
1 of 23 
 

Use of a numerical weather prediction model as a 
meteorological source for building thermal simulations 

Javier López Gómeza,*, Francisco Troncoso Pastorizaa, Elena Arce Fariñab, Pablo 
Eguía Ollera, Enrique Granada Álvareza 

aGTE Research Group, School of Industrial Engineering, University of Vigo, Campus 
Lagoas-Marcosende, 36310, Vigo, Pontevedra, Spain 

bDefense University Centre, Spanish Naval Academy, Plaza de España, s/n, 36920, 
Marín, Spain 

⁎Corresponding author. e-mail address: javilopez@uvigo.es (J. López Gómez). 

This version of the article has been accepted for publication, after peer review, but is not the 
Version of Record and does not reflect post-acceptance improvements, or any corrections. The 
Version of Record is available online at: https://doi.org/10.1016/j.scs.2020.102403  

Abstract 

Thermal simulations are a commonly used tool for energy efficiency analysis of buildings. 
Regional meteorological station networks are a prime source of weather data inputs, required for 
building thermal simulations. However, local measurements from weather stations are not always 
available, and when available, access to data may be expensive. This paper analysed a novel use 
of a numerical weather prediction mesoscale model, the Global Forecast System (GFS) sflux 
model, as a source of input data for transient thermal simulations. Two interpolation techniques 
(nearest neighbour and universal kriging) were used to generate local weather datasets from GFS 
outputs at 27 locations spread over an area of 29,574 km2 in Galicia (northwest Spain). The 
performance of the GFS estimations was tested against weather measurements obtained from a 
government weather agency. A representative building with the most common features was 
selected for running thermal simulations in the TRNSYS environment, focused on heating 
demands, with estimated weather data as the input. The results highlighted that GFS-interpolated 
datasets consistently performed better than using measured data from the nearest weather station. 
GFS was found to be an appropriate weather source for building simulations and was able to 
provide good-quality, free and global-scale local weather inputs. 
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Nomenclature 

AEMET Spanish Meteorological Agency (Agencia 
Estatal de Meteorología) 

MBE Mean Bias Error 

ASHRAE American Society of Heating, 
Refrigerating and Air-Conditioning 
Engineers 

MG Galician Meteorological Agency 
(MeteoGalicia) 

CDD Cooling Degree Days NCEP National Centres for Environmental 
Prediction 

CTE Spanish Technical Building Code 
(Código Técnico de Edificación) 

NN Nearest Neighbour 

CV(RMSE) Root Mean Square Error Coefficient of 
Variation 

NN GFS Nearest Neighbour interpolation over 
GFS sflux outputs dataset 

ECMWF European Centre for Medium-Range 
Weather Forecasts 

NN MG Nearest Neighbour interpolation over 
MeteoGalicia measurements dataset 

EPW EnergyPlus Weather format file NOAA National Oceanic and Atmospheric 
Administration  

FTP File Transfer Protocol NOMADS National Oceanic and Atmospheric 
Administration Operational Model 
Archive and Distribution System 

GFS Global Forecast System NWP Numerical Weather Prediction 
HDD Heating Degree Days Ref. MeteoGalicia Reference dataset 
HTTP Hypertext Transfer Protocol   
HVAC Heating, Ventilating and Air 

Conditioning 
RMSE Root Mean Square Error 

IDAE Spanish Institute for Energy 
Diversification and Saving (Instituto para 
la Diversificación y Ahorro de Energía) 

TRNSYS Transient System Simulation Tool 

IFS Integrated Forecast System UK Universal Kriging 
IPMA Portuguese Meteorological Agency 

(Instituto Português do Mar e da 
Atmosfera) 

UK GFS Universal Kriging interpolation over 
GFS sflux outputs dataset 

MAE Mean Absolute Error UK MG Universal Kriging interpolation over 
MeteoGalicia measurements dataset 

1. Introduction 

Thermal energy simulations of building models can be used to estimate energy demands when 
real measurements are not available [1]. Thermal simulations are widely used to evaluate the 
energy requirements of buildings in response to both actual and predicted environmental 
conditions [2]. For the last two decades, the building sector has made up between 20 and 40% of 
the final energy intake in industrial countries, with the shares of the EU and the USA being 
approximately 40% [3]. Of that percentage, maintaining the thermal comfort of occupants using 
heating, ventilating and air conditioning (HVAC) demands account for the largest share [4]. Thus, 
estimating the thermal energy demands beforehand may provide evidence to support decisions 
about construction and/or maintenance of existing and new buildings [5]. The estimates can also 
help to identify and predict the energetic impacts of installed efficiency-enhancing measures and 
retrofit decisions [6]. Guaranteeing the reliability of the simulation results is key to making 
decisions. 

Weather data are environmental variables that often affect energy use or demand. External loads 
such as air temperature, solar radiation and wind flow are directly related to the energy 
consumption of buildings [7]. Previous studies have shown that a lack of accurate weather data 
has a large impact on energy demand estimations (e.g., the performance of thermal insulating 
elements is dependent on the surrounding temperature and humidity [8]). The estimated annual 
energy consumption of a building varies up to 7% depending on the weather dataset that is used 
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[9], [10]. Moreover, fluctuations in the surrounding weather conditions may result in an up to 5% 
variation in the actual energy consumption of a residential building [11], which is particularly 
significant for heating and cooling loads, for which the variation may be as large as 40% [5]. 

The two main causes that lead to the lack of precision in meteorological data are data gaps and an 
absence of on-site data. One way to solve these problems is to interpolate weather data from 
historical regional sources, either directly using geospatial methods, such as ordinary or universal 
kriging (UK) [9] or thin plate splines [10] interpolations, or using other available variables [12]. 
However, having access to regional weather data is not always possible. 

In the Iberian Peninsula context, two national-level governmental weather agencies cover the 
territory: The Agencia Estatal de Meteorología (AEMET) in Spain and the Instituto Português do 
Mar e da Atmosfera (IPMA) in Portugal. Each of these agencies develops and maintains a network 
of automatic weather measurement stations for its respective country, alongside other attributions. 
In addition, three Spanish regions have their own regional weather agencies, with independent 
station networks that overlap the AEMET networks for such regions. Table 1 compiles 
information about all these agencies, obtained from their respective official websites. 

Table 1: Governmental weather agencies for the Iberian Peninsula 

Name Short name Operation 
environment 

Operative 
stations 

Station density 
[uds/km2] 

Free historical 
weather data 

Agencia Estatal de Meteorología AEMET All Spain 807 0.0016 No* 
MeteoGalicia MeteoGalicia Galician region 166 0.0056 Yes 
Euskal Meteorologia Agentzia Euskalmet Basque region 50 0.0069 Yes 
Servei Meteorològic de 
Catalunya meteo.cat Catalonian 

region 190 0.0059 Yes** 

Instituto Português do Mar e da 
Atmosfera IPMA All Portugal 135 0.0015 No 

*Free access available only for the latest 24 hours 
**Free access only for personal use, students, research centres and public administration entities 

Table 1 highlights that having access to historical weather data can be problematic for short time 
periods (more than a few hours) in some regions. When adequate observational data are not 
available, predictive outputs from numerical weather models may be used [13]. 

The National Centres for Environmental Prediction (NCEP), which are part of the United States 
National Oceanic and Atmospheric Administration (NOAA), constitute a governmental agency 
that carries out meteorological and climatic studies at both the national and global scale. The 
NCEP Global Forecast System (GFS) is one of the most extended global numerical weather 
prediction (NWP) models for mesoscale forecasting [14], [15], [16]. The closest competitor to the 
NCEP GFS is the Integrated Forecast System (IFS) of the European Centre for Medium-Range 
Weather Forecasts (ECMWF). Both provide global-scale predictions for several days over a 
discrete grid. However, unlike the IFS, the GFS outputs are freely licensed and available in the 
public domain. 

The objective of this paper is to evaluate the use of one of the NCEP GFS models as a weather 
source for thermal heating demand simulations of buildings. This is a novel application of the 
GFS model that could potentially solve the previously introduced issue with the availability of 
regional weather data. As a free, globally available source of meteorological outputs, the potential 
use of the GFS outputs instead of a physical network of weather stations, where data from such 
networks may be scarce or not available, is worthy of in-depth analysis. 
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This study was carried out over the territory of the Spanish Galician autonomous region during 
2018. The weather station network of the Galician regional meteorological agency was used to 
obtain meteorological data for six weather variables from 27 selected locations. These data were 
used as inputs for thermal heating simulations of a TRNSYS model of a representative building. 
These simulation results and weather inputs comprised the reference dataset, which was assumed 
to represent the true weather and heating demand conditions for the studied locations. Universal 
kriging and nearest neighbour interpolation methods were used to obtain localized data of the 
selected weather variables. The predicted heating demands obtained with TRNSYS were also 
generated. Weather interpolation and heating demand simulation error metrics were computed 
against the reference dataset previously obtained. 

Previous studies performed by some of the authors have demonstrated the effectiveness of using 
meteorological data from government agencies to run building thermal simulations [17], [9], [10]. 
The interpolation methods used here have already been successfully applied in previous research 
work: the nearest neighbour algorithm was tested in [17], while the universal kriging algorithm 
was evaluated in [9], [10] and [13]. The simulated building model was also tested in [9]. The main 
novel aspect of the present study is the analysis of weather outputs of one GFS model used as 
meteorological inputs for thermal building simulations. A well-tested reference weather data, 
verified interpolation methods and thermal simulation models are used to evaluate the 
performance of this novel data source. 

2. Methodology 

Figure 1 shows a diagram that summarizes the methodology used and described in this section. 
The research started by defining the target area and selecting both the interpolation techniques 
and the meteorological data sources. Then, a building thermal demand model was defined. 
Finally, error metrics were used to evaluate the meteorological interpolation techniques and 
energy demand simulation results. 

  

Figure 1: Methodology diagram 
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2.1. Study area 

This research focused on the Galician autonomous region, located in north-western Spain. Galicia 
has a fractured orography of eroded mountains and an irregular coast. The region has a rainy, 
maritime climate that is strongly affected by the Atlantic Ocean, but it evolves into a more 
continental/mediterranean climate in the inland areas. According to the Köppen-Geiger 
classification [18], the Csb warm-summer mediterranean climate is predominant. The Cfb marine 
climate is present in some locations, especially over the northernmost area. Figure 2 shows a 5 
km raster resolution of the Köppen-Geiger classification for the entire Iberian Peninsula. A red 
line denotes the Galician study area boundary. This map was generated using the R code provided 
in [19]. 

 

Figure 2: Köppen-Geiger climate classification over Iberian Peninsula 

2.2. Interpolation techniques 

Based on previous studies [17], [9], [10], two interpolation techniques were chosen for both 
weather data sources: nearest neighbour and universal kriging. 

The NN technique assigns to the target location the closest source of information, selected from 
a pool of provided observation points. The data values to be estimated at the target location are 
assumed to be equal to the local measurements available at this selected nearest observation point. 
This method provides fast estimations with a negligible computation cost. The main drawback of 
this technique is its low accuracy and precision when the closest observation point is distant or 
when the estimated fields are irregular with local discontinuities. 

Kriging interpolation techniques focus on spatial relationships between the values of a pool of 
observation points. Kriging interpolations compute an experimental variogram that relates 
distances between pairs of observation points and the relations for data values observed at said 
pairs of points. The technique fits afterwards a mathematical model to this experimental 
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variogram. Once the best model is selected, it is used to choose appropriate weighting parameters 
for interpolation at any new estimation point based on data from the weighted observation points. 
Kriging interpolations provide the best linear unbiased estimations (usually referred to as BLUE) 
from all possible interpolation techniques [20]. A review of 51 comparative studies on spatial 
interpolation techniques available at [21] notes that kriging methods are generally the best choice, 
with a few exceptions. 

Universal kriging is a member of the kriging family that tries to estimate a global trend (or drift) 
in observation data, as opposed to ordinary kriging, in which the global trend is assumed to be 
null. Some authors indistinctly refer to this method as universal kriging, kriging with a trend, 
regression kriging or kriging with external drift. Other authors, however, prefer to reserve the two 
latter names for specifically referring to some slightly different versions of UK. In such versions, 
the trend is predicted using secondary variables, leaving the UK term for the kriging version 
where such a trend is estimated using only the spatial coordinates [21]. In the present study, UK 
refers to a kriging technique with an unknown (estimated) trend predicted using more than only 
spatial coordinates. Specifically, the four variables (estimators) that were used for the kriging 
trend prediction were geographical latitude and longitude, local ground elevation (measured from 
mean sea level), and distance to the nearest coastline point, following the conclusions of [17]. 

All interpolations were conducted using the R environment with the following external packages: 
FNN for nearest neighbour [22], and automap [23] and gstat [24] for universal kriging. For error 
analysis and plotting, Python scripts were used. 

2.3. Weather data 

2.3.1. Weather variables 

Based on the American Society of Heating, Refrigerating and Air-Conditioning Engineers 
(ASHRAE) guideline 14 [25], the weather inputs used for the building energy modelling were 
composed of six elements: dry bulb air temperature, air relative humidity, absolute pressure, 
global horizontal solar radiation (which may be sometimes referred to as “solar radiation” 
henceforth), wind speed and wind direction. These six main weather variables composed the 
meteorological input data passed to the thermal simulations. 

In addition, three more auxiliary weather variables were used in this study: sea level pressure, 
northward wind component speed and eastward wind component speed. The sea level pressure 
variable was used for error evaluation instead of absolute pressure, so comparisons between 
locations with large altitude differences would not be biased by the effects of these large height 
differences. Sea level pressure was calculated using equation (1): 

 𝑃𝑃𝑆𝑆𝑆𝑆 = 𝑃𝑃 � 𝑇𝑇
𝑇𝑇+𝑆𝑆∆𝑧𝑧

�
𝑔𝑔0𝑀𝑀
𝑅𝑅𝑅𝑅   (1) 

where 𝑃𝑃 and 𝑇𝑇 are the pressure and the temperature at local ground level height, respectively; Δ𝑧𝑧 
is the local altitude from sea level; 𝑔𝑔0 = 9.8067 𝑚𝑚/𝑠𝑠2 is the gravitational acceleration; 𝑀𝑀 =
0.02894 𝑘𝑘𝑔𝑔/𝑘𝑘𝑚𝑚𝑘𝑘𝑘𝑘 is the air molar mass; 𝑅𝑅 = 8.3145 𝐽𝐽/(𝑚𝑚𝑘𝑘𝑘𝑘 · 𝐾𝐾) is the universal gas constant; 
and 𝐿𝐿 = −6.5 ℃/𝑘𝑘𝑚𝑚 is the standard temperature lapse rate taken from the Standard Atmosphere 
[26]. The equation itself was derived from the thermodynamic ideal gas law. 

The wind speed and direction variables obtained from the different data sources were transformed 
into northward (blowing from the south towards the north) and eastward (blowing from the west 
toward the east) wind components, so the wind conditions could be interpolated using two scalar 
magnitudes rather than a vector. Wind scalar components were also used when computing 
estimation error metrics, which helped avoid false error results caused by the angular and cyclic 
nature of wind direction (e.g. a 359° estimation, when compared to a 1° observation, would return 
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an incorrect difference of 358° instead of 2°). Wind components were calculated using equations 
(2) and (3): 

 𝑁𝑁𝑁𝑁 = − cos(𝜋𝜋𝑁𝑁𝜋𝜋 180⁄ ) · 𝑁𝑁𝑊𝑊  (2) 
 𝐸𝐸𝑁𝑁 = − sin(𝜋𝜋𝑁𝑁𝜋𝜋 180⁄ ) · 𝑁𝑁𝑊𝑊 (3) 

where 𝑁𝑁𝜋𝜋 is the wind angular direction (measured on sexagesimal degrees) and 𝑁𝑁𝑊𝑊 is the wind 
speed magnitude. The equations were taken from [27]. 

2.3.2. Data sources 

The weather data files used for this research were obtained from two sources: The MeteoGalicia 
historical database, available at the agency webpage, and outputs from one of the NCEP GFS 
models, available on one of the National Oceanic and Atmospheric Administration Operational 
Model Archive and Distribution System (NOMADS) real time data servers. 

MeteoGalicia has regularly been used by some of the authors in previous studies [17], [9], [10]. 
This source includes a network of 167 meteorological stations scattered over the Galician 
territory. Weather stations have a higher density in coastal areas, and are scarcer in inland zones. 
All weather stations record and store data with a 10-minute temporal resolution [28]. Near-ground 
variables are measured at a height of 1.5 or 2 m, while wind-related variables are most commonly 
measured at a height of 10 m. Current conditions and latest measurements can be consulted on 
the MeteoGalicia webpage [29]. This website also provides free access to all historical recorded 
datasets and supports automatic, periodic data requests. 

The GFS model chosen in this paper was the GFS sflux, which is solved on a semi-Lagrangian 
grid with 13 km grid point separation in the horizontal plane and 64 layers for vertical resolution, 
from ground level to 0.2 hPa (approximately 55 km above sea level). The technical identifier for 
this resolution grid is T1534. The temporal resolution is one hour, with predictions generated for 
384 hours (16 days), though only three-hour resolution outputs are available after the first 120 
forecast steps. The GFS sflux model is solved every six hours, with four executions run every day 
starting from 00:00:00 UTC. All currently operational GFS model outputs are stored on the 
NOMADS NCEP HTTP and FTP servers [30]. GFS sflux output results are stored as hourly grib2 
files, containing 112 variables (for the 0-5 first hours) or 114 (for the 6-384 hours) for all the 
planetary grid points. Each grib2 file is publicly available for 10 days. 

Air temperature and relative humidity measurements from MeteoGalicia stations were available 
at 2 m above the local ground surface. The GFS output files contained estimation values for both 
temperature and humidity at the same elevation from ground level, so they could be directly 
compared. The same was applicable to the wind variables, available at a local height of 10 m for 
both MeteoGalicia and GFS. Absolute pressure and global solar radiation GFS outputs were 
available at the local ground surface level, while measurements from MeteoGalicia were taken 
by sensors at 1-2 m above local ground. However, these measurement height differences were 
sufficiently small to cause a negligible effect on the results. All GFS variables were available at 
a 1-hour temporal resolution, so they were used without further processing. MeteoGalicia 
observations were available with a 10-minute resolution, so they were averaged to 1-hour values. 

2.4. Thermal simulations 

Figure 3 shows a representative building with the most common construction features in Galicia, 
which was used to run the thermal simulations. The building was an isolated single-family house, 
so no thermal contributions or shadows from other structures were included in the simulation 
environment. The building comprised three interconnected floors above the ground and one 
underground garage, with a net floor area of 292.4 m2. The main façade had a southwest 
orientation. Trimble SketchUp software was used to define the building geometry. 
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Figure 3: South-western facade of the target building model on SketchUp 

Table 2 summarizes the enclosure and window data. 

Table 2: Enclosure and window data 

Category Type d [mm] U-value [W/m2 K] 

External wall 
Roof 320 0.709 
Outer facade 340 0.489 

Adjacent wall 

Forged floor 391 0.756 
Interior wall 100 2.609 
RadiantFloor_10 423 0.722 
RadiantFloor_30 483 0.699 

Boundary wall 
Basement wall 200 3.892 
Ground 400 2.314 

Window 
Glazing 4/16/4 1.060 
Frame - 3.030 

The TRNSYS simulation environment was used to run thermal simulations. The model was built 
following the main applicable regulations in Spain: The Spanish Technical Building Code (CTE) 
[31] and the Institute for Energy Diversification and Saving (IDAE) specifications [32]. The CTE 
instructions state that calculations of cooling resources are not mandatory for the Galician zone. 
Hence, refrigeration demands were not considered. A hypothesis of unlimited available thermal 
resources was assumed, which means that the results obtained from the TRNSYS simulations 
accounted for ideal demands and were not restricted by installed thermal power. The influences 
of atmospheric pressure and wind on the building thermal demands (along with air temperature 
and humidity) were included by modelling heat gains and losses due to infiltrations. A scheduled 
occupancy profile was imposed, with a 20 °C temperature control set for the afternoon/early night 
part of day (starting at 15:00 and stopping at 23:00 UTC+1). The heating seasons were established 
from January 1 to March 31 and from October 20 to December 31. Figure 4 shows the TRNSYS 
model. More information about the thermal model of the building can be found in [9]. 
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Figure 4: TRNSYS model 

Raw weather data had to be adapted and filled before being used in the TRNSYS thermal 
simulations. This software requires the weather input values to be complete, with missing hours 
on the simulation temporal span not being allowed. Data gaps (caused by unavailable values in 
the local databases) were filled using universal kriging interpolations of MeteoGalicia weather 
data. Those filled hours were not computed when evaluating the results. Weather Converter, an 
auxiliary program provided by the EnergyPlus simulation suite, was used to generate weather 
format (EPW) files. 

2.5. Operational conditions 

2.5.1. Temporal interval 

The present study was carried out using weather data covering all of 2018, which was due to the 
GFS sflux local database starting to operate during late October 2017, so 2018 was the first 
complete year available. 

2.5.2. Locations 

Multiple locations across the Galician study area were selected to perform weather interpolation 
and building simulation estimations. The use of a wide pool of locations allowed to consider the 
geographical influence on building energy demands, as stated in [33], [34]. 

The set of study locations comprised 40 points on an initial stage (the 10 most populated 
municipalities for each of the 4 Galician provinces). This first selection was then narrowed by 
assigning a MeteoGalicia station to each municipality. Locations whose corresponding station 
was more than 10 km away or had less than 75% valid data for the study time interval, were 
discarded. Locations whose corresponding station was already assigned to a larger location were 
also discarded. Thus, 27 locations were finally selected as weather interpolation and heating 
simulation scenarios. 

Table 3 presents a summary of the studied locations, including geographical estimators for UK 
interpolations, Köppen-Geiger climate classification, and heating and cooling degree days (HDD 
and CDD). These three last variables were not used as inputs in the study. However, these 
variables were included in the table to provide more information about the locations where the 
study was performed. 
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Table 3: Locations description 

Study location Latitude Longitude Altitude 
[m] 

Coast 
distance 

[km] 

Köppen 
climate 

HDD18 
[°C·days/year] 

CDD18 
[°C·days/year] 

A Coruña 43.36 -8.44 131 1.2 Csb 1644 340 

A Veiga 42.36 -7.01 1229 125.1 Csb 3307 96 

Avión 42.41 -8.24 553 31.3 Csb 2220 246 

Burela 43.64 -7.37 421 3.2 Cfb 2188 25 

Celanova 42.17 -7.97 623 54.1 Csb 2177 264 

Chantada 42.61 -7.72 391 78.9 Csb 2083 232 

Ferrol 43.49 -8.25 37 0.5 Cfb 1497 224 

Foz 43.56 -7.28 73 1.3 Cfb 1781 85 

Lalín 42.61 -8.14 500 48.1 Csb 2367 119 

Lugo 42.99 -7.54 419 62.5 Csb 2209 163 

Monforte de Lemos 42.47 -7.50 645 92.1 Csb 2300 187 

Ourense 42.35 -7.88 139 60.1 Csb 1561 579 

Ponteareas 42.18 -8.52 41 13.7 Csb 1661 362 

Pontevedra 42.41 -8.66 57 0.4 Csb 1406 353 

Redondela 42.32 -8.60 260 0.6 Csb 1803 327 

Ribadeo 43.54 -7.08 51 1.7 Csb 1527 116 

Ribeira 42.56 -9.03 30 0.1 Csb 1387 266 

Santiago de Compostela 42.88 -8.56 255 26.5 Csb 1841 229 

Santiago de Compostela 42.89 -8.52 305 29.8 Csb 1929 182 

Sarria 42.80 -7.38 416 80.7 Csb 2254 182 

Vedra 42.78 -8.43 225 29.1 Csb 1736 279 

Verín 41.97 -7.40 546 105.7 Csb 2141 397 

Vigo 42.17 -8.69 460 7.6 Csb 1942 295 

Vigo 42.24 -8.73 7 0.0 Csb 1122 351 

Vilalba 43.23 -7.78 684 34.8 Csb 2773 54 

Vilanova de Arousa 42.58 -8.80 3 0.0 Csb 1372 244 

Viveiro 43.63 -7.63 59 4.0 Cfb 1738 138 

2.5.3. Analysed datasets 

Five datasets, shown in Figure 5, were collected to perform the analysis: reference (Ref.), nearest 
neighbour applied to MeteoGalicia data (NN MG), universal kriging applied to MeteoGalicia data 
(UK MG), nearest neighbour applied to GFS data (NN GFS) and universal kriging applied to GFS 
data (UK GFS). 
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Figure 5: Datasets locations 

The Ref. dataset consisted of the 27 MeteoGalicia weather stations assigned to the corresponding 
weather and simulation scenarios, and the geographical coordinates of these points were used as 
estimation targets for the interpolation techniques. As real measured data, the Ref. dataset was 
used as a baseline against which the accuracy and precision of the estimations of the other four 
datasets were tested. 

To implement the nearest neighbour spatial interpolation technique over the MeteoGalicia 
weather data, it was necessary to apply a selection algorithm. This algorithm was designed to 
ensure that no station from the Ref. dataset could act as its own nearest neighbour. The criterion 
of only using stations with at least 75% of available data hours for the studied temporal span was 
also applied. Nevertheless, a single station would be allowed to be the nearest neighbour for more 
than one weather scenario. Once the algorithm was applied, the NN MG dataset consisted of 24 
locations to be linked to the 27 studied scenarios by means of geographical proximity. Hence, 
each studied location would have a single nearest neighbour MG station, but each MG station 
could act as a nearest neighbour of more than one studied location. 

The UK MG dataset consisted of all the MeteoGalicia weather stations with at least one 
measurement for the study temporal interval. A total of 149 stations comprised this dataset and 
were used for each interpolation, although the farthest points had a smaller influence on the 
interpolation results than closer points based on the mathematical foundations of kriging 
interpolation techniques. Each station belonging to the Ref. dataset was temporally removed from 
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this UK MG dataset when estimating weather data at such location, so falsely perfect estimation 
scores would not be achieved. 

The NN GFS dataset consisted of the sum of the GFS points closest to each of the studied 
locations, similar to that of NN MG. 27 GFS points were included in this dataset, each linked to 
one studied location. Unlike with the NN MG dataset, no NN GFS point ended up acting as a 
nearest neighbour to more than one study location, due to the particular distribution of the GFS 
points and studied locations. 

The last dataset, UK GFS, was composed of 598 points. These points were selected after applying 
a spatial filter to all the GFS points stored in the local database: a rectangular shape containing all 
the weather scenarios was defined, and then an outer buffer of 0.5° was applied. There was no 
need to remove points in this case, because the Ref. and UK GFS datasets had no common 
elements. 

Although both the MG and the GFS nearest neighbours were assigned to each studied location 
using the same methodology, the differences in the underlying sets of available points caused a 
notable difference in the resulting distances between pairs of points: the GFS points were in a 
regular, relatively dense grid, so the distance between each reference location and its nearest GFS 
point had a limited maximum value. The maximum distance corresponded to half the diagonal of 
the smallest square defined by the four surrounding grid points. For the GFS sflux model grid, 
whose points were separated by approximately 13 km, this maximum NN distance was close to 
18 km. However, the MG weather stations were scattered in the study region rather than placed 
on a regular lattice, which meant that the theoretical maximum distance limit present on the GFS 
neighbours was not applicable to NN MG. The distances between each location and its 
corresponding MG and GFS nearest neighbours are presented in Table 4. 

Table 4: Nearest Neighbour distances to locations 

Study location Distance to 
NN MG [km] 

Distance to 
NN GFS [km] Study location Distance to 

NN MG [km] 
Distance to 

NN GFS [km] 
A Coruña 19,54 4,88 Redondela 11,11 5,04 
A Veiga 18,65 1,97 Ribadeo 15,87 4,72 
Avión 17,31 6,47 Ribeira 18,56 3,21 
Burela 12,40 0,99 Santiago de Compostela 3,33 6,46 
Celanova 21,31 6,50 Santiago de Compostela 3,34 6,06 
Chantada 18,02 3,65 Sarria 18,31 2,38 
Ferrol 12,47 5,15 Vedra 9,50 3,71 
Foz 12,34 4,26 Verín 16,78 2,95 
Lalín 17,17 5,42 Vigo 8,69 6,20 
Lugo 25,76 7,35 Vigo 8,69 4,71 
Monforte de Lemos 11,13 0,75 Vilalba 15,79 7,48 
Ourense 9,17 2,18 Vilanova de Arousa 8,70 1,34 
Ponteareas 13,35 6,28 Viveiro 13,45 1,36 
Pontevedra 6,47 6,42 - - - 

2.6. Error measurements 

To assess the performance of the interpolation techniques and data sources, several evaluation 
measures were considered: mean bias error (MBE), mean absolute error (MAE), root mean square 
error (RMSE) and root mean square error coefficient of variation (CV(RMSE)). These measures 
were computed using the equations shown below: 

 𝑀𝑀𝑀𝑀𝐸𝐸 = ∑ 𝑋𝑋𝑖𝑖−𝑌𝑌𝑖𝑖
𝑁𝑁

𝑛𝑛
𝑖𝑖=1   (4) 
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 𝑀𝑀𝑀𝑀𝐸𝐸 = ∑ |𝑋𝑋𝑖𝑖−𝑌𝑌𝑖𝑖|
𝑁𝑁

𝑛𝑛
𝑖𝑖=1   (5) 

 
𝑅𝑅𝑀𝑀𝑊𝑊𝐸𝐸 = �∑ (𝑋𝑋𝑖𝑖−𝑌𝑌𝑖𝑖)2

𝑁𝑁
𝑛𝑛
𝑖𝑖=1   

(6) 

 𝐶𝐶𝐶𝐶(𝑅𝑅𝑀𝑀𝑊𝑊𝐸𝐸) = 𝑅𝑅𝑀𝑀𝑊𝑊𝐸𝐸 �∑ 𝑌𝑌𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑁𝑁

��   (7) 

where 𝑋𝑋𝑖𝑖 is a particular estimated value, 𝑌𝑌𝑖𝑖 is the corresponding observed value, and N is the 
sample size. Differences, absolute differences and squared differences between the hourly 
estimation values and the observation values were computed for all locations and all datasets. As 
already stated, some hourly weather estimations were missing due to not having available data 
for interpolation and were filled with kriging estimations during the generation of EPW files. 
Only rows with no gaps (for the corresponding weather variable) were considered when 
computing error results. Simulated hourly results calculated using such filled values (for any 
meteorological variable) were also ignored for heating demand error evaluation. 

3. Results and Discussion 

3.1. Weather variables results 

A statistical study was carried out for the six main variables used as inputs for the TRNSYS 
simulations. The number of valid estimated hours generated varied slightly between datasets and 
variables due to gaps in both the estimation and the reference datasets. The percentage of available 
results ranged between 91.25% and 96.96% of the maximum possible (i.e., 8760 hours per year 
for each location, with a total of 27 locations). 

Figure 6 shows a comparison of the MBE and MAE results with box-and-whisker plots for all 
weather variables. The RMSE and CV(RMSE) plots showed the same pattern as the MAE plots, 
so those plots were omitted. Boxes show the interquartile range (distance between the first and 
third quartiles) and the median value. Whiskers extend from the lower (and higher) quartiles to 
the lowest (and highest) values within 1.5 times of the interquartile range. Black diamonds 
represent data outliers. For the surface level pressure boxplots, some extreme outliers were 
removed to allow a better visual comparison. Two outliers were removed for MBE (-9.8 hPa for 
NN MG and -5.9 hPa for UK MG) and two for MAE (11.1 hPa for NN MG and 6.5 hPa for UK 
MG). For the MBE plots only, an auxiliary line was drawn cutting the ordinate axis at 0 to help 
distinguish positive from negative errors. 
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Figure 6: MBE and MAE box-and-whisker plots for weather variables 

Table 5 summarizes the main statistics regarding the estimation values calculated for all the 
weather variables. 

Table 5: Statistical summary of weather estimation values 

Variable Statistic 
Datasets 

Ref. NN MG UK MG NN GFS UK GFS 

Temperature 
[°C] 

Mean 13.38 12.83 13.28 13.13 13.12 

Median 12.91 12.49 12.83 12.42 12.41 

Standard deviation 6.34 6.54 6.28 6.56 6.49 

Relative 
humidity 
[%] 

Mean 81.12 80.09 80.91 77.43 77.75 

Median 85.00 84.00 85.33 82.32 82.55 

Standard deviation 16.19 17.02 14.99 17.52 17.26 

Sea level 
pressure 
[hPa] 

Mean 1017.57 1016.96 1016.84 1017.21 1017.21 

Median 1018.15 1017.89 1017.65 1017.64 1017.64 

Standard deviation 8.28 11.39 9.80 8.22 8.22 
Horizontal 
global solar 
radiation 
[W/m2] 

Mean 152.37 151.86 149.86 176.20 176.03 

Median 6.00 6.00 5.91 0.00 0.00 

Standard deviation 242.06 242.46 233.86 268.76 268.32 

Mean 0.51 0.64 0.52 0.14 0.16 
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Wind 
northward 
component 
[m/s] 

Median 0.33 0.36 0.20 -0.02 -0.01 

Standard deviation 2.48 2.85 1.97 2.29 2.41 

Wind eastward 
component 
[m/s] 

Mean 0.23 0.16 0.24 0.20 0.22 

Median 0.08 0.07 0.11 -0.01 0.01 

Standard deviation 2.18 2.72 1.83 1.88 1.96 

UK MG was the best local weather estimation dataset, as it provided the most accurate results 
(MAE errors) for temperature, relative humidity, horizontal global solar radiation and northward 
wind component. UK MG was close to GFS datasets for providing the best accuracy on the 
eastward wind component variable and to UK GFS for pressure. The nature of the weather values 
provided by MeteoGalicia was arguably the reason for this better performance, as they were real 
measurements, as opposed to the GFS forecast values. 

NN MG had a much worse general performance than its kriging counterpart, with the greatest 
dispersion levels in all but sea level pressure and solar radiation. The differences between the NN 
GFS and UK GFS datasets were less relevant, with UK GFS performing better than its nearest 
neighbour counterpart on temperature and solar radiation, worse on wind components, and similar 
in relative humidity and sea level pressure. 

The smaller gap between the two GFS interpolations (when compared with their MG 
counterparts) can be explained by means of the distribution of the GFS points. As already shown 
in Table 4, the actual NN GFS distances to each studied location were smaller than the 
corresponding NN MG points. Only for two scenarios were the NN GFS distances larger than the 
NN MG distances. These GFS distances were also far less than their maximum theoretical value 
(~18 km). This large difference in distances is a plausible explanation for the overall better 
performance of the NN GFS interpolation compared to that of the NN MG dataset. 

Precision errors (RMSE and CV(RMSE)) followed the same general pattern as MAE errors, with 
similar relative performance scores between the different datasets for the weather variables. Thus, 
plots for those two precision error metrics are not included. 

Overall, the four estimation datasets tended to underestimate the weather variables, according to 
the MBE median values. However, the horizontal global solar radiation bias errors shown in 
Figure 6 were dependent on the weather data source used. That is, the MG datasets underestimated 
and the GFS datasets overestimated the reference values. NN MG overestimated the northward 
wind component, while its kriging counterpart slightly underestimated it. The reverse situation 
was found for the eastward component, although the differences were smaller. The two GFS 
datasets behaved similarly when underestimating or overestimating each variable. Excluding 
relative humidity and solar radiation, the median MBE values were similar for all the estimation 
datasets, while the first and third quartiles and the values outside them showed greater differences. 

In most cases, the differences between the reference values and the interpolation results for each 
of the four estimated datasets were not severe. From the CV(RMSE) results, which allowed direct 
comparisons between different variables, solar radiation was the worst estimated variable for all 
the datasets, while pressure was variable with the most accurate estimations. 

The analysis performed in this section highlighted the best fit with the reference data provided by 
the UK MG dataset, arguably due to the combination of the MeteoGalicia dense network of 
observation stations and the use of the universal kriging interpolation technique. Although the 
GFS sflux grid had more points in the study area than the MeteoGalicia network, the nature of the 
weather outputs at each point was quite different: each station provided observational 
measurements, while each GFS grid point provided an estimated value. 
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The comparison between NN MG and UK GFS and between the two GFS datasets, however, 
highlighted a different perspective: Even if the GFS outputs had an inherently higher uncertainty 
than that of the MeteoGalicia observations, both the NN and UK GFS datasets provided better 
estimations than NN MG for almost all variables (being worse only for solar radiation). The 
differences between NN GFS and UK GFS were far less than those between their MeteoGalicia 
counterparts. As already stated, the GFS grid was regular, which means that any selected location 
would have a nearest point available at a determined maximum distance of approximately 18 km. 
In contrast, the MeteoGalicia network was non-regular and scarcer in some areas. Moreover, the 
nearest station may not be available at a given moment, which means NN would potentially pick 
an input value farther away when using the MeteoGalicia database instead of GFS, as already 
indicated by the results presented in Table 4. 

3.2. Thermal simulation results 

The same analysis pattern used for the weather variables was applied to the heating demand 
results. For this variable, the amount of valid available estimation results was compulsorily lower 
than that of the meteorological variables because any gap in any of the six TRNSYS weather 
inputs would cause the heating demand output to be considered invalid. The percentage of 
available results ranged between 86.37% and 96.16% for the different studied scenarios. Figure 
7 shows a heating demand comparison for all the error metrics. The same considerations used for 
the plots of meteorological variables were kept here. By design, the heating demand estimations 
were necessarily zero outside the heating season months and zero for the non-heating hourly 
interval for each day of the heating season. If the error metrics were to be computed considering 
the non-heating days and hours, the results would be strongly skewed towards zero, artificially 
reducing the MBE, MAE and RMSE values and increasing the CV(RMSE) values (due to having 
a mean observation value skewed towards zero). To avoid this issue, only the hours inside the 
15:00-22:00 UTC+1 (included) interval from January 1st to March 31th and from October 20th 
to December 31th were considered when computing the heating demand error metrics. 

 
Figure 7: MBE, MAE, RMSE and CV(RMSE) box-and-whisker plots for heating demands 

Table 6 summarizes the main statistics regarding the estimation values calculated for this variable. 
As with the previous plots, non-heating days and hours were removed before computing the 
statistics. 

Table 6: Statistical summary of heating demand estimation values 

Variable Statistic 
Datasets 

Ref. NN MG UK MG NN GFS UK GFS 

Heating demand 
[kWh] 

Mean 3.97 4.47 4.13 3.39 3.38 

Median 4.01 4.41 4.21 3.38 3.34 

Standard deviation 2.35 2.62 2.31 2.15 2.15 
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For all the meteorological results presented in the previous section, a sensible order of magnitude 
can be intuitively determined, allowing the fast-checking of flawed values (e.g., an air temperature 
of 80 °C or an average wind speed of 200 m/s). As heating demands are substantially dependent 
on the type of building model, a reference order of magnitude may be hard to establish without 
more information. For this reason, the yearly total heating demands were computed and are 
provided in Table 7 for the 27 locations using TRNSYS outputs from the Ref. dataset. 

Table 7: Annual heating demands for the studied locations 

Study 
location Latitude Longitude 

Heating 
demands 

[kWh/m2year] 

Study 
location Latitude Longitude 

Heating 
demands 

[kWh/m2year] 

A Coruña 43.36 -8.44 11.8 Redondela 42.32 -8.60 16.6 

A Veiga 42.36 -7.01 31.4 Ribadeo 43.54 -7.08 11.9 

Avión 42.41 -8.24 19.9 Ribeira 42.56 -9.03 10.3 

Burela 43.64 -7.37 17.6 Santiago de 
Compostela 42.88 -8.56 16.6 

Celanova 42.17 -7.97 19.4 Santiago de 
Compostela 42.89 -8.52 17.7 

Chantada 42.61 -7.72 19.8 Sarria 42.80 -7.38 23.4 

Ferrol 43.49 -8.25 13.0 Vedra 42.78 -8.43 15.9 

Foz 43.56 -7.28 14.7 Verín 41.97 -7.40 20.5 

Lalín 42.61 -8.14 21.8 Vigo 42.17 -8.69 16.0 

Lugo 42.99 -7.54 21.2 Vigo 42.24 -8.73 8.4 

Monforte de 
Lemos 42.47 -7.50 21.5 Vilalba 43.23 -7.78 23.6 

Ourense 42.35 -7.88 15.1 Vilanova de 
Arousa 42.58 -8.80 10.7 

Ponteareas 42.18 -8.52 15.3 Viveiro 43.63 -7.63 16.2 

Pontevedra 42.41 -8.66 10.9 - - - - 

The mean heating demand results showed absolute differences for NN MG, UK MG, NN GFS 
and UK GFS of 11.9%, 3.4%, 13.6% and 11.9% respectively. As expected, the use of UK MG 
resulted in consistently lower errors for heating loads. UK MG had the lowest bias and the highest 
accuracy and precision and was also the dataset with the least dispersion. NN MG was the worst 
dataset. Although the median values of the MAE, RMSE and CV(RMSE) metrics were not far 
from those of the GFS datasets, they showed a greater dispersion. The differences between NN 
GFS and UK GFS were again of a lesser order, with UK GFS offering slightly better results in all 
but the CV(RMSE) metrics. 

The comparison of the MBE results showed that both MeteoGalicia estimation datasets tended to 
overestimate heating demands, while both GFS datasets tended to underestimate heating 
demands. This finding was in contrast to the MeteoGalicia underestimation of weather conditions. 
As a colder environment was estimated, it was natural that simulations fed with MeteoGalicia 
data would predict higher energy consumptions, thus overestimating heating needs. GFS 
underestimated most weather conditions, but horizontal global solar radiation was consistently 
overestimated at greater scale than the underestimation of other weather variables. Following the 
same logic applied to the MeteoGalicia results, the large solar radiation overprediction may have 
caused the estimation of a warmer environment, thus causing the GFS-fed simulations to compute 
a lower energy consumption, underestimating heating demands. 

When comparing the CV(RMSE) behaviour patterns of the different weather and simulation 
variables, the heating demand results were similar to those of temperature and relative humidity. 
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That is, UK MG has a prominent performance, with both GFS datasets being ranked between UK 
MG and NN MG. This was not the case for solar radiation and the pressure and wind variables, 
as already stated in the previous section. 

The high dispersion for the heating demands obtained by all the estimation datasets was reflected 
both in the standard deviation values presented in Table 6 and in the amplitudes of the whisker 
plots presented in Figure 7. To highlight this feature, errors were computed by applying the MAE 
metric formula over the estimation results grouped by two criteria: by day, on a first test, and by 
day and location, on a second test. The results are shown in Figure 8. In the first individual plot, 
MAE was computed for each day, combining the results from the whole set of 27 locations. A 
single line represents the temporal evolution of the MAE value for each estimation dataset. In the 
second set of plots, MAE was computed separately for each location and each day. The thick lines 
represent the evolution of the mean values for the MAE results on each day, while the lightly 
coloured buffer band around those lines represents the 95% certainty interval. Minor ticks on the 
x-axis were added to mark odd month days. All plots were cut to avoid representing non-heating 
months. Gaps during the last four days of December caused these days to not be plotted. The same 
assumption regarding non-heating days and hours from Figure 7 was used. 

 
Figure 8: MAE results for heating demands grouped by day: combined and split with buffer band 

Figure 8 shows that the TRNSYS daily heating demand errors had a strong temporal dependency 
with differences up to 150%. The UK MG dataset displayed a regular behaviour with the less 
error all year long (except for one day in January and two days in December, where it was 
outperformed by UK GFS). The UK MG buffer band with 95% confidence was also much smaller 
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than those of the other datasets, showing notable differences only during the second half of 
January, the last days of October and the first half of November, when the remaining datasets also 
showed this behaviour. NN MG had the worst performance during the October-December period, 
but had much fewer differences with the GFS datasets during January-March, even performing 
better on several days. The NN MG dataset displayed the greatest buffer band, with relatively 
large differences during almost the entire study span. Both GFS datasets had a more irregular 
pattern than those of their MG counterparts and were more rugged but had a smaller buffer band 
than that of NN MG. UK GFS performed slightly worse than NN GFS during 34 days and was 
quite similar for most of the year. 

As with the weather variables, UK MG provided the best fit with the reference data for heating 
demands. NN MG, NN GFS and UK GFS were ranked as the fourth, third and second best 
estimations, respectively, similar to temperature and relative humidity. The CV(RMSE) values 
fell within the ASHRAE acceptance limits (from 10% to 30%) for the UK MG method in almost 
all locations. Median and the 1st and 3rd quartiles stayed well below 20% for this dataset, as 
already shown in Figure 7. For UK GFS, the 3rd quartile reached a value slightly over 30%, with 
the median and 1st quartile values close to 20%. 

3.3. Study limitations and future research 

After showing and discussing the main results obtained, an acknowledgement of the key 
weaknesses and limitations of this study is essential, along with proposed future works that could 
amend these limitations. 

The temporal span of the present study was a full year, which provided information about seasonal 
variations on the weather variables used in the thermal simulations. However, inter-annual 
variability was not captured, which means that the particular results presented in this study could 
only be directly applicable to the particular meteorological conditions developed during that year. 
However, the general methodology of this study can still be applied over wider time spans. Future 
work comprising more than one year of meteorological data will help to extend the obtained 
conclusions to a wider set of potential weather conditions. 

The 27 selected scenarios offered adequate coverage over the studied region. However, the 
studied region as a whole shared a few common traits in regard to its geographical and 
meteorological features: low and mid-low altitudes, relative proximity to the open ocean and 
similar external weather influences. A subsequent step would be to extend this study to a larger 
area with more climatic and orographic variability. A different kind of meteorological observation 
network with a lower density of stations scattered over a more heterogeneous region is already 
planned to be used as a test comparison in future work. 

In addition to the regional-scale geographical variability issue, the selection of those studied 
locations was limited by the presence of meteorological weather stations. As stations are usually 
located on cleared, open spaces, there was an intrinsic limitation on the kind of local 
microclimates that could be covered. The reference dataset comprised weather stations located in 
both rural and urban areas. However, the urban stations were located in open spaces (such as 
parks, suburbs and large avenues) rather than on narrow streets, which means that the specific 
study results could not be directly applied to buildings located on these latter kind of streets, 
despite the general methodology still being valid. 

Finally, the thermal simulations of the building model were affected by the specifications of the 
previously mentioned building regulations and the meteorological conditions of the studied area. 
The discarding of cooling resources in the study simulations was a direct result of these constraints 
and was directly linked with the aforementioned issue relating to the variability in the regional 
orographic and meteorological features. A further study including this point could be projected to 
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ensure that the results and conclusions obtained for heating demand simulations with GFS weather 
inputs are also applicable to cooling demands. 

4. Conclusions 

The main objective of this paper was to evaluate the use of a GFS model as a local weather data 
source for the thermal demand simulations of buildings. Four estimated weather datasets were 
elaborated for the complete year of 2018 using two data sources (observations from the regional 
weather network of MeteoGalicia and forecasts from the GFS sflux model) and two interpolation 
techniques (nearest neighbour and universal kriging), and were compared against a reference 
dataset of 27 MeteoGalicia weather stations. 

For the main objective, the results highlighted the viability of GFS sflux as a weather source for 
building thermal simulations. Overall, the performance of GFS sflux was better than that of the 
nearest MeteoGalicia station used as a data source, although it was still not better than using the 
whole MeteoGalicia network for universal kriging interpolation of meteorological data (except 
for sea level pressure). The primary conclusions related to the main objective are as follows: 

• GFS datasets overestimated horizontal global solar radiation, while MeteoGalicia 
underestimated it. All other weather variables were underestimated to some extent by 
both sources. 

• MeteoGalicia overestimated heating demands due to its colder weather estimations. GFS 
underestimated heating requirements due to its large overestimations of solar radiation 
and the subsequent estimation of a warmer environment. 

• Horizontal global solar radiation was the worst estimated weather variable for both the 
MeteoGalicia and GFS datasets. Sea level pressure was the best estimated variable for all 
datasets. 

• All the errors in the weather and simulation variables were sensible for both the 
MeteoGalicia and GFS datasets. 

• The MeteoGalicia dense network of meteorological stations and the observational nature 
of its data allowed UK MG to provide the best estimations of both the weather and the 
heating demand variables. 

• Despite using forecasted data as inputs for interpolation, both GFS datasets performed 
better than NN MG for heating demands and all weather variables except solar radiation. 

• The GFS regular grid of relatively close forecast points allowed a greater performance of 
NN GFS than NN MG. The same reason caused the smaller differences between UK GFS 
and NN GFS compared to that of their MeteoGalicia counterparts. 

• The CV(RMSE) errors for UK MG fell within ASHRAE acceptance limits for almost all 
locations. For UK GFS, the errors fell slightly over the acceptance threshold for the 3rd 
quartile and inside for the 1st quartile and median. 

In addition to these conclusions related to the performance of GFS, two more points were noted: 

• The Thermal simulation error results for the studied building model were more similar to 
those obtained for temperature and relative humidity and less similar to those obtained 
for solar radiation, wind and pressure. 
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• Universal kriging interpolation largely performed better than nearest neighbour when 
both were used with a non-regular grid of observation points. The differences were far 
less when combined with a regular grid of input points. 

Altogether, GFS was shown to be an appropriate contender when compared against a high-density 
meteorological station network over a relatively small study area. Both GFS interpolation 
estimations had an overall better performance than using real measurements from the nearest 
weather station. The main limitations of the specific results obtained have already been 
acknowledged, and future studies have been proposed. However, regarding the main scope of the 
present study, the GFS sflux model has already been revealed as a global-scale, free, good-quality 
source of local weather data for building heating demand simulations. 
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analysed in this article. 
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