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Improving the calibration of building simulation with interpolated weather

datasets.

Abstract

The building sector offers huge potential for energy savings, which helps to achieve
environmental objectives and social benefits. A good approach to determine both the energy
consumption of new buildings and the energetic refurbishment of existing buildings is through
thermal simulation.

This paper studies how building energy simulation calibration can be improved using
interpolated weather data to determine on-site meteorological parameters at the building
location.

The lack of precise meteorological data in the exact location of buildings means that data from
nearby stations is generally used, not knowing how far the error spreads in the results of heating
demands and loads. The novelty of this paper lies in the analysis of error propagation to the
results of demands and loads of thermal simulation, as well as in the method used to reduce
these errors by TPS interpolation.

As an interesting conclusion, the average (CV(RMSE)) obtained in the simulation of the studied
building, placed successively in each one of the 70 meteorological station locations, decreases
from 74% when using the nearest neighborhood to each site to 26% using the TPS interpolation
technique. The error in the building simulations is almost three times lower using the studied

method.
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Nomenclature

AEMET Spanish State Meteorological Agency

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning
Engineers

CTE Spanish Technical Building Code

CV(RMSE) Coefficient of Variation of the Root-Mean-Square Error

EPW EnergyPlus Weather Format

GIS Geographic Information System

INE National Statistical Institute of Spain

MAE Mean Absolute Error

MeteoGalicia

Galician Meteorology Agency

NN Nearest Neighbourhood

RMSE Root mean square error

StiD weather station ID

TPS Thin Plate Splines

TRNSYS Transient System Simulation Tool
Introduction

Building energy consumption accounts for between 20% and 40% of global energy

consumption in developed areas [1]. The housing sector represents approximately 40% of EU

energy consumption [2]; more specifically, in Spain, the building sector energy consumption

represents 33% of global energy consumption [3]. According to the Eurostat analysis,

approximately 50% of overall energy consumption for a typical household in Spain corresponds

to space heating or cooling [4]. Thus, in view of its importance, the building sector offers huge

potential for energy savings.




Lowering building energy costs while increasing in-house comfort will help to achieve global
environmental objectives and contribute to social well-being.

When designing an efficient building or analyzing an existing building, the energy demand and
consumption must be evaluated to recommend measures for reducing energy consumption. A
good method to evaluate building energy demands is the use of thermal simulations [5], [6]. In
addition, most current building regulations require energy demand estimates that can only be
obtained by thermal simulation [7].

There is a gap between simulated and real building energy performance [8]. This difference
between the measured and simulated energy consumption of real buildings can be adjusted
through model calibration [9]. ASHRAE’s Guideline 14-2002 for Measurement of Energy and
Demand Savings includes calibrated simulations as an evaluation method [10]; however, in this
field, there is a deficiency in standards for building calibration [11].

Weather is a fundamental parameter when calibrating a simulation [12]. For example, M.
Royapoor et al. concluded that, to have a calibrated model, on-site weather parameters should
be used [13]. Another example is the study of H. Yoo et al., who analyzed different weather
parameters and their influence on heating and cooling loads [14]. G. Mustafaraj et al. improved
the accuracy of model calibration, showing the need for the creation of an hourly year weather
data file [15].

Six weather variables were interpolated at 70 meteorological station locations to generate the
annual meteorological archives and simulate a representative building in Galicia using the
Transient System Simulation Tool TRNSYS.

When simulations are performed at locations without weather recorded data, two techniques of
providing data are primarily used: interpolation and synthetic data generation [16], [17]. The
purpose of using interpolation functions is to obtain intermediate values consistent with those
obtained at nearby locations [18]. Global techniques are characterized by using all the measured
data to make predictions. In other words, a single function is applied to the entire study area.
This approach usually results in a smooth predicted surface, which may be reasonable as long as

the studied surface is known to have a global trend. Local interpolation techniques are usually



based on the same methodology but are applied on a region of the total sample set. From this
point of view, global techniques can be considered as a simplification of local techniques
because the latter result in interpolated surfaces that are more flexible and better adapted to the
local characteristics of the sampled data. Deterministic interpolation techniques calculate a
continuous surface by using the geometric characteristics of the measurements. We can divide
these methods into two groups: global and local techniques. Local techniques, such as nearest
neighborhood (NN) and thin plate splines (TPS), calculate the interpolated values from the
measured points included in the neighborhoods, which are smaller spatial areas within the
global study area. In previous research [19], [20], we have evaluated different types of
interpolations and determined that TPS is a good interpolation method when using these data in
thermal simulations for single-family residential buildings; in this article, to generalize the
methodology, we will develop thermal simulations for a building with eight above-ground
stories over an area six-times larger and compare the results using the nearest meteorological
station with the values obtained from interpolation by the TPS method. NN is currently the
typical method used to establish the climatic conditions of the thermal simulations.

The chosen method of comparison is through maps of interpolated values represented by GIS
software (QGIS [21]) because, when dealing with 70 meteorological stations, tables of values
are of limited use.

The average CV(RMSE) error obtained in the simulations of the studied building, placed
successively at each one of the 70 meteorological station locations, decreases from 0.74 using
the closest station (NN) at each site to 0.26 using the TPS interpolation technique. The error in

the building simulations is almost three-times lower using the TPS method.



Material and Methods

The experiment developed in this paper consists of simulating a typical building in the 70
locations with weather stations available, using data from the meteorological station in situ, data

from the nearest meteorological station, and data obtained through TPS interpolation.

We assume that the simulation results with the station data at the location of the building are
correct and compare the errors committed with the other two methods: the nearest weather

station and the values obtained in the building location by interpolation with the TPS method.

A representative construction was chosen given a common geometric building structure in

Galicia (northwest Spain) based on the National Statistical Institute of Spain (INE) database.

Figure 1 shows a 3D model of the building created using the TRNSYS 3D-Plugin for Trimble
SketchUp. The selected building has eight above-ground stories with a floor area of 1689.4 m?
and a total volume of 5053.2 m?. Each story was characterized as a thermal zone in the model.
The main facade is oriented towards the east. The impacts of the shadows of adjacent buildings

were also taken into account (see TRNSYS 3D model in Figure 1).



Figure 1. Photograph and TRNSYS 3D model of the building.
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Figure 2. Simulation studio panel from TRNSYS.

Figure 2 illustrates the model in the TRNSYS simulation environment. Sensible heating
demands were evaluated assuming unlimited thermal resources for the building. The set point
temperatures, internal gains (e.g., lighting) and building air infiltration values correspond to the
Spanish Technical Building Code (CTE) specifications. The Spanish Technical Building Code,
promulgated by Royal Decree 314/2006, 17 March 2006, is the regulatory framework governing
the basic quality requirements for buildings in Spain, including facilities. Based on the
occupancy profiles of the Spanish Institute for Energy Diversification and Saving (IDAE) for
this type of dwelling, the temperature controls were fixed to 20°C from 3 pm to 11 pm. The
heating season regime was set from the October’s last Sunday to April 1. Based on the Spanish
procedures to calculate building energy performance, the climate zones for the analyzed area do
not require calculation of the cooling; thus, only heating demand was assessed. For more

information about the simulation TRNSY'S model, refer to [20].



Table 1 and Table 2 show the TRNSYS wall and window type manager definition entries,

respectively.
Wall Wall type Thickness. Transmittance.
category [mm] [W/m? K]
External Roof 400 0.500
Facade 201 0.748
Adjacent Ceiling 384 0.940
Wall 90 0.508
Boundary Basement wall 200 3.892
Ground 400 2.314
Table 1. Building envelope properties
Values Characteristics
Glazing 4/16/4 Pilkington Optitherm.
0.586 G-value.
1.06 Transmittance [W/m? K].
Frame 0.3% Frame window area.
3.03 Transmittance [W/m? K].
0.6 Solar absorptance.
0.9 Emissivity.

Table 2. Window properties



Studied area and data sources

The analysis was conducted for the Galician Meteorology Agency (MeteoGalicia) net, using
seventy different meteorological stations, in the region of Galicia (Northwest Spain). Galicia
has an area of 29,574.4 km? (11,418.7 sq mi) with a population of 2.720.668 people (January
2016) (source: INE, Spanish Statistical Office). Galicia has a maritime influenced climate. This
region has climatic characteristics analogous to those prevalent throughout Western Europe:
cool summers and mild winters, with the possibility of rainfall along the whole year. In general
terms, according the Koppen-Geiger climate classification, the Galician climate is considered to
be Csb. However, there are different microclimates due to its complicated relief, that is, the
climate of Galicia is characterized by a progression between a predominance of pure oceanic
climate with climatic zones that can be considered as subtropical. Rainfall ranges between 594
mm and 3143 mm, based on MeteoGalicia records. The spatial distribution of temperatures
presents a variation between the coast and the interior, related to the presence of the Atlantic
Ocean. According to the CTE, the studied area is comprised of 6 climatic zones (i.e., C1, C2,
C3, D1, D2 and E1), which are in relation with the climatic severity. The C climate zone has a
less severe climate than those of D or E, and the D climatic zone is less severe than that of E.
Climatic zones are indicated in the HE1 Section of the CTE Energy Savings Document. In our
case study, the calculation table is reduced to the 4 province capitals in Galicia: Corufia, Lugo,

Orense, and Pontevedra. Table 3 allows the CZ of any location in Galicia to be obtained from its

altitude.
Province Capital C.Z. Elevation (e) [m] C3 C2 Cl D2 D1 El
Corufia Cl1 0 e<200 €>200
Lugo D1 412 e<500 e>500
Orense D2 327 e<150 e<300 e<800 =800
Pontevedra Cl 77 e<350 e>350

Table 2. Climatic zone (CZ) calculation correspondence for locations in the four provinces of Galicia
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StID | LONGITUDE | LATITUDE | ELEVATION f;:l‘:a"" StID | LONGITUDE | LATITUDE | ELEVATION f;:l‘:a""
10045 | -8.26221896 | 43.2413695 | 94 Cl 10119 | -7.97190638 | 41.9036087 | 1059 El
10046 | -7.8943978 | 43.3430821 | 651 DI 10122 | -7.93307372 | 42.5797597 | 991 DI
10047 |-7.08301941 | 43.540711 | 51 Dl 10124 | -8.55943646 | 42.875961 | 255 DI
10048 | -7.3446339 | 42.1195584 | 1026 El 10126 | -8.93618636 | 42.3820883 | 121 Cl
10049 | -9.02859829 | 42.5551672 | 30 Cl 10129 | -8.79879168 | 42.4030844 | 34 Cl
10050 |-8.25226804 | 43.491464 |37 Cl 10130 | -6.78345593 | 42.3751641 | 1620 El
10052 | -8.77630574 | 42.7455814 | 661 DI 10132 | -7.04707469 | 42.7071022 | 1310 El
10053 | -7.5444682 | 42.9948754 | 400 Dl 10136 | -7.04785524 | 43.1771242 | 789 El
10055 | -7.78307165 | 43.2265962 | 684 El 10137 | -6.91530332 | 42.9559943 | 910 El
10056 | -7.50178093 | 42.4731965 | 645 El 10138 | -6.89255989 | 42.2078109 | 1762 El
10058 | -7.39877783 | 41.9743289 | 546 D2 10141 | -8.1328198 | 43.5625001 | 278 DI
10060 | -8.67944536 | 42.0786 484 Dl 10144 | -8.18961314 | 42.926242 | 362 DI
10061 | -8.13729095 | 42.6143856 | 500 DI 10154 | -8.60187382 | 42.3206964 | 260 Cl
10062 | -6.92289994 | 42.8207736 | 1364 El 10155 | -7.877746 4235299 139 C3
10063 | -8.42852879 | 42.2253186 | 371 Dl 10161 | -8.68605504 | 42.1699246 | 460 Dl
10064 | -8.66421685 | 42.4092445 | 57 Cl 10162 | -7.63087786 | 43.6308822 | 59 DI
10067 | -8.70430461 | 42.4592563 | 424 Dl 10800 | -9.17831255 | 43.1244507 | 5 Cl
10085 | -8.80470645 | 42.5800761 | 3 Cl 14001 | -8.72758817 | 42.2416662 | 7 Cl
10086 | -8.40021838 | 42.3152979 | 705 DI 14003 | -8.53118151 | 43.3472312 |5 Cl
10087 | -8.86830023 | 42.9686119 | 369 Dl 19003 | -8.43471917 | 42.7847757 | 225 DI
10088 | -7.44625149 | 43.4545921 | 595 El 19010 | -8.83688392 | 42.8014087 | 157 Cl
10089 | -7.98265101 | 42.9073811 | 477 Dl 19012 | -8.85457036 | 42.6746637 | 59 Cl
10091 | -8.86619845 | 41.9944708 | 473 DI 19014 | -7.34011628 | 43.456918 | 115 DI
10092 | -8.05246448 | 43.7042593 | 254 DI 19018 | -7.19645044 | 43.0359061 | 917 El
10096 | -8.69099082 | 43.095195 | 540 Dl 19020 | -7.38156359 | 42.7966782 | 416 DI
10097 |-7.78878175 | 43.5917779 | 576 DI 19021 | -7.71832325 | 42.6144356 | 391 D1
10099 | -7.47627801 | 42.6476099 | 432 Dl 19031 | -7.83647734 | 42.4295336 | 403 D2
10102 | -7.19238705 | 42.5946818 | 777 El 19033 | -7.43197512 | 42.3875651 | 469 D2
10109 | -8.23823651 | 42.41459 | 553 D2 19040 | -7.18801093 | 41.8981999 | 778 D2
10110 | -7.7083803 | 41.9462219 | 807 El 19041 | -7.04890488 | 42.0174566 | 1025 El
10112 |-7.96814974 | 42.1736211 | 623 D2 19045 | -8.52493187 | 42.1804032 | 41 Cl
10115 | -7.00863716 | 42.3553978 | 1229 El 19047 | -8.79153818 | 41.9382123 | 52 Cl
10116 |-7.08961183 | 42.1630374 | 851 El 19050 | -8.3186965 | 42.7791102 | 211 Cl
10117 | -7.29715492 | 42.3938725 | 1026 El 19056 | -8.71611497 | 42.537132 | 52 Cl
10118 | -7.37481102 | 43.6448512 | 421 DI 50500 | -8.52121113 | 42.88662974 | 305 DI

Table 3. Weather station network characteristics

Based on the ASHRAE handbook [10], six meteorological variables were analyzed: wind speed

and wind direction, global radiation, pressure, temperature and relative humidity. Although the

ASHRAE recommends the use of these six variables, it has been shown through different

methodologies that weather files may be obtained from monthly values of maximum and

average temperatures, average wind speed and daily insolation [22]. Obviously, the use of

simplified weather data should lead to poor simulation results [23]. In this case, the wind

direction and the pressure were used because an empirical method described in the ASHRAE

handbook was applied to estimate infiltrations [20]. The Galician MeteoGalicia agency network

comprises of 155 weather stations with a density of 0.005 station/km?; however, because of a

lack of measured variables or data gaps, only 70 (Figure 3) stations were considered. The
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weather station network characteristics are given in Table 4. The weather station ID (StID) is

the same as that used by MeteoGalicia.
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Figure 3. Weather station network placement.

The stations of the MeteoGalicia network are not placed following a spatial pattern; in addition,
there are data gaps in the measured meteorological variables. These two aspects imply problems
for the interpolation analysis. Thus, the data gaps were filled using TPS data estimates. The data
gaps were not considered when calculating the errors. As expected, the absence of data for a
single weather variable (i.e., there is no data during one or more hours) means that we cannot
generate an input weather data file during this period.

We used EnergyPlus software to generate the EPW meteorological data files necessary to
develop the TRNSYS simulations. Each EPW data file is a text file with 8760 rows in our case
(hours in a year), with data at ordered time intervals.

The simulation time step was fixed at one hour.
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Introduction of interpolation techniques

The local interpolation techniques tested in this paper are nearest neighborhood (NN) and thin
plate splines (TPS). NN is the easiest and least time-consuming method to approximate missing
measurements. NN is based on calculating weighted averages of values from a set of nearby
locations. The simplest version of this technique considers only one location in the
neighborhood; thus, it selects the value of the nearest point and produces a piecewise constant
surface as a result. One of the most important problems of weighted-average methods such as
NN is that the interpolated value will never be higher or lower than those used to work out the
interpolation.
Thin plate splines (TPS) method is a local interpolation method whose effectiveness has been
proven to obtain accurate surface weather datasets. TPS assumes that the variable in a given
location x, say X(x), is a sum of two theoretical functions, X(x)=s(x)+ &(x), where s(x) denotes
the signal function and &(x) for the noise.
The signal, s(x), is estimated by a function, in our case f(x); this function minimizes the squared
error for the observations and is subject to the restriction that this function f(x) has a certain
level of smoothness, that is:

X Ce) = F )2 + A SIf7 (0] dx,
where n is, in this case, the number of measurements in the neighborhood, and the smoothing
parameter determines the estimator degree of smoothness.
All the interpolations were conducted using the R environment [24]. Specifically, to perform the

TPS analysis, the library "fields" [25] was implemented.
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Error Calculation

A collection of skill scores was established to evaluate the interpolation techniques (Table 5)
[26], [27]. The scores were chosen to evaluate the difference between real and estimated values,
both in terms of the locations and in terms of thermal simulation results. The scores were
calculated hourly, thus allowing for a better assessment of the time series.

Mean absolute error (MAE) is a measure of average error that shows the errors in the same unit
as the weather variable itself [26]. MAE ranges from 0 (best case) to an unbounded value. Root
mean square error (RMSE) is used to reflect the variability distribution of the errors. This skill
score has a high sensitivity to large outliers [28]. The coefficient of variation of the mean square

error (CV(RMSE)) is the root mean square error normalized to the observed input values range.

Skill score Equation®
n
|X; Yl
Mean absolute error (MAE) MAE = —
i=1
n
X — V)2
Root mean square error (RMSE) RMSE = Z %
i=1
_ RMSE
Mean square error coefficient of variation CV(RMSE) = H
(CV(RMSE)) - N

*Explanation of the variables:
N: sample size, 8,760 for hourly counts.
(X —Y) = Difference between the observed (X) and actual values (Y)

Table 4. Definition of the skill scores
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Results and discussion

The results obtained by running the interpolation at the 70 locations in 2015 during the 8760

hours of a year are analyzed in this section.

Weather variable estimation

The relative skill of each climatic zone and weather variable, based on TPS interpolation results,
is summarized in Table 6. As scores for each variable have different scales, the average ranks
were calculated to produce an overall rating. On this basis, C1 emerges as the best climatic zone
for almost all weather variables except wind direction, where D1 performs better. C3 has been
excluded because only one station is located in this climatic zone. These results indicate the
influence of altitude in the interpolation estimates. Although C1 is the climatic zone with the
best estimation results, the differences between the climatic zones are relatively small.
Nevertheless, the domain-wide statistics may hide local variations in weather variables that
average out when considering all stations together. Next, the interpolation results for each

location and weather variable are analyzed separately.

Temperature Relative-Humidity =~ Pressure Global-Radiation Wind-direction Wind-speed
S;Iilnelatic MAE # RMSE # MAE # RMSE # MAE # RMSE # MAE # RMSE # MAE # RMSE # MAE # RMSE #
Cl 084 3 1.16 3 523 3 674 2 8289 5 102.71 2 2525 3 49.70 1 6946 2 10671 2 1.14 2 184 4
C3 078 2 0.99 1 4.16 1 5.40 1 7208 3 78.71 1 2254 1 57.71 3 11288 5 14869 5 252 5 0.74 1
Dl 0.75 1 1.08 2 487 2 675 3 81.13 4 14815 5 2842 5 5748 2 6450 1 99.11 1 173 4 1.75 3
D2 093 4 127 4 573 4 7.50 4 5511 1 107.14 3 2683 4 6056 4 9933 4 139.15 4 125 3 1.10 2
El 1.03 5 143 5 610 5 844 5 71.10 2 13640 4 2355 2 67.15 5 7532 3 112.89 3 1.07 1 225 5

Table 5. Skill scores based on the TPS interpolation results

First, we evaluate whether there is any spatial pattern in the relative skill of the interpolation
methods. Figure 4 shows, for each technique (i.e., NN and TPS), the analysis of the CV(RMSE)
distribution for the six studied weather variables. For ease of comparison, the color-scale used
in the maps is the same. As shown in Figure 4, the NN method demonstrates poor performance
in general, both for locations and variables. The interpolation techniques perform better with a

greater density of points. When there is a low density of points, the interpolation fails in
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reproducing events in which there is a large variation of weather variables. Although there is a
high quantity of stations by the sea, the interpolation methods indicate problems with these
border points, especially for variables with the wind, which is affected by the sea. Altitude is
another parameter that influences the interpolation results (see map, central zone). For both
methods, the average skill is higher for each grid in the northern part of the map. A key reason
for this is the topographic complexity of the south region, which makes interpolation more
difficult.

Second, the interpolation methods perform better for temperature, relative humidity, and
pressure than for global radiation, wind speed and wind direction (Table 7). Based on the
CV(RMSE) values, it is clear that TPS better estimates all weather variables. However, when
the density is low and the next station is close, NN is better for estimations than TPS. Because
the interpolated surface is a local function of the neighboring data, TPS is appropriate for use
across large heterogeneous areas [29]. Although in absolute terms, the atmospheric pressure
errors are higher than the other weather variable errors based on the CV(RMSE) results in both
techniques and show more homogeneous performance.

As we can see in the next figures, there are important improvements when using the TPS
method versus the nearest neighborhood (NN) method. The mean CV(RMSE) error value at the
70 sites decreases from 0.21 (NN) to 0.10 (TPS) for temperature, from 0.16 (NN) to 0.09 (TPS)
for relative humidity, from 0.034 (NN) to 0.001 (TPS) for pressure, from 0.44 (NN) to 0.37
(TPS) for global radiation, from 0.66 (NN) to 0.62 (TPS) for wind direction and from 1.14 (NN)

to 0.63 (TPS) for wind speed.
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Figure 4. CV(RMSE) average values for the different weather variables at the 70 locations. a)
Temperature NN, b) Temperature TPS, c) Relative humidity NN, d) Relative humidity TPS, e) Pressure
NN, f) Pressure TPS, g) Global radiation NN, h) Global radiation TPS, i) Wind speed NN, and j) Wind
speed TPS.

18



Estimated-values (techniques)
. Observed-data

Variables NN TPS

M* CV** | M cVv | M cv
;,%“;peramre 12.76 0.45 | 12.75 0.47 | 12.69 0.46
{Ezl)aﬁvehumid“y 7835 023 | 78.04 | 023[7896 |0.22
ggosl’heri"pre““re 96191.41 | 0.01 | 96162.89 | 0.01 | 96002.48 | 0.03
Global horizontal
radiation 16126 | 1.56 | 159.58 |[1.56|161.18 | 1.54
(Wh/m?)
ggg“)id“ec“"“ 17447 1056 | 17400 |056|172.94 |0.58
Wind speed 3.22 0.64 | 2.98 0.64 | 2.88 0.60
(m/s)

*M = Mean value

.. .o Standard Deviation
**CV = Coefficient of Variation = ——

Mean

Table 6. Comparison between the estimated values and the observed data

Simulation results

Different simulations were performed to evaluate the influence of weather parameters on the
building heating requirements. Three EnergyPlus weather datasets were generated for each
location: On-site data, nearest neighborhood (NN), and TPS. On-site data datasets were
generated using weather datasets from the MeteoGalicia station located at each analyzed
location (a total of 70 points were analyzed). The test value was the on-site data at each
location. As indicated, the heating requirements were calculated hourly. Figure 5 shows the
relationship between the heating demands [kWh] and the interpolation technique over the first
week of the month of February for the site of weather station 10130. This figure shows that the
interpolation techniques have a tendency to underestimate heating demand. In the other
locations, similar results were found. TRNSYS simulation results using on-site weather data
show an average of 1230 (SD 79) heating hours per location, while the hours vary by 4.90%
when using the NN technique and by 1.53% when applying TPS. The highest heating demand

on average was in February (224 hours with heating requirements and a demand of 15 kWh).
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NN is a fast and simple method, but there is a measurable lack of success. There is an annual
heating demand difference, on average, for the 70 points of 32.97%, or 10630 kWh. For the TPS

method, the difference is 7.12%, equivalent to 2302 kWh.
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Figure 5. Heating demands during first week of February at location 10130.

The influence of latitude, longitude, and altitude was analyzed via a regression analysis. The
results showed that the altitude, longitude, and latitude explain 51.7% of the MAE. A predictive
model was tested for MAE, consisting of latitude, longitude and altitude variables. In testing the
model, it was observed that the predictive model was significant F (3, 66) = 23.59, p < 0.001,
explaining 51.7% of the variance (R* = 0.517). The coefficients of the model indicate that there
is a positive relationship between altitude and MAE for TPS (B = 0.666), whereas there is a
negative relationship between longitude (B = -0.029) and latitude (B = -0.182) and MAE for
TPS. In other words, when the error of the simulation increases by a unit, the altitude goes up
0.666, the longitude lowers 0.029 and the latitude lowers 0.182 units. The altitude is the only

variable that has a significant relationship with the error. Therefore, we proposed a more
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parsimonious model composed only of the altitude variable. This model was significantly
explanatory, F (1, 68) = 63.66, p < 0.001, explaining 48.4% of the MAE (R? = 0.484) with a
positive and significant beta coefficient (f = 0.695).

As seen in Table 8, the altitude influences the annual heating demand estimation errors. For
both techniques, the E1 climatic zone contains the locations with the highest discrepancies.

Nevertheless, once again, the TPS estimates are better (see MAE and RMSE values in Table 8).

MAE RMSE
Climate zone NN TPS NN TPS

C1 2.80 0.66 5.69 1.56
C3 1.98 0.76 3.98 1.63
Dl 294 0.86 5.90 1.91
D2 3.54 0.86 7.03 1.97
El 349 141 6.97 3.07

Table 7. MAE and RMSE mean values for the five climatic zones and the two techniques (i.e., NN and
TPS)

The simulation results confirm that TPS better estimates both weather variables and heating
demands (Figure 6). The NN method presents poor performance over all locations, with the
exception of isolated locations (e.g., 10092). A possible explanation for this result is the
position on the border of this station (see Figure 6). It is known that interpolation techniques
show poor results on border points [30]. Although the NN method is fast and simple, the results
do not match the reality in most locations. The kernel density results are shown in Figure 7. The
figure gives the extent of the intraspecific functional variability for the heating demands results

and MAE values. The median value is represented by white dashes.
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Figure 6. Maps with the calculated CV(RMSE) of thermal simulations at 70 locations for two methods
over one year. (a) NN and (b) TPS.
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Figure 7. Violin-plots with the distribution of the heating demand results and the MAE values for the
simulation results using the two techniques during 2015.

As seen in Table 9, the building location influences annual heating demands [kWh]. This
quantitative difference is equivalent to a factor of 5.7 for heating load and 1.3 for heating hours.
As demonstrated in a previous work, there are huge differences between the heating demands
for the same building at different locations under the same climate severity [20]. If we consider
the peak heating loads [kW], February is the highest month for the two techniques and for the
on-site data as well. However, there are variations between the building's heating total loads
calculated using the estimation techniques and on-site data. The peak heating load, in average,

using on-site data was 128 kW. Again, NN has worse results (19.20% difference), whereas TPS
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showed better performance (16.99% difference). Furthermore, NN did not properly identify the
studied location with the peak demand. In terms of the climatic zone, E1 had the highest heating

demands. Once again, altitude plays an important role.

On-site NN TPS
Climatic
zone

M* SD* M SD M SD
C1 1121 61 1171 102 1112 56
C3 1181 - 1268 - 1252 -
D1 1250 53 1222 83 1252 51
D2 1269 11 1253 57 1280 12
El 1292 8 1284 32 1292 7

*M: Mean value
**S8D: Standard deviation
Table 8. Annual heating building requirements for each climatic zone (heating load [kWh])

In summary, at the 70 locations, the TPS interpolation is the best method throughout the year
(the coefficient of variation of RMSE is lower than 7%). The CV(RMSE) obtained values are
within those mentioned by the ASHRAE. ASHRAE Guide 14 [10] considers that a building
model is calibrated if the annual hourly CV(RMSE) obtained values are below 30%. For the
calibration process, a more accurate meteorological file leads a lower deformation of the
thermal model of the building to obtain the actual adjusted consumption.

In relation to climatic zone simulation results, Table 10 explains how the number of
measurement points (weather stations) is important to the overall climatic zones, which results
in a CV(RMSE) reduction between 42.09% and 69.79% for building simulations. Note that the
error reduction (42.09%) is minor for harsh weather (E1 climatic zone); this result corresponds

to locations that are colder in winter and those at a higher altitude.

CLIMATIC NUMBER OF | NN CVRMSE | TPS CVRMSE | % ERROR
ZONE STATIONS SIM MEAN SIM MEAN REDUCTION
Cl 17 1.15 0.35 69.79

C3 1 0.65 0.27 58.96

D1 28 1.20 0.42 64.65

D2 6 0.76 0.24 68.38

El 18 0.40 0.23 42.09

Table 9. Climatic zones building simulation analysis. CV(RMSE) error improvement using TPS vs. NN
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Conclusions

This paper studied how building energy simulation calibration can be improved using
interpolated weather data to determine on-site meteorological parameters at the building
location.

Two different interpolation techniques were evaluated over the 8760 hours of one year.
Although the most important factor in terms of estimation is the topographical complexity (i.e.,
altitude), the number of measured points (weather station density) also has an impact on the
weather variable estimation and thus on the simulation results.

The building location influences annual heating demands [kWh]. Both techniques have a
heating demand estimation error 1.5 times higher in the high altitude climatic zone (E1) than in
the climatic zones at the lowest altitude. In terms of power, the difference between climatic
zones is a factor of 5.7 for heating load and 1.3 for heating hours. Areas with higher altitudes
have a greater need for weather stations, as the error is greater.

As expected, using TPS, we obtain better results than when we use NN. Quantitatively, the
result of these obtained values is the same as estimating an excess average building heating
demand during a whole year of more than 700 kWh over all locations. NN showed poor
performance; this method tends to overestimate the building heating requirement by 13%
compared to the on-site highest heating demand value.

The average coefficient of variation of the root-mean-square error (CV(RMSE)) obtained in the
simulation of the studied building, placed successively in each one of the 70 meteorological
station locations, decreases from 74% when using the nearest neighborhood (NN) to each site to
26% using the Thin plate spline (TPS) interpolation technique. The error in the building
simulations is almost three times lower using the studied method; the process of simulation

calibration is therefore greatly benefited.
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