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Improving the calibration of building simulation with interpolated weather 

datasets. 

 

Abstract 

The building sector offers huge potential for energy savings, which helps to achieve 

environmental objectives and social benefits. A good approach to determine both the energy 

consumption of new buildings and the energetic refurbishment of existing buildings is through 

thermal simulation. 

This paper studies how building energy simulation calibration can be improved using 

interpolated weather data to determine on-site meteorological parameters at the building 

location. 

The lack of precise meteorological data in the exact location of buildings means that data from 

nearby stations is generally used, not knowing how far the error spreads in the results of heating 

demands and loads. The novelty of this paper lies in the analysis of error propagation to the 

results of demands and loads of thermal simulation, as well as in the method used to reduce 

these errors by TPS interpolation. 

As an interesting conclusion, the average (CV(RMSE)) obtained in the simulation of the studied 

building, placed successively in each one of the 70 meteorological station locations, decreases 

from 74% when using the nearest neighborhood to each site to 26% using the TPS interpolation 

technique. The error in the building simulations is almost three times lower using the studied 

method. 
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Nomenclature 

AEMET Spanish State Meteorological Agency 

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning 

Engineers 

CTE Spanish Technical Building Code 

CV(RMSE) Coefficient of Variation of the Root-Mean-Square Error 

EPW EnergyPlus Weather Format 

GIS Geographic Information System 

INE National Statistical Institute of Spain 

MAE Mean Absolute Error 

MeteoGalicia Galician Meteorology Agency 

 NN Nearest Neighbourhood 

RMSE Root mean square error 

StID weather station ID 

TPS Thin Plate Splines 

TRNSYS Transient System Simulation Tool 

 

Introduction 

Building energy consumption accounts for between 20% and 40% of global energy 

consumption in developed areas [1]. The housing sector represents approximately 40% of EU 

energy consumption [2]; more specifically, in Spain, the building sector energy consumption 

represents 33% of global energy consumption [3]. According to the Eurostat analysis, 

approximately 50% of overall energy consumption for a typical household in Spain corresponds 

to space heating or cooling [4]. Thus, in view of its importance, the building sector offers huge 

potential for energy savings.  
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Lowering building energy costs while increasing in-house comfort will help to achieve global 

environmental objectives and contribute to social well-being.  

When designing an efficient building or analyzing an existing building, the energy demand and 

consumption must be evaluated to recommend measures for reducing energy consumption. A 

good method to evaluate building energy demands is the use of thermal simulations [5], [6]. In 

addition, most current building regulations require energy demand estimates that can only be 

obtained by thermal simulation [7]. 

There is a gap between simulated and real building energy performance [8]. This difference 

between the measured and simulated energy consumption of real buildings can be adjusted 

through model calibration [9]. ASHRAE’s Guideline 14-2002 for Measurement of Energy and 

Demand Savings includes calibrated simulations as an evaluation method [10]; however, in this 

field, there is a deficiency in standards for building calibration [11]. 

Weather is a fundamental parameter when calibrating a simulation [12]. For example, M. 

Royapoor et al. concluded that, to have a calibrated model, on-site weather parameters should 

be used [13]. Another example is the study of H. Yoo et al., who analyzed different weather 

parameters and their influence on heating and cooling loads [14]. G. Mustafaraj et al. improved 

the accuracy of model calibration, showing the need for the creation of an hourly year weather 

data file [15].  

Six weather variables were interpolated at 70 meteorological station locations to generate the 

annual meteorological archives and simulate a representative building in Galicia using the 

Transient System Simulation Tool TRNSYS. 

When simulations are performed at locations without weather recorded data, two techniques of 

providing data are primarily used: interpolation and synthetic data generation [16], [17]. The 

purpose of using interpolation functions is to obtain intermediate values consistent with those 

obtained at nearby locations [18]. Global techniques are characterized by using all the measured 

data to make predictions. In other words, a single function is applied to the entire study area. 

This approach usually results in a smooth predicted surface, which may be reasonable as long as 

the studied surface is known to have a global trend. Local interpolation techniques are usually 
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based on the same methodology but are applied on a region of the total sample set. From this 

point of view, global techniques can be considered as a simplification of local techniques 

because the latter result in interpolated surfaces that are more flexible and better adapted to the 

local characteristics of the sampled data. Deterministic interpolation techniques calculate a 

continuous surface by using the geometric characteristics of the measurements. We can divide 

these methods into two groups: global and local techniques. Local techniques, such as nearest 

neighborhood (NN) and thin plate splines (TPS), calculate the interpolated values from the 

measured points included in the neighborhoods, which are smaller spatial areas within the 

global study area. In previous research [19], [20], we have evaluated different types of 

interpolations and determined that TPS is a good interpolation method when using these data in 

thermal simulations for single-family residential buildings; in this article, to generalize the 

methodology, we will develop thermal simulations for a building with eight above-ground 

stories over an area six-times larger and compare the results using the nearest meteorological 

station with the values obtained from interpolation by the TPS method. NN is currently the 

typical method used to establish the climatic conditions of the thermal simulations. 

The chosen method of comparison is through maps of interpolated values represented by GIS 

software (QGIS [21]) because, when dealing with 70 meteorological stations, tables of values 

are of limited use. 

The average CV(RMSE) error obtained in the simulations of the studied building, placed 

successively at each one of the 70 meteorological station locations, decreases from 0.74 using 

the closest station (NN) at each site to 0.26 using the TPS interpolation technique. The error in 

the building simulations is almost three-times lower using the TPS method. 
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Material and Methods 

The experiment developed in this paper consists of simulating a typical building in the 70 

locations with weather stations available, using data from the meteorological station in situ, data 

from the nearest meteorological station, and data obtained through TPS interpolation.  

We assume that the simulation results with the station data at the location of the building are 

correct and compare the errors committed with the other two methods: the nearest weather 

station and the values obtained in the building location by interpolation with the TPS method. 

A representative construction was chosen given a common geometric building structure in 

Galicia (northwest Spain) based on the National Statistical Institute of Spain (INE) database. 

Figure 1 shows a 3D model of the building created using the TRNSYS 3D-Plugin for Trimble 

SketchUp. The selected building has eight above-ground stories with a floor area of 1689.4 m2 

and a total volume of 5053.2 m3. Each story was characterized as a thermal zone in the model. 

The main facade is oriented towards the east. The impacts of the shadows of adjacent buildings 

were also taken into account (see TRNSYS 3D model in Figure 1). 
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Figure 1. Photograph and TRNSYS 3D model of the building. 
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Figure 2. Simulation studio panel from TRNSYS. 

 

 

Figure 2 illustrates the model in the TRNSYS simulation environment. Sensible heating 

demands were evaluated assuming unlimited thermal resources for the building. The set point 

temperatures, internal gains (e.g., lighting) and building air infiltration values correspond to the 

Spanish Technical Building Code (CTE) specifications. The Spanish Technical Building Code, 

promulgated by Royal Decree 314/2006, 17 March 2006, is the regulatory framework governing 

the basic quality requirements for buildings in Spain, including facilities. Based on the 

occupancy profiles of the Spanish Institute for Energy Diversification and Saving (IDAE) for 

this type of dwelling, the temperature controls were fixed to 20°C from 3 pm to 11 pm. The 

heating season regime was set from the October’s last Sunday to April 1st. Based on the Spanish 

procedures to calculate building energy performance, the climate zones for the analyzed area do 

not require calculation of the cooling; thus, only heating demand was assessed. For more 

information about the simulation TRNSYS model, refer to [20]. 
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Table 1 and Table 2 show the TRNSYS wall and window type manager definition entries, 

respectively.  

 

Wall 
category 

Wall type Thickness. 
[mm] 

Transmittance. 
[W/m2 K] 

External Roof 400 0.500 
Facade 201 0.748 

Adjacent Ceiling 384 0.940 
Wall 90 0.508 

Boundary Basement wall 200 3.892 
Ground 400 2.314 

Table 1. Building envelope properties 

 
 Values Characteristics 
Glazing 4/16/4 Pilkington Optitherm. 

0.586 G-value. 
1.06 Transmittance [W/m2 K]. 

Frame 0.3% Frame window area. 
3.03 Transmittance [W/m2 K]. 
0.6 Solar absorptance. 
0.9 Emissivity. 

Table 2. Window properties 
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Studied area and data sources 

The analysis was conducted for the Galician Meteorology Agency (MeteoGalicia) net, using 

seventy different meteorological stations, in the region of Galicia (Northwest Spain). Galicia 

has an area of 29,574.4 km2 (11,418.7 sq mi) with a population of 2.720.668 people (January 

2016) (source: INE, Spanish Statistical Office). Galicia has a maritime influenced climate. This 

region has climatic characteristics analogous to those prevalent throughout Western Europe: 

cool summers and mild winters, with the possibility of rainfall along the whole year. In general 

terms, according the Köppen-Geiger climate classification, the Galician climate is considered to 

be Csb. However, there are different microclimates due to its complicated relief, that is, the 

climate of Galicia is characterized by a progression between a predominance of pure oceanic 

climate with climatic zones that can be considered as subtropical. Rainfall ranges between 594 

mm and 3143 mm, based on MeteoGalicia records. The spatial distribution of temperatures 

presents a variation between the coast and the interior, related to the presence of the Atlantic 

Ocean. According to the CTE, the studied area is comprised of 6 climatic zones (i.e., C1, C2, 

C3, D1, D2 and E1), which are in relation with the climatic severity. The C climate zone has a 

less severe climate than those of D or E, and the D climatic zone is less severe than that of E. 

Climatic zones are indicated in the HE1 Section of the CTE Energy Savings Document. In our 

case study, the calculation table is reduced to the 4 province capitals in Galicia: Coruña, Lugo, 

Orense, and Pontevedra. Table 3 allows the CZ of any location in Galicia to be obtained from its 

altitude. 

Province Capital C.Z. Elevation (e) [m] C3 C2 C1 D2 D1 E1 

Coruña C1 0   e<200  e≥200  

Lugo D1 412     e<500 e≥500 

Orense D2 327 e<150 e<300  e<800  e≥800 

Pontevedra C1 77   e<350  e≥350  

Table 2. Climatic zone (CZ) calculation correspondence for locations in the four provinces of Galicia 
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StID LONGITUDE LATITUDE ELEVATION Climatic 
zone 

 StID LONGITUDE LATITUDE ELEVATION Climatic 
zone 

           
10045 -8.26221896 43.2413695 94 C1  10119 -7.97190638 41.9036087 1059 E1 
10046 -7.8943978 43.3430821 651 D1  10122 -7.93307372 42.5797597 991 D1 
10047 -7.08301941 43.540711 51 D1  10124 -8.55943646 42.875961 255 D1 
10048 -7.3446339 42.1195584 1026 E1  10126 -8.93618636 42.3820883 121 C1 
10049 -9.02859829 42.5551672 30 C1  10129 -8.79879168 42.4030844 34 C1 
10050 -8.25226804 43.491464 37 C1  10130 -6.78345593 42.3751641 1620 E1 
10052 -8.77630574 42.7455814 661 D1  10132 -7.04707469 42.7071022 1310 E1 
10053 -7.5444682 42.9948754 400 D1  10136 -7.04785524 43.1771242 789 E1 
10055 -7.78307165 43.2265962 684 E1  10137 -6.91530332 42.9559943 910 E1 
10056 -7.50178093 42.4731965 645 E1  10138 -6.89255989 42.2078109 1762 E1 
10058 -7.39877783 41.9743289 546 D2  10141 -8.1328198 43.5625001 278 D1 
10060 -8.67944536 42.0786 484 D1  10144 -8.18961314 42.926242 362 D1 
10061 -8.13729095 42.6143856 500 D1  10154 -8.60187382 42.3206964 260 C1 
10062 -6.92289994 42.8207736 1364 E1  10155 -7.877746 42.35299 139 C3 
10063 -8.42852879 42.2253186 371 D1  10161 -8.68605504 42.1699246 460 D1 
10064 -8.66421685 42.4092445 57 C1  10162 -7.63087786 43.6308822 59 D1 
10067 -8.70430461 42.4592563 424 D1  10800 -9.17831255 43.1244507 5 C1 
10085 -8.80470645 42.5800761 3 C1  14001 -8.72758817 42.2416662 7 C1 
10086 -8.40021838 42.3152979 705 D1  14003 -8.53118151 43.3472312 5 C1 
10087 -8.86830023 42.9686119 369 D1  19003 -8.43471917 42.7847757 225 D1 
10088 -7.44625149 43.4545921 595 E1  19010 -8.83688392 42.8014087 157 C1 
10089 -7.98265101 42.9073811 477 D1  19012 -8.85457036 42.6746637 59 C1 
10091 -8.86619845 41.9944708 473 D1  19014 -7.34011628 43.456918 115 D1 
10092 -8.05246448 43.7042593 254 D1  19018 -7.19645044 43.0359061 917 E1 
10096 -8.69099082 43.095195 540 D1  19020 -7.38156359 42.7966782 416 D1 
10097 -7.78878175 43.5917779 576 D1  19021 -7.71832325 42.6144356 391 D1 
10099 -7.47627801 42.6476099 432 D1  19031 -7.83647734 42.4295336 403 D2 
10102 -7.19238705 42.5946818 777 E1  19033 -7.43197512 42.3875651 469 D2 
10109 -8.23823651 42.41459 553 D2  19040 -7.18801093 41.8981999 778 D2 
10110 -7.7083803 41.9462219 807 E1  19041 -7.04890488 42.0174566 1025 E1 
10112 -7.96814974 42.1736211 623 D2  19045 -8.52493187 42.1804032 41 C1 
10115 -7.00863716 42.3553978 1229 E1  19047 -8.79153818 41.9382123 52 C1 
10116 -7.08961183 42.1630374 851 E1  19050 -8.3186965 42.7791102 211 C1 
10117 -7.29715492 42.3938725 1026 E1  19056 -8.71611497 42.537132 52 C1 
10118 -7.37481102 43.6448512 421 D1  50500 -8.52121113 42.88662974 305 D1 

Table 3. Weather station network characteristics 

 

Based on the ASHRAE handbook [10], six meteorological variables were analyzed: wind speed 

and wind direction, global radiation, pressure, temperature and relative humidity. Although the 

ASHRAE recommends the use of these six variables, it has been shown through different 

methodologies that weather files may be obtained from monthly values of maximum and 

average temperatures, average wind speed and daily insolation [22]. Obviously, the use of 

simplified weather data should lead to poor simulation results [23]. In this case, the wind 

direction and the pressure were used because an empirical method described in the ASHRAE 

handbook was applied to estimate infiltrations [20]. The Galician MeteoGalicia agency network 

comprises of 155 weather stations with a density of 0.005 station/km2; however, because of a 

lack of measured variables or data gaps, only 70 (Figure 3) stations were considered. The 
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weather station network characteristics are given in Table 4. The weather station ID (StID) is 

the same as that used by MeteoGalicia. 

 

Figure 3. Weather station network placement. 

 

The stations of the MeteoGalicia network are not placed following a spatial pattern; in addition, 

there are data gaps in the measured meteorological variables. These two aspects imply problems 

for the interpolation analysis. Thus, the data gaps were filled using TPS data estimates. The data 

gaps were not considered when calculating the errors. As expected, the absence of data for a 

single weather variable (i.e., there is no data during one or more hours) means that we cannot 

generate an input weather data file during this period.  

We used EnergyPlus software to generate the EPW meteorological data files necessary to 

develop the TRNSYS simulations. Each EPW data file is a text file with 8760 rows in our case 

(hours in a year), with data at ordered time intervals. 

The simulation time step was fixed at one hour. 
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Introduction of interpolation techniques 

The local interpolation techniques tested in this paper are nearest neighborhood (NN) and thin 

plate splines (TPS). NN is the easiest and least time-consuming method to approximate missing 

measurements. NN is based on calculating weighted averages of values from a set of nearby 

locations. The simplest version of this technique considers only one location in the 

neighborhood; thus, it selects the value of the nearest point and produces a piecewise constant 

surface as a result. One of the most important problems of weighted-average methods such as 

NN is that the interpolated value will never be higher or lower than those used to work out the 

interpolation.  

Thin plate splines (TPS) method is a local interpolation method whose effectiveness has been 

proven to obtain accurate surface weather datasets. TPS assumes that the variable in a given 

location x, say X(x), is a sum of two theoretical functions, X(x)=s(x)+ ɛ(x), where s(x) denotes 

the signal function and ɛ(x) for the noise. 

The signal, s(x), is estimated by a function, in our case f(x); this function minimizes the squared 

error for the observations and is subject to the restriction that this function f(x) has a certain 

level of smoothness, that is: 

∑ [𝑋𝑋(𝑥𝑥𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖)]2𝑛𝑛
𝑖𝑖=1 + 𝜆𝜆 ∫[𝑓𝑓′′(𝑥𝑥)]2𝑑𝑑𝑑𝑑, 

where n is, in this case, the number of measurements in the neighborhood, and the smoothing 

parameter determines the estimator degree of smoothness. 

All the interpolations were conducted using the R environment [24]. Specifically, to perform the 

TPS analysis, the library "fields" [25] was implemented. 
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Error Calculation 

A collection of skill scores was established to evaluate the interpolation techniques (Table 5) 

[26], [27]. The scores were chosen to evaluate the difference between real and estimated values, 

both in terms of the locations and in terms of thermal simulation results. The scores were 

calculated hourly, thus allowing for a better assessment of the time series. 

Mean absolute error (MAE) is a measure of average error that shows the errors in the same unit 

as the weather variable itself [26]. MAE ranges from 0 (best case) to an unbounded value. Root 

mean square error (RMSE) is used to reflect the variability distribution of the errors. This skill 

score has a high sensitivity to large outliers [28]. The coefficient of variation of the mean square 

error (CV(RMSE)) is the root mean square error normalized to the observed input values range. 

Skill score Equationa 

Mean absolute error (MAE) 𝑀𝑀𝑀𝑀𝑀𝑀 = �
|𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖|

𝑁𝑁

𝑛𝑛

𝑖𝑖=1

 

Root mean square error (RMSE) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ��
(𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖)2

𝑁𝑁

𝑛𝑛

𝑖𝑖=1

 

Mean square error coefficient of variation 
(CV(RMSE)) 

𝐶𝐶𝐶𝐶(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
∑ 𝑌𝑌𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑁𝑁

 

aExplanation of the variables: 
 𝑁𝑁: sample size, 8,760 for hourly counts. 
(𝑋𝑋 − 𝑌𝑌) = Difference between the observed (𝑋𝑋) and actual values (𝑌𝑌) 

Table 4. Definition of the skill scores 
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Results and discussion 

The results obtained by running the interpolation at the 70 locations in 2015 during the 8760 

hours of a year are analyzed in this section. 

Weather variable estimation 

The relative skill of each climatic zone and weather variable, based on TPS interpolation results, 

is summarized in Table 6. As scores for each variable have different scales, the average ranks 

were calculated to produce an overall rating. On this basis, C1 emerges as the best climatic zone 

for almost all weather variables except wind direction, where D1 performs better. C3 has been 

excluded because only one station is located in this climatic zone. These results indicate the 

influence of altitude in the interpolation estimates. Although C1 is the climatic zone with the 

best estimation results, the differences between the climatic zones are relatively small. 

Nevertheless, the domain-wide statistics may hide local variations in weather variables that 

average out when considering all stations together. Next, the interpolation results for each 

location and weather variable are analyzed separately. 

 Temperature Relative-Humidity Pressure Global-Radiation Wind-direction Wind-speed 
Climatic 
zone MAE # RMSE # MAE # RMSE # MAE # RMSE # MAE # RMSE # MAE # RMSE # MAE # RMSE # 

C1 0.84 3 1.16 3 5.23 3 6.74 2 82.89 5 102.71 2 25.25 3 49.70 1 69.46 2 106.71 2 1.14 2 1.84 4 

C3 0.78 2 0.99 1 4.16 1 5.40 1 72.08 3 78.71 1 22.54 1 57.71 3 112.88 5 148.69 5 2.52 5 0.74 1 

D1 0.75 1 1.08 2 4.87 2 6.75 3 81.13 4 148.15 5 28.42 5 57.48 2 64.50 1 99.11 1 1.73 4 1.75 3 

D2 0.93 4 1.27 4 5.73 4 7.50 4 55.11 1 107.14 3 26.83 4 60.56 4 99.33 4 139.15 4 1.25 3 1.10 2 

E1 1.03 5 1.43 5 6.10 5 8.44 5 71.10 2 136.40 4 23.55 2 67.15 5 75.32 3 112.89 3 1.07 1 2.25 5 

Table 5. Skill scores based on the TPS interpolation results 

 

First, we evaluate whether there is any spatial pattern in the relative skill of the interpolation 

methods. Figure 4 shows, for each technique (i.e., NN and TPS), the analysis of the CV(RMSE) 

distribution for the six studied weather variables. For ease of comparison, the color-scale used 

in the maps is the same. As shown in Figure 4, the NN method demonstrates poor performance 

in general, both for locations and variables. The interpolation techniques perform better with a 

greater density of points. When there is a low density of points, the interpolation fails in 
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reproducing events in which there is a large variation of weather variables. Although there is a 

high quantity of stations by the sea, the interpolation methods indicate problems with these 

border points, especially for variables with the wind, which is affected by the sea. Altitude is 

another parameter that influences the interpolation results (see map, central zone). For both 

methods, the average skill is higher for each grid in the northern part of the map. A key reason 

for this is the topographic complexity of the south region, which makes interpolation more 

difficult. 

Second, the interpolation methods perform better for temperature, relative humidity, and 

pressure than for global radiation, wind speed and wind direction (Table 7). Based on the 

CV(RMSE) values, it is clear that TPS better estimates all weather variables. However, when 

the density is low and the next station is close, NN is better for estimations than TPS. Because 

the interpolated surface is a local function of the neighboring data, TPS is appropriate for use 

across large heterogeneous areas [29]. Although in absolute terms, the atmospheric pressure 

errors are higher than the other weather variable errors based on the CV(RMSE) results in both 

techniques and show more homogeneous performance. 

As we can see in the next figures, there are important improvements when using the TPS 

method versus the nearest neighborhood (NN) method. The mean CV(RMSE) error value at the 

70 sites decreases from 0.21 (NN) to 0.10 (TPS) for temperature, from 0.16 (NN) to 0.09 (TPS) 

for relative humidity, from 0.034 (NN) to 0.001 (TPS) for pressure, from 0.44 (NN) to 0.37 

(TPS) for global radiation, from 0.66 (NN) to 0.62 (TPS) for wind direction and from 1.14 (NN) 

to 0.63 (TPS) for wind speed.  
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a) b) 

c) d) 

e) f) 
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Figure 4. CV(RMSE) average values for the different weather variables at the 70 locations. a) 
Temperature NN, b) Temperature TPS, c) Relative humidity NN, d) Relative humidity TPS, e) Pressure 
NN, f) Pressure TPS, g) Global radiation NN, h) Global radiation TPS, i) Wind speed NN, and j) Wind 
speed TPS. 

  

i) j) 

g) h) 
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Variables Observed-data 
Estimated-values (techniques) 

NN TPS 
M* CV** M CV M CV 

Temperature 
(°C) 12.76 0.45 12.75 0.47 12.69 0.46 

Relative humidity 
(%) 78.35 0.23 78.04 0.23 78.96 0.22 

Atmospheric pressure 
(Pa) 96191.41 0.01 96162.89 0.01 96002.48 0.03 

Global horizontal  
radiation 
(Wh/m2) 

161.26 1.56 159.58 1.56 161.18 1.54 

Wind direction 
(deg) 174.47 0.56 174.00 0.56 172.94 0.58 

Wind speed 
(m/s) 3.22 0.64 2.98 0.64 2.88 0.60 

*M = Mean value 
**CV = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
 

Table 6. Comparison between the estimated values and the observed data 

 

Simulation results 

 

Different simulations were performed to evaluate the influence of weather parameters on the 

building heating requirements. Three EnergyPlus weather datasets were generated for each 

location: On-site data, nearest neighborhood (NN), and TPS. On-site data datasets were 

generated using weather datasets from the MeteoGalicia station located at each analyzed 

location (a total of 70 points were analyzed). The test value was the on-site data at each 

location. As indicated, the heating requirements were calculated hourly. Figure 5 shows the 

relationship between the heating demands [kWh] and the interpolation technique over the first 

week of the month of February for the site of weather station 10130. This figure shows that the 

interpolation techniques have a tendency to underestimate heating demand. In the other 

locations, similar results were found. TRNSYS simulation results using on-site weather data 

show an average of 1230 (SD 79) heating hours per location, while the hours vary by 4.90% 

when using the NN technique and by 1.53% when applying TPS. The highest heating demand 

on average was in February (224 hours with heating requirements and a demand of 15 kWh). 
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NN is a fast and simple method, but there is a measurable lack of success. There is an annual 

heating demand difference, on average, for the 70 points of 32.97%, or 10630 kWh. For the TPS 

method, the difference is 7.12%, equivalent to 2302 kWh. 

 

Figure 5. Heating demands during first week of February at location 10130. 

 

The influence of latitude, longitude, and altitude was analyzed via a regression analysis. The 

results showed that the altitude, longitude, and latitude explain 51.7% of the MAE. A predictive 

model was tested for MAE, consisting of latitude, longitude and altitude variables. In testing the 

model, it was observed that the predictive model was significant F (3, 66) = 23.59, p < 0.001, 

explaining 51.7% of the variance (R2 = 0.517). The coefficients of the model indicate that there 

is a positive relationship between altitude and MAE for TPS (β = 0.666), whereas there is a 

negative relationship between longitude (β = -0.029) and latitude (β = -0.182) and MAE for 

TPS. In other words, when the error of the simulation increases by a unit, the altitude goes up 

0.666, the longitude lowers 0.029 and the latitude lowers 0.182 units. The altitude is the only 

variable that has a significant relationship with the error. Therefore, we proposed a more 
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parsimonious model composed only of the altitude variable. This model was significantly 

explanatory, F (1, 68) = 63.66, p < 0.001, explaining 48.4% of the MAE (R2 = 0.484) with a 

positive and significant beta coefficient (β = 0.695). 

As seen in Table 8, the altitude influences the annual heating demand estimation errors. For 

both techniques, the E1 climatic zone contains the locations with the highest discrepancies. 

Nevertheless, once again, the TPS estimates are better (see MAE and RMSE values in Table 8). 

 MAE RMSE 
Climate zone NN TPS NN TPS 
C1 2.80 0.66 5.69 1.56 
C3 1.98 0.76 3.98 1.63 
D1 2.94 0.86 5.90 1.91 
D2 3.54 0.86 7.03 1.97 
E1 3.49 1.41 6.97 3.07 

Table 7. MAE and RMSE mean values for the five climatic zones and the two techniques (i.e., NN and 
TPS) 

 

The simulation results confirm that TPS better estimates both weather variables and heating 

demands (Figure 6). The NN method presents poor performance over all locations, with the 

exception of isolated locations (e.g., 10092). A possible explanation for this result is the 

position on the border of this station (see Figure 6). It is known that interpolation techniques 

show poor results on border points [30]. Although the NN method is fast and simple, the results 

do not match the reality in most locations. The kernel density results are shown in Figure 7. The 

figure gives the extent of the intraspecific functional variability for the heating demands results 

and MAE values. The median value is represented by white dashes. 
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Figure 6. Maps with the calculated CV(RMSE) of thermal simulations at 70 locations for two methods 
over one year. (a) NN and (b) TPS. 

 

  
 

Figure 7. Violin-plots with the distribution of the heating demand results and the MAE values for the 
simulation results using the two techniques during 2015. 

As seen in Table 9, the building location influences annual heating demands [kWh]. This 

quantitative difference is equivalent to a factor of 5.7 for heating load and 1.3 for heating hours. 

As demonstrated in a previous work, there are huge differences between the heating demands 

for the same building at different locations under the same climate severity [20]. If we consider 

the peak heating loads [kW], February is the highest month for the two techniques and for the 

on-site data as well. However, there are variations between the building's heating total loads 

calculated using the estimation techniques and on-site data. The peak heating load, in average, 

using on-site data was 128 kW. Again, NN has worse results (19.20% difference), whereas TPS 
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showed better performance (16.99% difference). Furthermore, NN did not properly identify the 

studied location with the peak demand. In terms of the climatic zone, E1 had the highest heating 

demands. Once again, altitude plays an important role. 

Climatic 
zone 

On-site NN TPS 

M* SD* M SD M SD 

C1 1121 61 1171 102 1112 56 

C3 1181 - 1268 - 1252 - 

D1 1250 53 1222 83 1252 51 

D2 1269 11 1253 57 1280 12 

E1 1292 8 1284 32 1292 7 
*M: Mean value 
**SD: Standard deviation 

Table 8. Annual heating building requirements for each climatic zone (heating load [kWh]) 

In summary, at the 70 locations, the TPS interpolation is the best method throughout the year 

(the coefficient of variation of RMSE is lower than 7%). The CV(RMSE) obtained values are 

within those mentioned by the ASHRAE. ASHRAE Guide 14 [10] considers that a building 

model is calibrated if the annual hourly CV(RMSE) obtained values are below 30%. For the 

calibration process, a more accurate meteorological file leads a lower deformation of the 

thermal model of the building to obtain the actual adjusted consumption. 

In relation to climatic zone simulation results, Table 10 explains how the number of 

measurement points (weather stations) is important to the overall climatic zones, which results 

in a CV(RMSE) reduction between 42.09% and 69.79% for building simulations. Note that the 

error reduction (42.09%) is minor for harsh weather (E1 climatic zone); this result corresponds 

to locations that are colder in winter and those at a higher altitude. 

CLIMATIC 
ZONE 

NUMBER OF 
STATIONS 

NN CVRMSE 
SIM MEAN 

TPS CVRMSE 
SIM MEAN 

% ERROR 
REDUCTION 

C1 17 1.15 0.35 69.79 
C3 1 0.65 0.27 58.96 
D1 28 1.20 0.42 64.65 
D2 6 0.76 0.24 68.38 
E1 18 0.40 0.23 42.09 
Table 9. Climatic zones building simulation analysis. CV(RMSE) error improvement using TPS vs. NN  
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Conclusions 

This paper studied how building energy simulation calibration can be improved using 

interpolated weather data to determine on-site meteorological parameters at the building 

location. 

Two different interpolation techniques were evaluated over the 8760 hours of one year. 

Although the most important factor in terms of estimation is the topographical complexity (i.e., 

altitude), the number of measured points (weather station density) also has an impact on the 

weather variable estimation and thus on the simulation results.  

The building location influences annual heating demands [kWh]. Both techniques have a 

heating demand estimation error 1.5 times higher in the high altitude climatic zone (E1) than in 

the climatic zones at the lowest altitude. In terms of power, the difference between climatic 

zones is a factor of 5.7 for heating load and 1.3 for heating hours. Areas with higher altitudes 

have a greater need for weather stations, as the error is greater. 

As expected, using TPS, we obtain better results than when we use NN. Quantitatively, the 

result of these obtained values is the same as estimating an excess average building heating 

demand during a whole year of more than 700 kWh over all locations. NN showed poor 

performance; this method tends to overestimate the building heating requirement by 13% 

compared to the on-site highest heating demand value.  

The average coefficient of variation of the root-mean-square error (CV(RMSE)) obtained in the 

simulation of the studied building, placed successively in each one of the 70 meteorological 

station locations, decreases from 74% when using the nearest neighborhood (NN) to each site to 

26% using the Thin plate spline (TPS) interpolation technique. The error in the building 

simulations is almost three times lower using the studied method; the process of simulation 

calibration is therefore greatly benefited. 
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