020 stressed the need to deploy analytical

methods to ascertain the polymeric nature of a residue. Furthermore, as plastics age under natural con-

ditions and usual databases do not include their weathered spectra, (micro)plastics in environmental

samples may be unidentified. In this paper, polyamide (nylon) microplastics weathering was monitored

because of its ubiquity in household commodities, clothes, fishery items and industry, whose residues

end up frequently in the environment. Infrared spectra (ATR and microreflectance) and Scanning

Electron Microscopy (SEM) images were collected periodically while exposing nylon to controlled weath-

ering. It was seen that ATR was more sensitive than microreflectance to monitor the structural evolution

of polyamide and that the spectra and the surface of weathered microplastics showed remarkable differ-

ences with the pristine material, which stresses the need for considering its evolution when identifying

microplastics in environmental studies. The evolution of six band ratios related to the chemical evolution

of this polymer are presented. SEM images revealed the formation of secondary microplastics at the most

advanced weathering stages of polyamide.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The so many advantages that plastics brought to human tech-

nology and wellbeing cannot be denied. Unfortunately, their suc-

cess might also bring about a (so far hidden) planetary boundary

threat if we consider the Persson’s et al studies [1,2]. Their pres-

ence in the environment is worldwide recognized, even in very

large quantities (think about the oceanic gyres where thousands

of plastic items and microplastics accumulate), although it is not

still clear the effects they may cause in the different compartments

of Nature.

The European Global Strategy on Circular Economy [3,4] tar-

geted actions to reduce plastic consumption, increase its

https://doi.org/10.1016/j.saa.2021.120162
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recyclability and reduce its disposal, and it also proposed the

development of innovative plastics (e.g., biodegradable). At pre-

sent, around 50% of plastic residues go to landfill (although this fig-

ure varies throughout Europe) and only 25% of the collected plastic

is recycled. A major objective of the EU is to reduce plastic marine

litter, about 30% by 2020, and, so, the Green paper on plastic waste

was deployed [5].

A good example of a plastic commodity is polyamide –PA- (best

known commercially as nylon). This is the general term for a broad

range of chemical formulations, out of which PA 6 and PA 6.6 out-

stand for textile and plastic industries. The former gives rise to a

commercial product known as Perlon [6] or, more common, Nylon

6 (CAS number 25038–54-4, polycaprolactam) highly similar to PA

6.6 although it absorbs more humidity, and has lower strength and

stiffness than that. The latter, PA 6.6 or Nylon 6.6 (CAS number

32131–17-2, poly(hexamethylene adipamide)), is obtained

through a condensation polymerization of two monomers each

containing 6 carbon atoms –hexamethylenediamide and adipic

acid- (from which the name Nylon 6.6 arose). Crystalization is

due to strong hydrogen bonding between the chains [7]. The uses

and properties of both polymers are almost the same (many times

they are mentioned indistinctly) and the choice between the two

polymers is often made on non-technical grounds, e.g. local avail-

ability, price or familiarity [8].

The worldwide production of PA 6 and PA 6.6 (in the following,

PA) raised to 7.8 million tons in 2016 and found many industrial

applications [9]. It was reported that 5.7 million tons of polyamide

fibers were produced worldwide in 2017, which is about 8% of the

worldwide production of synthetic fibers [10]. The most important

sales were related to carpet and staple fibers, textiles and indus-

trial filaments (including fishing nets, lines, etc.). Carpets and rugs

account for 16% of the PA consumed and are expected to grow at

0.7% per year. North America and Western and Central Europe

are the major producers of carpets and rugs, accounting for about

80% of the nylon fiber consumed [11].

The overall consumption of nylon fiber is expected to grow at

about 3.5% per year for the next five years, with Northeast Asia

accounting for nearly two-thirds of the world’s nylon fiber output.

PA is also a very relevant engineering plastic for automotive indus-

tries (ca. 38% of the PA production), electrical and electronics (21%)

[12].

Contrary to other plastics, like PET (whose ubiquitous world-

wide presence is obvious due to its use to get disposable contain-

ers, like bottles), the PA environmental impact might be not so

evident as it tends to sink in seawater and is mostly related to fish-

ing, household and industrial activities, including dry-cleaning,

which –most times- end up in wastewater treatment plants

[13,14]. As a token of the relevance of PA in the marine environ-

ment, some papers can be cited. Thus, the majority of microplastics

(MPs) found in a natural protected area at Southern Spain corre-

sponded to PA, likely from a nearby harbour and fishing activities

[15]. A river basin polluted by anthropogenic discharges showed

PA as the most frequent polymer [16] and it was the second most

frequent polymer in fibers collected from fish samples off North-

east Greenland [17] (considering all MPs identified by infrared

spectrometry, it was the third most abundant polymer there). PA

constituted the second most common type of MPs found in the

water column of the Gulf of Lions [18] and two papers discovered

also big quantities of PA microparticles in shrimps [19] and in reefs

at the South China Sea (second polymer after polypropylene) [20].

Finally, PA was third among the selected MPs that undergone

chemical characterization in samples from the Mediterranean area

[21], the Baltic sea [22] and the coastal area of Tamil Nadu (India)

[23], in the latter case due to recreational and fishing activities.

Despite the number of papers related to the environmental

presence of PA in the environment is rising, the evolution of PA

microplastics has not been considering in depth and, so, this paper

attempts to shed some light on this issue. Not in vain, weathering

might be a key factor to study the ad/absorption of pollutants on

plastics and their potential impacts in the biota [2].

Infrared spectrometry (IR) has become a de facto standard to

rigorously identify polymer fragments in the environment. How-

ever, as plastics degrade under solar and marine conditions (see,

e.g. [2,24,25]). Their IR spectra have to be compared to a collection

of known degraded polymer spectra to find out the best match.

Unfortunately, to best of the authors’ knowledge, almost no com-

mercial database contains series of degraded polymers and, so,

many plastic fragments may be misidentified in environmental

samples. This topic was discussed in recent papers [25,26,27,28].

Notwithstanding, it is critical to keep in mind that this problem

is insidious because even if the evolution of a plastic is known

the variety of commercial brands (including different compositions

and additives) and the complex natural conditions might modify

the weathering routes/products for that plastic (see, e.g. [28] for

a good discussion on this topic).

The major objectives of this paper are twofold: first, to use ATR

–attenuated total reflection- and reflectance IR microspectrometry

to monitor PA 6.6 weathering (the latter being applied first time for

this purpose). Second, to relate the changes observed into the spec-

tra to polymeric structural modifications. As this polymer is not

studied frequently in the microplastics literature it is expected that

this work will help both scientists focused on studying the evolu-

tion of MP in the sea (for whom some band ratios are proposed)

and those performing routine measurements aimed at identifying

and quantifying microplastics in environmental samples (for

whom the evolution of the spectral characteristics are vital).

2. Materials and methods

2.1. Samples

The PA 6.6 polymer used in this study corresponds to the com-

mercial name ‘Ultramid’, from BASF, whose density was 1.13 g.

cm�3; melting temperature 260 �C. Two presentations were avail-

able: pellets, ca. 4 mm diameter, and powder, with a size Gaussian

distribution centred around 100 mm (standard deviation ca.

80 mm). The polyamide was fabricated so as to contain as few addi-

tives as possible, and it was included in a collection of microplas-

tics developed for the JPI-Oceans-funded project BASEMAN.

A device for the standardized simulated weathering of pow-

dered and pelletized PA microplastics was used. In brief, it resem-

bles the natural seawater conditions by setting continuous

agitation, sand erosion, sunlight irradiation and oxidative condi-

tions. It uses two metal halide lamps whose emission spectra

matches that of the solar radiation at the Earth surface (medium

latitude). The overall UV/VIS illuminance was 12,200 lx in a contin-

uous mode (i.e., no day-light cycles). The total irradiation time was

eleven weeks (ca. 1850 irradiation hours). More details can be

found elsewhere [29].

For the seawater weathering conditions 10 g of PA powder and

20 g of PA pellets were placed in 1000 mL Pyrex cylinders, along

with siliceous sea-sand and natural, filtered (10 mm) seawater.

For the dry conditions (emulating solar irradiation at the shoreline)

the same quantities were placed in 12 cm diameter Petri dishes.

Control samples were also considered (pellets and powder sub-

merged in seawater at dark). The contents of the dishes were stir-

red manually each two or three days. Seawater, dry and control

aliquots were taken each fortnight (15, 30, 45, 60 and 75 days; cor-

responding to 360, 720, 1080, 1440 and 1800 irradiation hours,

respectively).
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2.2. Apparatus and equipments

A Spectrum 400 FTIR spectrometer, Perkin Elmer, equipped

with a horizontal one-bounce single-reflection ATR (attenuated

total reflection) diamond (MIRacle, Pike), operating in the 4000–

600 cm�1 mid-IR region, 30 scans/sample, apodization Beer-

Norton strong, 4 cm�1 nominal resolution, was employed

throughout. All ATR spectra were corrected for light-reflectance

penetration and baseline displacement.

A Perkin Elmer Spotlight 200i IR microscope was used to per-

form the reflectance measurements. Each item (pellet or granule)

was measured twice (changing its position) and the resulting

spectra were averaged. The experimental setup was: nominal res-

olution: 4 cm�1; number of scans: 200; spectral range: 3500–

600 cm�1; nominal aperture: 100 mm (adjusted whenever the

scanned part of the grain required it); apodization: Beer-Norton,

strong; spectral processing: Kubelka-Munk transformation (for

pellets) and normalization 10% plus Kramers-Kronig (for powders).

All spectra were baseline corrected using multipoint baseline cor-

rection. Note that the surface characteristics of the item under

measurement affect data processing due to their possible main

interaction with the IR beam: pellets allow for measuring almost

flat surfaces, making the reflection almost specular, whereas for

powders the irregular shape of the grain’s surface makes reflection

more diffuse.

Reflectance measurements were selected instead of transmit-

tance ones because the former are the most common ones in

literature. Also, reflectance spectra are independent of the thick-

ness of the particles (transmittance can be affected by the effec-

tive pathlength) and can be applied straightforwardly. Further,

as reflectance is a surface-characterization technique it can

detect polymer ageing quite accurately (a superficial phe-

nomenon). Note also that the size of the particles handled in

this work (>70 mm) is far from the physical limitations that

can occur when very small (<20 mm) particles are measured.

This allows reflectance to be applied safely to most common

environmental monitoring studies (for instance, when Neustonic

or manta-trawl nets are used their pore sizes are usually

around 200–330 mm).

A JEOL JSM-6400 Scanning Electron Microscope (SEM), coupled

to an Energy-dispersive X-ray spectroscopic microanalysis device

(EDXA, Oxford INCA Energy 200) was employed. All samples were

covered with a gold film using a cathodic spraying system (BAL-

TEC SCD 004) prior to the SEM measurements.

3. Results and discussion

3.1. Chemical interpretation of the IR spectra

In this section, PA spectra are interpreted in detail and related

to the chemical processes PA undergoes during weathering. This

is in order here as most previous reports focused only on partial

aspects of the spectrum and a full interpretation was not found.

Thus, a brief review is presented. With respect to PA degradation,

although the cleavage of N-C bonds at short radiations (254 nm)

to yield amines and aldehydes was clearly studied, it is not evi-

dent what happens within the solar spectral region (300 nm

and higher) [30]. Four principal weathering routes for PA are

described, of which the first two (see next paragraphs) are the

major ones, however notice that all them may occur almost

conjunctly:

(i) Photooxidation can be initiated by chromophoric impurities

from fabrication (unbounded or partially bounded func-

tional groups). They lead to an initiation step that can

involve either the photolysis of hydroperoxides or ketones

formed during fabrication (which is a common mechanism

for most polyolefins –Norrish I and II mechanisms-) [31].

(ii) Photooxidation can also be due to oxygen-induced reactions

because of charge transfer complexes [30,32]. This seems

particularly feasible for PA6.6 and involves direct photolysis

of the amide bond [32].

(iii) The hydrolytic degradation route is attributed to the especial

susceptibility of the amide bond to acid- and basic-catalysed

hydrolysis [30]. The catalysing metals might be those pre-

sent naturally in seawater and those used at the production

catalysts or embedded salts [33].

(iv) Finally, thermal oxidation –a non photooxidative process- is

also possible by means of the abstraction of hydrogen atoms

on the methylene groups close to the nitrogen atom of the

amide group [34].

Roughly, photodegradation would lead to aldehydic and acidic

groups, whereas hydrolysis would lead to carboxylic acid and

amine groups [30]. In essence, the mechanisms of thermal and

photochemical oxidation are identical, but for their onset [31].

Although thermal oxidation should not be a major weathering

route in this study, because neither the water nor the air temper-

atures surpassed 30 �C, it cannot be disregarded totally (as it will

be shown later on).

The ATR spectra of pristine (as received) pellets and powder and

last aliquots of weathered PA under the three weathering setups

(seawater plus irradiation; dry plus irradiation and control-dark)

are shown in Fig. 1. First, it is observed that no new distinctive

spectral bands appear throughout weathering, as reported for out-

door weathering of ropes [30]. However, this might be a conse-

quence of the broad spectral bands and their mutual overlaps.

All PA spectra show the typical CH–related spectral bands

(stretching, at 2863 and 2934 cm�1; and bending, 1450 and

1375 cm�1). The amide group yields three major sets of character-

istic bands [7,35,36,37]:

1. The NH stretch-free motion at ca. 3400 cm�1; the NH stretch H-

bonded, around 3300 cm�1; and a NH bending overtone around

3070 cm�1 (which might coincide with a weak NH stretch H-

bonded band [35,36] and C-N stretching [38]). Here, the most

distinguishable band is the peak at 3300 cm�1, which increases

roughly with ageing, likely because of two main processes: i)

the photolysis of the amide bond to yield amines [33,34], and

ii) the introduction/appearance of hydroxyl groups in the poly-

mer. This band is much broader for seawater-submerged

microplastics than for dry weathering, where a relatively sharp

peak (associated to free N-H stretching, ca. 3400 cm�1) is more

alike that reported by Ksouri et al. [35].

The hydroxyl groups (broad band between 3000-3500 cm-1)

would correspond, mostly, to water absorbed in the plastic (de-

spite secondary or tertiary alcohols or even hydrogen bonds

between carboxylic groups cannot be disregarded). In effect, it

was reported that PA 6.6 absorbs more than 8% of its weight

in 100% relative humidity at room temperature [35]. The hygro-

scopic introduction of the OH groups in the structure is due to

the presence of the polar functional groups and it occurs,

mainly, into the amorphous regions of the polymer [35]. Note

that in our case the two experimental setups that involved

immersion in seawater yielded spectral profiles different from

the dry weathering setup (see Fig. 1).

2. A strong sharp band around 1633 cm�1 corresponding to the

carbonyl (C = O) stretching (it is also called Amide I band). Its

overall increase (see Fig. 1) characterizes the final products of

both the photodegradation and hydrolysis reactions because

V. Fernández-González, J.M. Andrade, B. Ferreiro et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 263 (2021) 120162

3



aldehydes, ketones and acid groups display highly close strong

absorption bands in this region. Therefore, any assignation to a

particular functional group is troublesome.

3. The band at 1537 cm�1 (Amide II band) is associated to the NH

mono-substituted amide bending plus the C-N stretching.

Another band could appear around 1650 cm�1, although over-

lapped with the Amide I band [35,36]. The Amide II band rises

clearly with ageing (as well as the 696 cm�1 one, related to

end NH2 groups [39]) and, hence, indicates the polymer chain

scission. Observe (Fig. 1) that the bands are more intense for

the PA samples weathered under dry conditions, likely suggest-

ing a participation of thermal degradation processes (contrary

to the PA seawater-immersed ones).

Some other interesting bands can be considered:

i. The unique band in the spectrum that decreased clearly with

ageing was at 1735 cm�1, with two interpretations:

a. The presence of cyclopentanone derivatives originated at fabri-

cation process, whose content decreases during thermo-

oxidation processes [40]. Noteworthy, this peak is only seen

for pellets weathered under dry conditions, which might sup-

port the reported steady dissapearance of the residual

cyclopentanone. That peak is neither present in powdered sam-

ples nor in seawater submerged ones and, so, we hypothetized

that cyclopentanone disappeared there much faster thanks to

the much smaller size of the solid grains (in seawater it would

leach to the water).

b. Another possibility is to relate this band to a vibration form of

hydrogen-bonded carbonyl groups. PA has charged regions in

the polymer chain becoming attracted to each other, which

causes the individual polymer chains to fold back over on itself

and for other polymer chains to similarly be attracted to each

other [41]. As this occurs mostly in the amorphous regions,

the increase on crystallinity (to be discussed later) would lead

to the disappearance of this band.

ii. The band centred at 1150 cm�1 (not visible in the reflec-

tance spectra) is very prominent for the seawater condi-

tions and it could suggest tertiary or secondary alcohols,

ketones (asymmetric C-C-C stretching, with central C

containing the O), ethers (symmetric and asymmetric

stretching of C-O-C), esters (C-O-R bending) and/or the

typical combination band of the carboxylic acids (C-O

stretching plus OH bending). All these structures are

compatible with reported end products for photooxida-

tion and/or thermo-oxidation of PA [31,32,34,38].

iii. Two weak bands appear around 930 and 920 cm�1,

related to the CO-NH in-plane vibration [42], and

another one at 696 cm�1, related to end NH2 groups [39].

iv. A relevant property of any polymer is crystallinity, which

was studied extensively by Li and Goddard [43] and Vas-

anthan and Salem [42]. They established that out of four

possible forms only two are stable; a and c [43]. The c

form (amorphous) tends to convert into the former

(crystalline), even when only mechanical stress is

applied at room temperature. In the a form the plane

of the amide group and that of the (CH2)5 group are par-

allel, while in the c form they are approximately perpen-

dicular. H-bonds are formed between the two forms.

Vasanthan and Salem established [7,42] that the bands

at 936 and 1200 cm�1 are due to the crystalline confor-

mation. They correspond to the CO � NH in-plane vibra-

tion [7] (alternately, to the C-CO amide axial stretching

[44]) and the symmetrical CH2 twist-wag angular defor-

mation out of plane [7], respectively). A shoulder at

924 cm�1 (CO � NH in-plane stretching) and

1136 cm�1 (C � C stretching) correspond to the amor-

phous structure [7]. The bands at 936 and 1200 cm�1

are usually sharper than the other two. The crystalline

fraction can be calculated from the IR spectrum as 8.8�

(A936/A1630) because the C = O band at 1630 cm�1 does

not depend on crystallinity [7]. Other possible bands to

characterize crystallinity are those at 976, 1030, and

1074 cm�1 [39] but they are used less. Unfortunately,

these bands are very weak in the reflectance spectra so

these calculations become compromised.

With regards to the reflectance spectra of pellets although those

characteristics hold on (Figure 2), some interesting differences can

be underlined:

i. Broad bands due to the –OH groups are not seen, which sim-

plifies the identification of several peaks (mostly, the NH

stretch-free motion at ca. 3400 cm�1; the NH stretch H-

bonded, around 3300 cm�1; and a NH bending overtone
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around 3070 cm�1). However, it is worth noting that the

band ca. 3400 cm�1 was not clearly visible until the most

weathered stages of the polymer.

ii. Spectra are dominated by strong and quite narrow peaks

which, in essence, correspond to the amide functional

groups. On the contrary, other bands related to -e.g.- the

CH and OH moieties of the polymeric skeleton yield weak

bands. Thus, despite the reflectance spectra of the pellets

appear less noisy than their ATR counterparts (Fig. 2), they

are less sensitive and, unfortunately, this will have conse-

quences in some band ratios, as it will be shown in next

sections.

The microreflectance spectra of the small granules (70–300 mm)

were much less intense than the ATR ones and also than those for

pellets measured by microreflectance (Fig. 2). This is attributed to

the diffuse scattering and radiation interactions caused by the

rough and irregular surface of the granules. This adds to the intrin-

sic reduced intensity of the microreflectance technique. The most

intense and clear bands are associated to the typical amide group,

whereas the other bands are less clear. This hampers both the

chemical interpretation and the calculations related to the less

intense bands. Therefore, they will not be considered in more detail

in next sections. Nevertheless, it is derived immediately from these

facts that the use of adequate (in this case, home-made) databases

is of absolute, paramount importance to identify polymers from

field samples. In effect, current spectral databases will not be of

use for microreflectance spectra as they are based on transmit-

tance or absorbance units.

3.2. Monitoring PA6.6 evolution using spectral indexes

It is common practice in weathering studies to monitor the evo-

lution of the polymer using band ratios. They normalize bands

associated to functional groups of interest against a reference peak

that ideally is unaffected by the evolution of that functional group

and remains constant with time. Here, the C-H bending peak

located around 2915 cm�1 was selected. To the best of our knowl-

edge weathering ratios have not still been established for PA 6.6

and, hence, several options are evaluated here, including some

employed to monitor other polymers [45,46]. Another approach

to monitor weathering may be to consider spectral differences

between the spectra of the aged aliquots and that of the pristine

polymer, as a referee suggested. This option was not explored in

the present manuscript but we acknowledge its feasibility. To sim-

plify readability, hereinafter comments and studies will be given

for the ATR spectra. Particular details will be added for the reflec-

tance spectra whenever appropriate (in general, as a comparison

with the ATR results).

3.2.1. The carbonyl index

Defined as the A1640/A2914 integrated areas ratio, the carbonyl

index considers the C=O stretching band and has been of wide-

spread use when studying different polymers [28,45,46]. The only

similar application for PA is a work from Gijsman et al. [32],

although they used a subtraction, not really a ratio.

In Fig. 3a the evolution of the index is shown for both pellets

and powder. It raises with time for all weathering setups, being

higher for the simulated marine conditions (either because of the

kinetics being faster into seawater or because of the displacement

of the chemical equilibria due to the release of the products to the

aqueous phase). A steady, smooth increment is seen even for the

control samples (pellets or powder kept at dark, immersed in sea-

water), which confirms that the mere presence of water interpen-

etrates the bonds between the –NH and C=O groups and degrade

the polymer [35,41]. No doubt, this process is much slower when

light is absent, but it occurs. Indeed, note that the samples weath-

ered without water led to a lower carbonyl formation than the

controls.

Although the general rising trend is clear, three stages can be

seen in the plots, and they agree with previous studies [39,40]. A

first, fast increase indicates the oxidative degradation (mainly in

the amorphous phase, where oxygen can diffuse fast. Then, a pla-

teau is observed probably because the oxidative process slows

down due to a reduction in the amount of amorphous phase;

finally, a continuous increase because of the degradation of the

crystalline phase [40]. For powdered microplastics, the dry and

control conditions lead to almost coincident situations and despite

an initial weathering the trends are very smooth. This agrees with

Goodridge et al. [41] and they attributed the evolution to a time-

dependent change of the amorphous phase and reported that this

is a general phenomenon for all polymeric materials.

Finally, a comparison of the spectra in Fig. 3a reveals that

weathering seems more pronounced for the pellets, likely because

the plastic powder might had undergone already some previous

degradation and, so, their initial states are not exactly the same.

This seems reinforced by the carbonyl ratio for the ‘pristine’ (as

received) samples, 1.08 for powder and 0.52 for pellets. Recall that

powder fabrication implies a huge stress on the polymer and this

has been shown to increase the physical and chemical degradation

[34]. The final sudden increment for the dry powder after the

eighth week can only be explained by a ‘collapse’ (i.e., strong

degradation) of the polymer. This hypothesis was confirmed by
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scanning electron microscopy (see Figure SM1f in the supplemen-

tary material and explanations at the corresponding section

below).

Calculations of this index for the reflectance spectra of pellets

allowed to derive analogous conclusions (Fig. 4a).

3.2.2. The C-O index

This index, defined as the ratio of the A1000-1200/A2914 integrated

bands, is intended to characterize carboxylic acids and/or esters.

Unfortunately, for PA 6.6 the region between 1000 and

1200 cm�1 includes several peaks from different functional groups

(see discussions above), which makes it unspecific for this bond.

Note that for the reflectance spectra this is not the case but the

peaks seen there became weak or very weak. The overall behaviour

of the index parallels the C=O one (Fig. 3b). Powdered PA in seawa-

ter showed a remarkable increment after the sixth weathering

week (which is not seen so dramatically for the C=O group). The

reflectance-derived index for pellets showed the same general

behaviour (Fig. 4b), although without the remarkable increase after

the 6th week that was seen for the ATR spectra. The overall evolu-

tion profile for the C-O index is also very similar to the OH index,

discussed below.

3.2.3. The O-H index

The evolution of the O-H index (A3300/A2914 integrated bands

ratio) represents changes in the intermolecular interactions among

carboxylic groups and the introduction of OH groups in the poly-

mer. However, the ATR broad band at ca. 3300 cm�1 is not specific

for the O-H group as the sharp band in its centre corresponds to the

NH vibration and H-bonds between the C=O and NH groups of dif-

ferent chains when water is absent [44]. In our case, we do have

aqueous/humid conditions and, so, from a practical point of view

for current environmental studies, we decided to consider the

overall area as a ‘proxy’ for the overall OH groups.

As for the C=O index, three major stages can be seen for the OH

evolution during PA weathering (Fig. 3c). Despite the reflectance

bands ca. 3300 cm�1 were narrower than the ATR ones, the index

had essentially the same behaviour (but for a slight increase in

the reflectance index at the 8th week for pellets in seawater, which

is not seen for ATR data), Fig. 4c. A first rise attributed to the initial

degradation of the polymer, followed by a plateau and a slight final

increment. This latter stage is not seen for the pellets submerged

into seawater using ATR although it is clear in the reflectance spec-

tra (Fig. 4c). After the sixth week, the ATR indicates that the degra-

dation of the powdered PA in seawater is much higher than for any

other assay. This may be explained because the powder had large

floating times in the water surface despite the probes were agi-

tated continuously by an air stream. Every day the powder in the

surface was sent back manually to the water. The pellets, on the

contrary, were at the surface marginally. Submerged pellets and

powder became more degraded than their dry counterparts.

3.2.4. The crystallinity index

The index was defined as the A936/A1640 ratio [42], although in

order to use a unique reference peak, the alternative A936/A2914

ratio is proposed in this work (it was verified that both calculations

yielded the same graphical pattern). Fig. 3d shows the evolution of

this index during weathering. The overall profile agrees very well

with previous discussions for the other indexes. Crystallinity has

not a uniform evolution throughout weathering. Some authors

reported on its diminution with weathering, likely due to a severe

chain scission after prolonged exposure of PA [31,39,40]. On the

contrary, Arrieta et al. [30] informed about crystallinity incre-

ments. This discrepancy may be explained by a first increase on

crystallinity due to rearrangements of the molecular fragments

caused by photooxidation in the amorphous region; then a stabi-

lization and finally a decrease, because even the crystalline phase

is degraded and cleavages chains from the crystal surface

[31,39,40]. This effect would be more relevant with prolonged age-

ing as the entanglement network reduces and only Van der Waals

interactions maintain the polymer in the final stages [35]. This
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complex sequence in crystallinity is seen also in our experimental

results:

It increases quite sharply during the first fortnight (which cor-

responds to a rearrangement of the scissored chains/fragments in

the amorphous regions), then it reaches a plateau (but for the pow-

der in seawater) and, finally, decreases clearly after the sixth week

(ca. 1000 h of irradiation). The relevant drop in PA crystallinity for

powder in seawater around four weeks can be attributed (as for the

OH index) to its flotation (which means it received more irradia-

tion than submerged pellets), combined with a release of molecu-

lar fragments from the degraded polymer to the aqueous phase.

Then, a second rearrangement of the amorphous phase seems to

occur (an increase on the crystallinity index) which finally gets

degraded as well. Note that although both control samples remain

quite stable their crystallinity increased slightly at the end, likely

due to a reorganization of the amorphous phase after some hydrol-

ysis/thermal processes.

When the reflectance spectra for pellets were considered, the

index showed only a smooth, steady increasing pattern, likely

because the bands involved in this index were weak and, so, scar-

cely sensitive to the minor variations. In particular, the drop after

the 6th week was not seen, only a plateau was observed instead

(figure not shown here).

3.2.5. The amide II index

This index had not been defined previously in the literature, and

is proposed as the A1537/A2914 ratio. Despite the initial ratios for

pellets and powder are different (Fig. 3e) their behaviours are sim-

ilar and resemble the crystallinity index. The powdered samples

show the three major steps explained for the indexes above (ATR

spectra). The pellets submerged in seawater present two clear

stages, considering both ATR and microreflectance (a steady

increase until the sixth week, after which a degradation occurs,

leading to a new reorganization after the eighth week, Fig. 4d).
The pellets under dry irradiation had the same pattern as the sub-

merged ones although less intense.

3.2.6. The Branched- and long-chains indexes

Finally, two indexes are of potential interest here. They evaluate

how the amount of branched and long hydrocarbon chains evolve

[47,48,49,50]. The branched-chain index is calculated as the A1376/

A1450+1376 ratio whereas the long-chains index is the A724/

A1450+1376 ratio. The former has not been too informative in this

study because it showed a relative random pattern, maybe because

the band at 1376 cm�1 is not only associated to the symmetric

bending of the CH bond (in CH3 groups) and the asymmetric bend-

ing of CH (in CH2 units), but to other groups like the CN stretching

plus the in-plane NH deformation [44].

On the contrary, the long chain index (which, in essence, mea-

sures the number of linearly bonded CH2 groups) was more infor-

mative. All assays show (Fig. 3f) a decrease on the length of the CH2

chain during the first two weeks (but for the powdered PA sub-

merged into the seawater, which shows a steady increase). This

opposes to the increment in the C=O, C-O and O-H indexes (initial
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oxidative degradation in the amorphous phase, [39,40]) and it con-

firms that the total amount of longer fragments of the polymer (-

(CH2)n-) decreases (and, so, that oxidation occurs throughout chain

scission, as Arrieta et al [30] suggested). At the fourth week a sud-

den and sharp increase of the long chain index points towards the

recrystalization process (which coincides with the decrease on the

C=O, C-O and O-H indexes). Finally, after the eighth week, the long

chain index stabilizes and it does not recover the previous values,

probably because the oxidation proceeds faster. The powder

weathered under dry conditions have a slightly different behaviour

and after the eighth week it increases again, coinciding with the

slight decrease in the C-O and O-H indexes, pointing towards a sec-

ond recrystallization. These two indexes were not very informative

when reflectance spectra was considered, likely because the bands

involved are very weak.

3.3. Scanning electron microscopy and energy-dispersive X-ray

analyses

SEM (scanning electron microscopy) studies were also done in

order to characterize further the weathering processes. First, the

weathering for pellets will be discussed.

Original pellets as received showed the typical fibrils associated

to the ductile fracture occurring at the cutting stage of the polymer

[31]. Some exfoliation linked to the fracture planes and a relevant

void (supposedly a gas bubble) were observed (Figure SM1, a and
b, supplementary material).

After 10 weeks of simulated sea conditions, the surface revealed

clearly eroded, with a porous appearance in some parts of the pel-

let, cracks, scratches, wells and, of course, salt deposits (Fig-
ure SM1, c and d). The latter are of importance here because we

visualized many sites where the surface was clearly eroded and

highly affected by the presence of salt crystals. The Energy-

dispersive X-ray analyses, EDXA, showed that they were mostly

NaCl or CaCl2. Indeed the surface was clearly carved and the crys-

tals grown at those voids (see zoomed view in Figure SM1c).
Scratches and cracks can be explained by thermal stress and

mechanical impacts but also by the internal stress caused by the

water molecules entering the structure and causing hydrolysis

and swelling [35]. Carving could be explained partly by the fact

that some metals were reported to accelerate PA degradation

(e.g., Co and Ni) [33,40]. Although those studies were done with

metals included in the polymer formulations, they are indeed pre-

sent in seawater and their pro-oxidation effect should not be disre-

garded [31]; more specific studies would be needed to clarify this.

With respect to the dry weathering setup, PA pellets showed

also clear grooves, flakes (see zoomed view in Figure SM1e) and
small scratches. However, the most dramatic visualization was a

region where the polymer was totally fragmented following paral-

lel planes (Figure SM1f), similar to those seen in Figure SM1e.
Recall that PA is mostly constituted by a lamellar structure [43].

Despite it might appear a collection of salt deposits, the EXDA ele-

mental analysis indicated that their elemental composition was

dominated by C; in addition, their shape do not match the cubic

appearance of salt crystals. Hence, it was concluded that it was

degraded PA.

When it comes to the as received powdered PA the typical fibrils

and fracture planes can be seen (Figure SM2a and SM2b, supple-
mentary material); as well as sharp angles and well defined bor-

ders. After the 10-weeks seawater weathering the borders

appeared fragmented, rounded and without the original fibrils,

denoting clear erosion patterns. The fragmentation planes were

blurred by erosion and many grooves. In some pictures (not shown

here) small cracks and wells appeared. Noteworthy, those voids

were quite often associated to included salt crystals. Their elemen-

tal composition revealed Cl, Mg, K, Ca and O; whose most probable

matches are salts of the corresponding chlorides and MgO.

A number of small fragments was also seen in most degraded

granules, some of them still unreleased from their main body (Fig-
ure SM2c). This would evidence the well-known reported forma-

tion of secondary microplastics from larger pieces. [2]. In

addition, clear crazing and ploughing were seem in some granules

(Figure SM2d).
With regard to the dry conditions, the mechanical erosion and

degradation of the borders of the granules were much less relevant

(as expected). However, more flakes could be observed in turn,

along with crazing and voids (Figure SM2e) even in a stratified

way (Figure SM2f) where some very small particles can be

observed, likely due to superficial mechanical and thermal stress.

The humid conditions of the room due to water evaporation from

the adjacent probes containing seawater might facilitate water

absorption which stresses the structure of the polymer [35].

4. Conclusions

The ageing of polyamide 6.6 was monitored under simulated

natural weathering conditions. With regards to the qualitative

identification of particles in environmental samples, it was found

that the evolution of PA does not depend on its form (pellets or

powder) nor on the experimental setup (seawater-submerged or

dry conditions), but for some more pronounced evolution when

the dried setup was considered, mostly for powder. A remarkable

finding was that the evolution of the spectral bands do not follow

a steady pattern. Instead, the spectral indexes denote cyclic evolu-

tions, as explained in literature. The IR spectral profiles of the orig-

inal and weathered PA microplastics were different and this

stresses the importance of considering this evolution whenever

microplastics from the environment are characterized. The sim-

plest option is to include weathered spectra of PA in the databases

driving the searches. This is of most importance whenever reflec-

tance spectra are measured.

About the evolution of the polymer, ATR and microreflectance

spectra put forward the two major photooxidative weathering

pathways for PA. They show in general three stages. First, a fast

increase indicates the oxidative degradation (mainly in the amor-

phous phase, where oxygen can diffuse fast); then a plateau prob-

ably due to a slow down on the oxidative process in the amorphous

phase; finally, a continuous increase because even the crystalline

phase gets degraded. It was seen that reflectance microspectrome-

try had less complex spectra although they were less sensitive than

ATR, and this caused that only the monitoring indexes calculated

from the most intense bands had the same general behaviour.

The overall large increase of the so-called Amide I band charac-

terizes the final products of the photodegradation and hydrolysis

reactions. The Amide II band rises clearly with ageing (as well as

the 696 cm�1 one, related to terminal NH2 groups) and, hence,

characterizes the polymer chain scission. The outstanding general

increase of the broad band centred ca. 3300 cm�1 points towards

the introduction/appearance of hydroxyl groups in the polymer.

They would correspond mostly to water absorbed in the plastic,

mainly into the amorphous regions of the polymer.

The carbonyl index raises for all weathering setups with time,

being higher for the simulated marine conditions. The same hap-

pens for the C-O index and, less obvious, the O-H one. The crys-

tallinity index reinforces those conclusions as it increases quite

sharply during the first fortnight (rearrangement of the scissored

chains/fragments in the amorphous regions), then it reaches a pla-

teau (but for the powder in seawater) and, finally, decreases clearly

after the sixth week.
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Regarding the SEM measurements, the surface of the most

weathered pellets and powder grains revealed clearly eroded, with

a porous appearance in some parts, cracks, scratches, wells and salt

deposits. The surface was clearly carved and many crystals were

seen at those voids, which might suggest that superficial salts

may potentiate mechanical particle degradation. The most eroded

grains revealed the formation of secondary microplastics.
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Figure SM1: SEM microphotographs showing the evolution of weathered pellets. 17 
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Figure SM2: SEM microphotographs showing the evolution of weathered PA powder. 28 
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A B S T R A C T   

The presence and effects of microplastics in the environment is being continuously studied, so the need for a 
reliable approach to ascertain the polymer/s constituting them has increased. To characterize them, infrared (IR) 
spectrometry is commonly applied, either reflectance or attenuated total reflectance (ATR). A common problem 
when considering field samples is their weathering and biofouling, which modify their spectra. Hence, relying on 
spectral matching between the unknown spectrum and spectral databases is largely defective. In this paper, the 
use of IR spectra combined with pattern recognition techniques (principal components analysis, classification 
and regression trees and support vector classification) is explored first time to identify a collection of typical 
polymers regardless of their ageing. Results show that it is possible to identify them using a reduced suite of 
spectral wavenumbers with coherent chemical meaning. The models were validated using two datasets con-
taining artificially weathered polymers and field samples.   

1. Introduction 

Plastics constitute a durable, lightweight, and versatile family of 
materials from which an immense variety of products are created. Their 
applications range from food packaging to sports, electronics, con-
struction and transport. Currently, plastics are required in so many in-
dustrial fields that they became an indispensable material for many 
commodities and complex products (cars, planes, etc.), with their global 
production reaching 367 million tonnes in 2020, of which Europe 
accounted for 55 million tonnes (Mt) (PlasticEurope, 2021). Poly-
propylene and polyethylene are the most demanded polymers (19.7 % 
PP, 17.4 % LDPE, 12.9 % HDPE), followed by PVC (9.6 %) and PET (8.4 
%), mostly for packaging. China accounts for the highest plastic con-
sumption and production, with up to 32 % of the World's plastic pro-
duction in 2020 (PlasticEurope, 2021). 

A consequence of the massive use and inadequate recovery and 
recycling of plastics is that they have become one of the most ubiquitous 
anthropogenic contaminants in the World's environments. They have 
been found in soil (Bläsing and Amelung, 2018), airborne particles 
(Prata, 2018), water (Koelmans et al., 2019) and food (Van Cau-
wenberghe and Janssen, 2014). However, the problem is specially 
serious on aquatic environments (Jiang, 2018). It was estimated that in 

2018 alone 5.5 to 14.5 Mt entered the oceans (Wayman and Niemann, 
2021) and, as a consequence, seas and oceans have plastic debris both at 
their surface and seabed worldwide. There are many regions affected by 
this kind of pollution, even in deep sea trenches (Chiba et al., 2018). The 
most affected zone is the North Pacific area (Howell et al., 2012) as 
oceanic currents drag the plastic debris to this zone, generating plastic 
‘fields’ swirling in the oceanic surface. This has been demonstrated to 
have a detrimental effect on different species of marine flora and fauna 
(Coffin et al., 2019; Lamb et al., 2018; Markic et al., 2020; Wang et al., 
2016; Wilcox et al., 2018; Young et al., 2009). 

Microplastics (MPs) can be defined as ‘any solid plastic particle insol-
uble in water with any dimension between 1μm and 1 mm’, being larger 
particles –between 1 mm and 5 mm- ‘large microplastics’ (ISO, 2020). The 
smaller sizes in particular, along with nanoplastics, can enter the trophic 
chain through plankton (Botterell et al., 2019), fish (Bellas et al., 2016) 
and other marine species by ingestion (Jiang, 2018), and it is common to 
find microplastics in the digestive system of different aquatic species 
(Bellas et al., 2016; Compa et al., 2018). This fact, along with an 
improved capacity to adsorb other contaminants in comparison with 
meso- and macroplastics, is known to have detrimental effects (Gewert 
et al., 2015), which might affect human health through ingestion of –as a 
matter of example- shellfish (Van Cauwenberghe and Janssen, 2014), 
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fish (Battaglia et al., 2016; Bellas et al., 2016) and table salt (Iñiguez 
et al., 2017). In fact, in recent studies, plastics have been found in human 
blood and lung tissue (Jenner et al., 2022; Leslie et al., 2022). 

Therefore, a successful identification of the polymers found in the 
environment is of utmost importance to evaluate their distribution, 
origin, or subsequent behaviour there. This can be done using different 
analytical techniques, a common one being vibrational spectrometry. Its 
speed, high selectivity, and low demand of sample quantity make it a 
suitable technique for MPs analysis. Besides, it is easily combined with 
microscopic techniques and attenuated total reflectance (ATR) acces-
sories. Although ATR spectrometry is well suited for measuring big and 
medium particles (let's say >500 μm) it is not suited for smaller ones. 
Here it is where reflectance gains momentum and overcome the ATR 
limitations as it does not need direct contact between the sample and the 
IR focusing device. Two nice reports on the use and limitations of 
various types of IR spectrometry are those from Veerasingam et al. 
(2021) –that includes some interpretation of spectral bands- and 
Primpke et al. (2020) –that included a comparison with other analytical 
methodologies-. 

Irrespectively of the analytical measuring technique, there are many 
physical, biological and chemical processes that plastics undergo while 
in the environment (e.g., mechanical erosion, photodegradation due to 
the UV light and biological colonization). They can modify the original 
polymers by breaking their molecules into smaller ones, oxidizing their 
chains (usually due to chain attack by UV-originated radicals), giving 
rise to/modifying oxygenated functional groups (carboxylic acids, ke-
tones, peroxides, etc.), crosslinking alterations, changing crystallinity, 
etc. Many times this leads to smaller plastic fragments. All these effects 
are known collectively as ‘weathering’ and more details can be found 
elsewhere (Göpferich, 1996; Gewert et al., 2015; Raddadi and Fava, 
2019; Chamas et al., 2020; Ali et al., 2021; Zhang et al., 2021). The final 
consequence is that weathering alters the surface of the (micro)plastics 
and, so, their spectra. Many IR spectral bands evolve with weathering, 
some others appear, others broaden and/or overlap with neighbouring 
signals, etc. All this hinders the interpretation of the spectra. Many 
practitioners rely on spectral matching between the unknown spectrum 
and spectral databases to account for polymer identification. However, 
often the latter cannot properly match the former due to the afore-
mentioned problems, as reported frequently; e.g., Fernández-González 
et al. (2021a) and Mecozzi et al. (2016). 

A complete relation of the evolution of each of the polymers used in 
this work is out of the scope of this paper and only some general details 
will be given. Interested readers are kindly forwarded to the references 
cited next, and those referred to therein. The most relevant changes 
observed in the spectra were compatible with damages caused by the UV 
radiation that gave rise to chain attacks by radicals (Norris-type re-
actions). A general introduction to those modifications was presented by 
Gewert et al. (2015). Specific changes on the spectra and surface of the 
five most common packaging polymers –LDPE, HDPE, PS, PP and PET- 
and PA6.6 were studied previously (Fernández-González et al., 2021a, 
2021b). In the former paper, a table resumed which bands increased or 
decreased with time, per plastic. Also, dramatic changes on the poly-
meric structure (leakage of Cl atoms and appearance of C––C bonds) 
were reported for weathered PVC particles (Fernández-González et al., 
2022), which might explain the usually low reports of PVC microplastics 
in environmental samples. Particular details can be found elsewhere for 
PET (Gok et al., 2019; Oreski and Wallner, 2005; Renner et al., 2017; 
Venkatachalam et al., 2012), LDPE (Brandon et al., 2016; Hirsch et al., 
2017; Luo et al., 2020), PC (Shi et al., 2021), PP (Brandon et al., 2016; 
ter Halle et al., 2017), and PS (Yousif and Haddad, 2013). 

A natural way to reduce this problem is to include spectra of 
weathered polymers into the databases (Fernández-González et al., 
2021a). In this sense, a low-cost weathering system was proposed 
recently to resemble natural conditions (Andrade et al., 2019) and 
standardize this task. The need for complete databases and the risk of 
relying on current correlation coefficients to identify unknown particles 

were presented by Mecozzi et al. (2016) and they proposed a suite of 
three similarity indexes and the use of independent components analysis 
to search the database. 

Another novel and totally different route to mitigate this problem is 
explored in this work using unsupervised chemometric pattern recog-
nition. The main objective of this paper is to explore a new way to get rid 
of the spectral information related to the weathering processes of the 
materials constituting the MPs. If so, the remaining spectral character-
istics, which in essence will not be affected by weathering, would 
simplify the identification of the polymers and, therefore, open up new 
possibilities for MPs studies and environmental monitoring. It is worth 
noting that this working hypothesis does not correspond to typical 
pattern recognition studies where the most important patterns (linked to 
the first statistical factors that explain most of the variance into the 
spectral data) are used to, precisely, visualize the sets of samples. Here 
we look in the other way around; i.e., how the influence of weathering 
on the spectra – which constitute their principal source of variation - can 
be avoided and, so, weathered and unweathered specimens of a polymer 
appear close together after a statistical study (e.g. in a given plot of the 
samples). As a referee pointed out, a similar though conceptually 
different approach would be to look for parameters not evolving with 
time, but such an approach was not considered in this work. 

2. Experimental 

2.1. Samples 

The polymers used throughout this study were provided by the 
Universität of Bayreuth (Germany), within the framework of the JPI- 
Oceans-funded BASEMAN project. They were fabricated with the 
lowest possible amount of additives. Two sample forms were studied: 
powder (average size ca. 300 μm) and pellets (average size ca. 3 mm), 
more details can be found in the Supplementary material. 

Small quantities (10–20 g) of all polymers were aged for 10 weeks in 
a dedicated ad-hoc weathering system designed for standardizing the 
weathering of MPs at geographical medium latitude (Andrade et al., 
2019). Aliquots were either submerged in seawater to simulate weath-
ering in the superficial oceanic layer or kept dry to simulate weathering 
at the shoreline (e.g., upper part of beaches and dunes). An aliquot of 
each polymer was withdrawn weekly from each weathering container 
and measured by ATR and micro reflectance infrared spectrometry. The 
experimental weathering conditions and related details can be found 
elsewhere (Andrade et al., 2019). Fig. SM1 (Supplementary material) 
exemplifies the reflectance spectra obtained for the pelletized and 
powdered samples. 

In the present work, the pristine (as received) and ten aliquots with-
drawn from the weathering system weekly were considered. Half the 
samples, the odd ones, were employed to calibrate the models whereas 
the even were used for validation. In addition a second field dataset 
composed of 67 field plastic fragments collected from three Mediterra-
nean beaches studied previously (León et al., 2019) was used to test the 
models under field monitoring conditions. 

2.2. Equipment 

A Spectrum 400 FT-IR Perkin-Elmer spectrometer coupled with a 
Perkin Elmer IR Spotlight 200i microscope and a horizontal one-bounce 
diamond ATR (Miracle, Pike, USA) were employed. Each particle was 
measured twice (changing the position of the pellet) and the resulting 
spectra were averaged. The MIPIR (minimum information for publica-
tion of IR-related data on MPs characterization (Andrade et al., 2020)) 
experimental setup was: resolution: 4 cm−1; number of scans: 200; 
spectral range: 3500–600 cm−1; background recording before 
measuring each particle; aperture: 100 μm (adjusted to smaller aper-
tures whenever the granule was smaller); apodization: Beer-Norton, 
strong; spectral processing: multipoint baseline correction plus 
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normalization 10 % plus Kubelka-Munk (for pellets), and multipoint 
baseline correction plus Kramers-Kronig (for powders). ATR spectra 
were corrected for depth penetration. The sample form affects the 
required spectral processing due to the different interaction the surface 
of the granule has with the IR beam. For pellets the surface selected for 
measurements was mostly flat, making the reflection mostly specular. 
For powders, however, the reflection is mostly diffuse, due to the ir-
regularities of the powder grains. 

Reflectance instead of transmittance was considered because the 
former is very common to deal with MPs characterization; mainly, 
attenuated total reflectance, ATR, but also specular and diffuse reflec-
tance (Fernández-González et al., 2021b). Reflectance spectra do not 
depend in essence on particle thickness and can be applied straightfor-
wardly. On the other hand, as reflectance characterizes the surface of the 
particles it is affected by polymer ageing and, so, the studies presented in 
this paper are worth of interest for routine use. 

2.3. Software 

The multivariate statistical software employed throughout was 
GenEx7 (MultiD Analysis AB, Göteborg, Sweden), Matlab's PLS Toolbox 
(Eigenvector Co, USA) and Orange (University of Ljubljana, Slovenia). 

2.4. Chemometric tools 

The evolution of IR spectra during weathering makes this source of 
variance (statistical information) dominate the distribution of the sam-
ples in multivariate analyses. This difficults or impedes the correct 
assignation of a material to a type of polymer. Such an information is 
what it is expected to avoid here. 

The three chemometric techniques applied in this paper are depicted 
briefly in the Supplementary material. They are principal components 
analysis (PCA), classification and regression trees (CART) and support 
vectors machine (SVM). They correspond to standard algorithms avail-
able in any chemometric statistical package, no implementation changes 
have been done. Therefore, the explanations refer to the conceptual 
bases of the techniques, without going into mathematical details (which 
are available in the references given therein). Non skilled readers are 
kindly encouraged to review the Supplementary material for the basic 
meaning of the terms scores and loadings as they are used throughout 
the next sections. They also constitute the basis of two variable selection 
approaches. 

The major output of a PCA study is a set of combinations of variables, 
each of which is a principal component, PC (see Supplementary material 
for a simplified explanation on how they are calculated and interpreted 
from a chemical viewpoint). To avoid confusion with polycarbonate 
(whose acronym is also PC) references to the principal components will 
be always associated to an ordinal (i.e., the number of the principal 
component under discussion; e.g. PC4), or to the plural form, PCs. 

SVM was performed using a reduced set of variables derived from the 
most relevant PCA loadings. In particular, those from the PCs that 
differentiated the most among the polymers. The data pretreatment for 
the SVM models that used micro reflectance spectra was the same as for 
the PCA model from which the variables were selected (automatic 
baseline correction plus first derivative). The data pretreatment for SVM 
models developed with ATR spectra required baseline correction 
(automatic weighted least squares, 2nd order), normalization (area = 1), 
and standard normal variate (SNV). 

For the CART models no pretreatment was applied, but the spectra 
were reduced to the 1800–600 cm−1 range, in order to avoid variables 
without real information (atmospheric CO2 peaks, baseline and noise) 
and to reduce the computational burden. 

To evaluate the performance of the models a series of straightfor-
ward statistics can be calculated: the ratio of false positives (calculated as 
(false positives) / (true negatives + false positives)); and the ratio of false 
negatives, calculated as (false negatives) / (true positives + false 

negatives). Also, the Mathews' Correlation coefficient (MCC) was 
calculated to accurately summarize the behaviour of the models (Cua-
dros-Rodríguez et al., 2016), following the equation below: 

MCC =
(TP*TN) − (FP*FN)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(TP + FP)*(TP + FN)*(TN + FP)*(TN + FN)
√

where TP is the number of true positives in the sample, TN the number of 
true negatives, FP the number of false positives and FN the number of 
false negatives. A perfect model would yield a MCC value of 1. In all 
models, the criterion used to assign a sample to a group was the ‘most 
probable’ (i.e., the sample is included in the group to which it shows the 
highest probability). 

3. Results and discussions 

To simplify the discussions and comparisons among the studies, the 
results for the pelletized form of the polymers are presented first for 
seawater and second for dry conditions, for both the micro reflectance 
and ATR measurements, each. Then, those for the powder form will be 
given in the same order. The results are presented in the following order: 
1st, the PCA study (scores and loadings), with the identification and 
interpretation of the most relevant loadings; 2nd, dynamic PCA; 3rd, 
PCA using only the variables associated to the most relevant loadings; 
4th, SVM model; and 5th, CART model. 

The chemical interpretation of the loadings is presented graphically 
for the sake of simplicity and to avoid repetitive discussions. Specific 
details on the interpretation of the IR spectra for the different polymers 
and their functional groups can be found in some previous works; for 
example, those from Arrieta et al. (2013), Brandon et al. (2016), Mecozzi 
et al. (2016) -although they focused on the most relevant bands to 
identify the polymers-, Tiwari et al. (2019), Vasanthan (2012), Veer-
asingam et al. (2021) and the exhaustive recopilation of Jung et al. 
(2018). 

In addition to the spectral processing detailed in Section 2.2, the data 
pretreatment for the PCA was: automatic baseline correction (using a 
second order polynomial function) plus normalization (total area = 1) 
plus mean centring. The pretreatment for powders measured by micro 
reflectance was: automatic baseline correction plus first derivative. 
These treatments were selected after several preliminary trials as they 
yielded the best groups of samples. 

3.1. Pellets weathered in seawater 

The PCA carried out on the micro reflectance spectra of the pellets 
weathered in seawater conditions revealed that they could be differen-
tiated nicely using the PC1-PC4-PC6 subspace (56.2 % explained vari-
ance), see Fig. 1a. PC2, PC3 and PC5 did not differentiate them because 
even though they could group some polymers the others led to widely 
dispersed scores (likely, due to weathering), yielding overlaps between 
the groups and impeding their separation. 

PC1 (39.5 % explained information) in essence opposes PC, PET and 
PMMA (negative scores) to the other polymers (with positive or close-to- 
zero scores), the former being the polymers with the most complex 
chemical structures. Fig. 2 shows that the variables contributing more to 
this factor are clearly associated to HDPE and LDPE, with positive 
loadings, and also related with highest positive scores in PC1. The most 
important negative loadings characterize PC, PET and PMMA. 

PC4 (11.2 % explained variance) separates PA (negative scores) and 
PS (positive scores, Fig. 1b). The loadings are mostly related to PA 
(Fig. 2, negative loadings) but for a band at 698 cm−1, which can be 
attributed mainly to PS due to its aromatic nature and positive loading. 

PC6 (5.5 % explained information) separates basically PET (char-
acterized by the most negative scores, Fig. 1b; and negative loadings, 
Fig. 2) from PP plus PMMA (with positive scores, Fig. 1b, and positive 
loadings associated to the paraffinic characteristics of PP and PMMA, 
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Fig. 2). 
Using dynamic PCA it was possible to reduce the overall number of 

wavenumbers from 3400 to 10 and they still allowed visualizing the 
groups of polymers: 3455, 3024, 2918, 1775, 1631, 1268, 1262, 1230, 
1156, and 706 cm−1. All the variables are coherent with those illustrated 
in the loadings figures (Fig. 2, and Supplementary material), with the 
exception of 3455 and 3024 cm−1, that are associated with the humidity 
of the samples (Brandon et al., 2016). 

When the variables associated with the maxima of the loadings were 
used (only 11 wavenumbers corresponding to the peaks labelled in 
Fig. 2) to develop a dedicated PCA the groups of polymers could also be 
differentiated. SVM models considering these wavenumbers yielded 
satisfactory classifications, with only partially erroneous models when 
considering HDPE and LDPE. Fig. 3a exemplifies the separation of HDPE 
in a model, where the similarity between HDPE and LDPE is clear 
(indeed, they have minor spectral differences). Fig. 3b exemplifies the 
optimization of the cost and gamma parameters required to get the SVM 

model. 
Finally, CART studies required only 7 divisions (14 branches) to 

successfully separate the polymers (Fig. 4a). This implied that only 7 
variables were required (i.e., 1797, 1749, 1663, 1602, 1512, 1475 and 
1268 cm−1), whose interpretation agrees quite well with the previous 
relevant vector loadings (the C–O stretching, N–H bending plus C–N 
stretching, and the C––O typical functional groups can be seen rather 
clearly here). 

When the ATR spectra were considered, the polymers could be 
differentiated using just two PCs: PC1 and PC4 (70.34 % explained 
variance, Fig. 1c). PC2 and PC3 could not separate HDPE and LDPE. In 
this study the 4000 to 3000 cm−1 region (mostly attributed to water) 
was excluded, as well as a PMMA sample, due to its anomalous behav-
iour. It is worth noting that PC1 and PC4 were also required when using 
the micro reflectance dataset above. 

PC1 (64.35 % explained information) in essence opposes the most 
‘simple’ polymers HDPE, LDPE and PP (positive scores, Fig. 1c, 
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Fig. 1. Representation of the most relevant principal component subspaces to identify the groups of polymers. Seawater-aged pellets measured by micro reflectance 
(a) and (b), and by ATR (c). Dry-aged pellets measured by micro reflectance (d) and by ATR (e). 
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characterized by the most relevant positive loadings in PC1, Fig. 5) to 
the other polymers, mainly PC, PET and PMMA, described by negative 
loadings (Fig. 5). 

PC4 (6 % explained variance) separates mostly PA6.6, with negative 

scores and negative loadings, from PP which has positive scores and 
positive loadings (Figs. 1c and 5, respectively). The maximum loadings 
agree with characteristic spectral peaks for these polymers. 

The use of dynamic PCA reduced the variables needed to keep the 

Fig. 2. Seawater-aged pellets, micro reflectance loadings.  

Fig. 3. a) Example of a SVM classification model, corresponding to pelletized HDPE aged in seawater and measured by micro reflectance IR spectrometry. b) 
Optimization of the cost and gamma parameters (the optimal value is marked with an X at the low, right corner). 
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polymer groups to 10 wavenumbers, at: 2959, 2847, 1736, 1544, 1420, 
827, 872, 702, 699 and 688 cm−1. 

When the variables associated to the maximum loadings of both 
factors were used (6 in total), the groups of polymers could also be 
differentiated, with the exception of a PMMA outlying sample (as noted 
above). Application of SVM considering only those wavenumbers yiel-
ded good separations, with the exception of some HDPE and PS samples. 

Finally, CART required only 9 divisions (18 branches) to get a good 
separation of the polymers (Fig. 4b). The 7 variables required for the 
sequential decisions were 1800 (twice), 1755, 1751, 1716 (twice), 1495, 
1474 and 1641 cm−1, whose general interpretation (CH2 bending and 
C––O stretching) mostly agrees with the regions selected by dynamic- 
PCA (but for the 3000–2800 cm−1 spectral region, not included in 
CART, as explained above). 

However, the classification is not as nice as that derived from micro 
reflectance measurements. The final groups for PP, PET, HDPE, PS and 
PA are 100 % homogeneous and form differentiated groups. However, 
LDPE needed two criteria (at 1716 and 1800 cm−1) to be differentiated 
from HDPE and a PC sample mixes with another PMMA one, although 
the other pellets of these polymers became well separated. 

3.2. Pellets weathered under dry conditions 

When micro reflectance measurements were made, the factors that 
lead to the best differentiation among polymers were PC2 and PC4 (25.2 
% explained information, Fig. 1d). 

PC2 (15.8 % explained variance) differentiates PMMA and PET 
(positive scores) from PP, PS and PA (negative scores). Fig. SM2 (Sup-
plementary material) shows the most relevant loadings defining this 
factor. PMMA and PET became characterized by their ester character-
istics (the most positive loadings) while PA, PS and PP were character-
ized by negative loadings. No distinctive loadings can be attributed to 
PP, but for the typical CH stretching at ca. 2850 and 2950 cm−1. 

PC4 (9.5 % explained variance) is dominated by the Amide II band 
(NH monosubstituted amide bending plus the CN stretching) and dif-
ferentiates basically PA (positive scores and positive loadings) from PC 
and PP (negative scores and their associated loadings, Fig. SM2). The 
negative loadings seem mostly linked to PC as the PP characteristics 
(stretching and bending of the CH bonds) cannot be seen, probably, 
masked by the CH bonds of PA6.6. 

Using dynamic PCA the overall number of wavenumbers needed to 
visualize the groups of polymers got reduced from 2900 to 15 variables. 

Fig. 4. Pellets aged in seawater, schematic representation of the CART decision tree obtained from the micro reflectance (a) and ATR (b) measurements. The final 
groups (each in a different colour) are 100 % homogeneous. The values at the bottom of the decision boxes correspond to the discriminating wavelength whereas the 
values over the boxes are the absorbance of the wavenumber that separates the branches (e.g., in the first node, if the absorbance at 1268 cm−1 is lower than or equal 
to 0.1473 a.u. the polymer may be HDPE, LDPE, PA, PP or PS). 
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These were: 3457–3455, 2918, 1917, 1775, 1732, 1731, 1636–1634, 
1269, 1268, 698, and 697 cm−1 wavenumbers. 

When the 12 variables associated to the most relevant loadings of the 
principal components were used to perform a dedicated PCA the groups 
of polymers could still be differentiated. Using SVM, however, it was not 
possible to categorize the HDPE and LDPE samples. Finally, CART 
required 10 divisions (20 branches) to successfully separate the poly-
mers (Fig. SM3), using only 9 variables (i.e., 1800 (twice), 1795, 1740, 
1677, 1651, 1474, 1468, 1465 and 600 cm−1). 

For ATR spectra, the factors that differentiated the polymers best 
were PC2 and PC3 (18.2 % explained information, Fig. 1e). PC1 could 
not separate several polymers despite it takes account of more infor-
mation (likely related to ageing). This result is similar to that with 
reflectance data above. However, the interpretation of the loadings is a 
bit more complicated here. 

Positive scores and loadings in PC2 (9.89 % explained variance) 
differentiated clearly PP and PS from the other polymers. The most 
important positive loadings were linked to PS and PP (the peaks at 2950 
and 1452 cm−1) (Fig. SM4). The peaks at 2950 and 1452 related to PP, 
whereas the others are characteristic of PS. The most relevant negative 
loadings relate to the C–H stretching of HDPE and LDPE, whose samples 
outstand in the negative scores. The loading at 1720 cm−1 points to-
wards the C––O groups of PC, PA and PET. 

PC3 (8.30 % explained variance) separates PP from PS (Fig. 1e), 
whose scores in PC2 are almost the same. It also helps differentiating 
LDPE, HDPE and PMMA from PC, PA and PET. Here, it is difficult to 
assign loadings to specific monomers. The most important loadings 
relate to C–H stretching, CH2 bending, C–H bending and aromatic out- 
of-plane bending (see Fig. SM4). 

With the use of dynamic PCA the number of variables can be reduced 

to only 4, still with a nice polymer differentiation: 2925 and 2924 cm−1 

(C–H stretch) and 1714 and 1713 cm−1 (mostly C––O bands). 
When the variables associated only to the maximum loadings (pos-

itive and negative) were used (7 in total) to carry out a PCA, the groups 
of polymers were still differentiated. When SVM was applied to those 
variables it was possible to visualize several groups of polymers, but 
LDPE and PS offered unsatisfactory results. 

Finally, CART required only 8 divisions (16 branches) to successfully 
separate the polymers (Fig. SM5) employing 8 variables (i.e., 1800, 
1752, 1733, 1507, 1496, 1474, 1456 and 1378 cm−1). 

3.3. Powder aged in seawater 

The typical PC1-PC2-PC3 scores subspace (51.9 % explained vari-
ance) is adequate to separate the polymers when their powders are 
weathered in seawater and measured by micro reflectance spectrometry 
(Fig. 6a and b). 

PC1 (21.4 % variance) is devoted to differentiate the PS samples (the 
most negative scores, Fig. 6a and b). It is not surprising thus that the 
most remarkable loadings in this factor are associated to PS (Fig. SM6); 
even the typical four peaks of similar intensity that characterize the 
typical monosubstituted aromatic pattern between 2000 and 1700 cm−1 

can be seen. 
PC2 opposes the ‘simplest’ hydrocarbon structures of PP, HDPE and 

LDPE (negative scores) to the other polymers (which contain hetero-
atoms and aromatic and more complex monomeric structures), in 
particular to PS (highest positive scores and whose bands can be linked 
to the largest positive loadings, Fig. SM6). The most relevant positive 
loadings are associated to –likely- the more linear structures: CH2 
bending and rocking. 

Fig. 5. Seawater-aged pellets, ATR loadings.  
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Fig. 6. Representation of the most relevant principal component subspaces to identify the groups of polymers. Seawater-aged powder measured by micro reflectance 
(a) and (b); and by ATR (c) and (d). Dry-aged powder measured by micro reflectance (e) and ATR (f). 
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PC3 separates mainly PVC (highest positive scores) from PET 
(highest negative scores), Fig. 6a and b. The loadings reflect also this 
point (Fig. SM6) as PET is characterized by positive loadings, mainly 
C––O stretch. On the contrary, PVC –an essentially linear structure- is 
reflected in the most relevant negative loadings, including the typical 
C–Cl bending. 

The variables associated to those loadings were not enough to 
differentiate the groups of samples when a dedicated PCA was done, 
likely because of the complexity of the loadings (Fig. SM6) which make 
it hard any reasonable manual selection. However, after using SVM with 
these wavenumbers an acceptable separation of the polymers was found. 

Using the dynamic PCA algorithm it was possible to reduce the 
amount of wavenumbers to 11: 2849, 2292, 1745, 1740, 1660, 1443, 
1287, 1257, 905, 737 and 702 cm−1. Finally, CART required 8 divisions 
(16 branches) to get a good separation of the polymers (Fig. SM7) using 
only 7 variables (i.e., 1800 (twice), 1787, 1776, 1743, 1507, 1392, and 
1106 cm−1). 

The results obtained when ATR spectra were used are depicted in 
Fig. 6c and d. The PC2-PC3-PC4 scores subspace (24.1 % explained in-
formation) was chosen. Even though the groups appear quite separated 
from each other the results are not as good as for the study above using 
micro reflectance because the groups presented quite large dispersions 
(in fact, PC1 was not selected because the samples there become even 
more disperse, making it impossible to discern the groups). It also 
happens that the interpretation of the loadings is not straightforward. In 
PC2 (10.43 % explained variance) the only polymers that are sharply 
separated are PA and PP and HDPE and LDPE (figure not shown). The 
most important positive loadings for this factor (Fig. SM8) characterize 
HDPE and LDPE, whereas the negative loadings correspond to typical PA 
spectral bands. 

PC3 (8.2 % explained variance) allows a slight separation of HDPE 
and LDPE (although they overlap with other polymers, Fig. 6c and d) 
and it clearly differentiates PP. The most important loadings that 
differentiate it from the other polymers (Fig. SM8) are linked to the C–H 
structures (positive loadings). The negative loadings point towards the 
other more complex structures with C––O groups. 

PC4 (5.5 % explained variance) separates PET and PMMA (positive 
scores) from PC and PS (negative scores), Fig. 6d, though the groups are 
highly dispersed. The latter polymer becomes differentiated by the C––O 
stretching and the CH out-of-plane aromatic ring stretching (positive 
loadings, see Fig. SM8). 

As for the micro reflectance spectra, the use of the variables associ-
ated to the most relevant loadings alone yielded bad results when a PCA 
was made and that was attributed to the difficulty in selecting the most 
relevant wavenumbers. However, applying SVM to these variables all 
the samples became well classified except for some LDPE ones. 

On the other hand, using dynamic PCA it was possible to reduce the 
total amount of wavenumbers required to visualize the groups to 36, in 
the 2950–2840, 1780–1738 cm−1 ranges and 1535, 1427–1424 
955–953, 829, 828, 725–723 cm−1 wavenumbers. 

CART required only 10 divisions (20 branches) to get a good sepa-
ration of the polymers (Fig. SM9) with only 9 variables (i.e., 1800 
(twice), 1795, 1740, 1677, 1651, 1474, 1468, 1465 and 600 cm−1), all 
of them in the surroundings of the typical C––O carbonyl region –as it 
happened with dynamic PCA, but for the 600 cm−1 wavenumbers. 

3.4. Powder weathered under dry conditions 

In essence, powdered samples weathered in dry conditions and 
measured by micro reflectance spectrometry behaved as their seawater- 
aged counterparts. In this case the separation between the polymers can 
be achieved with just two principal components (Fig. 6e); i.e. the PC1- 
PC3 subspace (ca. 36.5 % explained variance). PC2 was not selected 
because some PP samples got intertwined with those from HDPE and 
LDPE, yielding worst results. It was found that a PMMA sample behaved 
anomalously, so it was excluded from the final studies. There, PC1 

(21.64 % variance) differentiates PS (extreme negative scores, Fig. 6e). 
The negative loadings influencing this factor the most were related to PS 
(Fig. SM10). The peak at 2924 cm−1 has no clear assignment and it may 
be a mixture of the C–H aromatic stretching from PS and the aliphatic 
CH stretching of HDPE and LDPE. 

PC3 (ca. 14.5 % variance) in essence opposes PP (positive scores) to 
HDPE and LDPE (negative scores), with all other polymers showing 
close-to-zero scores, although each polymer forms very tight clusters, 
regardless of the degree of weathering during the study (Fig. 6e). The 
most important loadings are positive (Fig. SM10), but they cannot be 
associated to specific structures. 

Dynamic PCA reduced the number of variables needed to visualize 
the groups of polymers from 3400 to 15 ones: 3457–3455, 2918, 1917, 
1775, 1732, 1731, 1636–1634, 1269, 1268, 698 and 697 cm−1. Using 
SVM with the wavenumbers associated with the highest loadings an 
acceptable separation among the polymers was obtained. Finally, CART 
employed only 9 divisions (18 branches) to get a good separation of the 
polymers (Fig. SM11) with only 8 variables (i.e., 1800 (twice), 1713, 
1507, 1414, 1276, 1245, 1155 and 717 cm−1). 

Finally, two components separate the polymers when ATR spectra 
are considered (Fig. 6f): PC2 and PC3, being PC1 useless for this pur-
pose. PC2 (9.3 % explained variance) opposes PA, PP and PS (negative 
scores) to the other polymers, most notably HDPE, LDPE, and PET 
(Fig. 6f), as it happened previously with the micro reflectance mea-
surements. Relevant positive loadings for this factor coincide with 
typical HDPE and LDPE bands (Fig. SM12) while highest negative 
loadings correspond mainly to PP. 

PC3 (7.8 % explained variance) separates clearly PS and PP, Fig. 6f. 
The PS-related negative loading at 695 cm−1 (aromatic CH out-of-plane 
bending) opposes to the most relevant positive loadings (typical C–H 
stretching, likely from PP, ca. 2950 cm−1, Fig. SM12). 

Dynamic PCA required only 3 variables to visualize the groups, 
corresponding to the C–H stretching region (i.e., 2924, 2923 and 2922 
cm−1). 

Combining SVM with the wavenumbers associated with the highest 
loadings a perfect differentiation between the polymers were obtained. 
Finally, CART made 9 divisions (18 branches) to get a good separation of 
the polymers (Fig. SM13) with 8 variables (i.e., 1800, 1659, 1605, 1468, 
1467, 1136, 722 and 600 (twice) cm−1). 

3.5. General comparison of the selected wavenumbers 

The wavenumbers selected by the different approaches were highly 
consistent among them, of course with the logical small differences due 
to their different fundamentals, and they allowed differentiating among 
the polymers at the model development (or training) stage. Fig. SM14 
depicts graphically all the variables selected from the different models 
studied above (recall that SVM does not select variables by itself, but we 
included here a previous step that chooses those linked to the most 
relevant loadings). The figure shows clearly that the most relevant 
wavenumbers accumulate almost always in the fingerprint and the C–H 
stretching (~2800–3000 cm−1) regions. Note that even despite CART 
considered only the fingerprint region, the variables selected for the 
decision nodes agree very well with the variables selected (in that re-
gion) using the other techniques. 

The main question now is to decide which option is best. This in-
volves a twofold choice: it has to be decided among ATR and reflectance 
measurements, and among the variable selection strategies. Unfortu-
nately, this is a complex decision because although a variable might be 
useful do separate some polymers using (e.g.) ATR it might be detri-
mental when reflectance is considered. So, it is not only about ATR or 
reflectance, it is also about which particular combination of wave-
numbers is considered. Many models discussed in the previous section 
had no false positives nor false negatives (detailed statistics are not show 
here) but one has to be aware that this may be an “artefact” caused by 
overfitting the models. Therefore, it is critical to test each and every 
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model with samples not used to develop the models at all. This is done in 
the next section. 

3.6. Model validation 

To validate the models, two set of samples were used, as detailed in 
Section 2.1; one considers particles extracted from the weathering setup 
during the period under study and the other considers field plastics 
collected at beaches. The latter are much more complex because of their 
unknown weathering extent, physical and chemical degradation, 
amount of additives, morphology, etc. Because of that, and after pre-
liminary assays, the “HDPE” and “LDPE” categories will be combined 
into one, with the general denomination “PE”. 

PCA projection of the field samples into the scores subspace didn't 
yield satisfactory identifications, so it will not be considered further. 
This is explained because PCA and dynamic-PCA are not true classifi-
cation methods as the final assignations are made subjectively, as per 
visual observation of the location of the samples. Hence, they are fast, 
although rough approaches to ascertain a polymer type. However, using 
the loadings from the PCA models it was possible to develop useful SVM 
models with a reduced number of variables Tables 1 and 2. 

Table 1 presents the validation statistics for the SVM models. For the 
samples weathered artificially the results are encouraging for both 
spectrometric techniques. Micro reflectance models are, in general, 
slightly better than their ATR-based counterparts since 29 models (out of 
30) had MCCs ≥0.8 (this happened for 26 ATR ones), with almost no 
false positives and with only one model showing poor classification 

capabilities. The worst models were found for PMMA measured by ATR, 
although those developed using powders became slightly better than 
those for pellets. In general, the models differentiate the polymers really 
well. 

When field samples are considered (Table 1, bottom part) the final 
assignations are not so satisfactory because the spectra became affected 
more by the different weathering processes they might had undergone: 
biofouling, physical erosion, chemical degradation, etc. Their spectra 
are noisier, with broader and less defined bands. Most field samples 
(>90 %) were thin sheet fragments, from food and one-use wrappings. 
This produces detrimental effects in reflectance measurements, as it 
often provokes an etalon-like effect: sinusoidal waves along the spec-
trum produced by the light passing through several parallel surfaces, 
which complicates the characterizations. This is reflected in the poor 
polymer identifications in the micro reflectance models, none of them 
surpassing a 0.5 MCC value. However, the ATR models showed more 
acceptable identifications, most of them having MCCs ≥0.8 (7 models 
out of 10), and low ratios of false positives and negatives. This seems 
very good news for garbage and plastic litter monitoring because they 
usually concentrate on relatively ‘big’ fragments, mostly when following 
OSPAR recommendations. 

CART yielded less satisfactory models than SVM (Table 2), as evi-
denced by slightly worse statistics. For artificially weathered samples, 
reflectance-based models are preferred to ATR-based ones because up to 
18 models lead to satisfactory ≥0.8 MCC values (vs. only 12 satisfactory 
ones using ATR). However, figures for field samples are not adequate. In 
our view, this might be because of the simple classification strategy of 

Table 1 
Validation statistics obtained for SVM models. The first value is the MCC statistic; those within the paren-
thesis represent the ratios of false positives and negatives (respectively). The colors in the boxes indicate the 
success of the model, from green (adequate model) to orange (unsuccessful model). (PVC was not available in 
pellets). 

Weathered samples

Polymer

ATR Reflectance

Pellets Powder Pellets Powder

Sea Dry Sea Dry Sea Dry Sea Dry

PE
1

(0 ; 0)

1

(0 ; 0)

1

(0 ; 0)

1

(0 ; 0)

1

(0 ; 0)

0.8

(0.1 ; 0)

1

(0 ; 0)

0.9

(0.03 ; 0)

PA
1

(0 ; 0)

1

(0 ; 0)

0.9

(0 ; 0.3)

0.7

(0 ; 0.5)

1

(0 ; 0)

0.8

(0 ; 0.4)

1

(0 ; 0)

0.9

(0.03 ; 0)

PC
1

(0 ; 0)

0.9

(0 ; 0.3)
1

(0 ; 0)

0.9

(0 ; 0.3)

1

(0 ; 0)

1

(0 ; 0)

1

(0 ; 0)

1

(0 ; 0)

PET
1

(0 ; 0)

1

(0 ; 0)

0.9

(0 ; 0.3)

0.9

(0.03 ; 0)

1

(0 ; 0)

1

(0 ; 0)

0.9

(0 ; 0.2)

1

(0 ; 0)

PMMA
0.5

(0. ; 0.8)

0.7

(0 ; 0.5)
1

(0 ; 0)

0.7

(0 ; 0.5)

1

(0 ; 0)

1

(0 ; 0)

1

(0 ; 0)

0.8

(0 ; 0.4)

PP
0.9

(0 ; 0.3)

1

(0 ; 0)
1

(0 ; 0)

1

(0 ; 0)

0.9

(0 ; 0.2)

0

(0 ; 1)

1

(0 ; 0)

1

(0 ; 0)

PS
1

(0 ; 0)

1

(0 ; 0)
1

(0 ; 0)

0.9

(0 ; 0.3)

1

(0 ; 0)

1

(0 ; 0)

1

(0 ; 0)

0.9

(0 ; 0.2)

PVC -- --
1

(0 ; 0)

0.9

(0 ; 0.3)
-- --

1

(0 ; 0)

0.9

(0 ; 0.2)

Field samples

Polymer
ATR Reflectance

Sea Dry Sea Dry

PE
0.95

(0 ; 0.07)

0.95

(0 ; 0.07)

0.4

(0 ; 0.7)

0.3

(0.5 ; 0.1)

PET
0.8

(0.03 ; 0.2)

0.9

(0.02 ; 0.1)

0.3

(0 ; 0.9)

0.3

(0 ; 0.9)

PP
0.8

(0 ; 0.3)

0.8

(0 ; 0.3)

0.5

(0 ; 0.7)

0

(0 ; 1)

PS
0.8

(0 ; 0.5)

0.5

(0.07 ; 0.25)

0

(0 ; 1)

−0.04

(0.06 ; 1)

PVC
0.4

(0,02 ; 0.7)

0.6

(0 ; 0.6)

0.5

(0.02 ; 0.7)

0.5

(0.02 ; 0.7)
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the CART method. Dichotomic decision rules work well as long as 
similar spectra are considered for both calibration and validation. 
However, field samples were exposed to many weathering phenomena 
that, finally, distort the original spectrum so that the dichotomic 
absorbance decisions at the different nodes can be misleading. 

Therefore, in the authors' opinion the final tradeoff analysis points 
out that ATR analysis (of both pellets and powders) combined with the 
chemometric support vector machine tool lead to the most satisfactory 
differentiation among the nine polymers considered in this work, along 
with satisfactory classification ratios of new samples. Although partic-
ular details were given in the previous sections, Table SM1 resumes the 
variables employed for each model and it can be seen that the three most 
relevant structural moieties involved in the differentiation and classifi-
cation of the polymers were the C–H stretching, C–H bending, C––O 
stretching and the C–H out-of-plane bending (likely of aromatic rings); 
see Table SM2 (compiled from Brandon et al. (2016), Tiwari et al. 
(2019), Vasanthan (2012), Veerasingam et al. (2021), Jung et al. 
(2018)). Somehow this suggests that the models try to find out the sig-
nals of the main structural chains of the polymers (note that –for 
instance- the broad O–H stretching band typical of polymer weathering 
in the 3000–3200 cm−1 region does not appear at all within any variable 
selection). 

4. Conclusions 

The results obtained in this study indicate that polymer weathering 
complicates the formation of clear groups of samples in multivariate 
studies. In many cases, high-order principal components were needed to 
visualize more or less definite groups. This means that the most relevant 
spectral variance is not related to the different polymers but to other 

factors, mostly weathering. In general, the micro reflectance spectra of 
pellets were more interpretable and lead to better groups than those of 
powders, likely because reflected radiation is mostly specular, which 
yields simpler spectra than the diffuse radiation from the powders. 

The studies presented here suggest that pattern recognition models 
developed with a reduced suite of selected variables may be a good way 
to address this problem. All the variable selection strategies allowed for 
significant reductions in the number of wavenumbers required to visu-
alize the groups of polymers; being the most extreme situation that for 
dynamic PCA in the dry weathering of powdered polymers by ATR 
which required only three wavenumbers to differentiate the groups. 

The simplest feature selection implies selecting wavenumbers asso-
ciated to the maximum loadings of the principal components. This yields 
satisfactory differentiations when the spectra are well defined, mostly 
with pellet configurations. When this option is combined with SVM it is 
possible to differentiate all polymers with only some few marginal errors 
in some models (mostly for HDPE and LDPE, due to their spectral 
similarity). 

Dynamic PCA is also a very simple methodology and it leads to very 
satisfactory results although the number of wavenumbers required to 
visualize the groups of polymers vary among the assays. In most cases, 
only 10 wavenumbers (out of the 3400 initial ones) were sufficient. 
Unfortunately, the projections of the field samples led to poor assigna-
tions because they have to be done visually. 

CART behaved very consistently and required around 8 wave-
numbers to separate the polymer groups. However, they were not al-
ways 100 % homogeneous and results were not too satisfactory for field 
samples. This was attributed to the spectral differences between the field 
and artificially-weathered plastics (which in turn yielded good valida-
tions), which make the dichotomic CART decisions suboptimal for field 

Table 2 
Validation statistics obtained for CART models. The first value corresponds to the MCC statistic; those within 
the parenthesis represent the ratios of false positives and negatives (respectively). The colors in the boxes 
indicate the success of the model, from green (adequate model) to orange (unsuccessful model). (PVC was not 
available in pellets). 

Weathered samples

Polymer

ATR Reflectance

Pellets Powder Pellets Powder

Sea Dry Sea Dry Sea Dry Sea Dry

PE
1 

(0 ; 0)

0.9

(0.2 ; 0)

0.9

(0 ; 0.1)

0.9

(0 ; 0.1)

0.3 

(0.6 ; 0.2)

0.6 

(0.5 ; 0.1)

0.9

(0 ; 0.1)

0.9

(0.1 ; 0)

PA
0.85

(0 ; 0.3)

0.7

(0 ; 0.5)

0.2

(0.7 ; 0.8)

0.3

(0.7 ; 0.5)

0.6

(0 ; 0.6)

0

(0 ; 1)

0.9

(0.2 ; 0)

1

(0 ; 0)

PC
1

(0 ; 0)

0.9

(0 ; 0.3)

0.5

(0 ; 0.8)

0.7

(0.4 ; 0)

0.8

(0 ; 0.4)

0.4

(0 ; 0.8)

0

(0 ; 1)

0.9

(0.2 ; 0)

PET
0

(0 ; 1)

−0.07

(1 ; 1)

0

(0 ; 1)

0.7

(0.3 ; 0.3)

1

(0 ; 0)

0.8

(0.4 ; 0)

0.8

(0.4 ; 0)

0

(0 ; 1)

PMMA
−0.06

(1 ; 1)

0.5

(0.6 ; 0.3)

1

(0 ; 0)

0.5

(0 ; 0.75)

0.4

(0 ; 0.8)

0.8

(0 ; 0.4)

0.2

(0.7 ; 0.6)

0.6

(0.2 ; 0.5)

PP
0.5

(0.7 ; 0)

0.8

(0.3 ; 0)

0.9

(0.3 ; 0)

−0.059

(0 ; 0)

0.1

(0.8 ; 0.8)

0.5

(0.5 ; 0.4)

0.9

(0.2 ; 0)

0.9

(0 ; 0.2)

PS
1

(0 ; 0)

0.9

(0 ; 0.3)

0

(0 ; 1)

0.5

(0.3 ; 0.5)

0.9

(0 ; 0.2)

0.8

(0.2 ; 0.2)

1

(0 ; 0)

0.9

(0 ; 0.2)

PVC -- --
0.4

(0.8 ; 0)

0.7

(0 ; 4)
-- --

0.9

(0 ; 0.2)

0.9

(0.2 ; 0)

Field samples

Polymer

ATR Reflectance

Powder Powder

Sea Dry Sea Dry

PE
0.4

(0.5 ; 0.2)

0.4

(0.5 ; 0.2)

0.3

(0.5 ; 0.2)

0.03

(0.6 ; 0.7)

PET
0.4

(0 ; 0.8)

0.6

(0.4 ; 0.4)

0.2 

(0.5 ; 0.9)

0.1

(0.8 ; 0.8)

PP
0

(0 ; 1)

0.5

(0.2 ; 0.6)

−0.2

(1 ; 1)

−0.15

(0.9 ; 0.9)

PS
0

(0 ; 1)

−0.05

(1 ; 1)

0

(0 ; 1)

0.7

(0 ; 0.5)

PVC
0.4

(0.6 ; 0.3)

0.3

(0.6 ; 0.7)

0.4

(0.6 ; 0.3)

0.1

(0.8 ; 0.6)

B. Ferreiro et al.                                                                                                                                                                                                                                 



Marine Pollution Bulletin 181 (2022) 113897

12

samples. The classification models for SVM are more satisfactory when 
ATR spectra are considered. In particular, SVM performed clearly better 
than CART for field samples. 

In our view, this work opens up the possibility of identifying poly-
mers is spite of their weathering level by considering a reduced number 
of IR wavenumbers, although more studies are needed to improve the 
modelization of tiny particles and to ascertain how to incorporate this 
approach into the databases. 

A final reflection on the limitations and future work to refine this 
approach is in order. The artificial weathering process employed here 
yields physical and chemical degradation but biofouling was not 
considered. The SVM models worked well for field samples without 
obvious biofouling but it remains to be assessed whether they also work 
in other circumstances where more bio-materials are present at the 
surface of the plastics. Such a study is being done in our laboratory as a 
part of a more comprehensive project (the JPI-Oceans EU-funded 
MicroplasticX). As a referee pointed out, it also has to be studied how the 
models behave when big amounts of additives are added to the core 
polymer so that they affect its spectrum. 

It is worth noting that this approach can be used for on-site field MPs 
identification. Right now there are commercial portable (car battery- 
powered) ATR-FTIR systems, even from major brands, and since they 
are controlled by laptops it is indeed possible to include the chemo-
metric models there. However, micro reflectance instrumental systems 
are not still portable. So, currently the portability option depends on the 
size of the microplastics under scrutiny (likely, 500 μm would be the 
very minimum acceptable size for current ATR devices). 
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Göpferich, A., 1996. In: Williams, D.F.B.T.-T.B.S.J.C. (Ed.), Mechanisms of Polymer 
Degradation and Erosion. Elsevier Science, Oxford, pp. 117–128. https://doi.org/ 
10.1016/B978-008045154-1.50016-2. 

ter Halle, A., Ladirat, L., Martignac, M., Mingotaud, A.F., Boyron, O., Perez, E., 2017. To 
what extent are microplastics from the open ocean weathered? Environ. Pollut. 227, 
167–174. https://doi.org/10.1016/j.envpol.2017.04.051. 

Hirsch, S.G., Barel, B., Shpasser, D., Segal, E., Gazit, O.M., 2017. Correlating chemical 
and physical changes of photo-oxidized low-density polyethylene to the activation 

B. Ferreiro et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.marpolbul.2022.113897
https://doi.org/10.1016/j.marpolbul.2022.113897
https://doi.org/10.1016/j.scitotenv.2020.144719
https://doi.org/10.1016/j.scitotenv.2020.144719
https://doi.org/10.1016/j.marpolbul.2019.110663
https://doi.org/10.1016/j.marpolbul.2020.111035
https://doi.org/10.1016/j.marpolbul.2020.111035
https://doi.org/10.1002/app.39524
https://doi.org/10.1080/11250003.2015.1114157
https://doi.org/10.1016/J.MARPOLBUL.2016.06.026
https://doi.org/10.1016/J.MARPOLBUL.2016.06.026
https://doi.org/10.1016/J.SCITOTENV.2017.08.086
https://doi.org/10.1016/J.SCITOTENV.2017.08.086
https://doi.org/10.1016/J.ENVPOL.2018.10.065
https://doi.org/10.1016/J.ENVPOL.2018.10.065
https://doi.org/10.1016/j.marpolbul.2016.06.048
https://doi.org/10.1016/j.marpolbul.2016.06.048
https://doi.org/10.1021/acssuschemeng.9b06635
https://doi.org/10.1016/J.MARPOL.2018.03.022
http://refhub.elsevier.com/S0025-326X(22)00579-3/rf202206292259542134
http://refhub.elsevier.com/S0025-326X(22)00579-3/rf202206292259542134
http://refhub.elsevier.com/S0025-326X(22)00579-3/rf202206292259542134
https://doi.org/10.1016/j.marpolbul.2018.01.009
https://doi.org/10.1016/j.trac.2016.04.021
https://doi.org/10.1016/j.aca.2020.11.002
https://doi.org/10.1016/j.saa.2021.120162
https://doi.org/10.1016/j.saa.2021.120162
https://doi.org/10.1016/j.trac.2022.116649
https://doi.org/10.1039/c5em00207a
https://doi.org/10.1371/journal.pone.0212258
https://doi.org/10.1371/journal.pone.0212258
https://doi.org/10.1016/B978-008045154-1.50016-2
https://doi.org/10.1016/B978-008045154-1.50016-2
https://doi.org/10.1016/j.envpol.2017.04.051


Marine Pollution Bulletin 181 (2022) 113897

13

energy of water release. Polym. Test. 64, 194–199. https://doi.org/10.1016/j. 
polymertesting.2017.10.005. 

Howell, E.A., Bograd, S.J., Seki, M.P., Polovina, J.J., 2012. On North Pacific circulation 
and associated marine debris concentration. Mar. Pollut. Bull. 65, 16–22. https:// 
doi.org/10.1016/J.MARPOLBUL.2011.04.034. 
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MATERIAL AND METHODS 

SAMPLES 

For this work we considered HDPE (high density polyethylene; from LyondellBasell, commercial 

name Lupolen 4261 AG UV, density and melting temperature were 0.945 g·cm-3 and 130 °C); LDPE 

(low density polyethylene; from LyondellBasell, commercial name Lupolen 1800P, density and 

melting temperature were 0.918 g·cm-3 and 105 °C); PA 6.6 (Nylon, polyamide, or 

poly(hexamethylene adipamide; from BASF; commercial name ‘Ultramid’, density and melting 

temperature were 1.13 g·cm-3 and 260 °C); PC (polycarbonate; from Bayer, commercial name 

Makrolon 2558, density was 1.2 g·cm-3 ); PET (Polyethylene Terephthalate; from Neogroup, 

commercial name Neopet 80, melting temperature was 248 °C); PMMA Poly(methyl methacrylate; 

from Plexiglas, commercial name Plexiglas 7N, density was 1.19 g·cm-3 ); PP (polypropylene; from 

Borealis, commercial name HL508FB, melting temperature 158 °C); PS (polystyrene; from INEOS 

Styrolution, commercial name, Styrolution PS 158N/L; density 1.04 g·cm-3); and PVC (Polyvinyl 

chloride; from Vinnolit, commercial name Vinnolit S3268).

RESULTS AND DISCUSSION 

INTRODUCTION TO THE CHEMOMETRIC TECHNIQUES 

Principal Components Analysis (PCA, also known as factor analysis despite mathematically they are 

not strictly the same) aims to define directions of maximum variance (principal components or 

factors) so that they explain most of the information in the wavenumbers defining the collection of 

spectra. The principal components (PCs) can be visualized as combinations of variables whose 

directions are those on which the samples spread the most.  

A given collection of n spectra, where w wavenumbers have been measured on each spectrum, can 

be arranged in a raw data matrix X(n x w). The basic equation for PCA states that a raw data matrix can 

be decomposed in two simpler matrices. One contains information on the samples (T, the scores 

matrix) while the other contains information about the variables (P, the loadings matrix); i.e., X(n,w) 

= T(n,k)·P(k,w). k represents the number of principal components relevant for the problem at hand 

(which has to be decided by the scientist). The first column of T and the first row of P constitute the 

first principal component; and so forth for the second, the third, etc. By definition, the first PC (termed 

PC1) explains the largest amount of variance (information), the second (PC2) explains less (but more 

than the third, PC3), and so forth. 
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For the purpose of the simple understanding of the results of this paper, any principal component can 

be represented as PC𝑘 = p(k,1) · 𝐱1 + p(k,2) · 𝐱2 + ⋯ +  p(k,w) · 𝐱w ; where k denotes the principal

component under consideration, p is the variable-specific coefficient or loading (from matrix P(k,w) 

above), and x denotes each of the (1, …, w) experimentally measured spectral variables (i.e., the 

intensities organized as column vectors). Hence, for a given principal component, high loadings 

denote important variables whereas loadings close to zero denote not relevant ones. More details can 

be found at Brereton (2006) and Otto (2017). 

Hence, each PC can be interpreted chemically by studying the more relevant coefficients defining 

them (loadings) and recalling that variables whose coefficients have the same sign vary in the same 

way. A note is in order here: since the loadings derive from the overall spectra of all samples, the 

chemical assignations may sometimes be not straightforward because some loadings may become 

slightly displaced from typical well-known spectral peaks. This may be accentuated in wider bands 

and very close neighbouring peaks.  

To reduce the spectral range required to identify the polymers after PCA two approaches were 

applied:  

i) Dynamic PCA removes variables iteratively while assessing the effect of their removal on a

PCs scores plot subspace. In essence, it evaluates whether a variable can differentiate

between a group of samples and all other samples (‘one vs all approach’), according to a

Student’s t-test. Those variables not contributing statistically to the differentiation will be

avoided. The procedure is repeated for each group of samples and, then, all relevant variables

are considered altogether. This was done using GenEx’s proprietary algorithm (MultiD

Analysis AB, Göteborg, Sweden). The initial spectral range was 3000 – 600 cm-1.

ii) Selection of the wavenumbers associated to the most relevant loadings (either positive or

negative). This approach was applied to both the pelletized and powdered samples.

CART (classification and regression trees) looks for individual wavenumbers that allow for decision 

rules that when applied to the collection of spectral data characterise a group of samples against the 

other groups. CART works by creating binary recursive partitions or ‘branches’ based on a tree-like 

structure where each branch divides the dataset in two different groups. For every branch there is a 

‘node’ that sets a condition for the spectra (Lewis (2000); Otto (2017)). For example, ‘If wavenumber 

at 2900 cm-1 > 0.5 u.a., the spectrum corresponds to HDPE, otherwise it belongs to the others group’. 

Then, a new condition is developed for a next branch until –hopefully- every polymer is identified. 

In order to reduce the computing intensity only the fingerprint region (1800 – 600 cm-1) will be 

included into the calculations associated to this technique. 
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Support Vector Machine Classification (SVM) was also considered. The difference between this 

technique and PCA and CART is that it only separates a group of samples from all the other samples 

(the ‘others’ group), making it necessary to develop a model per polymer. Despite this being the usual 

working approach, there are studies that consider simultaneously various SVM models for different 

classes, although they require specific algorithms (Belousov et al., 2002) and will not be considered 

here. 

SVM was used to enhance the classification capabilities of the wavenumbers associated with the more 

intense loadings selected in PCA, option ii) above. The conceptual basis of the SVM method is to 

separate the datapoints (spectra) of a polymer from the other polymers by means of a hyperplane. 

This is a border or frontier that is defined mathematically in a dimensionality higher than that where 

the samples were measured (in this case the wavenumbers of the IR spectra). The rationale behind 

SVM is that if the original variables are not good enough do differentiate classes, they can be operated 

(by means of the so-called kernels) so that they yield additional mathematical dimensions that, 

potentially, can differentiate the groups best. Two major parameters have to be optimized for each 

model: the cost (or penalty) and gamma constants. Interested readers are encouraged to consult 

additional literature for more technical details; e.g., Cortes and Vapnik (1995), and Brereton and 

Lloyd (2010).  
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SUPPLEMENTARY TABLES 

Table SM1: Comparison of wavenumbers used to develop SVM models using ATR spectra. 

ATR wavenumbers (cm-1) 

Pellets Powder 

Sea Dry Sea Dry 

2951 

2916 

2849 
2848 

1720 
1630 
1537 

1447 
1376 

3027 
2951 
2950 

2849 

1492 
1461 
1452 
1376 

695 

2950 
2949 

2848 

1769 
1718 
1630 

1492 

1375 
1230 
1187 
1158 
694 

3024 
2950 

2913 
2867 
2848 

1718 

1492 

1375 

694 
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Table SM2: Resume of the most relevant wavenumbers selected to characterize each polymer. Data 

extracted from Brandon et al. (2016), Tiwari et al. (2019), Vasanthan (2012), Veerasingam et al. 

(2021), Jung et al. (2018). 

Polymer Wavenumber 
(cm-1) 

Moiety Polymer Wavenumber 
(cm-1) 

Moiety 

HDPE 2915 C-H stretch PVC 1427 CH2 bend 
2845 C-H stretch 1331 CH bend 
1472 CH2 bend 1255 CH bend 
1462 CH2 bend 1099 C-C stretch
730 CH2 rock 966 CH2 rock 
717 CH2 rock 616 C-C stretch

LDPE 2915 C-H stretch PS 3024 Aromatic C-H stretch 
2845 C-H stretch 2847 C-H stretch
1467 CH2 bend 1601 Aromatic ring stretch 
1462 CH2 bend 1492 Aromatic ring stretch 
1377 CH2 bend 1451 CH2 bend 
730 CH2 rock 1027 Aromatic CH bend 
717 CH2 rock 694 Aromatic CH out-of-

plane bend 
PA 3298 N-H stretch 537 Aromatic ring out-of-

plane bend 
2932 C-H stretch PP 2950 C-H stretch
2858 C-H stretch 2915 C-H stretch
1634 C-O stretch 2838 C-H stretch
1538 N-H bend, C-N stretch 1455 CH2 bend 
1464 CH2 bend 1377 CH3 bend 
1372 CH2 bend 1166 CH bend, CH3 rock, C-C 

stretch 
1274 N-H bend, C-N stretch 997 CH2 rock, CH3 bend, CH

bend 
1199 CH2 bend 972 CH3 rock, C-C stretch 
687 N-H bend, C=O stretch 840 CH2 rock, C-CH3 stretch 

PC 2966 C-H stretch 808 CH2 rock, C-C stretch, 
C-CH stretch

1768 C=O stretch PET 1713 C=O stretch 
1503 Aromatic ring stretch 1241 C-O stretch
1409 Aromatic ring stretch 1094 C-O stretch
1364 CH3 bend 720 Aromatic CH out-of-

plane bend  
1186 C-O stretch PMMA 2992 C-H stretch
1158 C-O stretch 2949 C-H stretch
1013 Aromatic CH out-of-

plane bend  
1721 C=O stretch 

828 Aromatic CH out-of-
plane bend  

1433 CH2 bend 

1386 CH3 bend 
1238 C-O stretch
1189 CH3 rock 
1141 C-O stretch
985 CH3 rock 
964 CH2 rock, C-H bend 
750 C=O bend 
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SUPPLEMENTARY FIGURES 

Figure SM 1. Comparison between normalized (maximum absorbance=1) micro reflectance spectra 
of HDPE disposed in pellets and powder configurations. 
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Figure SM 2. Loadings of the PCA performed for pellets weathered in dry conditions, micro 
reflectance spectrometry. 

Figure SM 3. Pellets aged in dry conditions, schematic representation of the CART decision 
tree obtained from the micro reflectance measurements 
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Figure SM 4. Loadings of the PCA performed for pellets weathered in dry conditions, ATR 
spectrometry 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

Figure SM 5. Pellets aged in dry conditions, schematic representation of the CART decision 
tree obtained from the ATR measurements. 
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Figure SM 6. Loadings of the PCA performed for powder weathered in seawater, micro reflectance 
spectrometry. 
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Figure SM 7. Powder aged in seawater, schematic representation of the CART decision tree 
obtained from the micro reflectance measurements. 
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Figure SM 8. Loadings of the PCA performed for powder weathered in seawater, ATR 
spectrometry. 
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Figure SM 20. Loadings of the PCA performed for powder weathered in dry conditions, micro 
reflectance spectrometry. 

Figure SM 9. Powder aged in seawater, schematic representation of the CART decision tree 
obtained from the ATR measurements. 
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Figure SM 12. Loadings of the PCA performed for powder weathered in dry conditions, ATR 
spectrometry. 

Figure SM 11. Powder aged in dry conditions, schematic representation of the CART 
decision tree obtained from the micro reflectance measurements. 
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Figure SM 3. Powder aged in dry conditions, schematic representation of the CART decision 
tree obtained from the ATR measurements. 
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Figure SM14: Comparison of the wavenumbers selected as a function of the different weathering 
setups and variable selection methods (CART considered wavenumbers only from 1800 to 600 cm-

1). 

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

500100015002000250030003500400045005000

Wavenumber (cm-1)

Reflectance Pellet Sea dPCA

Reflectance Pellet Sea Highest loadings

Reflectance Pellet Sea CART

Reflectance Pellet Dry dPCA

Reflectance Pellet Dry Highest loadings

Reflectance Pellet Dry CART

Reflectance Powder Sea dPCA

Reflectance Powder Sea Highest loadings

Reflectance Powder Sea CART

Reflectance Powder Dry dPCA

Reflectance Powder Dry Highest loadings

Reflectance Powder Dry CART

ATR Pellet Sea dPCA

ATR Pellet Sea Highest loadings

ATR Pellet Sea CART

ATR Pellet Dry dPCA

ATR Pellet Dry Highest loadings

ATR Pellet Dry CART

ATR Powder Sea dPCA

ATR Powder Sea Highest loadings

ATR Powder Sea CART

ATR Powder Dry dPCA

ATR Powder Dry Highest loadings

ATR Powder Dry CART



 



 
 

 

 

 

Appendix: Summary in Spanish. 



 



197 
 

Appendix: Summary in 
Spanish/Resumen en castellano 
En los artículos seleccionados para conformar esta Tesis Doctoral por 
compendio de publicaciones se busca desarrollar nuevos métodos 
analíticos para muestras procedentes de dos campos de aplicación 
diferentes, pero de gran repercusión social. El hilo conductor de todos 
ellos es la combinación de distintas modalidades de espectrometría 
infrarroja (IR) en la zona media con técnicas quimiométricas. En primer 
lugar, se desarrollaron modelos para determinar la composición de 
muestras comerciales de gas natural (GN), así como su Índice Wobbe 
(un parámetro relacionado con la miscibilidad de gases con distinta 
composición relativa), cuyo análisis y monitorización se lleva a cabo, 
tradicionalmente, mediante cromatografía de gases. 

El segundo campo abordado es el de los microplásticos, fragmentos 
poliméricos de pequeño tamaño (≤5 mm), que se han convertido en uno 
de los tipos de contaminación más estudiados de los últimos años, 
especialmente en el medio marino. En este caso el objetivo es desarrollar 
métodos que permitan la identificación de los principales polímeros 
constituyentes de los microplásticos en muestras reales, con 
independencia de su nivel de envejecimiento en el medio o los distintos 
aditivos que puedan tener. 

1. Gas Natural 

El GN es un combustible fósil muy utilizado para calefacción tanto 
doméstica como industrial, para la producción de etileno, amoniaco 
(generalmente para fertilizantes), azufre o carbono negro y, en menor 
medida aplicaciones para el transporte. Sus procesos de formación son 
similares a los de otros combustibles fósiles, derivados de la 
descomposición de materia orgánica enterrada en la corteza terrestre y 
sometida a condiciones elevadas de presión y temperatura (procesos 
termogénicos) o procesos biológicos (procesos biogénicos), aunque 
también pueden derivarse de actividad volcánica (procesos abiogénicos). 
Generalmente se encuentra en yacimientos delimitados por roca 
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impermeable, ya sea de forma independiente, en yacimientos asociados 
de petróleo o carbón, filtrado en minerales de baja permeabilidad o en 
forma de hidratos. 

El GN está compuesto principalmente por metano (75-99 %), etano (0-
20 %), propanos, butanos, pentanos y hexanos (<10 %). También puede 
contener otros componentes indeseados, como gases eluyentes (CO2, N2, 
H2, O2, H2O o gases nobles), contaminantes (Hg, As, o compuestos de 
azufre) y sólidos en suspensión, que serán eliminados o reducidos 
durante el procesado industrial del gas. También puede contener trazas 
de sustancias radiactivas. Esta variabilidad en la composición relativa 
depende principalmente del yacimiento de origen y los procesos 
industriales que se le apliquen. 

Para su uso, sobre todo en aplicaciones de automoción, es importante 
conocer en detalle su composición, ya que afecta a su correcta 
combustión. Una composición inapropiada puede provocar problemas 
como el picado de bielas o autoencendido, una combustión incompleta 
en el motor, generando ruido, vibraciones, daños en el motor y perdida 
de potencia. Para evitar este efecto es importante que el GN tenga un 
número de metano apropiado, un parámetro físico-químico análogo al 
octanaje en gasolina o el índice de cetano en diésel. Otro parámetro 
importante del GN es el índice Wobbe, que se relaciona con la 
miscibilidad de mezclas de GN con diferentes composiciones relativas. 

Su principal atractivo como fuente de energía es su relativa abundancia 
y la baja cantidad de gases contaminantes (CO2, NOx y SOx) que emite 
en comparación con el carbón o los derivados de petróleo. Por ello, se ha 
considerado una opción viable para los objetivos de decarbonización 
europeos. Sin embargo, con la invasión de Rusia a Ucrania las 
importaciones de GN a Europa se han reducido significativamente, ya 
que Rusia es el principal exportador, siendo uno de los países con más 
producción y reservas confirmadas. El uso del GN como recurso 
estratégico y la reticencia de la Unión Europea a financiar la maquinaria 
bélica rusa ha llevado a que se aspire a reducir el uso del GN como fuente 
de energía, con la intención de reemplazarlo completamente antes de 
2027. 
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Normalmente los análisis de GN se llevan a cabo mediante cromatografía 
de gases, ya que es una técnica bien establecida con normas definidas a 
nivel internacional. De hecho, permite realizar análisis más precisos y 
sensibles, con límites de detección y cuantificación más bajos que las 
técnicas espectrométricas en su estado actual. Sin embargo, la 
cromatografía de gases tiene una serie de desventajas, como sus altos 
costes de reactivos, calibración, mantenimiento, elevado tiempo de 
dedicación de los operarios y su poca adaptabilidad para sistemas on-

line. Si bien, a nivel comercial, se han desarrollado sistemas portátiles 
para medidas in-situ, se necesita disponer los gases portadores cerca de 
la localización donde se realice la medida. Por ello, la espectrometría IR 
podría considerarse una alternativa atractiva: el análisis de una muestra 
de gas puede realizarse en ~30 minutos, es fácilmente adaptable a 
sistemas on-line, y no requiere reactivos (aunque se pueden añadir gases 
no activos en la zona IR para mejorar la calidad de los espectros). 

 

2. Microplásticos 

El segundo campo de trabajo abordado en la Tesis está constituido por 
los microplásticos, fragmentos poliméricos de entre 5 mm y 1 µm, que 
han llamado la atención tanto de la comunidad científica como de la 
población general debido a la ingente cantidad que se ha generado en las 
últimas décadas.  

Los plásticos en sus inicios se desarrollaron para aplicaciones militares 
durante la Segunda Guerra Mundial, en paracaídas, cuerdas o ventanas 
de aviones. En la década de los 50 se comenzó su producción en masa 
para aplicaciones comerciales, sustituyendo en gran medida a otros 
materiales como madera, el cuerno, el acero o el vidrio. En décadas 
posteriores su uso se fue aumentando exponencialmente, llegando a 
producirse 391 millones de toneladas en 2021. 

Los polímeros están formados por cadenas regulares de moléculas 
orgánicas, llamadas monómeros, que definen, en gran medida, sus 
propiedades físicas y químicas. Pueden ser tan simples como cadenas 
lineales de etilenos en el polietileno (PE), o contener moléculas más 
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complejas con heteroátomos y grupos aromáticos como en el poliuretano 
(PUR). 

Como material, el plástico resulta tremendamente atractivo para la 
sociedad: su gran maleabilidad, versatilidad y estabilidad, así como sus 
grandes posibilidades de funcionalización ad-hoc o bajos costes de 
producción hacen que tenga un amplio abanico de aplicaciones. Por 
ejemplo: en envasado, embotellado, textiles, construcción, industria 
automovilística, electrónica, adhesivos, etc. Esto provoca que la 
producción de plásticos se haya disparado en los últimos 70 años, con la 
consiguiente aparición de grandes cantidades de residuos. De hecho, la 
contaminación por deshechos de plástico es especialmente preocupante: 
el hecho de que muchas de sus aplicaciones sean de un solo uso conduce 
a que se generen grandes cantidades de residuos y su estabilidad provoca 
que permanezcan en el medio natural durante decenas o incluso cientos 
de años. Además, son susceptibles de fragmentarse en piezas cada vez 
más pequeñas generando micro y nanoplásticos, que pueden acarrear 
otros problemas añadidos en relación a su toxicidad para con los seres 
vivos. 

Existen dos tipos de microplásticos, dependiendo de su origen. Los 
microplásticos primarios son plásticos que se fabrican específicamente 
en tamaño reducido. Generalmente se usan en cosméticos, productos de 
higiene corporal, o abrasivos industriales. En vista de la gran cantidad de 
residuos que generan, varios países han regulado su producción 
(especialmente en la industria cosmética), como Reino Unido, Estados 
Unidos, la Unión Europea, o Tailandia. También se consideran 
microplásticos primarios los pellets de preproducción, que se usan como 
material base en la producción de diversos objetos, y que pueden verterse 
al medio en grandes cantidades por accidente en su transporte o 
almacenaje. 

Los microplásticos secundarios se derivan de la fragmentación de 
macroplásticos en el medio. Generalmente se producen por 
fotodegradación (reacciones químicas generadas por exposiciones 
prolongadas a la luz ultravioleta), aunque también por erosión o acción 
biológica. Algunas de las fuentes de microplásticos secundarios se dan 
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en vertederos, zonas de construcción o derivadas de la fragmentación de 
redes y aparejos de pesca, textiles o desgaste de neumáticos. 

La contaminación por microplásticos está presente en la mayoría de 
compartimentos medioambientales a nivel mundial. Además, se ha 
probado que tienen potenciales efectos nocivos en la fauna y flora y que 
pueden introducirse muy fácilmente en la cadena trófica, pudiendo 
alcanzar a la alimentación humana. Sin embargo, actualmente las 
propiedades más nocivas no se atribuyen al polímero en sí, sino a los 
distintos tipos de aditivos usados en su producción o los contaminantes 
adsorbidos en el medio en el que se encuentren. Por ejemplo, el Bisfenol 
A o el di-(2-etilhexil)ftalato (DEHP), aditivos comunes en la producción 
de diversos plásticos, tienen efectos adversos en el sistema endocrino y 
la salud reproductiva, así como efectos carcinogénicos. 

La mayoría de las publicaciones que tratan el tema de la contaminación 
por microplásticos se centran en sus efectos en el medio marino Esto se 
debe a que la mayoría de los residuos acaban en mares y océanos, ya sea 
mediante el transporte por ríos, arrastrados por la lluvia o por transporte 
atmosférico, siendo capaces de atravesar las plantas de tratamiento de 
aguas. Una vez en el medio, dependiendo de su densidad pueden flotar 
cerca de la superficie o hundirse, mezclándose con el sedimento, pasando 
en ambos casos a ser fácilmente accesibles para la fauna local. De hecho, 
desde 2010 ya existen más de 1500 estudios que han encontrado 
partículas de microplásticos en organismos marinos. 

También se han evidenciado sus efectos en suelos, donde afectan a los 
organismos que regulan la descomposición de la materia orgánica, 
necesarios para el reciclaje de nutrientes, imprescindibles para el 
desarrollo de la flora. Las fuentes de contaminación más comunes de 
microplásticos en suelos derivan de la agricultura y la gestión de 
residuos. En suelos destinados a la agricultura las fuentes más comunes 
son el uso de mantillos de plástico, partes de invernaderos o el uso de 
lodos de depuradora como fertilizante. En áreas urbanas muchos 
microplásticos se generan por el desgaste de neumáticos. 

Los microplásticos también influyen en la contaminación atmosférica, 
ya que pueden ser transportados fácilmente por el aire, pudiendo 
permanecer en suspensión grandes distancias. Las partículas más 
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pequeñas son susceptibles de ser inhaladas. Sus fuentes principales son 
partículas textiles, desgaste de neumáticos y actividades industriales. Su 
permanencia en la atmósfera depende de varios factores, como su 
tamaño, su densidad, su morfología, la velocidad del viento, 
precipitaciones u obstáculos físicos. En general son más prevalentes en 
zonas urbanas que en rurales. 

En la actualidad, la técnica más utilizada para el análisis y 
monitorización de microplásticos en el medio ambiente es la 
espectrometría vibracional. Tiene, como ventaja, que cada polímero 
presenta un espectro específico, por lo que, a priori, es fácil identificarlos 
si no han sufrido modificaciones muy significativas. Sin embargo, es 
difícil identificar los procesos específicos de degradación o 
envejecimiento que tienen lugar en los polímeros debido a las distintas 
condiciones medioambientales. Además, esas alteraciones pueden tener 
lugar no solo en la cadena polimérica sino también en sus aditivos. Todo 
ello complica la identificación de los fragmentos sospechosos de ser 
microplásticos. 

 

3. Espectrometría 

Como ya se ha comentado, la técnica a utilizar en esta Tesis Doctoral 
para el análisis de ambos tipos muestras es la espectrometría IR. Esta es 
una técnica que se ha ido desarrollando durante varios siglos, desde que 
el astrónomo William Herschel descubrió la radiación IR de la luz solar 
en 1800. Sin embargo, no fue hasta mediados del siglo XX que la 
espectrometría IR se empezó a utilizar, primero en aplicaciones militares 
y, posteriormente, de forma comercial, principalmente para el análisis de 
endorfinas y caucho sintético. Desde entonces sus aplicaciones han 
aumentado significativamente, empleándose de manera sistemática en 
campos tan diversos como medicina, farmacia, estudios 
medioambientales y múltiples aplicaciones industriales.  

En la actualidad, la espectrometría IR es una de las técnicas analíticas 
más utilizadas. Puede ser usada en casi todo tipo de muestras, con la 
excepción de gases nobles, O2, H2 y N2, que son invisibles a la radiación 
IR. A su éxito ha contribuido mucho el hecho de que cada substancia 
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tiene un espectro diferente (excepto isómeros ópticos), convirtiendo la 
espectrometría IR en una herramienta muy versátil en cuanto a sus 
aplicaciones. 

Conceptualmente, la espectrometría se basa en medir la interacción de la 
radiación con la materia. En el caso de la espectrometría vibracional, se 
usan números de onda de 14000 a 4 cm-1 (400-4 cm-1: infrarrojo lejano, 
4000-400 cm-1: infrarrojo medio, 14000-4000 cm-1: infrarrojo cercano). 

Cuando la radiación impacta en una muestra, las diferentes longitudes de 
onda son reflejadas o absorbidas. Es midiendo estas interacciones como 
se obtienen los espectros. En el caso de la radiación IR absorbida, esa 
energía se emplea para excitar los niveles vibracionales y rotacionales de 
los enlaces en las moléculas. Estas no son estructuras estáticas, si no que 
están en continuo movimiento, tanto sus átomos como la longitud y 
orientación de los enlaces químicos. Cuando un haz de radiación con la 
longitud de onda adecuada impacta con la molécula sus niveles de 
energía cambian, modificando las tensiones y flexiones de los enlaces de 
un estado fundamental a uno excitado (más energético). Las moléculas 
con un mayor número o diversidad de átomos tienden a exhibir 
transiciones rotacionales y vibracionales más diversas, lo que se traduce 
en espectros más complejos con más picos o bandas. 

Existen distintos tipos de modalidades de medida, dependiendo de cómo 
se determine la interacción entre la muestra y la radiación. 

El modo de transmisión es el más tradicional. En este caso el objetivo es 
que el haz de radiación IR pueda atravesar la muestra e impactar en el 
detector. En este modo de medida la tarea más complicada es, 
generalmente, la preparación de la muestra, la cual puede adoptar 
distintas configuraciones, ya sea como disolución, película fina, 
integrada en pastillas de KBr o en una suspensión de Nujol. En el caso 
de los gases, se usa una celda con ventanas transparentes al IR. 

La reflectancia es un método más apropiado para la medida de muestras 
opacas o sólidos gruesos, ya que se mide la radiación reflejada en su 
superficie. Por ello, los espectros obtenidos son muy susceptibles a la 
morfología de la muestra, pudiendo darse una reflexión difusa (en caso 
de polvo o superficies irregulares) o una reflexión especular (en 
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superficies lisas y homogéneas). Cada uno de estas situaciones requiere 
un modo distinto de tratamiento de los datos para obtener un espectro 
interpretable. Precisamente, uno de los retos para el analista es decidir 
cuál es el más apropiado, ya que no suele haber muestras con reflexión 
puramente especular o difusa. 

Los fundamentos de la técnica de reflectancia total atenuada (ATR) son 
técnicamente más complejos, ya que se basa en la interacción del campo 
electromagnético evanescente del haz de radiación que se genera en la 
interfase entre dos materiales (siendo uno de ellos la muestra). Cuando 
un haz de radiación atraviesa un medio e incide en otro, parte de la 
radiación se refleja y parte se transmite en un determinado ángulo. Si el 
haz incidente supera un ángulo crítico toda la radiación es reflejada 
internamente, por lo que no existe pérdida de energía por transmisión, 
pero aún hay una pequeña pérdida de energía en forma de “onda 
evanescente” que se disipa en el segundo medio, en nuestro caso, la 
muestra. Para conseguir este efecto, la muestra se coloca sobre un 
material con alto índice de refracción (ZnSe, germanio, diamante, etc.) 
que es atravesado por la radiación, siendo la interacción de la nuestra con 
la onda evanescente la que permita la adquisición del espectro. 

Además de estos modos de operación, se suele hibridar la espectrometría 
IR con otras técnicas analíticas para obtener información adicional. Una 
de ellas es la microscopía IR (micro-IR), que combina la espectrometría 
IR con la microscopía. Es especialmente útil para la visualización y 
análisis de partículas de hasta 10 µm2 (aunque a partir de 30 µm2 hay 
gran cantidad de ruido instrumental). La mayoría de los equipos de 
micro-IR pueden trabajar en modo transmitancia, reflectancia o ATR, 
redireccionando el haz de radiación mediante una serie de espejos 
móviles. Esta técnica permite el análisis no solo de partículas muy 
pequeñas, sino de muestras muy heterogéneas o hechas de materiales 
compuestos, como en aplicaciones biológicas, forenses, de control de 
calidad o en microplásticos. 

A pesar de la gran utilidad de la información que aportan las distintas 
técnicas de espectrometría IR, en muchos casos la información que 
brindan es incompleta o es difícil de interpretar. Por ejemplo, el GN, al 
ser una mezcla de varios gases relativamente similares tanto en 
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composición como en características espectrales, genera espectros muy 
complejos, con una gran cantidad de picos superpuestos 
correspondientes a distintos analitos. En el caso de los microplásticos, el 
envejecimiento y los materiales adsorbidos o las distintas reacciones de 
degradación que el polímero pueda haber sufrido en el medio puede 
dificultar su identificación. Para mitigar estos problemas en esta Tesis 
Doctoral se propone el uso de distintos modelos quimiométricos 
desarrollados sobre los datos espectrales. 

 

4. Quimiometría 

La quimiometría se define como la aplicación de técnicas matemáticas, 
estadísticas y de lógica formal al diseño de experimentos e interpretación 
de datos químicos. La IUPAC la define como la aplicación de la 
estadística al análisis de datos químicos (de química orgánica, analítica 
o medicinal) y al diseño de experimentos y simulaciones químicas. 

Su desarrollo comenzó en la década de los 70 con pioneros como Herman 
y Svante Wold, Bruce Kowalski, Paul Geladi o Michele Forina. En sus 
inicios era una disciplina puramente teórica, íntimamente ligada con la 
computación y el desarrollo de instrumentos analíticos. A partir de la 
década de los 80 empezaron a aparecer las primeras publicaciones que 
empleaban la quimiometría para resolver problemas simples, 
principalmente de espectrometría y cromatografía. 

En los años siguientes su relevancia creció, tanto en aplicaciones como 
en complejidad de los problemas que solucionaba. Esto atrajo industrias, 
como la farmacéutica o alimentaria, que propiciaron muchos avances y 
nuevas estrategias de trabajo. Actualmente también se aplica en 
petroquímica, metabolómica, genética, biología, medicina, datos 
medioambientales, ciencia forense, etc. 

Existen dos ramas principales de la quimiometría, dependiendo de su 
área de aplicación: el diseño de experimentos y el análisis multivariante 
de datos. El primero se centra en la optimización de los parámetros de 
un proceso experimental (una síntesis, por ejemplo). Su objetivo 
principal es la obtención de la mayor cantidad de información posible 
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realizando el menor número de experimentos. Con ello no solo se 
reducen el tiempo y costes de los procesos, si no que se genera 
información acerca de las sinergias entre los distintos parámetros 
experimentales. 

El análisis multivariante de datos, por otra parte, se usa para extraer la 
mayor cantidad posible de información de tablas de resultados. Por 
ejemplo, en espectrometría o cromatografía pueden obtenerse tablas de 
datos de miles de variables para cientos de muestras. Esta ingente 
cantidad de datos pueden ser difíciles de interpretar. 

En los últimos años se han desarrollado un gran número de técnicas para 
clasificación, cuantificación y reconocimiento de patrones. En esta Tesis 
se usaron cuatro metodologías: el análisis de componentes principales, 
regresión parcial por mínimos cuadrados, arboles de regresión y 
clasificación y máquinas de vectores de soporte. 

El análisis de componentes principales (PCA) es una de las técnicas 
más usadas en quimiometría. Se usa para realizar análisis no supervisado 
(solo se tienen en cuenta las variables experimentales). Esta técnica se 
basa en concentrar la información inherente a los datos en un nuevo 
conjunto reducido de variables (denominadas componentes principales) 
calculadas mediante combinaciones lineales de las variables originales. 
Cada componente principal explica parte de la información o varianza 
de los datos. El analista tiene que seleccionar un número adecuado de 
componentes teniendo en cuenta, entre otras cosas, su varianza 
explicada. La representación gráfica de los scores (parámetros 
calculados para cada una de las muestras) de dos o tres componentes 
principales permitirá evaluar la existencia de grupos de muestras o pautas 

La regresión parcial por mínimos cuadrados (PLS-R), es un método 
de regresión multivariante supervisado, especialmente útil para 
aplicaciones donde hay un gran número de variables descriptoras X 
(predictores) que se relacionarán con otro/s parámetro/s Y 
(predictandos). Su versatilidad ha hecho que se aplique no solo en 
quimiometría, también en bioinformática o aprendizaje automatizado 
(machine learning).  
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Existen distintos algoritmos para calcular modelos PLS-R pero el más 
común, y la base de muchas otras opciones es el orthogonal score PLS-

R. El proceso es similar al de PCA, en el sentido de que se proyectan las 
variables hacia un número menor de factores, en este caso denominados 
variables latentes (LVs) o componentes de PLS que, a diferencia de 
PCA, tienen en cuenta los valores de los predictandos. PLS-R se ha 
convertido en una técnica estándar de-facto, muy útil para predecir 
propiedades difíciles de medir instrumentalmente de otra forma. 

Los arboles de regresión y clasificación son técnicas supervisadas 
basadas en la creación de particiones binarias en estructuras tipo árbol, 
en la que cada partición, o nodo se divide en dos subramas. En cada uno 
de los nodos se describe una condición, por ejemplo, un número de onda 
y una intensidad específica, de modo que las muestras se dividen entre 
las que superan esa intensidad y las que no, asignando cada una de las 
muestras a una o varias categorías. El proceso se repite hasta que, 
idealmente, todas las muestras son separadas en sus correspondientes 
categorías o se cumplen otras condiciones marcadas por el usuario. 
Existen variantes destinadas a realizar modelos predictivos (de 
regresión). 

Las máquinas de vectores de soporte (SVM) son un algoritmo de 
clasificación supervisado (aunque también se pueden usar para regresión 
y detección de anómalos). Originalmente fueron desarrollados para 
separaciones de dos categorías, por lo que en escenarios con múltiples 
clases se establece un modelo para cada una de ellas, separándola del 
resto (aproximación 1-vs-todos). Posteriormente se generan algoritmos 
capaces de separar múltiples clases simultáneamente, pero suelen dar 
resultados ligeramente peores. Fundamentalmente, SVM genera una 
división mediante el cálculo de una “frontera” (una línea, plano o 
hiperplano en dimensiones más altas). Esta frontera se coloca de forma 
que la distancia (márgenes) con los puntos de datos más cercanos se 
maximice. Una peculiaridad de este algoritmo es que solo tiene en cuenta 
las muestras más cercanas a la separación. 

En problemas reales lo más común es que no se pueda establecer una 
división lineal perfecta entra las clases. En casos donde los grupos no 
son separables linealmente (justamente aquellos para los que se indica 
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esta técnica), se aumenta la dimensionalidad matemática, Para ello se 
añaden nuevas variables calculadas aplicando una función “kernel” (o 
función de núcleo) a las originales, siendo los kernel más comunes 
funciones lineales, polinomiales o radiales (gaussianas). La idea 
conceptual es que, al trabajar en una dimensionalidad mayor, se pueda 
crear una separación entre grupos que no habría sido posible en la 
dimensionalidad original. 

Otra aplicación relevante de la quimiometría es determinar cuáles son las 
variables más importantes de un conjunto de datos para un propósito 
específico. Aunque existe una gran cantidad de técnicas disponibles para 
esta finalidad, las que se han aplicado en esta Tesis Doctoral son: 

Regresión parcial por mínimos cuadrados en intervalos (i-PLS): 
Consiste en dividir el conjunto total de variables originales en intervalos 
de una determinada amplitud (seleccionada por el analista). Se realiza 
una regresión PLS en cada uno de ellos. El intervalo que genere un mejor 
modelo es seleccionado. El proceso se repite, combinando el intervalo 
previamente seleccionado con cada uno de los demás y, si el modelo 
mejora para alguna de esas combinaciones, se añade un intervalo 
adicional a la selección. Siguiendo esta fórmula se pueden seleccionar 
más intervalos hasta que el modelo deje de mejorar o se llegue a un límite 
seleccionado por el analista. La selección final reflejaría las variables que 
ofrecen una mayor cantidad de información. La desventaja más acusada 
de este método reside en la capacidad de computación necesaria y los 
elevados tiempos necesarios para realizar el estudio. Esto es 
especialmente acusado si se seleccionan intervalos pequeños, ya que 
fuerza al ordenador a hacer más modelos PLS. A pesar de ello, con una 
sección de parámetros adecuada, iPLS puede ser una técnica útil para 
realizar una selección de variables satisfactoria. 

El Selectivity Ratio Index, traducido como “relación de selectividad”, 
(SRI): Es un parámetro que mide la relación entre la varianza explicada 
y la residual por cada variable en un modelo de PLS. Aunque no es un 
método de selección en sí mismo, es un parámetro numérico que permite 
establecer un ranking de las variables, lo que permite establecer una 
selección manual. Valores de SRI superiores a 1 indican una relación 
positiva de varianza explicada e importancia en ese modelo. La mayor 
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desventaja de este método es que cada variable se evalúa de forma 
individual, ignorando las posibles sinergias entre ellas. 

Importancia de la variable en la proyección (VIP): Es un parámetro 
calculado para cada variable en un modelo PLS. Se define como la suma 
de los “pesos” de las variables en cada factor PLS, ponderados con el 
porcentaje de varianza explicada en Y en cada variable latente (factor). 
De esta forma las variables originales se jerarquizan de acuerdo con su 
capacidad para predecir mediante el modelo PLS. Del mismo modo que 
para SRI, los VIPs más altos se seleccionan ad-hoc. 

Eliminación de variables no informativas usando muestreo reiterado 
mediante Monte-Carlo: Se generan de forma aleatoria una gran 
cantidad de subgrupos de muestras, desarrollándose modelos PLS para 
cada uno de ellos. Se calcula un índice de fiabilidad para cada variable a 
partir del número de veces que presenta un valor positivo elevado en los 
coeficientes de regresión de los modelos, de forma que los índices más 
altos corresponden a las variables que contienen más información útil 
para la regresión de los modelos. Al realizar distintos modelos con 
muestras aleatoriamente seleccionadas se disminuye el riesgo de 
sobreajuste al conjunto de datos original. 

Random frog: Se basa en comparar los modelos PLS obtenidos 
empleando subconjuntos de variables seleccionadas aleatoriamente. Se 
desarrolla un primer modelo con w variables y se calculan sus errores de 
validación cruzada. Se elige aleatoriamente un conjunto de esas variables 
y también se calcula un modelo PLS y su error de validación. Si es mayor 
se descarta ese subconjunto; sino, se acepta y sustituye a la selección 
anterior. El proceso se repite un número seleccionado de iteraciones 
(cuantas más, mejor) y se calcula una probabilidad de selección para cada 
variable basada en el número de veces que aparece en un modelo 
aceptado. 

iPLS, SRI y VIP se incluyen en el paquete PLS-Toolbox de MATLAB, 
mientras que MCUVE y Random frog se incluyen en el paquete de 
libPLS. 

Selección manual: Al realizar un PCA, es posible utilizar los loadings 
para determinar las variables más importantes de cada conjunto de datos. 
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El proceso se establece de la siguiente forma: al desarrollar un PCA con 
todas las variables experimentales la representación de los scores de los 
componentes principales permite ver qué componente/s principal/es 
separa/n mejor cada categoría. Los “loadings” más altos de esos 
componentes principales corresponderían a las variables que separan 
mejor cada categoría. La mayor desventaja de este método es la inherente 
subjetividad de la selección y la falta de un criterio numérico relevante. 

PCA dinámico: Está basado en realizar un test t de Student para cada 
variable. El test evalúa la importancia estadística de cada variable para 
diferenciar un grupo de muestras del resto. La idea es que solo las 
variables estadísticamente significativas se usen para desarrollar un 
nuevo modelo. 

La representación gráfica de los “scores” del modelo PCA realizado con 
las variables seleccionadas (las estadísticamente significativas) permite 
al analista evaluar la separación de las muestras inmediatamente después 
de la selección, pudiendo incluso elegir un número menor de variables 
que permitan una diferenciación aceptable entre los grupos. 

Este algoritmo forma parte del programa Genex de Multid. 

No existe un método universal de reducción de variables, ya que los 
resultados obtenidos dependen mucho de los problemas a considerar y la 
naturaleza y las características de los datos. Por ello es importante 
seleccionar un método adecuado para cada situación específica. 

Para el análisis de gas natural se utilizaron modelos de PLS combinados 
con técnicas de selección de variables: MCUVE, iPLS, Random frog, 
SRI y VIP.  

En el caso de los microplásticos, se probaron varias técnicas con el 
objetivo de identificar distintos polímeros, con independencia de su 
envejecimiento, tanto en agua de mar como en seco. Finalmente, los 
resultados publicados son se obtuvieron mediante PCA, SVM y CART, 
con selección de variables por PCA dinámico y selección manual. 
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5. Conclusión 

Como conclusión general, en esta Tesis Doctoral se han aplicado 
diferentes técnicas espectrométricas en la zona infrarroja media y 
quimiométricas en dos campos socialmente relevantes. El objetivo 
fundamental es mejorar procedimientos analíticos existentes o sugerir 
otros nuevos. El Capítulo 2 estudia el efecto en los espectros de muestras 
de GN al mezclarlas con varios gases inertes, obteniendo picos 
espectrales más intensos y definidos. En los Capítulos 3 y 4 se crearon 
modelos para predecir la composición química e índice Wobbe de 
diversas muestras comerciales de GN. 

La premisa del Capítulo 5 es señalar la falta de información instrumental 
encontrada en muchas publicaciones relacionadas con el análisis de 
microplásticos, así como proponer una forma unificada de transmitirla. 
El Capítulo 6 estudia el efecto del envejecimiento ambiental sobre la 
poliamida 6.6. Para ello se analiza la evolución de su espectro IR y la 
morfología de las partículas, usando un microscopio de barrido 
electrónico (SEM). En el Capítulo 7 se obtuvieron los espectros de los 9 
polímeros más producidos a nivel global en varias formas (gránulos y 
polvo) y grados de envejecimiento. Usando varias técnicas 
quimiométricas, los espectros permitieron desarrollar modelos que 
predijeron el polímero que actuaba como componente principal de 
fragmentos obtenidos en muestras reales. 

Aunque en los dos campos considerados se pueden realizar nuevas 
aplicaciones o buscar nuevos objetivos, los trabajos presentados en esta 
Tesis Doctoral demuestran que la combinación de la espectrometría IR 
en la zona media, empleando diversas modalidades de medida, y distintas 
técnicas quimiométricas puede generar nuevos métodos de análisis 
fiables para el control de calidad con costes relativamente moderados, 
bajo consumo de reactivos y reducción en carga de trabajo y tiempos de 
análisis. 

 




