
Decision support systems for scheduling
and routing problems in a home care
business

Isabel Méndez Fernández

Doctoral Thesis UDC/2023
Advisors: Silvia María Lorenzo Freire, Ángel Manuel González Rueda
Doctoral Program in Statistics and Operations Research

Decision support systems for scheduling
and routing problems in a home care
business

Isabel Méndez Fernández

Doctoral Thesis UDC/2023
Advisors: Silvia María Lorenzo Freire, Ángel Manuel González Rueda
Doctoral Program in Statistics and Operations Research
Department of Mathematics
Faculty of Computer Science

The undersigned, Silvia Lorenzo Freire and Ángel Manuel González Rueda, certify that they
are the advisors of the Doctoral Thesis with International Doctorate Mention entitled “Decision
support systems for scheduling and routing problems in a home care business”, developed by
Isabel Méndez Fernández at the University of A Coruña (Department of Mathematics), as part
of the interuniversity doctoral program (UDC, USC and UVigo) of Statistics and Operational
Research, and hereby give they consent to the author to proceed with the thesis presentation and
the subsequent defense.

A Coruña, .

Advisors:

Silvia Lorenzo Freire Ángel Manuel González Rueda

PhD candidate:

Isabel Méndez Fernández

Agradecimientos

En primer lugar agradecer a mis directores de tesis, Ángel Manuel González Rueda y Silvia Lorenzo
Freire. Gracias por haberme guiado durante estos años, vuestra supervisión y apoyo han sido claves
para que el día de hoy haya llegado. También a Ignacio García Jurado, porque gracias a él comenzó
toda esta aventura. Por otro lado, agradecer a Isabel Correia, por su apoyo durante mi gratificante
estancia en Lisboa. Al tribunal de seguimiento, Leticia Lorenzo Picado, Rubén Fernández Casal
y Julio González Díaz, por sus aportaciones que contribuyeron a la mejora de esta tesis. Gracias
también a Federico Perea Rojas-Marcos, María Luisa Carpente Rodriguez y María Isabel Azevedo
Rodrigues Gomes, por formar parte del tribunal de defensa.

Quiero agradecer a todas las personas que me han estado a mi lado durante estos años. A
Marina por haber estado siempre ahí, animándome para seguir adelante. A las personas que han
aparecido para quedarse: Bea, Eva, Silvia, Luis, Juan, Jonatan y Rebeca. Hoy se cierra una etapa
de la que imperturbablemente habéis formado parte y que, sin duda, habéis hecho mejor.

A mis padres, Rafael y María Jesús, por convertirme en quien soy y acompañarme a lo largo
de este camino. A mi hermana, Carmen, por ser siempre mi faro y por saber cómo gestionar mis
momentos de agobio.

Funding

The PhD candidate’s research was sponsored by the Spanish Grant for Predoctoral Research
Trainees RD 103/2019.

This research was funded by MICINN/AEI/10.13039/501100011033/ and ERDF/EU through
R+D+I project grants MTM2017-87197-C3-1-P and PID2021-124030NB-C31 and by Consellería
de Cultura, Educación e Universidades, Xunta de Galicia (Grupos de Referencia Competitiva
ED431C-2020/14 and Centro de Investigación del Sistema universitario de Galicia
ED431G-2019/01).

Abstract

Home care services aim to help elderly, sick or dependent people in maintain their quality of life
without having to leave their homes. This type of problem is denoted as Home Care Scheduling
Problem (HCSP) and the goal is to obtain the routes that the company’s caregivers must follow,
as well as the timeframe in which each service should be carried out. That is, a HCSP can be seen
as a routing and scheduling problem.

This thesis studies a real HCSP presented by a company called Mayores. First, the original
problem proposed by the company is presented, which consists in updating the weekly schedules
of the caregivers in order to solve a set of possible incidents. This problem is tackled using the
Simulated Annealing method embedded inside a custom heuristic algorithm. Second, a more
general version of the problem is described, which aims to obtain the best possible schedules of
the caregivers from scratch, considering two objectives: the welfare of the users and the cost of the
schedule. The problem is solved considering three approaches: two hierarchical ones (prioritizing
the welfare or prioritizing the cost) and a biobjective one. Finally, a computational study is
presented in order to evaluate the resolution approaches, using instances from the literature and
real data from the company.

Resumen

Los servicios de atención a domicilio tienen como objetivo ayudar a personas mayores o
dependientes a mantener o mejorar su calidad de vida sin necesidad de abandonar sus hogares.
Esta clase de problema se denomina Home Care Scheduling Problem (HCSP) y su objetivo es
obtener las rutas que deben seguir las auxiliares de la empresa, así como los horarios en los que
debe realizarse cada servicio. Es decir, los HCSP pueden ser considerados como problemas de
planificación de rutas y horarios.

En esta tesis se estudia un HCSP real presentado por una empresa llamada Mayores. En primer
lugar, se presenta el problema original propuesto por la empresa, que consiste en actualizar los
horarios semanales de las auxiliares con el fin de resolver un conjunto de incidencias. En segundo
lugar, se describe una versión más general del problema, cuyo objetivo es obtener, partiendo desde
cero, las mejores planificaciones para las auxiliares, considerando dos objetivos: el bienestar de los
usuarios y el coste de la planificación. El problema se resuelve considerando tres enfoques: dos
jerárquicos (dando prioridad al bienestar o al coste) y uno biobjetivo. Por último, se presenta un
estudio computacional para evaluar los enfoques de resolución propuestos, utilizando instancias de
la literatura y datos reales proporcionados por la empresa.

Resumo

Os servizos de atención a domicilio teñen como obxectivo axudar a persoas maiores ou dependentes
a manter ou mellorar a súa calidade de vida sen necesidade de abandonar os seus fogares. Esta
clase de problema denomínase Home Care Scheduling Problem (HCSP) e o seu obxectivo é obter
as rutas que deben seguir as auxiliares da empresa, así como os horarios nos que debe realizarse
cada servizo. É dicir, os HCSP poden ser considerados como problemas de planificación de rutas
e horarios.

Nesta tese estúdase un HCSP real presentado por unha empresa chamada Mayores. En
primeiro lugar, preséntase o problema orixinal proposto pola empresa, que consiste en actualizar
os horarios semanais das auxiliares co fin de resolver un conxunto de incidencias. En segundo
lugar, descríbese unha versión máis xeral do problema, cuxo obxectivo é obter, partindo desde
cero, as mellores planificacións para as auxiliares, considerando dous obxectivos: o benestar dos
usuarios e o custo da planificación. O problema resólvese considerando tres enfoques: dous
xerárquicos (dando prioridade ao benestar ou ao custo) e un biobxetivo. Por último, preséntase
un estudo computacional para avaliar os enfoques de resolución propostos, empregando instancias
da literatura e datos reais proporcionados pola empresa.

Contents

List of Figures viii

List of Tables x

List of Algorithms xii

List of most used abbreviations xiii

Introduction xv

1 Original problem proposal by Mayores 1
1.1 Resolution method: a Simulated Annealing algorithm 2

1.1.1 Phase 1: initialization . 3
1.1.2 Phase 2: service scheduling . 3
1.1.3 Phase 3: the optimization . 4

1.2 The implementation . 7
1.3 Example: solving incidents . 8

2 Mathematical formulation 11
2.1 The mixed integer programming model . 12

2.1.1 Parameters . 12
2.1.2 Decision variables . 12
2.1.3 Objective function . 13
2.1.4 Constraints . 14
2.1.5 Summary of the MILP model . 19

2.2 Illustrative example of the problem . 21
2.3 Resolution approaches . 26

3 The metaheuristic algorithm 27
3.1 Adaptive Large Neighborhood Search method . 27
3.2 Initial solution . 28
3.3 Removal Operators . 29

3.3.1 Random removal . 29
3.3.2 Related removal . 30
3.3.3 Cost removal . 32
3.3.4 1-route removal . 34
3.3.5 2-route removal . 34

3.4 Insertion Operators . 35
3.4.1 Basic greedy . 35
3.4.2 Random greedy . 38

i

ii CONTENTS

3.4.3 Different caregiver basic greedy . 42
3.4.4 Different caregiver random greedy . 42

3.5 Obtaining the schedule of a route . 42
3.5.1 Constraint programming . 43

Appendix 3.A Auxiliary functions . 45
3.A.1 Check if a route is feasible . 45
3.A.2 Earliest and latest starting times . 46

4 Hierarchical approach: welfare over cost 47
4.1 Algorithm to schedule a route prioritizing welfare over cost 47

4.1.1 Obtain information of the route: getInfo . 48
4.1.2 Obtain a schedule with best penalization value: getSchedulePenalization . . 51
4.1.3 Reduce the cost of the schedule: getScheduleCost 54

Appendix 4.A Auxiliary functions . 57
4.A.1 Obtain blocks: getBlocksSTW . 57
4.A.2 Schedule the block: getScheduleBlock . 62
4.A.3 Delay the block: delayBlock . 63
4.A.4 Get blocks of consecutive services: getBlocksConsecutiveServices 67
4.A.5 Get earliest and latest starting times of the block:

getBlocksEarliestLatestStart . 68

5 Hierarchical approach: cost over welfare 77
5.1 Algorithm to schedule a route prioritizing cost over welfare 77

5.1.1 Get earliest and latest times: getEarliestLatest 78
5.1.2 Get schedules with best cost value: getBestCostSchedules 80
5.1.3 Improve the soft time window penalization: getBestStwSchedules 83

Appendix 5.A Auxiliary functions . 88
5.A.1 Obtain sets of services: getSetsOfServices 88
5.A.2 Obtain the schedule with best penalization value: getStwSchedule 90
5.A.3 Schedule that minimizes all breaks: firstSchedule 90
5.A.4 Schedule that makes one break as big as possible: secondSchedule 91
5.A.5 Update the list of schedules: updateBestSchedulesCost 93
5.A.6 Separate the route into two blocks: getBreakBlocks 95
5.A.7 Get earliest and latest start for the block: getBlockTw 96
5.A.8 Move the schedule of the block: moveBlock 98
5.A.9 Modify the schedule of some services of the block: moveServices 105
5.A.10 Combine the schedule of the blocks: getCombinedSchedules 106

6 The biobjective problem 111
6.1 Epsilon Constraint method . 111

6.1.1 AUGMECON2 method . 112
6.2 Biobjective metaheuristic algorithm . 114

6.2.1 Initialise the sets: initialiseSets . 115
6.2.2 Generate solutions composed by different routes: getDifferentSolutions . . . 116
6.2.3 Generate non dominated solutions: getNonDominatedSet 117

Appendix 6.A Auxiliary functions . 123
6.A.1 Adaptive Large Neighborhood Search: ALNS 123
6.A.2 Update the non dominated solutions: updateNonDominatedSet 124
6.A.3 Filter the set of solutions: filterSet . 124

CONTENTS iii

6.A.4 Update the schedule of a solution: schedule 125
6.A.5 Update the set of solutions: updateSetsOfSolutions 125
6.A.6 Get earliest and latest starting times: getEarliestLatest 125
6.A.7 Obtain the maximum time the service can be delayed or advanced according

to soft time windows: getTimeStw . 126
6.A.8 Get services affected by the delay time: getAffectedServicesDelay 127
6.A.9 Delay time so the penalization does not increase: updateDelay 128
6.A.10 Get services affected by the advance time: getAffectedServicesAdvance . . . 133
6.A.11 Obtain advance time so the penalization does not increase: updateAdvance 134
6.A.12 Obtain the maximum time the service can be delayed or advanced according

to the cost: getTimeCost . 138
6.A.13 Delay the service a random amount of time: randomDelay 146
6.A.14 Advance the service a random amount of time: randomAdvance 147

7 Computational results 151
7.1 Data . 151

7.1.1 Solomon instances . 151
7.1.2 Real Data . 152

7.2 Hierarchical approach: welfare-cost . 152
7.2.1 Gurobi results . 153
7.2.2 ALNS_WC results . 153
7.2.3 Constraint programming results . 158
7.2.4 Real data results . 162

7.3 Hierarchical approach: cost-welfare . 172
7.3.1 Gurobi results . 173
7.3.2 ALNS_CW results . 173
7.3.3 Constraint programming results . 178
7.3.4 Real data results . 179

7.4 Comparison of the two hierarchical solutions in the real case study 187
7.4.1 Trade-off between soft time window penalization and cost 189

7.5 Biobjective algorithm . 191
7.5.1 AUGMECON2 method . 192
7.5.2 Performance indicators . 192
7.5.3 BIALNS method . 193
7.5.4 Real instances . 208

Conclusions 211

Resumen en castellano 213

iv CONTENTS

List of Figures

1 Mayores web page. xvii
2 Services attended by the company from November 16 to December 17. xviii
3 Number of employed caregivers from November 16 to December 17. xviii
4 Geographical location of users. xix
5 Working time of a caregiver. xx
6 Daily working hours of a caregiver. xx
7 Daily working hours of a caregiver (vacation). xx
8 Types of breaks. xxi

1.1 Scheme of the algorithm. 3
1.2 Example of the first movement. 5
1.3 Example of the second movement. 6
1.4 Example of the third movement. 6
1.5 Example of the fourth movement. 7
1.6 Schedule planner of the application. 8
1.7 Initial schedule. 9
1.8 Final schedule. 10

2.1 Schedules of Caregiver 1. 24
2.2 Schedules of Caregiver 2. 24
2.3 Improved schedules of Caregiver 1. 25
2.4 Improved schedules of Caregiver 2. 26

3.1 Route to destroy. 30
3.2 Remove service 2. 30
3.3 Remove Service 3 at random. 31
3.4 Route obtained after removing Service 2. 32
3.5 Route obtained removing Service 1. 33
3.6 Route obtained removing Service 2. 33
3.7 Route obtained removing Service 3. 33
3.8 Route obtained removing Service 4. 33
3.9 Route to be repaired using the basic greedy operator. 36
3.10 Schedule with Service 2 in first position (basic greedy). 36
3.11 Schedule with Service 2 in second position (basic greedy). 36
3.12 Schedule with Service 3 in first position (basic greedy). 37
3.13 Schedule with Service 3 in second position(basic greedy). 37
3.14 Schedule with Service 2 in first position (basic greedy). 37
3.15 Schedule with Service 2 in second position (basic greedy). 37
3.16 Route to be repaired using the random greedy operator. 39

v

vi LIST OF FIGURES

3.17 Schedule Service 2 in the first position (random greedy). 39
3.18 Schedule Service 2 in the second position (random greedy). 39
3.19 Schedule Service 3 in the third position (random greedy). 39

4.1 Scheme of algorithm ALNS_WC. 47
4.2 Hard and soft time windows of the services (ALNS_WC). 49
4.3 Earliest and latest starting times. 51
4.4 Schedule for services 1 and 2. 52
4.5 Schedule for services 1, 2 and 3. 52
4.6 Schedule for services 1, 2, 3 and 4. 53
4.7 Schedule for services 1, 2, 3 and 4. 53
4.8 Schedule for services 1, 2, 3, 5 and 6. 53
4.9 Schedule for services 1, 2, 3, 5 and 6. 54
4.10 Schedule for the route. 54
4.11 Schedule with the smallest breaks. 56
4.12 Schedule with the largest break between services 1 and 2. 56
4.13 Schedule with the largest break between services 2 and 3. 57
4.14 Schedule with the largest break between services 4 and 5. 57
4.15 Blocks of services. 59
4.16 Overlapping soft time windows of Service 2. 61
4.17 Overlapping soft time windows of Service 3. 61
4.18 Overlapping soft time windows of Service 4. 62
4.19 Schedule of block {3, 4}. 63
4.20 Schedule of block {5, 6}. 63

5.1 Scheme of algorithm ALNS_CW. 77
5.2 Hard and soft time windows of the services (ALNS_CW). 79
5.3 Earliest and latest starting times. 80
5.4 Schedule with the smallest breaks. 82
5.5 Schedule with the largest break between services 1 and 2. 82
5.6 Schedule with the largest break between services 2 and 3. 82
5.7 Schedule with the largest break between services 3 and 4. 82
5.8 Schedule with the largest break between services 4 and 5. 83
5.9 Schedule with the largest break between services 5 and 6. 83
5.10 Schedule of δ̂ = {1, 2}. 85
5.11 Schedule of δ̂ = {3, 4, 5, 6}. 85
5.12 Schedule of δ̂ = {1, 2, 3}. 86
5.13 Schedule of δ̂ = {4, 5, 6}. 86
5.14 Schedule of δ̂ = {1, 2, 3, 4}. 87
5.15 Schedule of δ̂ = {5, 6}. 87
5.16 Schedule with break between services 2 and 3. 87
5.17 Schedule with break between services 3 and 4. 88
5.18 Schedule with break between services 4 and 5. 88

6.1 Example illustrating the AUGMECON2 method. 114
6.2 Scheme of algorithm BIALNS. 115
6.3 Scheme of the method to obtain non dominated solutions. 118
6.4 Schedule to modify. 118
6.5 Delay Service 4. 119

LIST OF FIGURES vii

6.6 Advance Service 4. 120
6.7 Delay Service 4 to reduce breaks. 120
6.8 Delay Service 4 to increase the previous break. 121
6.9 Advance Service 4 to reduce breaks. 121
6.10 Advance Service 4 to increase the next break. 122
6.11 Dominated and non dominated points. 122
6.12 Delay of 120 minutes. 130
6.13 Delay of 150 minutes. 131
6.14 Advance of 150 hours. 136
6.15 Delay to reduce breaks. 141
6.16 Delay to increase the break before Service 4. 142
6.17 Advance to reduce breaks before Service 4. 144
6.18 Advance to increase the break after service 4. 146

7.1 Computational results for instances with 10 services (ALNS_WC). 156
7.2 Computational results for instances with 15 services (ALNS_WC). 156
7.3 Computational results for instances with 25 services (ALNS_WC). 157
7.4 Computational results for instances with 50 services (ALNS_WC). 157
7.5 Computational results for instances with 100 services (ALNS_WC). 157
7.6 Objective function value differences (CPSAT vs Algorithm 4.1). 159
7.7 Computational time for instances with 10 services. 161
7.8 Computational time for instances with 15 services. 161
7.9 Computational results (objective functions) for real case study. 162
7.10 Computational time for each week. 162
7.11 Objective function values in terms of p (ALNS_WC). 163
7.12 Objective functions values for real instances (ALNS_WC). 164
7.13 Soft time window penalization according to ALNS_WC (all weeks). 166
7.14 Mean weekly times per caregiver according to ALNS_WC (all weeks). 167
7.15 Overtime, unpaid break, idle time and travel time for week 6 (ALNS_WC). 168
7.16 Routes for a random day (ALNS_WC). 168
7.17 Routes separated into areas (ALNS_WC). 169
7.18 Routes of caregiver 24. 170
7.19 Schedules of caregiver 24. 171
7.20 Schedule for each day of caregiver 24. 172
7.21 Computational results for instances with 10 services (ALNS_CW). 176
7.22 Computational results for instances with 15 services (ALNS_CW). 176
7.23 Computational results for instances with 25 services (ALNS_CW). 177
7.24 Computational results for instances with 50 services (ALNS_CW). 177
7.25 Computational results for instances with 100 services (ALNS_CW). 177
7.26 Objective function value differences (CPSAT vs Algorithm 5.1). 178
7.27 Objective function values in terms of p (ALNS_CW). 179
7.28 Computational results for real instances (ALNS_CW). 180
7.29 Mean weekly times per caregiver according to ALNS_CW (all weeks). 182
7.30 Overtime, unpaid break, idle time and travel time for week 6 (ALNS_CW). 182
7.31 Soft time window penalization according to ALNS_CW (all weeks). 184
7.32 Routes for a random day (ALNS_CW). 184
7.33 Routes separated into areas (ALNS_CW). 185
7.34 Routes of Caregiver 157. 186
7.35 Schedules of caregiver 157. 187

viii LIST OF FIGURES

7.36 Affinity for different weights. 190
7.37 Soft time window penalization for different weights. 190
7.38 Cost for different weights. 191
7.39 Decomposition of the cost for different weights. 191
7.40 Pareto frontier. 192
7.41 Confidence intervals of the indicators in terms of nalns. 195
7.42 Confidence intervals of the indicators in terms of pr. 195
7.43 Confidence intervals of the indicators in terms of nsols. 196
7.44 Confidence intervals of the indicators in terms of nroutes (10 services). 197
7.45 Computational times (10 services). 198
7.46 Computational time of steps 2 and 3 (10 services). 199
7.47 Number of non dominated and total points (10 services). 200
7.48 Number of non dominated points by iterations (10 services). 200
7.49 Confidence intervals of the indicators in terms of nroutes (15 services). 201
7.50 Computational times (15 services). 202
7.51 Computational time for steps 2 and 3 (15 services). 203
7.52 Number of non dominated and number of total points (15 services). 204
7.53 Number of non dominated points by iterations (15 services). 204
7.54 Confidence intervals of the indicators in terms of nroutes (25 services). 205
7.55 Computational times (25 services). 205
7.56 Computational time for steps 2 and 3 (25 services). 206
7.57 Pareto frontier for instance 15_03. 206
7.58 Pareto frontier for instance 15_06. 207
7.59 Pareto frontier for instance 15_09. 207
7.60 Pareto frontier for week 9. 208
7.61 Mean weekly time per caregiver (week 9). 209
7.62 Mean soft time window penalization per user (week 9). 210

List of Tables

1 Constraints involving services. xxiii
2 Constraints involving caregivers. xxiv
3 Constraints involving the schedule. xxv
4 Objective functions involving cost. xxvii
5 Objective functions involving users and services. xxviii
6 Objective functions involving caregivers. xxix
7 Objective functions involving the schedule. xxx

1.1 Incidents. 8

2.1 Sets involved in the problem. 19
2.2 Parameters and variables involved in the problem. 19
2.3 Variables involved in the problem. 20
2.4 List of services. 22
2.5 List of tasks. 23
2.6 List of affinities. 23
2.7 Objective function values. 25
2.8 Improved objective function values. 25

4.1 Hard and soft time windows of the services (ALNS_WC). 49

5.1 Hard and soft time windows of the services (ALNS_CW). 79

6.1 Hard and soft time windows of the services (BIALNS). 119

7.1 Data instances. 152
7.2 Real data instances. 152
7.3 Gurobi computational results (prioritizing welfare over cost). 153
7.4 Mean RPD values comparing ALNS_WC with Gurobi (first objective). 154
7.5 Mean RPD values comparing ALNS_WC with Gurobi (second objective). 154
7.6 RPD values comparing ALNS_WC with the best solution found. 155
7.7 Mean RPD values comparing ALNS_CPSAT with Gurobi (first objective). 159
7.8 Mean RPD values comparing ALNS_CPSAT with Gurobi (second objective). . . . 160
7.9 Comparing the worst solution obtained by ALNS_CPSAT and ALNS_WC. 160
7.10 Computational results for real instances according to ALNS_WC (welfare). 165
7.11 Weekly percentage of services with maximum affinity level (ALNS_WC). 165
7.12 Computational results in hours for real instances according to ALNS_WC (cost). . 166
7.13 Gurobi computational results prioritizing cost over welfare. 173
7.14 Mean RPD values comparing ALNS_CW with Gurobi (first objective). 174
7.15 Mean RPD values comparing ALNS_CW with Gurobi (second objective). 174

ix

x LIST OF TABLES

7.16 RPD values comparing ALNS_CW with the best solution found. 175
7.17 Computational results in hours for real instances according to ALNS_CW (cost). . 181
7.18 Computational results for real instances according to ALNS_CW (welfare). 183
7.19 Weekly percentage of services with maximum affinity level (ALNS_CW). 183
7.20 Reduction of the percentage of services with maximum affinity. 188
7.21 Reduction of the welfare related objectives. 188
7.22 Reduction of the cost related objectives. 189
7.23 AUGMECON2 computational times (in hours). 192
7.24 Performance indicators for the biobjective problem. 193
7.25 Indicator values for 6000 iterations (10 services). 198
7.26 Computational time for instances with 10 services. 199
7.27 Indicator values for 8000 iterations (15 services). 202
7.28 Computational time for instances with 15 services. 203
7.29 Objective values of the solutions. 209

List of Algorithms

1.1 Heuristic to solve the incidents . 2
1.2 Modified Simulated Annealing . 4

3.1 ALNS - Adaptive Large Neighborhood Search . 28
3.2 Initial solution . 29
3.3 Random removal operator . 29
3.4 Related removal operator . 31
3.5 Cost removal operator . 32
3.6 1-route removal operator . 34
3.7 2-route removal operator . 34
3.8 Basic greedy operator . 35
3.9 Random greedy operator . 38
3.10 Different caregiver basic greedy operator . 40
3.11 Different caregiver random greedy operator . 41
3.12 feasible - Check if a route is feasible . 46
3.13 getEarliestLatest - Get earliest and latest staring times 46

4.1 ALNS_WC - Schedule a route prioritizing welfare over cost 48
4.2 getInfo - Get earliest times and blocks of services 49
4.3 getSchedulePenalization - Get the schedule with best penalization value 51
4.4 getScheduleCost - Get the schedule that optimizes the cost 55
4.5 GetBlocksSTW - Divide the route into blocks . 58
4.6 updateBlock - Add more services to the block . 60
4.7 getScheduleBlock - Schedule the services of a block 62
4.8 delayBlock - Delay the block to improve penalization 64
4.9 getAllDelays - Get the possible delay times for the block 65
4.10 getMaxDelay - Get maximum delay time of the block 67
4.11 getBlocksConsecutiveServices - Separate the route into blocks 67
4.12 getBlocksEarliestLatestStart - Get earliest and latest start for the services . . . 68
4.13 getDelayTimes - Get possible delay times for the block 70
4.14 getAdvanceTimes - Get possible advance times for the block 71
4.15 getMaxDelayTime - Get maximum delay time for the block 72
4.16 getMaxAdvanceTime - Get maximum advance time for the block 74
4.17 adjustTimes -Adjust the earliest and latest starts of the blocks 74

5.1 ALNS_CW - Schedule optimizing first the cost and second the welfare 78
5.2 getEarliestLatest - Get earliest times and blocks of services 79
5.3 getBestCostSchedules - Get a schedule with the best value for the cost 81
5.4 GetBestStwSchedules - Get multiple schedules with the same cost 84

xi

xii LIST OF ALGORITHMS

5.5 getSetsOfServices - Get the sets of services according to the possibility of having
a break bigger than πmin . 89

5.6 maxBreak - Get maximum available break before each service 89
5.7 getStwSchedule - Schedule the services according to their soft time window . . . 90
5.8 firstSchedule - Get the schedule with the minimum break between services 90
5.9 secondSchedule - Get the schedule with the maximum break between services . . 91
5.10 updateBestSchedulesCost - Update the best schedules according to the cost of

the route . 93
5.11 getBreakBlocks - Get blocks of services separated by the largest break (≥ πmin) . 95
5.12 getBlockTw - Get the earliest and latest start for the block 96
5.13 moveBlock - Get possible schedules for a block . 98
5.14 getDelays - Get the possible delay times for the block 100
5.15 getBestDelay - Get maximum delay time for the block 102
5.16 moveServices - Move the free services to improve penalization 106
5.17 getCombinedSchedules - Combine the schedules of the blocks 107
5.18 delayPenalization - Get the change in penalization when delaying the block . . . 108
5.19 advancePenalization - Get the change in penalization if the block is advanced . . 109
5.20 delay - Delay the block . 109
5.21 advance - Advance the block . 110

6.1 AUGMECON2 . 113
6.2 Biobjective AUGMECON2 . 114
6.3 BIALNS - Metaheuristic algorithm to obtain non dominated solutions 115
6.4 initialiseSets - Get solutions for each lexicographic objective 116
6.5 getDifferentSolutions - Get set of solutions with different routes 116
6.6 getNonDominatedSet - Get set of non dominated solutions 117
6.7 ALNS - Adaptive Large Neighborhood search . 123
6.8 updateMultipleRoutes - Update the set that contains solutions with different routes123
6.9 updateNonDominatedSet - Update the set that contains solutions with different

routes . 124
6.10 filterSet - Keep solutions close to the non dominated ones 125
6.11 updateSetsOfSolutions - Add solutions close to the non dominated ones 125
6.12 getTimeStw - Get maximum advance and delay time of the service according to stw 126
6.13 getAffectedServicesDelay - Get services affected by a potential delay of j 127
6.14 updateDelay - Get maximum delay to not increase penalization 129
6.15 delayTimes - Get possible delay times to not increase penalization 132
6.16 getAffectedServicesAdvance - Get services affected by a potential advance of j . 133
6.17 updateAdvance - Get maximum advance to not increase penalization 135
6.18 advanceTimes - Get possible advance times to improve penalization 137
6.19 getTimeCost - Get possible advance and delay times for j to improve the cost . . 139
6.20 delayReduceBreak - Get delay time to reduce the breaks after the service 140
6.21 delayIncreaseBreak - Get delay time to increase the break before the service . . . 141
6.22 advanceReduceBreak - Get advance time to reduce the breaks after the service . 143
6.23 advanceIncreaseBreak - Get advance time to increase the break after the service 145
6.24 randomDelay - Delay service j at random . 146
6.25 randomAdvance - Advance service j a random amount of time 148

List of most used abbreviations

Abbreviation Meaning
ALNS Adaptive Large Neighborhood Search
ALNS_CPSAT Combination of the ALNS method with CPSAT
ALSN_CW Combination of the ALNS method with Algorithm 5.1
ALSN_WC Combination of the ALNS method with Algorithm 4.1
AUGMECON2 Improved version of the Augmented Epsilon Constraint method
BIALNS Biobjective metaheuristic algorithm
COP Constraint Optimization Problem
CP Constraint Programming
CPSAT CP solver included in the Google OR Tools
CSP Constraint Satisfaction Problems
CV Coverage indicator
EPS Epsilon indicator
GD Generational Distance indicator
GIRO Generación, Gestión e Integración de Rutas en OLAP
HCSP Home Care Scheduling Problem
HTW Hard Time Window
IGD Inverted Generational Distance indicator
LBD Database Lab
MILP Mixed Integer Linear Programming
NDP Number of non dominated points
OLAP On-Line Analytical Processing
PT Pay-off Table of a multiobjective problem
RPD Relative Percentage Deviation
SA Simulated Annealing
STW Soft Time Window
TP Total number of points
VRP Vehicle Routing Problem

xiii

xiv LIST OF ALGORITHMS

Introduction

This work arose from the project Innterconecta GIRO - Generación, Gestión e Integración de
Rutas en OLAP (ITC-20151247), which involved a group of companies from different sectors,
but with similar challenges in terms of optimizing their organizational processes. The activity
of these companies required the mobility of their employees, i.e. their workers should travel to
complete tasks, or provide services, in different locations. Another common characteristic to all
these companies is the necessity for a continuous adjustment of their schedules as a result of a
series of contingencies: the appearance/disappearance of clients, the absence of a worker, the
incompatibility of tasks and schedules, etc. Therefore, the logistic problems of the companies
were all related to task planning, scheduling and routing. Thus, our task in the project was to
explore the integration of operational research and mathematical optimization techniques into the
scheduling and route planning processes of the participating companies. The final objective of the
project was to design automatic tools to support decision-making for the companies. So, once the
situation of the workers was known, the tools would be able to provide a work plan for each of
them and adapt it according to the contingencies that might arise.

The following six companies were involved in the project:

Gesuga (gesuga.com) This company provides a collection service for meat by-products not
intended for human consumption. It has a fleet of vehicles, located at several plants, which
follow the daily schedule established by the company’s routing department. These
schedules have to cover the daily collection orders while satisfying a number of constraints.
The company aims to improve the planning of these routes, minimizing the distances
traveled by the vehicles and their fuel consumption. In addition, it is also necessary to deal
with unforeseen contingencies, such as the arrival of a new collection order. It means that
the initial routes should be adapted to the requirements that come in during the day.

Biogas Fuel Cell This company is specialized in the management and processing of organic waste
into biogas. The company has its own biogas plant with a reception area to receive waste.
The waste is transported both by external contractors and by the company’s own vehicles, so
it is necessary to coordinate the arrivals of both types of vehicles. It results in two problems:
organizing the reception of the waste at the plant and establishing the routes for their own
vehicles. These routes aim to minimize the travel distance and meet the schedules given by
the first problem.

Mayores (mayores.es) This company provides home care services to dependent people and their
families. For this purpose, a team of specialized staff visit the users in their own homes.
Therefore, the company needs to determine the routes to be followed by its caregivers, with
the objectives of maintaining patient schedules and reducing travel time. An important
feature of this problem is that routes should encourage the continuity of care of the caregivers
that attended the users in the past. The proposed tool must be able to obtain a schedule and
route planning that dynamically adapts to all kinds of contingencies: requests for scheduling

xv

https://www.gesuga.com/
https://www.mayores.es/

xvi INTRODUCTION

changes, services cancelled by some users, modification of visits duration, etc.

Grupo On (seguridadon.es) This company is specialized in offering security systems involving the
installation of alarm devices, both for companies and residential homes. A team of technicians
are constantly traveling for the installation of alarms and their maintenance, which includes
periodic inspections and repair work. The company faces scheduling problems due to the
need of organizing the routes of its technicians in order to keep the appointments with each
client. The objective is to reduce travel times and maximize the priority of the clients, while
satisfying customer availability.

Mugatra (mugatra.es) This company offers a set of services to its clients that provide total
coverage for the workplace safety and risk prevention. The most important service is
workplace health monitoring, whose objective is to carry out periodic evaluations of the
client’s staff, in order to assess whether their health condition is satisfactory to carry out
their duties in the company. The problem presented by this company is a combination of
three different planning problems:

• Setting the service dates for each client.

• Deciding whether to use mobile units or to rent rooms, which entails scheduling the
shipment of medical equipment.

• Scheduling the examinations for all employees of the client.

The objective is to minimize the travel times between clients and maximize the number of
clients that can be attended at the same location.

Taprega (taprega.com) The company offers its clients services in the field of workplace safety,
specializing in the prevention of work-related risks. There are two kind of workers in the
company: technicians and sales representatives. The technicians are in charge of carrying
out customer inspections. The sales representatives visit customers, or potential customers,
with the aim of advertising the company and formalizing new contracts. There are two
planning problems in the development of the activity of the company: on one hand, the
planning of the agenda of its technicians and, on the other hand, the planning of its sales
representatives. Regarding the problem of scheduling the technicians routes, the objectives
are to minimize the travel times and maximize the urgency of the visits carried out. In the
sales representatives issue, the objective is to minimize travel times. Furthermore, in both
problems a periodicity in the visits must be taken into account.

This thesis focuses on the problem presented by Mayores, the home care company.

Mayores’ company
Mayores has been providing home care services in the city of A Coruña and its neighboring
municipalities (Abegondo, Arteixo, Cambre, Carral, Culleredo or Sada) since 1997. Figure 1
illustrates the web page of Mayores, showing the different services they provide (homecare, day
care center for the elderly and nursing home), as well as a general description of the company.

Home care is a service that allows elderly and/or dependent people to continue living at home
despite being in a situation of dependency or in need of assistance with different day-to-day tasks.
This type of service allows users, and their families, to improve their quality of life by providing
domestic and individual care services guaranteeing that users can continue to live at home in the
best possible conditions.

https://www.seguridadon.es/
https://www.mugatra.es/
https://www.taprega.com/

INTRODUCTION xvii

Figure 1: Mayores web page.

The main goals of home care services are:

• To improve the quality of live of its users.

• To encourage the acquisition of skills that allow a more independent development in daily
life.

• To support the user’s family members in their care responsibilities.

• To avoid, or delay, the transfer of the user to a nursing home.

The users are people who need care or help in carrying out certain tasks and come to the
company to improve their quality of life. Users demand a set of services which will have to be
attended by the company’s employees in the user’s homes. During these services the caregivers
must carry out certain tasks, that can be domestic, personal or heath related. Some of these
activities must be performed at a specific range of times, for example getting up and going to bed
must be performed in the morning and evening, respectively. Other activities can be carried out
at any time of the day, such as dusting or doing the laundry. For each one of the services, the
following information must be specified: its duration, the time frame it belongs to, the day of the
week it must be carried out and a time window.

Figure 2 represents the number of services, by day, carried out by the company during 60
weeks, from November 2016 to December 2017. Note that the number of services during the
weekends (roughly between 25 and 75 services per day) is much lower than on the other days
(roughly between 125 and 225 services per day). This happens because, in many cases, the family
members of the users take care of them at the weekends, so that they only need to be attended
by the company from Monday to Friday. Another interesting feature that can be observed is that
some days (Monday to Friday) the number of services drops drastically. These days correspond

xviii INTRODUCTION

to holidays, and behave similarly to weekends, because the families of the users can take care of
them during such days. For example, the first of May (Monday 05/01/17) was a holiday in Spain,
so during that day the number of services required by the users was lower.

50

100

150

200

11
/0

7/
16

11
/1

4/
16

11
/2

1/
16

11
/2

8/
16

12
/0

5/
16

12
/1

2/
16

12
/1

9/
16

12
/2

6/
16

01
/0

2/
17

01
/0

9/
17

01
/1

6/
17

01
/2

3/
17

01
/3

0/
17

02
/0

6/
17

02
/1

3/
17

02
/2

0/
17

02
/2

7/
17

03
/0

6/
17

03
/1

3/
17

03
/2

0/
17

03
/2

7/
17

04
/0

3/
17

04
/1

0/
17

04
/1

7/
17

04
/2

4/
17

05
/0

1/
17

05
/0

8/
17

05
/1

5/
17

05
/2

2/
17

05
/2

9/
17

06
/0

5/
17

06
/1

2/
17

06
/1

9/
17

06
/2

6/
17

07
/0

3/
17

07
/1

0/
17

07
/1

7/
17

07
/2

4/
17

07
/3

1/
17

08
/0

7/
17

08
/1

4/
17

08
/2

1/
17

08
/2

8/
17

09
/0

4/
17

09
/1

1/
17

09
/1

8/
17

09
/2

5/
17

10
/0

2/
17

10
/0

9/
17

10
/1

6/
17

10
/2

3/
17

10
/3

0/
17

11
/0

6/
17

11
/1

3/
17

11
/2

0/
17

11
/2

7/
17

12
/0

4/
17

12
/1

1/
17

12
/1

8/
17

12
/2

5/
17

week

nu
m

be
r o

f s
er

vi
ce

s

day Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Figure 2: Services attended by the company from November 16 to December 17.

The caregivers1 are the company’s employees, who are in charge of visiting users’ homes in
order to carry out the assigned tasks.

10

20

30

40

50

11
/0

7/
16

11
/1

4/
16

11
/2

1/
16

11
/2

8/
16

12
/0

5/
16

12
/1

2/
16

12
/1

9/
16

12
/2

6/
16

01
/0

2/
17

01
/0

9/
17

01
/1

6/
17

01
/2

3/
17

01
/3

0/
17

02
/0

6/
17

02
/1

3/
17

02
/2

0/
17

02
/2

7/
17

03
/0

6/
17

03
/1

3/
17

03
/2

0/
17

03
/2

7/
17

04
/0

3/
17

04
/1

0/
17

04
/1

7/
17

04
/2

4/
17

05
/0

1/
17

05
/0

8/
17

05
/1

5/
17

05
/2

2/
17

05
/2

9/
17

06
/0

5/
17

06
/1

2/
17

06
/1

9/
17

06
/2

6/
17

07
/0

3/
17

07
/1

0/
17

07
/1

7/
17

07
/2

4/
17

07
/3

1/
17

08
/0

7/
17

08
/1

4/
17

08
/2

1/
17

08
/2

8/
17

09
/0

4/
17

09
/1

1/
17

09
/1

8/
17

09
/2

5/
17

10
/0

2/
17

10
/0

9/
17

10
/1

6/
17

10
/2

3/
17

10
/3

0/
17

11
/0

6/
17

11
/1

3/
17

11
/2

0/
17

11
/2

7/
17

12
/0

4/
17

12
/1

1/
17

12
/1

8/
17

12
/2

5/
17

week

nu
m

be
r o

f c
ar

eg
iv

er
s

day Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Figure 3: Number of employed caregivers from November 16 to December 17.

Figure 3 presents the weekly number of caregivers employed by the company from November
2016 to December 2017. It can be seen that the behavior is similar to the one observed with the

1Notice that the employees of the company are women. Therefore, the feminine form will be used throughout
the work to refer to them.

INTRODUCTION xix

number of services. Naturally, if users require fewer services, then the number of caregivers needed
to perform them will also be lower. Therefore, the number of employed caregivers is smaller during
the weekends and on holidays.

The caregivers have contracts that specify the number of hours they should work during the
week. The following elements are considered as working time:

• The time spent at the users’ homes carrying out services.

• The time spent traveling between services.

• All the breaks between services (free time) they may have during the day, with the exception
of the largest one if it lasts two or more hours.

Travel times can vary depending on the region of activity. In urban areas users are more
concentrated so caregivers can often travel on foot or using public transport. The contrary
happens in rural areas, where users are generally widely distributed and the caregivers are
usually required to use their own vehicle. It is worth noting that the company is only paid for the
hours that the caregivers are attending the users. For this reason, the travel and free times of the
caregivers can be seen as financial losses for the company.

The geographical distribution of the 291 users, that the company attends in a certain region,
is presented in Figure 4. It can be seen that the region is divided into two parts: the urban center
and a rural area. In the urban center (surrounded by the frame) there are more services over a
small area, which reduces travel times. In the rural area there are fewer users scattered over a
large area, which results in longer travel times.

Figure 4: Geographical location of users.

Figure 5 shows the weekly working time (in hours) of a caregiver from November 2016 to
December 2017. It can be seen that, in general, it is slightly affected by the holidays. For example,
during the first week of May (the one that starts on 05/01/17) the caregiver worked fewer hours
than during the one before. Which happened because on Monday, which was holiday, the worked
time of the caregiver was lower (see Figure 6).

xx INTRODUCTION

0

10

20

30

40

11
/0

7/
16

11
/1

4/
16

11
/2

1/
16

11
/2

8/
16

12
/0

5/
16

12
/1

2/
16

12
/1

9/
16

12
/2

6/
16

01
/0

2/
17

01
/0

9/
17

01
/1

6/
17

01
/2

3/
17

01
/3

0/
17

02
/0

6/
17

02
/1

3/
17

02
/2

0/
17

02
/2

7/
17

03
/0

6/
17

03
/1

3/
17

03
/2

0/
17

03
/2

7/
17

04
/0

3/
17

04
/1

0/
17

04
/1

7/
17

04
/2

4/
17

05
/0

1/
17

05
/0

8/
17

05
/1

5/
17

05
/2

2/
17

05
/2

9/
17

06
/0

5/
17

06
/1

2/
17

06
/1

9/
17

06
/2

6/
17

07
/0

3/
17

07
/1

0/
17

07
/1

7/
17

07
/2

4/
17

07
/3

1/
17

08
/0

7/
17

08
/1

4/
17

08
/2

1/
17

08
/2

8/
17

09
/0

4/
17

09
/1

1/
17

09
/1

8/
17

09
/2

5/
17

10
/0

2/
17

10
/0

9/
17

10
/1

6/
17

10
/2

3/
17

10
/3

0/
17

11
/0

6/
17

11
/1

3/
17

11
/2

0/
17

11
/2

7/
17

12
/0

4/
17

12
/1

1/
17

12
/1

8/
17

12
/2

5/
17

week

w
or

ke
d

tim
e

(h
ou

rs
)

Figure 5: Working time of a caregiver.

0

2

4

6

8

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
day

w
or

ke
d

tim
e

(h
ou

rs
)

(a) Week that starts on 04/24/17.

0

2

4

6

8

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
day

w
or

ke
d

tim
e

(h
ou

rs
)

(b) Week that starts on 05/01/17.

Figure 6: Daily working hours of a caregiver.

0

2

4

6

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
day

w
or

ke
d

tim
e

(h
ou

rs
)

(a) Week that starts on 09/04/17.

0

2

4

6

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
day

w
or

ke
d

tim
e

(h
ou

rs
)

(b) Week that starts on 09/18/17.

Figure 7: Daily working hours of a caregiver (vacation).

The effect that the holidays have on the worked time can be more difficult to appreciate because,

INTRODUCTION xxi

in some cases, the caregiver worked less hours during a week for some other reasons (such as having
a free day, vacations or fewer services to carry out). For example, analyzing the working time of
the caregiver during September in Figure 5, it can be deduced that she did not work on the week
that starts on 09/11/17 and she worked less than usual in the weeks before and after it. This is
because the caregiver was on vacation between the 5th and 18th of September, which can be seen
in Figure 7.

In terms of breaks, all of them will be considered as worked time with just one exception: in
case the largest break of the working day has a duration greater than or equal to two hours it will
not be paid.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 2 3

break < 2h break > 2h

(a) The only break larger than 2 hours is not considered as working time.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 2 3

break > 2h break > 2h

(b) The largest break is not considered as working time.

Figure 8: Types of breaks.

Thus, in the schedule of Figure 8a, where the services duration is 100 minutes (represented with
dark blocks) and the travel time between each pair of services is 30 minutes (see hatched blocks),
only the largest break (with a duration of 5 hours and 20 minutes) will be discounted. Then, the
total worked time will be 7 hours and 20 minutes. In the schedule of Figure 8b, even though it has
two breaks longer than 2 hours, only the second one (with a duration of 3 hours and 50 minutes)
will not be paid. This means that the working time will be 8 hours and 50 minutes. Therefore,
Figure 8 reveals the importance of correctly scheduling the largest break of a route.

The company employs a set of supervisors, who have been assigned a number of users and
caregivers. The assignment of users is made taking into account their location and it cannot be
modified, because the supervisors are in contact with the users’ families (they write reports and
monitor the evolution of the users).

The company considers that the consistency of the assignment of users to caregivers is very
important, to the extent that it is preferable to change the schedule of a visit so that the caregivers
who carries it out can always be the same one. Sometimes it is even necessary for a user to be
attended by more than one caregiver. So the past assignments, and the preferences or problems
that may have arisen between users and caregivers, are used to obtain a list of affinity levels. The
affinity establishes a compatibility level between users and caregivers, being these levels defined as
follows:

Level 0. The user should not be attended by this caregiver under any circumstances. This
situation can happen because the caregiver is not qualified to attend the user or because
there has been some kind of incident between them.

Level 1. The caregiver could attend the user only if there is no other option. It could happen
when the caregiver received some mild complaints from the user.

xxii INTRODUCTION

Level 2. The caregiver could attend the user although the degree of compatibility between user
and caregiver has not been established yet. In this level, the user does not require any kind
of special characteristics from the caregivers.

Level 3. The caregiver has not attended the user yet but, due to the characteristics of the
caregiver, the supervisor thinks that she could be a very good candidate to carry out the
services.

Level 4. The user was successfully attended by the caregiver in the past, either sporadically or
continuously.

Level 5. The caregiver is already attending the user, on a continuous basis, in a satisfactory
manner.

In the company, supervisors are responsible of manually organizing the work plans of all the
caregivers assigned to them. That is, they assign each service required by a user, during the week,
to a caregiver and establish the specific times at which these services will start.

Related literature
The problem under study is known as Home Care Scheduling Problem (from now on HCSP). This
kind of problem deals with real life situations where some users require home assistance services
and they should be attended by a set of caregivers throughout the week. Thus, the goal of an
HCSP is to design the routes and schedules for caregivers, indicating the services to carry out, in
which order and at what time. Schedules should also satisfy all the requirements imposed by both,
the company and the users, while pursuing a set of objectives.

Due to the increase demand of home care services in recent years, the literature on this type of
problems has grown significantly. Detailed surveys on HCSP can be found in Cissé et al. (2017),
Fikar & Hirsch (2017), Di Mascolo et al. (2021) and Euchi et al. (2022). Some of the most
common characteristics discussed in these surveys will be described in this section.

Numerous HCSPs are inspired by real applications. For example, in Akjiratikarl et al. (2007) a
real situation arising in the UK is studied, in collaboration with The Welsh Systems Consortium, a
partnership between seven local government authorities in Wales. Grenouilleau et al. (2019) work
with Alayacare, a start-up sited in Montreal (Canada) that is developing a decision support system
for home health care companies. In Habibnejad-Ledari et al. (2019) the authors study the problem
of Dam homecare medical center, a non-governmental organization in Iran. The problem studied
in Luna et al. (2018) was developed in collaboration with EULEN, an international company
offering cleaning, health, and logistics services (among others). In Malagodi et al. (2021) the
problem is inspired by a real home care provider in the USA. Maya Duque et al. (2015) explore
home care services in Belgium, considering the case of Landelijke Thuiszorg, an organization that
provides home care services in four Belgian regions. The research of Mosquera et al. (2019) was
motivated by Flemish (Belgium) home care companies that realized that their manual scheduling
procedures were becoming obsolete. The problem presented in Rest & Hirsch (2016) was based on
a collaborative project with the Austrian Red Cross, which is one of the leading home care service
providers in Austria.

INTRODUCTION xxiii

Reference HTW SKILL NUMC MIND MAXD FREQ SYNC
Bard et al. (2014) x
Akjiratikarl et al. (2007) x
Bertels & Fahle (2006) x x
Braekers et al. (2016) x
Erdem & Bulkan (2017) x x
Chaieb et al. (2020) x x
Garaix et al. (2018) x x x
Grenouilleau et al. (2019) x x
Rest & Hirsch (2016) x x x
Kergosien et al. (2009) x x x
Liu et al. (2017) x x
Riazi et al. (2019) x x
Mankowska et al. (2014) x x
Mosquera et al. (2019) x x x x x
Bachouch et al. (2011) x x x
Nickel et al. (2012) x x x
Haddadene et al. (2016) x x x
Ait Haddadene et al. (2019) x x x
Chaieb & Ben Sassi (2021) x x
Decerle et al. (2021) x x x
Euchi et al. (2020) x
Kandakoglu et al. (2020) x
Frifita & Masmoudi (2020) x x
Grenouilleau et al. (2020) x x x
Khodabandeh et al. (2021) x x
Lin et al. (2018) x x
Liu et al. (2021a) x x x
Liu et al. (2021b) x x
Manavizadeh et al. (2020) x x x
Martin et al. (2020) x
Nasir & Kuo (2020) x x x
Taieb et al. (2019) x x
Vieira et al. (2022) x x x
Wang et al. (2020) x
Xiang et al. (2023) x x
Zhan & Wan (2018) x
Fathollahi-Fard et al. (2018) x
Fathollahi-Fard et al. (2019) x
Fathollahi-Fard et al. (2020) x
Carello & Lanzarone (2014) x
Cappanera et al. (2018) x
Carello et al. (2018) x
Decerle et al. (2018a) x
Habibnejad-Ledari et al. (2019) x
Li et al. (2022) x
Liu et al. (2018) x x
Ma et al. (2022) x
Trautsamwieser & Hirsch (2011) x
Decerle et al. (2018b) x

HTW = hard time window, SKILL = required skills of the caregiver, NUMC = required number of
caregivers to carry out the service, MIND = minimum service duration, MAXD = maximum service
duration, FREQ = service frequency, SYNC = synchronization of services.

Table 1: Constraints involving services.

xxiv INTRODUCTION

Reference HTW MAXWT MINWT PREF MAXSERV OVERQ
Bard et al. (2014) x
Bertels & Fahle (2006) x x
Braekers et al. (2016) x x
Erdem & Bulkan (2017) x
Chaieb et al. (2020) x x
Rest & Hirsch (2016) x x x
Kergosien et al. (2009) x
Liu et al. (2017) x
Riazi et al. (2019) x
Mosquera et al. (2019) x x
Bachouch et al. (2011) x x
Nickel et al. (2012) x
Decerle et al. (2018a) x
Decerle et al. (2019b) x
Decerle et al. (2021) x
Frifita & Masmoudi (2020) x
Grenouilleau et al. (2020) x x
Liu et al. (2021a) x
Liu et al. (2021b) x x
Vieira et al. (2022) x x
Decerle et al. (2018b) x
Akjiratikarl et al. (2007) x
Trautsamwieser & Hirsch (2011) x
Maya Duque et al. (2015) x
Cappanera & Scutellà (2015) x
Haddadene et al. (2016) x
Ait Haddadene et al. (2019) x
Cappanera et al. (2018) x
Carello et al. (2018) x
Chaieb & Ben Sassi (2021) x
Euchi et al. (2020) x
Kandakoglu et al. (2020) x
Habibnejad-Ledari et al. (2019) x
Li et al. (2022) x
Lin et al. (2018) x
Ma et al. (2022) x
Malagodi et al. (2021) x
Martin et al. (2020) x
Milburn & Spicer (2013) x
Moussavi et al. (2019) x
Nasir & Kuo (2020) x
Xiang et al. (2023) x x
Yang et al. (2021) x
Belhor et al. (2023) x x

HTW = hard time window, MAXWT = maximum working time, MINWT = minimum working time,
PREF = preferences of services, MAXSERV = max number of services per caregiver, OVERQ =
maximum allowed overqualification.

Table 2: Constraints involving caregivers.

Table 1 shows some characteristics of the HCSP related to the services. The hard time windows
and the skills are the most common ones. The hard time windows specify the interval where the
services must be completed. The skills indicate the qualifications for a caregiver to correctly carry
out a service. Garaix et al. (2018), Rest & Hirsch (2016) and Bachouch et al. (2011) consider
that some services could require more than one caregiver and introduce constraints specifying the
number of required caregivers per service. In Mosquera et al. (2019) a minimum and maximum

INTRODUCTION xxv

duration that must be upheld is introduced, since the services duration is not fixed. Mosquera
et al. (2019), Nickel et al. (2012) and Liu et al. (2018) assume that the services are not assigned
to predefined days indicating the number of times the services need to be completed throughout
the time horizon. Another characteristic of some HCSPs is the synchronization of services, which
means that two or more services need to be carried out at the same time.

The characteristics related to the caregivers are presented in Table 2. Usually, there are hard
time windows outside of which caregivers cannot work. Another very common characteristic is
the maximum allowed working time of the caregivers, that states how many hours they can work
during each day (Akjiratikarl et al. (2007) and Liu et al. (2021b)) or during the whole time horizon
(Maya Duque et al. (2015) and Martin et al. (2020)). There can also be a minimum working time
for caregivers (Bertels & Fahle (2006) and Rest & Hirsch (2016)) and hard preferences in terms of
the users that the caregivers are willing to attend, which means that they may have excluded users
that cannot be assigned to them (Chaieb et al. (2020)). Finally, a maximum overqualification for
caregivers may be considered, that is, there is an upper bound of how much high skilled caregivers
can be assigned to low skill level services (Xiang et al. (2023)).

Table 3 outlines the constraints related to the planning of the schedule. The precedence
constraints are used to state the relations between services. In Mankowska et al. (2014) some
services may need to be carried out before others, whereas in Frifita & Masmoudi (2020) some
services could be carried out at a different time than others but the order is irrelevant. In Rest &
Hirsch (2016) and Martin et al. (2020) there is a maximum amount of idle time between
services, which is given by the time that caregivers are not traveling between them. In a similar
way, Bachouch et al. (2011) and Martin et al. (2020) consider that there is a maximum distance
for a caregiver to travel between two consecutive services.

Reference CC PREC MIDLE DIST BREAK BREAKTW BREAKDUR
Maya Duque et al. (2015) x
Bachouch et al. (2011) x x x
Cappanera & Scutellà (2015) x
Carello & Lanzarone (2014) x
Carello et al. (2018) x
Cappanera et al. (2018) x
Lahrichi et al. (2022) x
Liu et al. (2018) x
Vieira et al. (2022) x x x x x
Chaieb et al. (2020) x
Mankowska et al. (2014) x
Haddadene et al. (2016) x
Ait Haddadene et al. (2019) x
Frifita & Masmoudi (2020) x
Nasir & Kuo (2020) x
Taieb et al. (2019) x x x x
Rest & Hirsch (2016) x x x
Martin et al. (2020) x x
Liu et al. (2017) x x
Euchi et al. (2020) x x x
Kandakoglu et al. (2020) x x x
Trautsamwieser & Hirsch (2011) x x x
Bard et al. (2014) x x x
Liu et al. (2021a) x x x
Liu et al. (2021b) x x x

CC = continuity of care, PREC = precedence constraints, MIDLE = maximum idle time, DIST = maximum
distance between consecutive services, BREAK = lunch break, BREAKTW = time window for the break,
BREAKDUR = required duration of the break.

Table 3: Constraints involving the schedule.

xxvi INTRODUCTION

There are two other characteristics that are deeply related to the problem under study: the
continuity of care and the unpaid breaks. The continuity of care intends to guarantee that users
will be attended by the same caregivers and it is handled in multiple ways in the literature. In
Carello & Lanzarone (2014) and Carello et al. (2018) the authors consider three kinds of patients:
the ones with hard continuity of care (whose caregiver cannot be changed), the ones with partial
continuity of care (whose caregiver can be changed by adding a penalization cost) and the ones that
do not require continuity of care. Other authors, like Cappanera & Scutellà (2015), Cappanera
et al. (2018) and Liu et al. (2018), tackle the continuity of care by setting the maximum number
of caregivers that can visit a user. Another option is the one considered in Maya Duque et al.
(2015), where the number of caregivers who can attend a user depends on the amount of services
they require. In Bachouch et al. (2011), Lahrichi et al. (2022) and Vieira et al. (2022) the
authors consider that all the services demanded by a user during the week must be carried out by
the same caregiver.

The breaks are related to the possible existence of an unpaid break in the daily schedule of the
caregivers, which may have a hard time window or a required duration. In some cases, like Bard
et al. (2014), Kandakoglu et al. (2020), Liu et al. (2017), Rest & Hirsch (2016), Trautsamwieser
& Hirsch (2011) and Vieira et al. (2022), caregivers must have a mandatory break if they work
a certain amount of time. In Bard et al. (2014), if caregivers work 6 or more hours they have a
30 minutes break between 11:00 and 13:00. In Vieira et al. (2022) part time caregivers usually
have a 20 minutes break if they work 2 consecutive hours, full time caregivers have a meal break
that happens after 13:00 and can last between 30 to 120 minutes, depending on the caregiver. In
Rest & Hirsch (2016) the required break may be divided into smaller parts, in order to have better
schedules while guaranteeing that the caregiver will enjoy her required break time.

In Bachouch et al. (2011) and Euchi et al. (2020) caregivers always have a mandatory lunch
break. In Liu et al. (2021a) and Liu et al. (2021b) caregivers must have a lunch break if they
work during that period of time during the day. In others, multiple breaks during the day are
allowed, as in Taieb et al. (2019), where caregivers may take 3 breaks: 15 minutes in the morning,
a 30 minute lunch break and 15 minutes in the afternoon.

Table 4 presents the objective functions of HSCP regarding the cost for the company. The
most common objectives are related to the distance traveled by the caregivers to visit the users’
homes. In particular, authors want to minimize travel distance (Akjiratikarl et al. (2007) and
Nickel et al. (2012)), the total traveling time (Decerle et al. (2018a) and Frifita & Masmoudi
(2020)) and travel costs (Bard et al. (2014) and Milburn & Spicer (2013)). In some problems
caregivers have an agreed maximum working time that can be surpassed, although it results in
an overtime that the company must compensate them for. In these cases the problems minimize
either the total overtime (Trautsamwieser & Hirsch (2011) and Carello & Lanzarone (2014)) or its
cost (Kandakoglu et al. (2020) and Braekers et al. (2016)).

A common characteristic of HCSPs is that, sometimes, caregivers have to wait before they can
start a service, because of the hard time windows defined by the users, which results in idle times
for them. Therefore, to obtain the best schedules it is usually necessary to minimize the idle times
(Vieira et al. (2022) and Xiang et al. (2023)) or their associated cost (Wang et al. (2020) and
Zhan & Wan (2018)). Additionally, it is possible to minimize the cost of the schedules by reducing
the service cost, which may depend on the service time (Bard et al. (2014)) or the required skills
of the caregiver (Ma et al. (2022)).

In some works, the authors minimize the total working time of the caregivers, which includes
the accumulated service, travel and idle times (Alves et al. (2019) and Martin et al. (2020)).
Another possibility is to minimize the total working cost (Garaix et al. (2018) and Liu et al.
(2021a)). In situations when users indicate soft preferences in terms of the caregivers that should
attend them, another goal is to minimize the cost of assigning users to unfavorable caregivers

INTRODUCTION xxvii

(Mosquera et al. (2019)). Finally, to incentivize the continuity of care, one can minimize the cost
of reassigning services to new caregivers (Carello & Lanzarone (2014) and Liu et al. (2021b)).

Reference TD TT TC OT OC IT IC SC WT WC PFC RC
Bard et al. (2014) x x x
Trautsamwieser & Hirsch (2011) x x
Akjiratikarl et al. (2007) x
Maya Duque et al. (2015) x
Riazi et al. (2019) x
Mankowska et al. (2014) x
Grenouilleau et al. (2019) x
Bachouch et al. (2011) x
Nickel et al. (2012) x x
Alves et al. (2019) x x
Euchi et al. (2020) x x
Kandakoglu et al. (2020) x x x
Manavizadeh et al. (2020) x
Moussavi et al. (2019) x
Bertels & Fahle (2006) x x
Erdem & Bulkan (2017) x
Liu et al. (2017) x
Mosquera et al. (2019) x x
Decerle et al. (2018a) x x
Decerle et al. (2021) x
Frifita & Masmoudi (2020) x
Khodabandeh et al. (2021) x
Vieira et al. (2022) x x
Xiang et al. (2023) x x x
Decerle et al. (2018b) x
Garaix et al. (2018) x x
Kergosien et al. (2009) x
Haddadene et al. (2016) x
Ait Haddadene et al. (2019) x
Euchi et al. (2020) x
Li et al. (2022) x x
Ma et al. (2022) x x
Milburn & Spicer (2013) x
Nasir & Kuo (2020) x
Wang et al. (2020) x x x x
Yang et al. (2021) x x
Zhan & Wan (2018) x x x x
Carello & Lanzarone (2014) x x
Lin et al. (2018) x x
Malagodi et al. (2021) x x
Braekers et al. (2016) x
Carello et al. (2018) x x
Liu et al. (2018) x x
Chaieb et al. (2020) x
Luna et al. (2018) x
Martin et al. (2020) x
Belhor et al. (2023) x
Liu et al. (2021a) x
Liu et al. (2021b) x x

TD = travel distance, TT = travel time, TC = travel cost, OT = overtime, OC = overtime cost, IT = idle
time, IC = idle cost, SC = service cost, WT = working time, WC = working cost, PFC = preference (of
caregivers) cost, RC = reassignment (of services to caregivers) cost.

Table 4: Objective functions involving cost.

Table 5 shows the objective functions that are related to both users and services, that is, the
objectives whose goal is to maximize the overall satisfaction. As it was explained before, services

xxviii INTRODUCTION

usually have a hard time window that states when the service needs to be scheduled but, sometimes,
there can be a soft time window within which the user prefers to be attended. In those cases, the
objective is to minimize the penalization of carrying out services outside their soft time windows.

In some situations, there may be users’ preferences stating the best caregivers to visit them.
In that case, the goal is to maximize the compatibility between caregivers and the users they
attend. But users may have other optional requirements, for example, they could have a preferred
frequency and duration for their services, and the minimization of the differences between the
preferred values and the scheduled ones would increase users satisfaction (Mosquera et al. (2019)).
In other works (Liu et al. (2018)) there is a required length for the services. However, to increase
users’ satisfaction, caregivers are allowed to spend more time with them. So, they will be interested
in maximizing the additional duration of the services. Finally, users may have different priority
levels, depending on their physical condition and their needs. Thus, maximizing the priorities of
the users will also increase their satisfaction (Li et al. (2022)).

Reference STW PREF PFREQ PDUR ADDDUR PRI
Trautsamwieser & Hirsch (2011) x x
Bertels & Fahle (2006) x x
Braekers et al. (2016) x x
Erdem & Bulkan (2017) x
Mankowska et al. (2014) x
Decerle et al. (2018a) x
Decerle et al. (2018a) x
Li et al. (2022) x
Ma et al. (2022) x
Manavizadeh et al. (2020) x
Wang et al. (2020) x
Yang et al. (2021) x
Belhor et al. (2023) x
Decerle et al. (2018b) x
Maya Duque et al. (2015) x
Garaix et al. (2018) x
Haddadene et al. (2016) x
Ait Haddadene et al. (2019) x
Xiang et al. (2023) x
Fathollahi-Fard et al. (2020) x
Malagodi et al. (2021) x
Mosquera et al. (2019) x x
Liu et al. (2018) x
Li et al. (2022) x

STW = services soft time window, UPREF = users preferences (in terms of caregivers),
PFREQ = services preferred frequency, PDUR = services preferred duration, ADDDUR =
services additional duration, PRI = users priority.

Table 5: Objective functions involving users and services.

Table 6 outlines the objective functions that are related to the satisfaction of caregivers. In
some works of the literature, there are soft time windows that state when caregivers would like to
work. In those cases, the authors (Bertels & Fahle (2006), Luna et al. (2018) and Trautsamwieser
& Hirsch (2011)) want to minimize the amount of time working outside their soft time windows.
Bertels & Fahle (2006) consider that caregivers may indicate preferences in terms of the users to
be visited, so that it is recommended to maximize them.

A very common objective in HSCPs is balancing the workload of the caregivers (Carello et al.
(2018), Milburn & Spicer (2013), Vieira et al. (2022)) to prevent some caregivers to work more

INTRODUCTION xxix

hours than others. It will avoid a possible dissatisfaction of the workers, since they can feel that
they are not being treated equally.

It is possible for the caregivers to specify the region they would like to work in, so it is
recommended to minimize the penalization for carrying out services outside their preferred region
(Garaix et al. (2018)). Some authors, (Luna et al. (2018) and Grenouilleau et al. (2019)),
consider that caregivers have a preferred minimum and maximum working time. In these cases,
the goal is to minimize the deviation from the preferred working times.

When services require a certain skill level to be correctly carried out, there is a possibility of
assigning caregivers to services below their skill level. It means that some caregivers could be
overqualified and their expertise is not being used effectively. Therefore minimizing the
overqualification improves caregivers satisfaction (Trautsamwieser & Hirsch (2011) and
Khodabandeh et al. (2021)). Finally, caregivers may have general satisfaction requirements:
general satisfaction (number of consecutive working days, day-offs during weekends, ...) or
overtime preferences, which should be taken into account when solving the problems
(Habibnejad-Ledari et al. (2019), Lin et al. (2018) and Xiang et al. (2023)).

Reference STW UPREF BWL REG DMAXWT DMINWT OQ SAT OTP
Trautsamwieser & Hirsch (2011) x x
Bertels & Fahle (2006) x x
Luna et al. (2018) x x x
Erdem & Bulkan (2017) x
Chaieb et al. (2020) x
Cappanera & Scutellà (2015) x
Carello et al. (2018) x
Decerle et al. (2018a) x
Liu et al. (2021b) x
Milburn & Spicer (2013) x
Vieira et al. (2022) x
Yang et al. (2021) x
Garaix et al. (2018) x
Grenouilleau et al. (2019) x x
Khodabandeh et al. (2021) x
Habibnejad-Ledari et al. (2019) x x
Lin et al. (2018) x
Xiang et al. (2023) x

STW = soft time window, UPREF = preferences of users, BWL = balance workload of caregivers, REG = caregivers
preferred region, DMAXWT = deviation from maximum working time, DMINWT = deviation from minimum working
time, OQ = overqualification, SAT = satisfaction, OTP = overtime preferences.

Table 6: Objective functions involving caregivers.

Finally, Table 7 presents the objective functions related to the caregivers’ schedule. In some
works (Chaieb et al. (2020), Grenouilleau et al. (2019) and Nickel et al. (2012)) not all the
services have to be assigned to a caregiver. In these cases it is necessary to minimize unscheduled
services, since it increments the users satisfaction. The synchronization of services may be optional
(Erdem & Bulkan (2017), Decerle et al. (2018a) and Decerle et al. (2018b)) so the number of
unsynchronized services is minimized.

When the continuity of care is not hard, it is considered as an objective function, and there
are different ways of optimizing it. One option is to minimize the number of different caregivers
per user (Milburn & Spicer (2013)). Other option is to deal with the so-called loyalty, which is
just the number of caregivers attending each user minus one (Nickel et al. (2012)). Finally, some
authors (Grenouilleau et al. (2019)) minimize a cost for the continuity of care, which depends on
the number of caregivers visiting the user.

A common objective in HSCP is to minimize the total number of caregivers used in the schedule,
in order to use them in the most efficient way (Euchi et al. (2020), Luna et al. (2018) and Martin
et al. (2020)). The maximum workload of the caregivers can be a soft constraint (Euchi et al.

xxx INTRODUCTION

(2020) and Kandakoglu et al. (2020)), therefore the deviation of the scheduled workload to the
maximum one is minimized. The maximum travel distance by a single caregiver can be reduced as
far as possible, in order to address the problem of having some caregivers traveling more distance
than the others (Moussavi et al. (2019)). Finally, the regularity of the scheduled times of repeated
services can also be optimized, to attend users at consistent times.

Reference USERV USYNC SCC DAYS NUSERS NC MWL MAXTD START
Chaieb et al. (2020) x
Garaix et al. (2018) x
Grenouilleau et al. (2019) x x
Liu et al. (2017) x
Nickel et al. (2012) x x
Vieira et al. (2022) x x x
Erdem & Bulkan (2017) x
Decerle et al. (2018a) x
Decerle et al. (2018b) x
Milburn & Spicer (2013) x x
Mosquera et al. (2019) x
Grenouilleau et al. (2020) x
Habibnejad-Ledari et al. (2019)
Euchi et al. (2020) x x
Kandakoglu et al. (2020) x x
Luna et al. (2018) x
Manavizadeh et al. (2020) x
Martin et al. (2020) x
Nasir & Kuo (2020) x
Moussavi et al. (2019) x

USERV = unscheduled services, USYNC = unsynchronized services, SCC = soft continuity of care, DAYS = number of
days between services, NUSERS = number of users visited, NC = total number of used caregivers, MWL = maximum
workload, MAXTD = maximum traveled distance by one caregiver, START = starting time consistency of repeated
services.

Table 7: Objective functions involving the schedule.

There exist different ways in the literature to tackle the multiple objective functions that one
can consider in the HCSP:

• Uniobjective problem. One idea is to formulate the HCSP with only one objective function
by adopting one of the following approaches:

– Sum of objectives (Decerle et al. (2018b), Zhan & Wan (2018), Liu et al. (2021a),
Carello & Lanzarone (2014), Liu et al. (2017), Rest & Hirsch (2016), Grenouilleau
et al. (2019) and Decerle et al. (2019a)).

– Weighted sum with the aim of prioritizing some objectives over others (Wang et al.
(2020), Taieb et al. (2019), Martin et al. (2020), Manavizadeh et al. (2020), Malagodi
et al. (2021), Luna et al. (2018), Liu et al. (2021b), Lin et al. (2018), Kandakoglu
et al. (2020), Euchi et al. (2020), Nickel et al. (2012), Mankowska et al. (2014), Garaix
et al. (2018), Erdem & Bulkan (2017), Bertels & Fahle (2006) and Trautsamwieser &
Hirsch (2011)).

– Lexicographic objective function to guarantee the different priority levels (Mosquera
et al. (2019)).

• Biobjective problem. Another option is to consider two different objectives simultaneously
(Khodabandeh et al. (2021), Fathollahi-Fard et al. (2020), Fathollahi-Fard et al. (2019),
Fathollahi-Fard et al. (2018), Belhor et al. (2023), Oladzad-Abbasabady & Tavakkoli-
Moghaddam (2022), Ma et al. (2022), Liu et al. (2018), Alves et al. (2019), Ait Haddadene
et al. (2019), Haddadene et al. (2016) and Braekers et al. (2016)).

INTRODUCTION xxxi

• Multiobjective problem. The less frequent option is to consider more than two objectives at
the same time (Yang et al. (2021), Vieira et al. (2022), Milburn & Spicer (2013), Habibnejad-
Ledari et al. (2019), Decerle et al. (2019b) and Decerle et al. (2018a)).

To solve the models authors use multiple resolution methods, that can be grouped into exact
methods, metaheuristic methods or custom heuristics (designed to tackle the specific characteristics
of the problem). For the uniobjective versions, the most common resolution methods are:

• Exact methods:

– Solving the linear programming model, usually by means of commercial solvers (Bertels
& Fahle (2006), Garaix et al. (2018), Carello & Lanzarone (2014), Kergosien et al.
(2009) Bachouch et al. (2011), Carello et al. (2018), Kandakoglu et al. (2020) and
Taieb et al. (2019)).

• Metaheuristic methods:

– Simulated Annealing algorithm, which is a method that searches neighborhoods and
tries to escape from local optima by accepting worse solutions with certain probability
that decreases over the iterations (Bertels & Fahle (2006) and Manavizadeh et al.
(2020)).

– Tabu Search algorithm, a memory based local search method to avoid getting stuck in
local optima (Bertels & Fahle (2006), Rest & Hirsch (2016), Liu et al. (2017), Milburn
& Spicer (2013) and Zhan & Wan (2018)).

– Ant Colony Optimization algorithm, a population-based metaheuristic to find shortest
path inspired in real life ants and the pheromone trails they lay down (Decerle et al.
(2019a), Euchi et al. (2020), Martin et al. (2020) and Yang et al. (2021)).

• Custom heuristic methods:

– Designing custom heuristic algorithms specifics for the problem under study
(Akjiratikarl et al. (2007), Erdem & Bulkan (2017), Maya Duque et al. (2015),
Mosquera et al. (2019), Chaieb et al. (2020), Cappanera & Scutellà (2015), Chaieb &
Ben Sassi (2021), Lahrichi et al. (2022), Liu et al. (2021a) and Malagodi et al.
(2021)).

Regarding the multiobjective version of the HCSP, the most commonly used methods are:

• Exact methods:

– Epsilon constraint method, a resolution method that consists in adding objectives as
extra epsilon constraints to the mathematical programming model (Khodabandeh et al.
(2021), Liu et al. (2018) and Khodabandeh et al. (2021)).

• Metaheuristic methods:

– Multi-Directional Local Search algorithm, which consists in exploring neighborhoods
using single-objective local searches (Braekers et al. (2016), Decerle et al. (2018a),
Decerle et al. (2018a) and Decerle et al. (2019b)).

– Non-dominated Sorting Genetic Algorithm, an elitist evolutionary multi-objective
algorithm (Haddadene et al. (2016), Ait Haddadene et al. (2019), Decerle et al.
(2019b), Habibnejad-Ledari et al. (2019), Xiang et al. (2023) and Belhor et al.
(2023)).

xxxii INTRODUCTION

Contents
This section details the organization of the manuscript.

Chapter 1:
Chapter 1 focuses on the original problem proposed by the company. The main goal was to update
the weekly schedules of the caregivers, that are repeated over time until it is necessary to modify
them. The schedules have to be updated to solve a set of possible incidents, which represent
permanent changes: registration/cancellation of users, increase/decrease the number of required
services and modification of parameters. A special characteristic of this problem is that Mayores
is not excessively interested in modifying the caregivers’ original schedules, because for them the
well-being of the users is really important. Therefore, the incidents should be solved by modifying
the previous schedules as little as possible.

This problem was tackled using the Simulated Annealing (SA) algorithm, a metaheuristic
optimization method inspired by the metal tempering process. This method is embedded inside
a custom heuristic algorithm developed to solve the considered incidents. The heuristic can be
divided into three stages: initial phase (to extract the main information), service scheduling (to
assign the services to caregivers) and optimization (to improve the schedules). The SA is used in
the optimization phase, it starts from an initial solution and then it moves randomly through the
solution space to find better schedules. A detailed description of the heuristic algorithm, the SA
metaheuristic and the movements used to explore the solution space, is given in this chapter.

This algorithm was implemented in a software tool, to provide Mayores with a decision support
system that will help them to obtain the caregivers’ weekly schedules. The schedule planner is
presented, as well as an example of how the algorithm would solve a set of incidents (cancel a user,
increase the duration of the services of another user and register two new users).

The contents of this chapter have been published in Méndez-Fernández et al. (2020).

Chapter 2:
Chapter 2 presents the mathematical formulation (a mixed integer programming model (MILP))
of a more general HCSP. The new version of the problem aims to obtain the solutions from scratch,
in order to achieve the best possible schedules. That is, instead of having an initial schedule that
should not be excessively modified, there is complete freedom to design an optimal schedule for the
caregivers. A very important feature of the problem is that if the longest daily break of a caregiver
has a duration of 2 hours or more, the break is not considered as working time and it will not be
paid, which adds a remarkably difficulty to the problem.

The main decision variables are the ones that determine the routes that the caregivers will
follow and state the times at which the caregivers have to start their services. Two different
objective functions are considered: the welfare of users, that analyzes how satisfied the users are
with the schedules, and the cost of the schedules, that quantifies the workload of the caregivers.
On one hand, the welfare is composed of the affinity between users and the caregivers attending
them, and the penalization for carrying out services outside their soft time window. On the other
hand, the cost of the schedules is composed by the overtime of the caregivers and their total
working time. The model includes constraints involving the requirements of the company (hard
time windows of services and caregivers and maximum daily working time), routing constraints
(start and end at the dummy services, starting time between services should allow the caregiver to
travel between them and services only have one service preceding them) and constraints involving
the objectives (services soft time window penalization, duration of the unpaid break and overtime
of the caregivers).

Further, a detailed example to illustrate the problem is provided, showing how the objective

INTRODUCTION xxxiii

function values would change according to the schedule. The chapter is concluded with the
explanation of three possible approaches, proposed to tackle the problem: prioritize the welfare
over the cost, prioritize the cost over the welfare and a biobjective alternative.

The mathematical formulation of the HCSP described in this chapter is included in
Méndez-Fernández et al. (2023a) (accepted for publication) and in the working paper
Méndez-Fernández et al. (2023c). This model also describes the biobjective version of the
problem, that appears in Méndez-Fernández et al. (2023b).

Chapter 3:
Chapter 3 provides a thorough description of the metaheuristic used to solve the problem, the
Adaptive Large Neighborhood Search (ALNS) algorithm, which is based on destroying and
repairing neighborhoods.

First, the overall scheme of the algorithm is presented. It consists of removing services from the
schedules of the caregivers, according to a removal operator, and then an insertion operator is used
to place the services back into the routes. The repaired schedule updates the current solution,
considering an acceptance criteria. The removal and insertion operators are chosen at random
according to their probabilities, which increase when the solution is improved. This destroying
and repairing process is repeated until a stopping criteria is met. After presenting the scheme
of the ALNS, the removal and insertion operators are described, providing their pseudocode and
examples to clarify how they work.

It is important to note that the operators modify the routes but, to obtain complete solutions
and to be able to evaluate the objective function, the schedules of the services need to be established.
That is, while repairing the solution with the insertion operators, it is necessary to set the time at
which each service of a route will start. Given a route, three different ways to obtain the schedule
are presented:

• Solve the resulting scheduling problem using Constraint Programming.

• Two heuristic approaches: one to obtain schedules for the case the welfare of users is
prioritized over the cost, and a different one to obtain schedules but prioritizing the cost
over the welfare.

The ALNS algorithm presented in this chapter is included in Méndez-Fernández et al.
(2023a) and it will also appear in the working paper Méndez-Fernández et al. (2023c). The
metaheuristic method will also be used in Méndez-Fernández et al. (2023b) to solve the
biobjective version of the HCSP.

Chapter 4:
Chapter 4 describes the heuristic algorithm developed to obtain the schedule of a route in order
to prioritize the welfare of users over the cost of the schedule. The method only works with a
route, therefore the welfare coincides with the soft time window penalization (because the affinity
is already fixed) and the cost is the working time of the route (the overtime can only be obtained
for the whole week).

First, a basic description of the algorithm is presented. The method can be divided into three
phases. In the first one the earliest and latest starting times of the services are obtained, as well
as the blocks of services that have conflicting soft time windows. The second step consists in
obtaining the schedule of the route that has the lowest soft time window penalization. Finally, in
the third step the schedule is updated in order to reduce its cost. A running example, of a route
with 6 services, is used to illustrate how each step works. After that, some auxiliary functions are
introduced in Appendix 4.A for a better understanding of the algorithm.

xxxiv INTRODUCTION

The heuristic scheduling algorithm introduced in this chapter appears in Méndez-Fernández
et al. (2023a). It will also be useful for the biobjective HCSP included in the working paper
Méndez-Fernández et al. (2023b).

Chapter 5:
Chapter 5 presents the heuristic algorithm designed to obtain the schedule of a route in order to
prioritize the cost of the schedule over the welfare of the users. As in the previous chapter, the
method only works with a route, so the welfare coincides with the soft time window penalization
and the cost is the working time of the route.

The chapter focuses on the main elements of the algorithm, whereas additional functions can be
found in Appendix 5.A if more information is required. The algorithm starts obtaining the earliest
and latest starting times of the services. Then, the schedules with minimal cost value are found.
After that, these schedules are updated in order to improve their soft time window penalization
while maintaining their cost value. Finally, the schedule with best penalization is chosen. To
illustrate how the algorithm works, a running example is used throughout the chapter.

The heuristic scheduling algorithm presented in this chapter is included in Méndez-Fernández
et al. (2023c), which is currently in progress. It also appears in Méndez-Fernández et al.
(2023b).

Chapter 6:
Chapter 6 is related to the biobjective version of the HCSP, that is, the problem that considers
both objectives simultaneously. The solution of a biobjective problem is the Pareto frontier, a set
composed by non dominated solutions (solutions that cannot be improved without degrading one
of the objectives), that can be exactly obtained using the Epsilon Constraint method.

The first part of the chapter focuses on the AUGMECON2 method, an improved version of the
Epsilon Constraint method that will be used to tackle the biobjective HCSP. It consists in, given
a set of grid points that divide the range of one of the objectives, iteratively solving a version of
the HCSP that fixes the objective to the value given by the grid.

The second part describes a custom metaheuristic algorithm developed to obtain
approximations of the Pareto frontier. The algorithm is based on the methodologies presented in
Chapters 3, 4 and 5. Therefore, the main focus of the chapter is based on the new features
developed for the biobjective problem, using a running example to illustrate them. The
biobjective algorithm can be divided into three steps. In the first one, the set of non dominated
solutions is initialized. The second step obtains solutions composed by different routes. Finally,
in the third step, the non dominated solutions are obtained. Extra information of the algorithm
is presented in Appendix 6.A.

The contents described in this chapter are summarized in the working paper related to the
biobjective HCSP, Méndez-Fernández et al. (2023b).

Chapter 7:
Chapter 7 presents the computational results used to evaluate the methods described in the
previous chapters. To this aim, two different types of datasets are used in the numerical
experiments: the Solomon instances and the real data provided by the company.

To study the hierarchical approaches, the first step is to use a state-of-the-art solver (Gurobi)
to directly solve the MILP formulation of the problem, using the Solomon instances as input. This
is done to have the exact solutions and to see at which instance size the exact method no longer
finds solutions. Then, the results obtained with different configurations of the ALNS (combined
with the heuristic scheduling algorithms described in Chapters 4 and 5) are analyzed, in order to
evaluate the metaheuristic algorithm and to obtain the best parameter configuration.

INTRODUCTION xxxv

After that, the ALNS is used to solve real instances and the obtained solutions are compared
with the schedules employed by the company. For the hierarchical approach that prioritizes the
welfare of users over the cost of the schedule, the performance of the ALNS algorithm combined
with constraint programming is also evaluated.

The results related to the hierarchical approach that prioritizes welfare over cost are included
in Méndez-Fernández et al. (2023a) and the ones of the hierarchical approach that prioritizes cost
over welfare will be reported in the working paper Méndez-Fernández et al. (2023c).

The biobjective problem is firstly studied by solving the Solomon instances with the
AUGMECON2 method, to analyze the computational times of this exact method. Then, the
behavior of the biobjective metaheuristic algorithm is evaluated studying the different parameters
involved in its configuration. To this aim, the solutions of the algorithm are compared with the
ones given by the AUGMECON2 method. Finally, the Pareto frontier for a real instance is
presented.

The results of the biobjective version of the HCSP will be summarized in the working paper
Méndez-Fernández et al. (2023b).

xxxvi INTRODUCTION

Chapter 1

Original problem proposal by
Mayores

During the development of the project, the goal of Mayores was not to create a new schedule for
the caregivers, but the modification of the previous plan in order to deal with any incident that
may arise. The new schedule would be repeated, on a weekly basis, from the occurrence of the
incident until the moment another one arises. The incidences the company deals with are:

Registrations. In this case, the supervisor decides that a new user is going to be added to
the system. Thus, she assigns each of her services to the caregivers she considers most
appropriate, updating their routes and schedules in order to correctly plan the new services.

Cancelations. When the services of a user are canceled (due to hospital admission, holidays, etc.),
the supervisor must remove the corresponding services from the schedules of the caregiver
who were attending him/her. Doing so may create breaks in the schedules of the caregivers;
therefore, the supervisor must rearrange the schedules in order to reduce their idle time.

Number of services. Sometimes users change the number of services they require. If users
request new services, they need to be added to the caregivers schedules. On the contrary,
if users reduce the number of needed services, the superfluous services need to be removed
from the schedules.

Modifications. If there is a change of parameters (duration, time window or day) in a service
that has been previously assigned to caregivers, it is necessary to arrange it. In these cases,
supervisors must modify the caregivers schedules to ensure that all services are correctly
planned.

In addition, the supervisor may decide to combine these incidents if she considers it convenient.
For example, she may cancel the services of a user while increasing the number of services required
by another one.

It is important to mention that the company wants to address these incidents in a way that
does not excessively modify the previous schedules. This is because the company prioritizes the
well-being of its users, meaning that it is advisable not to alter their schedules unless it is strictly
necessary.

The chapter is structured as follows. Section 1.1 presents a description of the resolution method
based on the Simulated Annealing algorithm. Then, Section 1.2 shows the software application
that uses the algorithm to obtain the schedules. Finally, Section 1.3 presents an example that
illustrates how the resolution method works.

1

2 CHAPTER 1. ORIGINAL PROBLEM PROPOSAL BY MAYORES

1.1 Resolution method: a Simulated Annealing algorithm
The problem of updating the schedules presents high difficulty. Therefore, it is necessary to tackle
it using metaheuristic techniques, in order to obtain acceptable solutions in reduced computational
times. This section describes the algorithm developed to solve the original problem proposed by
Mayores. It is based on the Simulated Annealing (SA) method (Kirkpatrick et al. (1983)), which
is a metaheuristic optimization method inspired by the metal tempering process. The objective of
this algorithm is to generate schedules that solve the incidents while adhering to the requirements
of the company.

Algorithm 1.1 and Figure 1.1 show the process followed to generate the schedules. The
algorithm can be divided into three stages: an initial one in which the main information is
extracted, a second one in which the services are assigned to the caregivers and a third one to
optimize the schedules.

Algorithm 1.1: Heuristic to solve the incidents
Data: the initial solution x, the services to be scheduled S and the services to be removed Ŝ

1 x ← removeServices(Ŝ, x) //Remove services from the solution
2 if S ̸= ∅ then

//If there are services whose schedule needs to be modified
3 U ← getUsers(S) //Obtain the list of users that require these services
4 for u ∈ U do

//Obtain the time frames of the user’s required services
5 TF ← getTimeFrames(S, u)
6 for tf ∈ TF do
7 Stf ← getServices(S, u, tf) //Get user’s services in the time frame
8 Ctf ← getSortedCaregivers(Stf , C, u, x) //Sorted list of caregivers
9 for s ∈ Stf do

10 for c ∈ Ctf do
11 x∗ ← scheduleService(s, c, x) //Assign the service to the caregiver
12 x′ ← modifiedSA(x∗) //Optimize the schedule
13 if x′ is feasible then
14 x ← x′ //Update the schedule
15 exit loop
16 else if c is the last of C then

//Assign the service to a dummy caregiver
17 x′ ← scheduleService(s, dummy, x)
18 x ← x′ //Update the schedule

19 else
//Check if there are no services whose scheduled needs to be modified

20 x′ ← modifiedSA(x)
21 return x

1.1. RESOLUTION METHOD: A SIMULATED ANNEALING ALGORITHM 3

Remove / Include
services

Are there
services to be

scheduled?

Select user Select time frame Select service Select caregiver Last
caregiver?

Feasible
schedule?

Assign the
service to

the caregiver

Optimize using
SA

Optimize usig SA to
remove breaks

Last user? Last time
frame?

Last
service?

Dummy
caregiver

Update the
schedule

Return the schedule

Initial solution

Yes

No

Yes

Yes

Yes

Yes

Yes

NoNo

No

No No

Figure 1.1: Scheme of the algorithm.

1.1.1 Phase 1: initialization
The algorithm begins with an initial solution: the previous schedules of the considered caregivers.
The services that have to be deleted (cancelations or reduction of services) are removed from the
schedule. The services that need to be scheduled (registration, increase of services and
modifications) are selected.

If no services must be scheduled, the solution is optimized applying the Simulated Annealing
method, to remove any break that may exist, after which the algorithm ends.

1.1.2 Phase 2: service scheduling
This second phase of the algorithm is performed when there are services to be scheduled. In this
step, the caregiver who must perform each of these services is established, as well as the schedule
during which they must be conducted to minimize costs and obtain feasible schedules.

The first step in this phase is to select the service to be scheduled and to obtain a list of the
available caregivers1, sorted from best to worst, considering the following elements:

a. The affinity level between the caregiver and the considered user.

b. The difference between the time worked by the caregiver and her maximum time allowed.

c. The average travel time between the considered user and all the users served by the caregiver.

Then, the selected service is assigned to the best caregiver available, scheduling it so that the
least overlap with other services of this caregiver is obtained. In this way, the minimal break with
other services of this caregiver is produced. After that, as shown in Figure 1.1, the schedules are
optimized with the SA method. If an optimum schedule of the service is found, the algorithm
goes to the next one. If there is not a feasible schedule of the service with the current caregiver,
the algorithm goes to the next available caregiver and the process is repeated. If all available
caregivers have been tested, the service is assigned to a dummy caregiver (to allow the supervisors
to easily know which services could not be properly scheduled). When the algorithm ends with a
solution that includes n dummy caregivers it indicates to the company that it is not possible to
find a feasible solution unless they hire n new caregivers.

1The available caregivers are the ones that do not surpass their daily maximum number of hours allowed.

4 CHAPTER 1. ORIGINAL PROBLEM PROPOSAL BY MAYORES

1.1.3 Phase 3: the optimization
As it was previously explained, sometimes it is necessary to perform an optimization process to
eliminate breaks and/or overlaps from the caregivers’ schedules. To this aim, a modified version
of the SA method, to fully adapt it to the problem under study, is designed. The idea of the SA
method comes from the analogy between physical annealing of solids and combinatorial
optimization problems.

The SA, presented in Algorithm 1.2, starts with an initial solution and then moves through the
solution space in order to improve it. In each iteration it generates a set of neighbors, choosing the
movements according to some probabilities, and selects the one with best objective function value.
After that, if the selected neighbor improves the best solution found so far, the current and best
solutions are updated with it. In any other case, a probabilistic acceptance criteria is used to update
the current solution. The acceptance criteria is given by the probability exp(−(f(x∗)− f(x))/Tk),
where f is the objective function, x is the current solution, x∗ is the new solution, k is the
current iteration and Tk is the temperature. The cooling function, used to decrease the probability
of acceptance at iteration k, is Tk = T0βk, where T0 is the initial temperature. The objective
function considered is the lexicographic order of:

a. The overlap2 between services.

b. The breaks of the caregivers, with the exception of the largest one of the day if it lasts two
or more hours, and the travel time between services.

The probability distribution used to select the movements is updated after each iteration. At the
beginning the uniform discrete distribution is chosen and, in every iteration, the type of movement
leading to the best neighbors is given a larger weight in the distribution.

Algorithm 1.2: Modified Simulated Annealing
Data: the initial solution x, the movements Ω and the weights ω

1 x′ ← x

2 for k ∈ K do
//Generate a set of L neighbors

3 for l ∈ L do
4 movement ← chooseRandom(ω, Ω)
5 x̂l ← movement(x)

//Get the best neighbor
6 x∗ ← {x̂k/f(x̂k) = minl∈L{f(x̂l)}}

//Update the best solution
7 if f(x∗) < f(x′) then
8 x′ ← x∗

9 x ← x∗

10 else if acceptanceCriteria(x∗, x) then
11 x ← x∗

12 ω ← updateWeights(ω)
13 return x′

1.1.3.1 The movements

At each SA iteration, movements are used to retrieve the neighbors of the solution under
consideration. These movements can be divided into two classes: the basic movements, which are

2The overlap indicates if the caregiver has been assigned to perform two services in the same interval of time, or
if she is carrying out a service while also traveling to another user’s home.

1.1. RESOLUTION METHOD: A SIMULATED ANNEALING ALGORITHM 5

the simplest ones and tend to generate the best solutions, and the elaborate ones, which arise
from merging and/or modifying basic movements, and are not usually used as much as the others
but, sometimes, are essential to obtain better solutions.

The basic movements designed are the following:

First movement. This movement consists in modifying the schedule during which a service is
performed by moving it forward or backward.

Step 1. One service and the number of minutes that it will be delayed or advanced is selected
at random following a uniform distribution.

Step 2. The schedule of the selected service is delayed if the number of minutes chosen is positive
or advanced if a negative number is selected.

Example 1.1.1. Illustration of the first movement.
Suppose that a caregiver conducts four services, as shown in Figure 1.2, and has a 70-minute

break between service 1 and service 2. Using movement 1, this break can be removed, since delaying
service 1 as much as possible (always in accordance with the traveling time to service 2) results in
the elimination of the break from the caregiver’s schedule.

CAREGIVER 1

Start: 09:00 End: 10:00

Service 1

70’

Start: 11:10 End: 12:10

Service 2

Travel time: 5’

Start: 12:15 End: 13:15

Service 3

Travel time: 10’

Start: 13:25 End: 14:25

Service 4

CAREGIVER 1

Start: 10:05 End: 11:05

Service 1

Travel time: 5’

Start: 11:10 End: 12:10

Service 2

Travel time: 5’

Start: 12:15 End: 13:15

Service 3

Travel time: 10’

Start: 13:25 End: 14:25

Service 4

Figure 1.2: Example of the first movement.

Second movement. This movement consists in advancing or delaying a set of consecutive
services.

Step 1. One service and the number of minutes that the services’ schedules will be delayed or
advanced is selected at random following a uniform distribution.

Step 2. The set of services that will be moved is selected, according to the number of minutes.
If the quantity is positive then the followers of the service are selected, if it is negative
then the predecessors are chosen. Note that, in this step, only a set of consecutive
services, between which there is no break with a duration equal to or greater than two
hours, are selected.

Step 3. The schedule of the services belonging to the set is modified, delaying or advancing
them the given amount of minutes.

Example 1.1.2. Illustration of the second movement.
Suppose that a caregiver has four services with a 65-minute break (Figure 1.3). Applying the

second movement, delaying services 1 and 2 the same number of minutes (always considering the
travel time between service 2 and service 3), eliminates the break between services 2 and 3.

6 CHAPTER 1. ORIGINAL PROBLEM PROPOSAL BY MAYORES

CAREGIVER 1

Start: 9:00 End: 10:00

Service 1
Travel time: 10’

Start: 10:10 End: 11:10

Service 2

65’

Start: 12:15 End: 13:15

Service 3
Travel time: 5’

Start: 13:20 End: 14:20

Service 4

CAREGIVER 1

Start: 10:00 End: 11:00

Service 1
Travel time: 10’

Start: 11:10 End: 12:10

Service 2

Travel time: 5’

Start: 12:15 End: 13:15

Service 3
Travel time: 5’

Start: 13:20 End: 14:20

Service 4

Figure 1.3: Example of the second movement.

Third movement. This movement comprises exchanging the starting times for two given services
assigned to the same caregiver on a given day. In this movement, there is also the option of
applying the first movement after having conducted the exchange.

Step 1. Two different services are chosen at random following a uniform distribution, such that
they are both performed by a single caregiver during the same day.

Step 2. The starting times of the selected services are exchanged, and their ending times are
adapted to their new starting times.

Step 3. The first movement will be randomly applied to the selected services.

Example 1.1.3. Illustration of the third movement.
Let us suppose a caregiver performs four services (see Figure 1.4) with a 35-minutes break

between service 2 and service 3. If movement 3 is used, exchanging the starting times between
services 2 and 4, the break is removed. The reason for this is that service 4 has a duration of 90
minutes, while service 2 lasts only 60 minutes; therefore, this extra duration of service 4 fills the
break that the caregiver had in her schedule.

CAREGIVER 1

Start: 9:00 End: 10:00

Service 1

Travel time: 10’

Start: 10:10 End: 11:10

Service 2

35’

Start: 11:45 End: 12:45

Service 3

Travel time: 5’

Start: 12:50 End: 14:20

Service 4

CAREGIVER 1

Start: 09:00 End: 10:00

Service 1

Travel time: 10’

Start: 10:10 End: 11:40

Service 4

Travel time: 5’

Start: 11:45 End: 12:45

Service 3
Travel time: 5’

Start: 12:50 End: 13:50

Service 2

Figure 1.4: Example of the third movement.

Fourth movement. This movement consists in replacing the caregiver who conducts a given
service.

1.2. THE IMPLEMENTATION 7

Step 1. One service and one caregiver (other than the one who performs this service) are selected
at random following a uniform distribution.

Step 2. The selected service is assigned to the new caregiver, maintaining the hours in which it
must be conducted.

Example 1.1.4. Illustration of the fourth movement.
In this example, two caregivers (see Figure 1.5) are considered. In the initial schedule of

caregiver 1, it can be seen that service 3 is isolated, because there are breaks before and after it.
Using movement 4 in such a way that service 3 will now be conducted by caregiver 2, the break
of caregiver 1 reaches a duration of 135 minutes (therefore, the company is no longer required to
pay her for it). Therefore, the assignation of service 3 to caregiver 2 generates no breaks in her
schedule.

CAREGIVER 1

Start: 9:00 End: 10:00

Service 1

Travel time: 15’

Start: 10:15 End: 11:15

Service 2

55’

Start: 12:10 End: 12:40

Service 3

50’

Start: 13:30 End: 14:30

Service 4

CAREGIVER 2

Start: 09:55 End: 10:55

Service 5

Travel time: 5’

Start: 11:00 End: 12:00

Service 6

CAREGIVER 2

Start: 09:55 End: 10:55

Service 5

Travel time: 5’

Start: 11:00 End: 12:00

Service 6

Travel time: 10’

Start: 12:10 End: 12:40

Service 3

CAREGIVER 1

Start: 9:00 End: 10:00

Service 1

Travel time: 15’

Start: 10:15 End: 11:15

Service 2

135’

Start: 13:30 End: 14:30

Service 4

Figure 1.5: Example of the fourth movement.

The elaborated movements considered in the SA method are:

Fifth movement. This movement comprises exchanging the caregivers of two services that are
performed by different caregivers on the same day.

Sixth movement. This movement consists in applying twice the second movement for a service:
for the service and the ones before it, and then for the services after it.

Seventh movement. Given two sets of services, this movement exchanges the caregivers who
conduct them. To correctly apply this movement, all the services in each set must be
performed by the same caregiver.

1.2 The implementation
The algorithm designed to tackle the problem was implemented in the company, providing a
decision support tool that helps supervisors to automatically update caregivers’ schedule when
new incidents arise. In fact, it was integrated into a software application developed by researchers
of Database Lab (LBD) of the University of A Coruña. The application allows supervisors to
manage and visualize all the procedures related to the problem.

Figure 1.6 presents the schedule planner of the graphical user interface of the application, which
shows a summary of the users and caregivers that have been selected by the supervisor as well as
the current schedule of the caregivers.

8 CHAPTER 1. ORIGINAL PROBLEM PROPOSAL BY MAYORES

Figure 1.6: Schedule planner of the application.

The superior frame of Figure1.6 shows the information about the users and caregivers. The
box on the left shows all the services required by a specific user. Below it, it is shown the caregiver
assigned to a service, its duration, the affinity between the caregiver and the user, and the service’s
hard and soft time windows. Then, there is the list of selected users and the list of caregivers whose
schedule has to be adjusted. Finally, the map on the right shows the location of the considered
users.

The inferior frame of the figure is devoted to the schedule for the chosen caregivers, arranging
the schedule of each caregiver into a column. Each of the services is displayed as a box, with the
name of the user who requires it, the hard time window (marked in orange) and the corresponding
start and end times (marked in blue). Between each pair of consecutive services the travel is shown
(denoted as "TD") and, in cases where there is a break in the caregivers’ schedule, the free time is
marked in red.

1.3 Example: solving incidents
A supervisor of the company may have to manage up to, approximately, 40 caregivers and 200
users but, in their day-to-day work, the incidents to solve usually only affect to some of them.
Because of this, the example described below is a good representation of how a supervisor would
handle a real problem.

User Incident Duration Hard Time Window
26 Add service 30 9:30 - 12:00
27 Add service 30 11:30 - 13:30
09 Remove service – –
10 Service new duration 45 9:00 - 12:00

Table 1.1: Incidents.

1.3. EXAMPLE: SOLVING INCIDENTS 9

In this example the objective is to cancel a user, increase the duration of the services of another
user and register two new users. Table 1.1 presents the characteristics of incidents to solve, that is,
the user causing them, the incident type, the duration of the services and their hard time window.

Figure 1.7 presents the initial schedule of the example under study, with 4 caregivers (columns)
and 25 users (with one service for each of them). Notice that, for simplicity, only the schedule of
one day is shown, but the algorithm works with the whole week.

It can be seen that the service of User 09 is colored in red, what means that the user must be
canceled. The service of User 10 has a warning signal, which indicates that its scheduled duration
needs to be updated. Caregiver 02 has a break, between the services of User 14 and User 15, that
has a duration of 2 hours and 15 minutes. Because of this, the break is not considered as working
time and there is no need to reduce its duration. Finally, note that the services of User 26 and
User 27 are not currently scheduled.

Figure 1.7: Initial schedule.

Figure 1.8 presents the schedule obtained using the heuristic Algorithm 1.1. This solution was
found in 1.63 minutes, executing the algorithm to solve the incidents for the whole week, not just
for the day shown in the figures. The services of User 26 and User 27 have been correctly added
to the schedule, assigned them to Caregiver 04 and Caregiver 03, respectively. The algorithm
removed the service of User 09, from the plan of Caregiver 01, and updated the schedule of the
other services to overcome the break created when removing the service. Finally, the service of
User 10 was adapted to its new duration of 45 minutes and, to make space for it, some of its
follower services had to be delayed.

10 CHAPTER 1. ORIGINAL PROBLEM PROPOSAL BY MAYORES

Figure 1.8: Final schedule.

The algorithm is very conservative because it maintains, as much as possible, the initial
schedules of the caregivers. Therefore, the example illustrates how the algorithm is able to solve
real-life incidents, providing updated schedules for the company.

Chapter 2

Mathematical formulation

After solving the original problem presented by the company, it was decided to study the HCSP
from an optimization point of view, that is, to solve the problem in a more general manner. To
this aim, new characteristics were added to the problem:

Soft time window. Apart from the hard time window, it could be interesting to allow users
to specify a soft time window that states the times within which they would prefer to be
attended. Although there is not need to uphold the soft time window, it would increase the
satisfaction levels of the users.

Caregivers time window. Caregivers may also have a hard time window outside of which they
cannot carry out any service. This feature increases the difficulty of the problem by restricting
when caregivers can work.

Continuous time. In the original problem, each working day was divided in time slots. Now, to
have more flexibility, the time is considered as a continuous variable.

Schedules from scratch. One important characteristic of the problem presented by the company
is the fact that they wanted to update current schedules to solve new incidents introducing as
few as possible modifications. Therefore, to study a more broad version of the problem, the
schedules will be designed from scratch, that is, there is no need to have an initial solution.
This also means that there is no need to maintain the previous schedules, which results in
more freedom when finding the best possible schedules.

Objectives. Because of the increased flexibility resulting from solving the problem without an
initial solution, the following two objectives that partly conflict can be considered: cost
and welfare. The cost is related to the monetary implications of the solutions, that is, the
salary of the caregivers. To reduce it, the travel times of the routes and the breaks should
be minimized. The welfare is related to the preferences of the users, with respect to the
caregivers and the soft time windows.

All these new characteristics result in a more difficult and rich problem. This chapter presents
the mathematical formulation of the problem, an example to illustrate it and the different
approaches considered to tackle it.

This chapter is organized as follows. Section 2.1 presents a thorough description of the mixed
integer linear programming model of the problem. In Section 2.2 there is an illustrative example of
the problem under study. Finally, Section 2.3 describes the three different approaches considered
to tackle the problem.

11

12 CHAPTER 2. MATHEMATICAL FORMULATION

2.1 The mixed integer programming model
In this section the Mixed Integer Linear Programming (MILP) model of the problem under study
is thoroughly described. First, the parameters of the model and the main decision variables of the
problem are introduced. After that, the objective functions and the constraints of the problem are
described in detailed. The section concludes with a summary of the whole model.

2.1.1 Parameters
The parameters involved in the formulation of the model are as follows.

• D = {1, ..., 7} is the set of days.

• N = {1, ..., n} is the set of caregivers.

• S = {1, ..., s− 1} is the set of services to be completed and S−k = S \ {k}.

• Two dummy services are also considered: 0 the initial dummy service and s the ending
dummy service. Under these assumptions, the following sets are defined: S0 = S ∪ {0},
S1 = S ∪ {s} and S01 = S ∪ {0} ∪ {s}. Given a service k ∈ S, two sets are introduced:
S0

−k = S0 \ {k} and S1
−k = S1 \ {k}.

• ρi
j is equal to 1 if caregiver i ∈ N can perform service j ∈ S, and 0 otherwise.

• λi
j ∈ {0, 1, 2, 3, 4, 5}, is the affinity level between caregiver i ∈ N and service j ∈ S. Note

that ρi
j = 0 implies that λi

j = 0.

• ηj is the duration of service j ∈ S.

• [α
¯

d
j , ᾱd

j], [β
¯

d

j
, β̄d

j] are, respectively, the available and optimal time windows of service j ∈ S

on day d ∈ D. Note that, for the cases where service j ∈ S does not belong to day d ∈ D

the time window is α
¯

d
j = ᾱd

j .

• For every caregiver i ∈ N on day d ∈ D, the time window [γ
¯

id
j

, γ̄id
j] indicates the availability

of the caregiver.

• θjk is the travel time between services j ∈ S and k ∈ S1. For the dummy services the travel
times are zero, that is, θjk = 0 if k = s.

• νi
con is the agreed weekly working time of caregiver i ∈ N and νid is the maximum time that

caregiver i ∈ N is allowed to work on day d ∈ D.

• πmin is the minimum length of time required for the largest break to be unpaid.

• ω1, ω2, ω3, ω4 ∈ R are the weights of each objective in the considered objective function.

2.1.2 Decision variables
The main decision variables are the following:

• For all i ∈ N , d ∈ D, j ∈ S0, k ∈ S1, with j ̸= k,

xid
jk =

{
1, if caregiver i goes directly from service j to service k on day d;
0, otherwise.

• tid
j ∈ R+

0 is the time caregiver i ∈ N starts handling service j ∈ S01 on day d ∈ D. Note that
tid
j = 0 in case caregiver i ∈ N is not assigned to service j ∈ S on day d ∈ D.

2.1. THE MIXED INTEGER PROGRAMMING MODEL 13

The auxiliary decision variables are the following:

• For all i ∈ N , d ∈ D, j ∈ S, k ∈, with j ̸= k,

yid
jk =

{
1, if caregiver i has her largest break of day d between services j and k;
0, otherwise.

• For all i ∈ N , d ∈ D,

ȳid =
{

1, if there is no break for caregiver i on day d;
0, otherwise.

• rid ∈ R+
0 is the greatest break of caregiver i ∈ N on day d ∈ D.

• For all i ∈ N , d ∈ D,

uid =
{

1, if rid ≥ πmin;
0, otherwise.

• For all i ∈ N , d ∈ D,

r̂id =
{

rid, if rid ≥ πmin;
0, otherwise.

• zi ∈ R+
0 is the amount of overtime of caregiver i ∈ N .

• vstart
j ∈ R+

0 is the penalization for carrying out service j ∈ S before its soft time window.

• vend
j ∈ R+

0 is the penalization for carrying out service j ∈ S after its soft time window.

Notice that, if service j ∈ S is not carried out on day d ∈ D, the variable is xid
jk = 0 for all

i ∈ N , k ∈ S1 and tid
j = 0 for all i ∈ N .

2.1.3 Objective function
The objective function considers four different elements, which can be divided into two groups:

• Objective (2.1) accounts for the welfare of users, i.e., the total affinity between services and
caregivers and the penalization of performing services outside their soft time windows.

f1 = min ω1
∑
i∈N

∑
d∈D

∑
j∈S

∑
k∈S1

λi
jxid

jk + ω2
∑
j∈S

(vstart
j + vend

j) (2.1)

• Objective (2.2) refers to schedule cost, which is composed by the the amount of overtime of
the caregivers and their total worked time.

f2 = min ω3
∑
i∈N

zi + ω4
∑
i∈N

∑
d∈D

(tid
s − tid

0 − r̂id) (2.2)

In order to set the weights ω1 and ω2, corresponding to objectives related to the welfare of
users, the fact that vstart

j ≤ maxd∈D{β
¯

d

j
−α

¯
d
j} and vend

j ≤ maxd∈D{ᾱd
j − β̄d

j } for all j ∈ S is taken

into account. Therefore, setting ω1 = −max
{

1,
∑

j∈S

[
maxd∈D{β

¯
d

j
− α

¯
d
j}+ maxd∈D{ᾱd

j − β̄d
j }

]}
and ω2 = 1 guarantees that the affinity will be prioritized over soft time windows penalization1.
For the cost of the schedule, since the units of this objective function coincide and there is no need
to prioritize one over the other, the weights are ω3 = ω4 = 1.

1Note that, ω1 < 0 because the goal is to maximize the affinity levels in a minimization problem.

14 CHAPTER 2. MATHEMATICAL FORMULATION

2.1.4 Constraints
Constraint (2.3) guarantees that every service is carried out by a single caregiver on a single day
and that, after performing it, the caregiver goes directly to attend another service.∑

i∈N

∑
d∈D

∑
k∈S1

−j

xid
jk = 1 ∀j ∈ S (2.3)

xid
jk ∈ {0, 1} ∀i ∈ N, ∀d ∈ D, ∀j ∈ S0, ∀k ∈ S1, j ̸= k

Constraint (2.4) guarantees that every service can only have one previous service.∑
i∈N

∑
d∈D

∑
j∈S0

−k

xid
jk = 1 ∀k ∈ S (2.4)

Constraint (2.5) assures that services can only be assigned to caregivers who can perform them.∑
d∈D

∑
k∈S1

−j

xid
jk ≤ ρi

j ∀i ∈ N, ∀j ∈ S (2.5)

Constraint (2.6) guarantees that the routes of every caregiver on every day start at the initial
dummy service. ∑

k∈S1

xid
0k = 1 ∀i ∈ N, ∀d ∈ D (2.6)

Constraint (2.7) states that the routes of every caregiver on every day end at the ending dummy
service. ∑

j∈S0

xid
js = 1 ∀i ∈ N, ∀d ∈ D (2.7)

Constraint (2.8) avoids the segmentation of caregivers’ routes.∑
j∈S0

−h

xid
jh −

∑
k∈S1

−h

xid
hk = 0 ∀i ∈ N, ∀d ∈ D, ∀h ∈ S (2.8)

Constraint (2.9) focuses on the completion of the services in S.

α
¯

d
j

∑
k∈S1

−j

xid
jk ≤ tid

j ≤ (ᾱd
j − ηj)

∑
k∈S1

−j

xid
jk ∀i ∈ N, ∀d ∈ D, ∀j ∈ S (2.9)

tid
j ≥ 0 ∀i ∈ N, ∀j ∈ S01, ∀d ∈ D

Constraint (2.10) states that the starting times of two consecutive services allow the caregiver
to complete the initial service and to travel to the following one.

tid
j + (ηj + θjk)xid

jk ≤ tid
k + ᾱd

j (1− xid
jk) ∀i ∈ N, ∀d ∈ D, (2.10)

∀j ∈ S, ∀k ∈ S1, j ̸= k

Constraints (2.11) and (2.12) are needed to ensure that dummy services are performed within

2.1. THE MIXED INTEGER PROGRAMMING MODEL 15

the caregivers’ available time window.

tid
0 ≥ γ

¯
id ∀i ∈ N, ∀d ∈ D (2.11)

tid
s ≤ γ̄id ∀i ∈ N, ∀d ∈ D (2.12)

Constraints (2.13) and (2.14) ensure that the initial dummy service will be carried out at the
same time as the first real service of the caregiver.

tid
0 ≤ tid

k + γ̄id(1− xid
0k) ∀i ∈ N, ∀d ∈ D, ∀k ∈ S1 (2.13)

tid
0 ≥ tid

k − γ̄id(1− xid
0k) ∀i ∈ N, ∀d ∈ D, ∀k ∈ S1 (2.14)

Constraint (2.15) establishes that the ending dummy service will be performed right after its
previous service ends. Notice that this constraint only involves services j ∈ S, because the case
j = 0 was already considered in Constraint (2.14).

tid
s ≤ (tid

j + ηj) + γ̄id(1− xid
js) ∀i ∈ N, ∀d ∈ D, ∀j ∈ S (2.15)

Constraint (2.16) guarantees that the worked time of every caregiver on every day, excluding
the largest break she has during the day if it lasts more than πmin, upholds the caregivers maximum
daily working time.

tid
s − tid

0 − r̂id ≤ νid ∀i ∈ N, ∀d ∈ D (2.16)

To consider in the objective function the caregivers scheduled overtime, it is necessary to define
the variable zi ∈ R+ for all i ∈ N , which states the difference between the caregiver scheduled
time and her working hours according to her contract. Constraint (2.17) computes the amount of
overtime of the schedule of each caregiver2.

zi ≥
∑
d∈D

(
tid
s − tid

0 − r̂id
)
− νi

con ∀i ∈ N (2.17)

zi ≥ 0 ∀i ∈ N

The variable, rid ∈ R+, which is the greatest rest of the caregiver i ∈ N on day d ∈ D, will play
a key role in Constraint (2.18). It is important to mention that the time lost, for every caregiver
i ∈ N and day d ∈ D, between two services j, k ∈ S01 is tid

k − (tid
j + ηj + θjk). So, the lost time is

the difference between:

a. The ending time of service j, tid
j + ηj , plus the travel time between the services, θjk.

b. The starting time of service k, tid
k .

Hence, Constraint (2.18) sets the minimum duration of the largest break of a caregiver on a
day, considering every possible pair of consecutive services.

rid ≥ tid
k − (tid

j + ηj + θjk)− γ̄id(1− xid
jk) ∀i ∈ N, ∀d ∈ D, ∀j, k ∈ S, j ̸= k (2.18)

rid ≥ 0 ∀i ∈ N, ∀d ∈ D

2Note that, when the right side of (2.17) is negative, because zi ≥ 0 and the term is minimized in the objective
function, the variable will be 0.

16 CHAPTER 2. MATHEMATICAL FORMULATION

This constraint leads to two possible scenarios:

a. If the caregiver carries out service j and k consecutively (in this order), which means
that xid

jk = 1, the value will be rid ≥ tid
k − (tid

j + ηj + θjk).

b. If she does not perform both services j and k consecutively or if she is not assigned to
one of them, that is xid

jk = 0, then rid ≥ tid
k − (tid

j + ηj + θjk)− γ̄id, where tid
k − (tid

j +
ηj + θjk) − γ̄id ≤ 0. Note that using parameter γ̄id in Constraint (2.18), guarantees
that tid

k − (tid
j + ηj + θjk)− γ̄id ≤ 0 .

The variable yid
jk ∈ {0, 1} will allow us to select between which two consecutive services the

caregiver has her largest break, that is, for all i ∈ N , d ∈ D, j, k ∈ S, with j ̸= k,

yid
jk =

{
1, if caregiver i has her largest break on day d between services j and k;
0, otherwise.

Constraint (2.19) computes the maximum duration of the largest break of a caregiver on a day,
considering every possible pair of consecutive services.

rid ≤ tid
k − (tid

j + ηj + θjk) + γ̄id(1− xid
jk) + γ̄id(1− yid

jk) ∀i ∈ N, ∀d ∈ D, (2.19)
∀j, k ∈ S, j ̸= k

Two different options can arise in Constraint (2.19):

a. If the caregiver carries services j and k consecutively, that is xid
jk = 1, then

rid ≤ tid
k − (tid

j + ηj + θjk) + γ̄id(1− yid
jk).

b. If the caregiver does not carry both services j and k in a consecutive way or she is not
assigned to one of them, which means that xid

jk = 0, then rid ≤ tid
k − (tid

j + ηj + θjk) +
γ̄id + γ̄id(1− yid

jk).

It is necessary to define a new auxiliary variable ȳid ∈ {0, 1} to determine the cases where there
is no break between the services of a caregiver. For every i ∈ N and d ∈ D, the variable is

ȳid =
{

1, if there is no break for caregiver i on day d;
0, otherwise.

The interest of introducing this variable is due to the fact that Constraints (2.10) and
(2.11) are not designed to involve dummy services. Thus, there are two cases when this
new variable will be required:

• The caregiver does not carry out any real service, that is, the caregiver goes directly
from dummy service 0 to dummy service s. In this case, for caregiver i and day d,
variable ȳid is necessary because there is no variable yid

0s.

• The caregiver only carries out one real service, that is, caregiver starts at dummy
service 0, then goes to service j and finally ends at dummy service s. In this case, for
caregiver i and day d, variable ȳid is necessary because there are no variables yid

0j and
yid

js.

Note that this variable can also be activated if a caregiver’s schedule has no break between
any of her real services.

2.1. THE MIXED INTEGER PROGRAMMING MODEL 17

Constraint (2.20) imposes that the maximum duration of the largest break of a caregiver on a
day must be zero if the caregiver does not carry out any real service.

rid ≤ γ̄id(1− ȳid) ∀i ∈ N, ∀d ∈ D (2.20)

Constraint (2.21) selects one of these breaks as the largest one, for every caregiver and day.∑
j∈S

∑
k∈S−j

yid
jk + ȳid = 1 ∀i ∈ N, ∀d ∈ D (2.21)

yid
jk ∈ {0, 1} ∀i ∈ N, ∀d ∈ D, ∀j, k ∈ S, j ̸= k

ȳid ∈ {0, 1} ∀i ∈ N, ∀d ∈ D

Furthermore, Constraint (2.22) states that the largest break of a caregiver on a day has to be
between two consecutive services.

yid
jk ≤ xid

jk ∀i ∈ N, ∀d ∈ D, ∀j ∈ S, ∀k ∈ S, j ̸= k (2.22)

According to Constraints (2.18), (2.20) and (2.21), the maximum value of the variable rid

is set according to two cases:

a. If the caregiver is not assigned to one of the services (j or k), or does not carry out
these two services consecutively, xid

jk = 0, yid
jk = 0 and rid ≤ tid

k −(tid
j +ηj +θjk)+2γ̄id,

where tid
k − (tid

j + ηj + θjk) + 2γ̄id is a positive number greater than any possible break.

b. If the caregiver carries out the two services j and k in a consecutive way, xid
jk = 1,

rid ≤ tid
k − (tid

j + ηj + θjk) + γ̄id(1− yid
jk) and yid

jk will select the largest one of them.

To determine whether the largest break of a caregiver on a day is equal to or greater than πmin,
the following auxiliary binary variable is introduced for all i ∈ N and d ∈ D,

uid =
{

1, if rid ≥ πmin;
0, otherwise.

Constraints (2.23) and (2.24) determine if the largest break of a caregiver on a day is equal to
or greater than the maximum paid break allowed. To this aim, it is necessary to define ε ∈ R+ a
constant close to 0.

rid − πmin ≥ πmin(uid − 1) ∀i ∈ N, ∀d ∈ D (2.23)
rid − πmin + ε ≤ (γ̄id − γ

¯
id)uid ∀i ∈ N, ∀d ∈ D (2.24)

For these two constraints there are two possible scenarios:

a. If the largest break of the caregiver on a day has a duration greater than πmin, that is
rid > πmin, it is necessary to set uid = 1 so that rid − πmin ≥ 0 and
rid − πmin + ε ≤ (γ̄id − γ

¯
id).

b. If the largest break of the caregiver on a day is equal to πmin, that is rid = πmin, then
uid = 1 so that rid − πmin ≥ 0 and rid − πmin + ε ≤ (γ̄id − γ

¯
id). Note that this is the

only case where it is necessary to use ε.

c. If the largest break of the caregiver on a day is shorter than πmin, that is rid < πmin,
then uid = 0 so that rid − πmin ≥ −πmin and rid − πmin + ε ≤ 0.

18 CHAPTER 2. MATHEMATICAL FORMULATION

The variable r̂id ≥ 0 will take the value of the largest break for caregiver i ∈ N on day d ∈ D

if it is equal or greater than πmin, that is

r̂id =
{

rid, if rid ≥ πmin;
0, otherwise.

Constraint (2.25) states that r̂id will be null if uid = 0, for every caregiver i ∈ N and day
d ∈ D.

r̂id ≤ (γ̄id − γ
¯

id)uid ∀i ∈ N, ∀d ∈ D (2.25)

r̂id ≥ 0 ∀i ∈ N, ∀d ∈ D

uid ∈ {0, 1} ∀i ∈ N, ∀d ∈ D

Constraint (2.26) guarantees that r̂id will not be greater than the largest break of caregiver
i ∈ N on day d ∈ D.

r̂id ≤ rid ∀i ∈ N, ∀d ∈ D (2.26)

Constraint (2.27) states that r̂id will be greater than or equal to the largest break of caregiver
i ∈ N on day d ∈ D if the variable uid = 1.

r̂id ≥ rid − (γ̄id − γ
¯

id)(1− uid) ∀i ∈ N, ∀d ∈ D (2.27)

The variable vstart
j ∈ R+ will be used to represent max

{
0,

∑
d∈D

(
β
¯

d

j
−

∑
i∈N tid

j

)}
,

whereas the variable vend
j ∈ R+ will represent max

{
0,

∑
d∈D

(∑
i∈N tid

j + ηj − β̄d
j

)}
. Both

variables penalize the services when they are carried out outside their optimal windows.

Constraint (2.28) states that the variable vstart
j will be greater than or equal to the difference

between the start of the service’s optimal time window and its starting time.

vstart
j ≥

∑
d∈D

β
¯

d

j

∑
i∈N

∑
k∈S1

−j

xid
jk −

∑
i∈N

tid
j

 ∀j ∈ S (2.28)

vstart
j ≥ 0 ∀j ∈ S

Notice that Constraint (2.28) works because the variable vstart
j is minimized in the objective

function.

Three different cases are possible in Constraint 2.28:

a. If the service starts before the beginning of its optimal time window, which means that
β
¯

d

j
>

∑
i∈N tid

j , then vstart
j =

∑
d∈D

(
β
¯

d

j
−

∑
i∈N tid

j

)
> 0.

b. If the service starts at the beginning of its optimal time window, which means that
β
¯

d

j
=

∑
i∈N tid

j , then vstart
j = 0.

c. If the service starts after the beginning of its optimal time window, which means that
β
¯

d

j
<

∑
i∈N tid

j , then vstart
j = 0.

Constraint (2.29) assures that the variable vend
j ∈ R+ will be greater than or equal to the

difference between the time at which the service is completed and the ending time of its optimal

2.1. THE MIXED INTEGER PROGRAMMING MODEL 19

time window.

vend
j ≥

∑
d∈D

∑
i∈N

tid
j + (ηj − β̄d

j)
∑
i∈N

∑
k∈S1

−j

xid
jk

 ∀j ∈ S (2.29)

vend
j ≥ 0 ∀j ∈ S

Notice that Constraint (2.29) works because the variable vend
j is minimized in the objective

function.

In the case of Constraint (2.29), there are three possibilities:

a. If the service ends after the ending time of its optimal time window, which means that∑
i∈N tid

j + ηj > β̄d
j , then vend

j =
∑

d∈D

(∑
i∈N tid

j + ηj − β̄d
j

)
> 0.

b. If the service ends at the ending time of its optimal time window, which means that∑
i∈N tid

j + ηj = β̄d
j , then vend

j = 0.

c. If the service ends before the ending time of its optimal time window, which means
that

∑
i∈N tid

j + ηj < β̄d
j , then vend

j = 0.

2.1.5 Summary of the MILP model
Next, the model that describes the HCSP under study is presented at a glance.

Sets
D = {1, ..., 7} Set of days.
N = {1, ..., n} Set of caregivers.
S = {1, ..., s− 1} Set of services.
S0 = S ∪ {0} Set of services and the initial dummy.
S1 = S ∪ {s} Set of services and the ending dummy.
S01 = S ∪ {0, s} Set of services and the initial and ending dummies.
S−k = S \ {k} Set of services except k ∈ S.

Analogously, S0
−k = S0 \ {k} and S1

−k = S1 \ {k}.

Table 2.1: Sets involved in the problem.

Data
ρi

j It indicates if caregiver i ∈ N can perform service j ∈ S.
λi

j Affinity level between caregiver i ∈ N and service j ∈ S.
ηj Duration of service j ∈ S.
[α
¯

d
j , ᾱd

j] Hard time window of service j ∈ S on day d ∈ D.
Note that, if service j ∈ S does not belong to day d ∈ D,
the parameter is α

¯
d
j = ᾱd

j .
[β
¯

d

j
, β̄d

j] Soft time window of service j ∈ S on day d ∈ D.
[γ
¯

id, γ̄id] Availability time period of caregiver i ∈ N on day d ∈ D.
θjk Travel time between services j ∈ S and k ∈ S1.

Note that, if k = s, then θjs = 0.
νi Agreed weekly working time of caregiver i ∈ N .
νid Maximum time caregiver i ∈ N is allowed to work on day d ∈ D.
πmin Minimum length of time required for the largest break to be unpaid.

Table 2.2: Parameters and variables involved in the problem.

20 CHAPTER 2. MATHEMATICAL FORMULATION

Variables
xid

jk ∈ {0, 1} It indicates if caregiver i ∈ N goes from service j ∈ S0.
to service k ∈ S1 on day d ∈ D.

tid
j ∈ R+

0 For caregiver i ∈ N , it represents the starting time of service j ∈ S01

on day d ∈ D.
yid

jk ∈ {0, 1} For caregiver i ∈ N , it indicates if the break between services j ∈ S and
k ∈ S has been selected to be discounted from the working day d ∈ D.

ȳid ∈ {0, 1} It states if there is no break for caregiver i ∈ N on day d ∈ D.
rid ∈ R+

0 Greatest break of caregiver i ∈ N on day d ∈ D.
uid ∈ {0, 1} It indicates if the largest break of caregiver i ∈ N on day d ∈ D

is greater than or equal to πmin.
r̂id ∈ R+

0 Greatest break of caregiver i ∈ N on day d ∈ D if it is greater than
or equal to πmin. Otherwise, it will be 0.

zi ∈ R+
0 Amount of overtime of caregiver i ∈ N .

vstart
j ∈ R+

0 Penalization for carrying out service j ∈ S before its soft time window.
vend

j ∈ R+
0 Penalization for carrying out service j ∈ S after its soft time window.

Table 2.3: Variables involved in the problem.

The formulation of the problem is:

f1 = min ω1
∑
i∈N

∑
d∈D

∑
j∈S

∑
k∈S1

λi
jxid

jk + ω2
∑
j∈S

(vstart
j + vend

j) (2.1)

f2 = min ω3
∑
i∈N

zi + ω4
∑
i∈N

∑
d∈D

(tid
s − tid

0 − r̂id) (2.2)

Subject to∑
i∈N

∑
d∈D

∑
k∈S1

−j

xid
jk = 1 ∀j ∈ S (2.3)

∑
i∈N

∑
d∈D

∑
j∈S0

−k

xid
jk = 1 ∀k ∈ S (2.4)

∑
d∈D

∑
k∈S1

−j

xid
jk ≤ ρi

j ∀i ∈ N, ∀j ∈ S (2.5)

∑
k∈S1

xid
0k = 1 ∀i ∈ N, ∀d ∈ D (2.6)

∑
j∈S0

xid
js = 1 ∀i ∈ N, ∀d ∈ D (2.7)

∑
j∈S0

−h

xid
jh −

∑
k∈S1

−h

xid
hk = 0 ∀i ∈ N, ∀d ∈ D, ∀h ∈ S (2.8)

α
¯

d
j

∑
k∈S1

−j

xid
jk ≤ tid

j ≤ (ᾱd
j − ηj)

∑
k∈S1

−j

xid
jk ∀i ∈ N, ∀d ∈ D, ∀j ∈ S (2.9)

tid
j + (ηj + θjk)xid

jk ≤ tid
k + ᾱd

j (1− xid
jk) ∀i ∈ N, ∀d ∈ D, (2.10)

∀j ∈ S, ∀k ∈ S1, j ̸= k

tid
0 ≥ γ

¯
id ∀i ∈ N, ∀d ∈ D (2.11)

tid
s ≤ γ̄id ∀i ∈ N, ∀d ∈ D (2.12)

tid
0 ≤ tid

k + γ̄id(1− xid
0k) ∀i ∈ N, ∀d ∈ D, ∀k ∈ S1 (2.13)

tid
0 ≥ tid

k − γ̄id(1− xid
0k) ∀i ∈ N, ∀d ∈ D, ∀k ∈ S1 (2.14)

tid
s ≤ (tid

j + ηj) + γ̄id(1− xid
js) ∀i ∈ N, ∀d ∈ D, ∀j ∈ S (2.15)

2.2. ILLUSTRATIVE EXAMPLE OF THE PROBLEM 21

tid
s − tid

0 − r̂id ≤ νid ∀i ∈ N, ∀d ∈ D (2.16)

zi ≥
∑
d∈D

(
tid
s − tid

0 − r̂id
)
− νi ∀i ∈ N (2.17)

rid ≥ tid
k − (tid

j + ηj + θjk)− γ̄id(1− xid
jk) ∀i ∈ N, ∀d ∈ D, (2.18)

∀j ∈ S, ∀k ∈ S, j ̸= k

rid ≤ tid
k − (tid

j + ηj + θjk) + γ̄id(1− xid
jk) + γ̄id(1− yid

jk) ∀i ∈ N, ∀d ∈ D, (2.19)
∀j ∈ S, ∀k ∈ S, j ̸= k

rid ≤ γ̄id(1− ȳid) ∀i ∈ N, ∀d ∈ D (2.20)∑
j∈S

∑
k∈S−j

yid
jk + ȳid = 1 ∀i ∈ N, ∀d ∈ D (2.21)

yid
jk ≤ xid

jk ∀i ∈ N, ∀d ∈ D, (2.22)
∀j ∈ S, ∀k ∈ S, j ̸= k

rid − πmin ≥ πmin(uid − 1) ∀i ∈ N, ∀d ∈ D (2.23)
rid − πmin + ε ≤ (γ̄id − γ

¯
id)uid ∀i ∈ N, ∀d ∈ D (2.24)

r̂id ≤ (γ̄id − γ
¯

id)uid ∀i ∈ N, ∀d ∈ D (2.25)

r̂id ≤ rid ∀i ∈ N, ∀d ∈ D (2.26)
r̂id ≥ rid − (γ̄id − γ

¯
id)(1− uid) ∀i ∈ N, ∀d ∈ D (2.27)

vstart
j ≥

∑
d∈D

β
¯

d

j

∑
i∈N

∑
k∈S1

−j

xid
jk −

∑
i∈N

tid
j

 ∀j ∈ S (2.28)

vend
j ≥

∑
d∈D

∑
i∈N

tid
j + (ηj − β̄d

j)
∑
i∈N

∑
k∈S1

−j

xid
jk

 ∀j ∈ S (2.29)

xid
jk ∈ {0, 1} ∀i ∈ N, ∀d ∈ D,

∀j ∈ S0, ∀k ∈ S1, j ̸= k

tid
j ≥ 0 ∀i ∈ N, ∀j ∈ S01, ∀d ∈ D

yid
jk ∈ {0, 1} ∀i ∈ N, ∀d ∈ D,

∀j ∈ S, ∀k ∈ S, j ̸= k

ȳid, uid ∈ {0, 1}; rid, r̂id ≥ 0 ∀i ∈ N, ∀d ∈ D

zi ≥ 0 ∀i ∈ N

vstart
j , vend

j ≥ 0 ∀j ∈ S

2.2 Illustrative example of the problem
In this section an illustrative example of the problem under study is presented. It consists of 54
services that two caregivers have to carry out over the course of a week.

First, Table 2.4 describes the characteristics of the services including: the set of tasks assigned to
each service, the user demanding the service, the day on which the service should be performed, the
time windows and the duration. Then, Table 2.5 shows a description of the tasks to be performed
during the services. Finally, the affinity levels between users and the available caregivers are
presented in Table 2.6.

22 CHAPTER 2. MATHEMATICAL FORMULATION

Service Tasks User Day Hard TW Soft TW Duration
1 1, 2, 3, 4, 5, 6, 8 1 Mon 08:00 - 11:00 08:00 - 10:00 90
2 3, 8, 9, 10, 11, 12 9 Mon 09.30 - 12:30 09:30 - 11:30 120
3 4, 5, 13 10 Mon 11:30 - 14:00 12:00 - 14:00 60
4 7, 8, 9, 11 11 Mon 12:00 - 14:30 13:30 - 14:30 60
5 8, 9, 13, 14, 15, 16 1 Mon 18:00 - 21:00 18:00 - 20:00 120
6 3, 8, 11 2 Tue 08:00 - 09:00 08:00 - 09:00 60
7 1, 2, 3, 4, 5, 6, 8 1 Tue 08:00 - 11:00 08:00 - 10:00 90
8 4, 7, 10 12 Tue 10:30 - 14:00 10:30 - 11:30 60
9 10, 13 4 Tue 12:00 - 13:30 12:00 - 13:00 45
10 7, 8, 9, 11 11 Tue 12:00 - 14:30 13:30 - 14:30 60
11 8, 9, 13, 14, 15, 16 1 Tue 18:00 - 21:00 18:00 - 20:00 120
12 1, 2, 3, 4, 5, 6, 8 1 Wed 08:00 - 11:00 08:00 - 10:00 90
13 2, 11 3 Wed 09:30 - 10:30 09:30 - 10:30 30
14 3, 8, 9, 10, 11, 12 9 Wed 09.30 - 12:30 09:30 - 11:30 120
15 7, 8, 9, 11 11 Wed 12:00 - 14:30 13:30 - 14:30 60
16 8, 9, 13, 14, 15, 16 1 Wed 18:00 - 21:00 18:00 - 20:00 120
17 3, 8, 11 2 Tue 08:00 - 09:00 08:00 - 09:00 60
18 1, 2, 3, 4, 5, 6, 8 1 Thu 08:00 - 11:00 08:00 - 10:00 90
19 4, 7, 10 12 Thu 10:30 - 14:00 10:30 - 11:30 60
20 10, 13 4 Thu 12:00 - 13:30 12:00 - 13:00 45
21 7, 8, 9, 11 11 Thu 12:00 - 14:30 13:30 - 14:30 60
22 8, 9, 13, 14, 15, 16 1 Thu 18:00 - 21:00 18:00 - 20:00 120
23 1, 2, 3, 4, 5, 6, 8 1 Fri 08:00 - 11:00 08:00 - 10:00 90
24 3, 8, 9, 10, 11, 12 9 Fri 09.30 - 12:30 09:30 - 11:30 120
25 4, 5, 13 10 Fri 11:30 - 14:00 12:00 - 14:00 60
26 7, 8, 9, 11 11 Fri 12:00 - 14:30 13:30 - 14:30 60
27 8, 9, 13, 14, 15, 16 1 Fri 18:00 - 21:00 18:00 - 20:00 120
28 1, 2, 3, 8, 9 13 Mon 06:30 - 08:00 06:30 - 07:30 60
29 3, 8, 9, 10, 12, 13, 14 5 Mon 07:00 - 12:00 09:00 - 11:00 120
30 7, 8 14 Mon 12:00 - 14:00 12:00 - 13:00 30
31 4, 5, 6, 12, 13 6 Mon 16:00 - 20:00 16:00 - 20:00 120
32 4, 5, 6, 10 15 Mon 17:00 - 20:00 17:30 - 19:30 60
33 1, 2, 3, 8, 9 6 Tue 07:00 - 10:00 09:00 - 10:00 60
34 1, 2, 3, 8, 9 13 Tue 08:30 - 10:00 09:00 - 10:00 60
35 4, 5, 6, 11, 12, 14 7 Tue 10:00 - 13:00 10:00 - 12:00 90
36 5, 11 8 Tue 11:30 - 12:30 11:30 - 12:30 30
37 7, 8, 9, 14 16 Tue 11:30 - 14:00 11:30 - 13:30 60
38 7, 8, 9, 12, 11, 14 17 Tue 12:30 - 15:00 11:30 - 13:30 75
39 1, 2, 3, 8, 9 13 Wed 06:30 - 08:00 06:30 - 07:30 60
40 3, 8, 9, 10, 12, 13, 14 5 Wed 07:00 - 12:00 09:00 - 11:00 120
41 7, 8 14 Wed 12:00 - 14:00 12:00 - 13:00 30
42 4, 5, 6, 12, 13 6 Wed 16:00 - 20:00 16:00 - 20:00 120
43 4, 5, 6, 10 15 Wed 17:00 - 20:00 17:30 - 19:30 60
44 1, 2, 3, 8, 9 6 Thu 07:00 - 10:00 09:00 - 10:00 60
45 1, 2, 3, 8, 9 13 Thu 08:30 - 10:00 09:00 - 10:00 60
46 4, 5, 6, 11, 12, 14 7 Thu 10:00 - 13:00 10:00 - 12:00 90
47 5, 11 8 Thu 11:30 - 12:30 11:30 - 12:30 30
48 7, 8, 9, 14 16 Thu 11:30 - 14:00 11:30 - 13:30 60
49 7, 8, 9, 11, 12, 14 17 Tue 12:30 - 15:00 11:30 - 13:30 75
50 1, 2, 3, 8, 9 13 Fri 06:30 - 08:00 06:30 - 07:30 60
51 3, 8, 9, 10, 12, 13, 14 8 Fri 07:00 - 12:00 09:00 - 11:00 120
52 7, 8 14 Fri 12:00 - 14:00 12:00 - 13:00 30
53 4, 5, 6, 12, 13 6 Fri 16:00 - 20:00 16:00 - 20:00 120
54 4, 5, 6, 10 15 Fri 17:00 - 20:00 17:30 - 19:30 60

Table 2.4: List of services.

2.2. ILLUSTRATIVE EXAMPLE OF THE PROBLEM 23

Task Description Task Description
1 Get out of bed 9 Do the dishes
2 Make beds 10 Do the laundry
3 Cook breakfast 11 Cleaning
4 Bathe 12 Change diaper
5 Wash hair 13 Go for a walk
6 Dress/undress 14 Brushing teeth/dentures
7 Cook lunch 15 Cook dinner
8 Feed 16 Put to bed

Table 2.5: List of tasks.

User Affinity Caregiver 1 Affinity Caregiver 2
1 5 2
2 2 2
3 5 2
4 4 1
5 4 4
6 2 5
7 2 4
8 4 2
9 4 2
10 5 4
11 4 2
12 2 4
13 4 5
14 1 5
15 2 5
16 2 5
17 2 2

Table 2.6: List of affinities.

The weekly schedules of the caregivers are shown in Figures 2.1 and 2.2. Each column represents
the day schedule, the travel times and the breaks (the light ones are considered as working time,
whereas the dark ones are unpaid breaks). Each box includes the following information: hard time
window (top left), soft time window (top right), service and user (middle) and the scheduled start
and end time (bottom).

Analyzing the cost of the schedule for Caregiver 1, it can be seen that the schedule of Monday
is repeated on Friday3. The same happens with Tuesday and Thursday. Since every day there is
only one break of more than two hours, they will be subtracted from their corresponding working
hours. In this way, the fifteen minute break in Tuesday and Thursday belongs to the working day.
In terms of Caregiver 2, the schedule of Monday is the same as the ones on Wednesday and Friday.
During those days, Caregiver 2 has two breaks that last more than two hours, which means that
only the largest one of them will not be paid. The schedule of Tuesday is repeated on Thursday
and, in this case, Caregiver 2 has no breaks.

According to the affinity levels, all services are being carried out by their preferred caregivers
except the ones of Users 12 and 8. These users are currently assigned to a caregiver with whom
they have an affinity level of 2, but their affinity with the caregiver not attending them is 4. In
terms of the soft time window penalization, some services are carried out within their soft time

3Recurrent tasks are carried out at the same time.

24 CHAPTER 2. MATHEMATICAL FORMULATION

window (e.g. Services 6, 17, 35, 46 and 13), while others start before (e.g. Services 3, 4, 15, 25
and 26) or end after (e.g. Services 7, 8, 18 and 19) their soft time window.

Monday
08:00 - 11:00 08:00 - 10:00

Service 1 (User 1)
08:00 − 9:30
Travel: 5 min

09:30 - 12:30 09:30 - 11:30

Service 2 (User 9)
09:35 − 11:35
Travel: 5 min

11:30 - 14:00 12:00 - 14:00

Service 3 (User 10)
11:40− 12:40
Travel: 5 min

12:00 - 14:30 13:30 - 14:30

Service 4 (User 11)
12:45 − 13:45
Travel: 5 min

Break: 250 min
18:00 - 21:00 18:00 - 20:00

Service 5 (User 1)
18:00 − 20:00

Tuesday
08:00 - 09:00 08:00 - 09:00

Service 6 (User 2)
08:00 − 9:00
Travel: 5 min

08:00 - 11:00 08:00 - 10:00

Service 7 (User 1)
09:05 − 10:35
Travel: 5 min

10:30 - 14:00 10:30 - 11:30

Service 8 (User 12)
10:40− 11:40
Travel: 5 min
Break: 15 min

12:00 - 13:30 12:00 - 13:00

Service 9 (User 4)
12:00 − 12:45
Travel: 5 min

12:00 - 14:30 13:30 - 14:30

Service 10 (User 11)
12:50 − 13:50
Travel: 5 min

Break: 245 min
18:00 - 21:00 18:00 - 20:00

Service 11 (User 1)
18:00 − 20:00

Wednesday
08:00 - 11:00 08:00 - 10:00

Service 12 (User 1)
08:00 − 9:30
Travel: 5 min

09:30 - 10:30 09:30 - 10:30

Service 13 (User 3)
09:35 − 10:05
Travel: 5 min

09:30 - 12:30 09:30 - 11:30

Service 14 (User 9)
10:10− 12:10
Travel: 5 min

12:00 - 14:30 13:30 - 14:30

Service 15 (User 11)
12:15− 13:15
Travel: 5 min

Break: 280 min
18:00 - 21:00 18:00 - 20:00

Service 16 (User 1)
18:00 − 20:00

Thursday
08:00 - 09:00 08:00 - 09:00

Service 17 (User 2)
08:00 − 9:00
Travel: 5 min

08:00 - 11:00 08:00 - 10:00

Service 18 (User 1)
09:05 − 10:35
Travel: 5 min

10:30 - 14:00 10:30 - 11:30

Service 19 (User 12)
10:40− 11:40
Travel: 5 min
Break: 15 min

12:00 - 13:30 12:00 - 13:00

Service 20 (User 4)
12:00 − 12:45
Travel: 5 min

12:00 - 14:30 13:30 - 14:30

Service 21 (User 11)
12:50 − 13:50
Travel: 5 min

Break: 245 min
18:00 - 21:00 18:00 - 20:00

Service 22 (User 1)
18:00 − 20:00

Friday
08:00 - 11:00 08:00 - 10:00

Service 23 (User 1)
08:00 − 9:30
Travel: 5 min

09:30 - 12:30 09:30 - 11:30

Service 24 (User 9)
09:35 − 11:35
Travel: 5 min

11:30 - 14:00 12:00 - 14:00

Service 25 (User 10)
11:40− 12:40
Travel: 5 min

12:00 - 14:30 13:30 - 14:30

Service 26 (User 11)
12:45 − 13:45
Travel: 5 min

Break: 250 min
18:00 - 21:00 18:00 - 20:00

Service 27 (User 1)
18:00 − 20:00

Figure 2.1: Schedules of Caregiver 1.

Monday
06:30 - 08:00 06:30 - 07:30

Service 28 (User 13)
06:30 − 07:30
Travel: 5 min

07:00 - 12:00 09:00 - 11:00

Service 29 (User 5)
07:35 − 09:35
Travel: 5 min

Break: 140 min
12:00 - 14:00 12:00 - 13:00

Service 30 (User 14)
12:00− 12:30
Travel: 5 min

Break: 205 min
16:00 - 20:00 16:00 - 20:00

Service 31 (User 6)
16:00 − 18:00
Travel: 5 min

17:00 - 20:00 17:30 - 19:30

Service 32 (User 15)
18:05 − 19:05

Tuesday
07:00 - 10:00 09:00 - 10:00

Service 33 (User 6)
07:50 − 8:50
Travel: 5 min

08:30 - 10:00 09:00 - 10:00

Service 34 (User 13)
08:55 − 09:55
Travel: 5 min

10:00 - 13:00 10:00 - 12:00

Service 35 (User 7)
10:00− 11:30
Travel: 5 min

11:30 - 12:30 11:30 - 12:30

Service 36 (User 8)
11:35 − 12:05
Travel: 5 min

11:30 - 14:00 11:30 - 13:30

Service 37 (User 16)
12:10 − 13:10
Travel: 5 min

12:30 - 15:00 13:00 - 15:00

Service 38 (User 17)
13:15 − 14:30

Wednesday
06:30 - 08:00 06:30 - 07:30

Service 39 (User 13)
06:30 − 07:30
Travel: 5 min

07:00 - 12:00 09:00 - 11:00

Service 40 (User 5)
07:35 − 09:35
Travel: 5 min

Break: 140 min
12:00 - 14:00 12:00 - 13:00

Service 41 (User 14)
12:00− 12:30
Travel: 5 min

Break: 205 min
16:00 - 20:00 16:00 - 20:00

Service 42 (User 6)
16:00 − 18:00
Travel: 5 min

17:00 - 20:00 17:30 - 19:30

Service 43 (User 15)
18:05 − 19:05

Thursday
07:00 - 10:00 09:00 - 10:00

Service 44 (User 6)
07:50 − 8:50
Travel: 5 min

08:30 - 10:00 09:00 - 10:00

Service 45 (User 13)
08:55 − 09:55
Travel: 5 min

10:00 - 13:00 10:00 - 12:00

Service 46 (User 7)
10:00− 11:30
Travel: 5 min

11:30 - 12:30 11:30 - 12:30

Service 47 (User 8)
11:35 − 12:05
Travel: 5 min

11:30 - 14:00 11:30 - 13:30

Service 48 (User 16)
12:10 − 13:10
Travel: 5 min

12:30 - 15:00 13:00 - 15:00

Service 49 (User 17)
13:15 − 14:30

Friday
06:30 - 08:00 06:30 - 07:30

Service 50 (User 13)
06:30 − 07:30
Travel: 5 min

07:00 - 12:00 09:00 - 11:00

Service 51 (User 5)
07:35 − 09:35
Travel: 5 min

Break: 140 min
12:00 - 14:00 12:00 - 13:00

Service 52 (User 14)
12:00− 12:30
Travel: 5 min

Break: 205 min
16:00 - 20:00 16:00 - 20:00

Service 53 (User 6)
16:00 − 18:00
Travel: 5 min

17:00 - 20:00 17:30 - 19:30

Service 54 (User 15)
18:05 − 19:05

Figure 2.2: Schedules of Caregiver 2.

The objective function values, in minutes, are shown in Table 2.7. Both schedules are similar in
terms of affinity, soft time penalization and working time, even though Caregiver 2 has 50 minutes
of overtime (if the agreed weekly working time is 40 hours).

2.2. ILLUSTRATIVE EXAMPLE OF THE PROBLEM 25

Affinity STW penalization Overtime Worked time
Caregiver 1 113 425 0 2330
Caregiver 2 118 405 50 2450

Total 231 830 50 4780

Table 2.7: Objective function values.

The schedule can be modified in order to improve the affinity and soft time window penalization.
Figures 2.3 and 2.4 present the new schedules and Table 2.8 their objective function values.

Affinity STW penalization Overtime Worked time
Caregiver 1 117 120 175 2575
Caregiver 2 122 140 50 2440

Total 239 260 225 5015

Table 2.8: Improved objective function values.

The overall affinity is improved by interchanging Services 8, 19, 36 and 47 between both
caregivers (see yellow boxes). As far as the soft time window penalization is concerned, its value
is greatly reduced by modifying the schedule of the services carried out outside their soft time
window (see green boxes). However, it will possibly imply an increment of the duration of some
breaks. For instance, the delay of Services 3 and 4 on Monday, creates two new breaks of 20 and
25 minutes for Caregiver 1, which are not deducted from the journey. This type of modifications
in the schedule can increase the overtime, as it happens in this case for Caregiver 1, resulting now
in 175 minutes of overtime.

Monday
08:00 - 11:00 08:00 - 10:00

Service 1 (User 1)
08:00 − 9:30
Travel: 5 min

09:30 - 12:30 09:30 - 11:30

Service 2 (User 9)
09:35 − 11:35
Travel: 5 min
Break: 20 min

11:30 - 14:00 12:00 - 14:00

Service 3 (User 10)
12:00− 13:00
Travel: 5 min
Break: 25 min

12:00 - 14:30 13:30 - 14:30

Service 4 (User 11)
13:30 − 14:30
Travel: 5 min

Break: 205 min
18:00 - 21:00 18:00 - 20:00

Service 5 (User 1)
18:00 − 20:00

Tuesday
08:00 - 09:00 08:00 - 09:00

Service 6 (User 2)
08:00 − 9:00
Travel: 5 min

08:00 - 11:00 08:00 - 10:00

Service 7 (User 1)
09:05 − 10:35
Travel: 5 min
Break: 50 min

11:30 - 12:30 11:30 - 12:30

Service 36 (User 8)
11:30− 12:00
Travel: 5 min

12:00 - 13:30 12:00 - 13:00

Service 9 (User 4)
12:05 − 12:50
Travel: 5 min
Break: 35 min

12:00 - 14:30 13:30 - 14:30

Service 10 (User 11)
13:30 − 14:30
Travel: 5 min

Break: 205 min
18:00 - 21:00 18:00 - 20:00

Service 11 (User 1)
18:00 − 20:00

Wednesday
08:00 - 11:00 08:00 - 10:00

Service 12 (User 1)
08:00 − 9:30
Travel: 5 min

09:30 - 10:30 09:30 - 10:30

Service 13 (User 3)
09:35 − 10:05
Travel: 5 min

09:30 - 12:30 09:30 - 11:30

Service 14 (User 9)
10:10− 12:10
Travel: 5 min
Break: 75 min

12:00 - 14:30 13:30 - 14:30

Service 15 (User 11)
13:30− 14:30
Travel: 5 min

Break: 205 min
18:00 - 21:00 18:00 - 20:00

Service 16 (User 1)
18:00 − 20:00

Thursday
08:00 - 09:00 08:00 - 09:00

Service 17 (User 2)
08:00 − 9:00
Travel: 5 min

08:00 - 11:00 08:00 - 10:00

Service 18 (User 1)
09:05 − 10:35
Travel: 5 min
Break: 50 min

11:30 - 12:30 11:30 - 12:30

Service 47 (User 8)
11:30− 12:00
Travel: 5 min

12:00 - 13:30 12:00 - 13:00

Service 20 (User 4)
12:05 − 12:50
Travel: 5 min
Break: 35 min

12:00 - 14:30 13:30 - 14:30

Service 21 (User 11)
13:30 − 14:30
Travel: 5 min

Break: 205 min
18:00 - 21:00 18:00 - 20:00

Service 22 (User 1)
18:00 − 20:00

Friday
08:00 - 11:00 08:00 - 10:00

Service 23 (User 1)
08:00 − 9:30
Travel: 5 min

09:30 - 12:30 09:30 - 11:30

Service 24 (User 9)
09:35 − 11:35
Travel: 5 min
Break: 20 min

11:30 - 14:00 12:00 - 14:00

Service 25 (User 10)
12:00− 13:00
Travel: 5 min
Break: 25 min

12:00 - 14:30 13:30 - 14:30

Service 26 (User 11)
13:30 − 14:30
Travel: 5 min

Break: 205 min
18:00 - 21:00 18:00 - 20:00

Service 27 (User 1)
18:00 − 20:00

Figure 2.3: Improved schedules of Caregiver 1.

26 CHAPTER 2. MATHEMATICAL FORMULATION

Monday
06:30 - 08:00 06:30 - 07:30

Service 28 (User 13)
06:30 − 07:30
Travel: 5 min
Break: 85 min

07:00 - 12:00 09:00 - 11:00

Service 29 (User 5)
09:00 − 11:00
Travel: 5 min
Break: 55 min

12:00 - 14:00 12:00 - 13:00

Service 30 (User 14)
12:00− 12:30
Travel: 5 min

Break: 205 min
16:00 - 20:00 16:00 - 20:00

Service 31 (User 6)
16:00 − 18:00
Travel: 5 min

17:00 - 20:00 17:30 - 19:30

Service 32 (User 15)
18:05 − 19:05

Tuesday
07:00 - 10:00 09:00 - 10:00

Service 33 (User 6)
07:55 − 8:55
Travel: 5 min

08:30 - 10:00 09:00 - 10:00

Service 34 (User 13)
09:00 − 10:00
Travel: 5 min
Break: 25 min

13:00 - 14:00 10:30 - 11:30

Service 8 (User 12)
10:30− 11:30
Travel: 5 min

10:00 - 13:00 10:00 - 12:00

Service 35 (User 7)
11:35 − 12:05
Travel: 5 min

11:30 - 14:00 11:30 - 13:30

Service 37 (User 16)
12:10 − 13:10
Travel: 5 min

12:30 - 15:00 13:00 - 15:00

Service 38 (User 17)
13:15 − 14:30

Wednesday
06:30 - 08:00 06:30 - 07:30

Service 39 (User 13)
06:30 − 07:30
Travel: 5 min
Break: 85 min

07:00 - 12:00 09:00 - 11:00

Service 40 (User 5)
09:00 − 11:00
Travel: 5 min
Break: 55 min

12:00 - 14:00 12:00 - 13:00

Service 41 (User 14)
12:00− 12:30
Travel: 5 min

Break: 205 min
16:00 - 20:00 16:00 - 20:00

Service 42 (User 6)
16:00 − 18:00
Travel: 5 min

17:00 - 20:00 17:30 - 19:30

Service 43 (User 15)
18:05 − 19:05

Thursday
07:00 - 10:00 09:00 - 10:00

Service 44 (User 6)
07:55 − 8:55
Travel: 5 min

08:30 - 10:00 09:00 - 10:00

Service 45 (User 13)
09:00 − 10:00
Travel: 5 min
Break: 25 min

13:00 - 14:00 10:30 - 11:30

Service 19 (User 12)
10:30− 11:30
Travel: 5 min

10:00 - 13:00 10:00 - 12:00

Service 46 (User 7)
11:35 − 12:05
Travel: 5 min

11:30 - 14:00 11:30 - 13:30

Service 48 (User 16)
12:10 − 13:10
Travel: 5 min

12:30 - 15:00 13:00 - 15:00

Service 49 (User 17)
13:15 − 14:30

Friday
06:30 - 08:00 06:30 - 07:30

Service 50 (User 13)
06:30 − 07:30
Travel: 5 min
Break: 85 min

07:00 - 12:00 09:00 - 11:00

Service 51 (User 5)
09:00 − 11:00
Travel: 5 min
Break: 55 min

12:00 - 14:00 12:00 - 13:00

Service 52 (User 14)
12:00− 12:30
Travel: 5 min

Break: 205 min
16:00 - 20:00 16:00 - 20:00

Service 53 (User 6)
16:00 − 18:00
Travel: 5 min

17:00 - 20:00 17:30 - 19:30

Service 54 (User 15)
18:05 − 19:05

Figure 2.4: Improved schedules of Caregiver 2.

2.3 Resolution approaches
Since the MILP formulation of the HCSP problem has two different objective functions, three
different approaches can be considered to solve it.

First approach. In the first approach, the welfare of users is prioritized over the cost of the
schedule. This is the option that the company would use in the areas where they are already
operating, since the priority is the satisfaction of users. Furthermore, if the company were
conservative with the initial schedules, the soft time windows of the services could be adjusted
to the previous schedules.

Second approach. The second approach consists in prioritizing the cost of the schedule over
users’ welfare. This option would be useful for the company when they want to start working
on a new area, which means that there are no previous schedules and the users preferences
are not a priority. In fact, the goal of the company would be to obtain the cheapest and most
efficient schedules, so they would not need to hire too many caregivers.

Third approach. Finally, it seems natural to study the biobjective version of the problem.
Studying the two objectives at the same time results in a set of different solutions, in such a
way that supervisors can choose a solution to work with by analyzing the trade-off between
cost and welfare.

Chapter 3

The metaheuristic algorithm

The HCSP is a generalization of the Vehicle Routing Problem (VRP), which is NP-hard (see Lenstra
& Kan (1981)). Therefore, the MILP formulation can only be solved in small instances with a state
of the art optimization solver. For this reason, a tailored algorithm was designed, based on the
Adaptive Large Neighborhood Search (ALNS) method proposed by Ropke & Pisinger (2006). This
methodology, which is based on using destroy and repair operators, has been proved to be more
successful for solving different types of vehicle routing problems than other traditional methods (for
more information see Pisinger & Ropke (2007)). A complete description of the ALNS is presented
in this chapter, providing examples of how the considered operators work.

This chapter is organized as follows. Section 3.1 describes the ALNS methodology. After that,
the procedure followed to obtain the initial solution is presented in Section 3.2. The removal and
insertion operators are introduced in Sections 3.3 and 3.4, respectively. Finally, the problem of
obtaining the schedule of a route is addressed in Section 3.5, focusing on tackling the problem with
Constraint Programming.

3.1 Adaptive Large Neighborhood Search method
In this section, the ALNS is introduced, which is a metaheuristic algorithm based on destroy and
repair neighborhoods.

Let us consider a minimization problem such as

min
ωωω

f(ωωω)

s.t. ωωω ∈ Ω
(3.1)

where f : Ω −→ R is the objective function to be optimized (minimized, in this case) and Ω is the
set of feasible solutions.

The pseudocode of the ALNS method is described in Algorithm 3.1. The input data of the
algorithm are: the initial solution (ωωω = (xxx, ttt)), the objective function (f), the set of removal
operators (Σrem) and the set of insertion operators (Σins). Note that a solution ωωω is composed by
xxx (where xxx = (xid

jk), ∀i ∈ N, ∀d ∈ D, ∀j ∈ S0, ∀k ∈ S1, j ̸= k), that defines the routes, and ttt (where
ttt = (tid

j), ∀i ∈ N, ∀j ∈ S01, ∀d ∈ D), that specifies the starting times of the services.
The method starts by initializing the weights of the removal (σrem) and insertion (σins)

operators. Additionally, the best solution (ωωω′) is set as the initial one (line 1). Then, until a
stopping criteria is not met, the solution is destroyed and repaired in order to improve the
objective function value.

First, the removal (ςrem ∈ Σrem) and insertion (ςins ∈ Σins) operators are selected at random

27

28 CHAPTER 3. THE METAHEURISTIC ALGORITHM

according to the weights σrem and σrem, respectively (lines 3 - 4). After that, using the operators
previously selected, the current solution ωωω is destroyed, obtaining ω̂ωω, and repaired creating a new
solution ωωω∗ (lines 5 - 6). The best solution (ωωω′) is updated if the new one (ωωω∗) improves its objective
function value (lines 7 - 10). The current solution is updated choosing between the new (ωωω∗) and
the best (ωωω′) one according to an acceptance criteria that allows to select worse solutions in order
to diversify the search (line 11). Finally, the weights of the removal (σrem) and insertion (σins)
operators are updated, in order to choose more frequently the ones that result in better solutions
(line 12).

Algorithm 3.1: ALNS - Adaptive Large Neighborhood Search
Data: the initial solution (ωωω = (xxx, ttt)), the objective function (f), the removal operators

(Σrem) and the insertion operators (Σins)
1 σrem ← (1, ..., 1), σins ← (1, ..., 1), ωωω′ ← ωωω

//Improve the solution
2 while stopping criteria not met do

//Get removal and insertion operators
3 ςrem ← chooseRandom(σrem, Σrem)
4 ςins ← chooseRandom(σins, Σins)

//Obtain new solution
5 ω̂ωω ← destroySolution(ωωω, ςrem, f)
6 ωωω∗ ← repairSolution(ω̂ωω, ςins, f)

//Update best solution
7 if f(ωωω∗) < f(ωωω′) then
8 ωωω′ ← ωωω∗, τ ← true
9 else

10 τ ← false
//Update current solution

11 ωωω ← acceptanceCriteria(ωωω∗, ωωω′)
//Update the weights of the operators

12 σrem ← updateWeights(σrem, τ)
13 σins ← updateWeights(σins, τ)
14 return ωωω

The criteria to update the current solution is based on the probability prob = exp(−(f(ωωω∗) −
f(ωωω′))/Ti), where Ti is a temperature that decreases after each iteration i according to: a cooling
parameter 0 < β < 1, an initial temperature T0 > 0 and the formula Ti = βiT0. Therefore, the
new solution will be the chosen one with probability prob. The weights of the selected operators
are increased if the new solution improves the best one so far.

3.2 Initial solution
The initial solution is obtained by iteratively using one of the insertion operators, which will be
introduced in Section 3.4, to add services to the solution (described in Algorithm 3.2). First, an
empty solution, with no services scheduled, is generated. Then, the services are added according
to the insertion operators. The method stops when either all services have been scheduled, or no
more services can be added to the solution.

3.3. REMOVAL OPERATORS 29

Algorithm 3.2: Initial solution
Data: the insertion operator (ςins)

1 ωωω ← emptySolution()
2 while stopping criteria not met do

//Add a service to the solution
3 ωωω ← repairSolution(ωωω, ςins, f)
4 return ω

3.3 Removal Operators
The removal operators are used to destroy part of the solution by removing a percentage p of
services from the caregivers routes. This section describes the removal operators used to destroy
the solution:

• Random removal

• Related removal

• Cost removal

• 1-route removal

• 2-route removal

3.3.1 Random removal
The random removal operator, described in Algorithm 3.3, selects the services that will be deleted
from the solution at random following a uniform distribution. The method ends when a percentage
of services has been removed from the solution.

Algorithm 3.3: Random removal operator
Data: the solution (ωωω = (xxx, ttt)), the percentage of services to be removed (p) and the set of

services (S)
//Get proportion of not scheduled services

1 Su ← unscheduledServices(ωωω, S) //Get unscheduled services
2 Ss ← scheduledServices(ωωω, S)//Get scheduled services
3 p′ ← |Su|/|S| //Get proportion of unscheduled services

//Destroy the solution
4 while p′ < p do
5 j ← chooseRandomService(Ss) //Get a random service
6 d ← day(j), i ← caregiver(j) //Get caregiver and day of the service
7 xid

lj ← 0, xid
jl ← 0, ∀l ∈ S01 //Remove the service from the route

8 tid
j ← 0 //Unschedule the service

//Update the proportion of not scheduled services
9 Su ← unscheduledServices(ωωω, S) //Get unscheduled services

10 p′ ← |Su|/|S|
11 return ωωω

Example 3.3.1. Illustration of random removal operator.

30 CHAPTER 3. THE METAHEURISTIC ALGORITHM

Let us consider the route presented in Figure 3.1. The scheduled services have a duration of 90
minutes1 and the travel times between them are: θ1,2 = 5, θ1,3 = 15, θ1,4 = 30, θ2,3 = 10, θ2,4 = 25
and θ3,4 = 152 (the grey area after the services in Figure 3.1). Furthermore, the percentage of
services to be removed from the solution is 25% (p = 0.25).

8 9 10 11 12 13 14 15 16 17 18

1 2 3 4

α
¯1

ᾱ1

α
¯2

ᾱ2

α
¯3

ᾱ3

α
¯4

ᾱ4

Figure 3.1: Route to destroy.

In this case, Su = ∅, Ss = {1, 2, 3, 4} and p′ = |Su|/|S| = 0. Service j = 2 is chosen at random
and it is removed from the route (see Figure 3.2). After that, Su = {2} and p′ = |Su|/|S| = 0.25 ≥
p, so there is no need to remove more services from the solution.

8 9 10 11 12 13 14 15 16 17 18

1 3 4

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

α
¯4 ᾱ4

Figure 3.2: Remove service 2.

3.3.2 Related removal
The related removal operator, described in Algorithm 3.4, deletes from the route the services that
are most related between them. The level of relation between two services is measured by the
overlapping of their time windows and the day they belong to.

The first service to be removed is randomly selected, following a uniform distribution (lines 1 -
2). Then, the algorithm chooses an unscheduled service at random (line 5) and iterates through
the scheduled services to obtain their relation level (lines 6 - 14). Finally, the service with the best
related value is removed from the schedule. The algorithm ends when the predefined percentage
of solution has been destroyed.

1For simplicity, the example is presented in minutes. Therefore, the 8:00 a.m. will correspond to minute 0. Note
that, 8:00 a.m. is time 0 because it is when the earliest time window of the services starts.

2Note that, even though in the definition of the parameters the notation used is θjk, to avoid possible confusions,
the notation θj,k will be considered in the example.

3.3. REMOVAL OPERATORS 31

Algorithm 3.4: Related removal operator
Data: the solution (ωωω = (xxx, ttt)), the percentage of services to be removed (p) and the set of

services (S)
1 if Su = ∅ then

//Remove service at random
2 j ← chooseRandomService(Ss), ωωω ← removeService(j,ωωω)

//Get proportion of not scheduled services
3 Su ← unscheduledServices(ωωω, S), Ss ← scheduledServices(ωωω, S), p′ ← |Su|/|S|

//Destroy the solution
4 while p′ < p do

//Get an unscheduled service at random and its day
5 k ← chooseRandomService(Su), dk ← day(k)

//Get relation with first scheduled service, j

6 j ← firstService(Ss), dj ← day(j), relj ← θj,k + |α
¯

dj

j − α
¯

dk

k |+ |ᾱ
dj

j − ᾱdk

k |
7 if dj ̸= dk then
8 relj ← relj + 1 //Increase the relation if the services belong to the same day

//Get most related service
9 for l ∈ Ss \ {j} do

//Get relation with the other services
10 dl ← day(l), rell ← θl,k + |α

¯
dl

l − α
¯

dk

k |+ |ᾱ
dl

l − ᾱdk

k |
11 if dl ̸= dk then
12 rell ← rell + 1

//Update most related service
13 if rell < relj then
14 j ← l, relj ← rell

//Remove the most related service from the schedule
15 d ← day(j), i ← caregiver(j) //Get caregiver and day of the service
16 xi,d

l,j ← 0, xi,d
j,l ← 0, ∀l ∈ S01 //Remove the service from the route

17 ti,d
j ← 0 //Unschedule the service

//Update the proportion of not scheduled services
18 Su ← unscheduledServices(ωωω, S)
19 p′ ← |Su|/|S|
20 return ωωω

Example 3.3.2. Illustration of related removal operator.
Let us consider the route presented in Figure 3.1. The hard time windows of the services are:

α
¯

d
1 = 0, ᾱd

1 = 210, α
¯

d
2 = 180, ᾱd

2 = 510, α
¯

d
3 = 150, ᾱd

3 = 420, α
¯

d
4 = 360 and ᾱd

4 = 600. Let us
suppose that the percentage of services to be removed from the solution is 50% (p = 0.5).

Now, Su = ∅, Ss = {1, 2, 3, 4} and p′ = |Su|/|S| = 0. Service j = 3 is chosen at random and it
is removed from the route (see Figure 3.3).

8 9 10 11 12 13 14 15 16 17 18

1 2 4

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

α
¯4 ᾱ4

Figure 3.3: Remove Service 3 at random.

32 CHAPTER 3. THE METAHEURISTIC ALGORITHM

So, Su = {3} and p′ = |Su|/|S| = 0.25 < p. Therefore, another service needs to be removed
from the solution. To choose the service to be removed, it is necessary to obtain the relation level
between all scheduled services (1, 2 and 4) and the unscheduled one (3):

Service 1. rel1 = θ1,3 + |α
¯

d1
1 − α

¯
d3
3 |+ |ᾱ

d1
1 − ᾱd3

3 | = 15 + |0− 150|+ |210− 420| = 375.

Service 2. rel2 = θ2,3 + |α
¯

d2
2 − α

¯
d3
3 |+ |ᾱ

d2
2 − ᾱd3

3 | = 10 + |180− 150|+ |510− 420| = 130.

Service 4. rel4 = θ4,3 + |α
¯

d4
4 − α

¯
d3
3 |+ |ᾱ

d4
4 − ᾱd3

3 | = 15 + |360− 150|+ |600− 420| = 405.

The service most related to Service 3 is Service 2. Therefore it is removed from the schedule
(see Figure 3.4).

8 9 10 11 12 13 14 15 16 17 18

1 4

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

α
¯4 ᾱ4

Figure 3.4: Route obtained after removing Service 2.

3.3.3 Cost removal
The cost removal operator, described in Algorithm 3.5, iteratively deletes from the routes the
service that contributes the most to the objective function value.

The algorithm iterates through the scheduled services, removes them from the solution and
obtains the cost of the solution without the service (lines 5 - 9). After that, the removed service
giving the minimum cost, is the one that will be permanently deleted from the solution (line 10).
The algorithm ends when a certain percentage of solution has been destroyed.

Algorithm 3.5: Cost removal operator
Data: the solution (ωωω = (xxx, ttt)), the percentage of services to be removed (p), the set of

services (S) and the objective function (f)
//Get the proportion of not scheduled services

1 Su ← unscheduledServices(ωωω, S)
2 Ss ← scheduledServices(ωωω, S)
3 p′ ← |Su|/|S|

//Destroy the solution
4 while p′ < p do

//Get the service that contributes the most to f

5 for l ∈ Ss do
6 d ← day(l), i ← caregiver(l) //Get the caregiver and day of the service
7 x̄xx ← xxx, x̄id

kl ← 0, x̄id
lk ← 0, ∀k ∈ S01 //Remove the service from the route

8 t̄tt ← ttt, t̄id
l ← 0 //Unschedule the service

9 Ω ← Ω ∪ {(x̄xx, t̄tt)} //Solution without the service
10 ωωω ← {ω̂ωω/f(ω̂ωω) = minω̄ωω∈Ω{f(ω̄ωω)}} //Solution with the best value of f

//Update the proportion of not scheduled services
11 Su ← unscheduledServices(ωωω, S)
12 p′ ← |Su|/|S|
13 return ωωω

3.3. REMOVAL OPERATORS 33

Example 3.3.3. Illustration of cost removal operator.
Let us consider the route presented in Figure 3.1. The starting times of the services are: t1 = 60,

t2 = 155, t3 = 255 and t4 = 420. Furthermore, the proportion of solution to destroy is 25% and
the objective function considered is the working time of the caregiver.

The cost of the schedule when removing Service 1 (see Figure 3.5) is t4+η4−t2 = 420+90−155 =
355.

8 9 10 11 12 13 14 15 16 17 18

2 3 4

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

α
¯4 ᾱ4

Figure 3.5: Route obtained removing Service 1.

The cost of the schedule when removing Service 2 (see Figure 3.6) is t4+η4−t1 = 420+90−60 =
450.

8 9 10 11 12 13 14 15 16 17 18

1 3 4

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

α
¯4 ᾱ4

Figure 3.6: Route obtained removing Service 2.

The cost of the schedule when removing Service 3 (see Figure 3.7) is t4 + η4 − t1 − (t4 − (t2 +
η2 + θ2,4)) = 420 + 90− 60− (420− (155 + 90 + 25)) = 300 because, in this case, removing Service
3 results in a break that lasts more than 2 hours.

8 9 10 11 12 13 14 15 16 17 18

1 2 4

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

α
¯4 ᾱ4

Figure 3.7: Route obtained removing Service 3.

The cost of the schedule when removing Service 4 (see Figure 3.8) is t3+η3−t1 = 255+90−60 =
285.

8 9 10 11 12 13 14 15 16 17 18

1 2 3

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

α
¯4 ᾱ4

Figure 3.8: Route obtained removing Service 4.

Therefore, the service to be removed is Service 4, because is the one that results in the bigger
reduction of cost.

34 CHAPTER 3. THE METAHEURISTIC ALGORITHM

3.3.4 1-route removal
The 1-route removal operator, described in Algorithm 3.6, deletes complete routes from the solution
until at least the required number of services have been removed.

The algorithm randomly selects a route (caregiver and day), according to a uniform distribution,
and removes its services from the solution (lines 5 - 9). If the required proportion of services has
been removed then the algorithm stops. Otherwise, the method removes another route.

Algorithm 3.6: 1-route removal operator
Data: the solution (ωωω = (xxx, ttt)), the percentage of services to be removed (p) and the set of

services (S)
//Get the proportion of not scheduled services

1 Su ← unscheduledServices(ωωω, S)
2 Ss ← scheduledServices(ωωω, S)
3 p′ ← |Su|/|S|

//Destroy the solution
4 while p′ < p do

//Remove a route from the solution
5 i ← getCaregiver(ωωω), d ← getDay(ωωω) //Get a random caregiver and a day
6 Si ← getServices(ωωω, Ss, i, d) //Get the scheduled services assigned to the caregiver

7 for l ∈ Si do
8 xid

kl ← 0, xid
lk, ← 0 ∀k ∈ S01 //Remove the service from the route

9 tid
l ← 0 //Unschedule the service

//Update the proportion of not scheduled services
10 Su ← unscheduledServices(ωωω, S)
11 p′ ← |Su|/|S|
12 return ωωω

3.3.5 2-route removal
The 2-route removal operator, described in Algorithm 3.7, deletes two complete routes selected at
random, following a uniform distribution, from the solution.

Algorithm 3.7: 2-route removal operator
Data: the solution (ωωω = (xxx, ttt)) and the set of services (S)
//Get two random routes (caregiver and day)

1 i1 ← getCaregiver(ωωω), d1 ← getDay(ωωω)
2 i2 ← getCaregiver(ωωω), d2 ← getDay(ωωω)

//Get the scheduled services assigned to the caregivers
3 Si1 ← getServices(ωωω, Ss, i1, d1), Si2 ← getServices(ωωω, Ss, i2, d2)

//Remove the services
4 for l ∈ Si1 do
5 xi1d1

kl ← 0, xi1d1
lk , ← 0 ∀k ∈ S01 //Remove the service from the route

6 ti1d1
l ← 0 //Unschedule the service

7 for l ∈ Si2 do
8 xi2d2

k,l ← 0, xi2d2
lk , ← 0 ∀k ∈ S01 //Remove the service from the route

9 ti2d2
l ← 0 //Unschedule the service

10 return ωωω

3.4. INSERTION OPERATORS 35

3.4 Insertion Operators
The insertion operators are used to restore the solution by introducing the services back into the
routes. The considered insertion operators are described below.

• Basic greedy

• Random greedy

• Different caregiver basic greedy

• Different caregiver random greedy

3.4.1 Basic greedy
The basic greedy operator, described in Algorithm 3.8, adds to the schedule the services that, when
they are inserted at their best position, it results in the least objective function increase.

Algorithm 3.8: Basic greedy operator
Data: Solution (ωωω = (xxx, ttt))

1 Su ← unscheduledServices(ωωω)
2 while |Su| > 0 do

//Schedule every service at every position of the route
3 Ω ← ∅ //Set of solutions
4 for l ∈ Su do
5 d ← day(l) //Day of service l

6 for i ∈ N do
7 Ri ← route(i, d,ωωω) //Route of caregiver i

//Schedule the service at every position of the route
8 for j ∈ Ri = {0, 1, ..., r, s} do
9 if j = 0 then

10 R̄ ← {l, 1, ..., r}
11 else if j = r then
12 R̄ ← {1, ..., r, l}
13 else if j ̸= s then
14 R̄ ← {1, ..., j, l, j + 1, ..., r}

//If service l can be added to R

15 if feasible(R̄, i, d, l) then
16 t̄tt ← ttt, t̄j′∈R̄ ← schedule(R̄, f) //Get the new schedule of R̄

17 x̄xx ← xxx, x̄id
jl ← 1, x̄id

lj+1 ← 1 //Update the route
18 Ω ← Ω ∪ {(x̄xx, t̄tt)} //Add the new solution
19 ωωω ← {ω̃ωω/f(ω̃ωω) = minω̂ωω∈Ω{f(ω̂ωω)}} //Choose the solution with best cost

//Check if a service has been added to the schedule
20 Ŝu ← unscheduledServices(ωωω) //Get the new non scheduled services
21 if |Su| = |Ŝu| then
22 break loop //No service has been added to the schedule
23 else
24 Su ← Ŝu //The service has been added to the schedule
25 return ωωω

The algorithm, while there are unscheduled services, iterates through them to select the next
one that needs to be added to the solution. Each service is assigned to all available caregivers

36 CHAPTER 3. THE METAHEURISTIC ALGORITHM

and scheduled in each feasible position of the routes (lines 4 - 18), which results in multiple new
solutions. Then, from all the possible solutions, the one with minimal cost is chosen (line 19),
which means that its corresponding new service is the one added to the schedule. Finally, the set
of unscheduled services is updated (line 20). The process finishes when no service is added to the
solution3 (lines 21 - 22).

Example 3.4.1. Illustration of basic greedy operator.
Let us consider that three services must be scheduled in a single route. The services have a

duration of 90 minutes4 and the travel times between them are: θ1,2 = 10, θ1,3 = 5 and θ2,3 = 15.
The hard time windows of the services are: α

¯
d
1 = 0, ᾱd

1 = 450, α
¯

d
2 = 60, ᾱd

2 = 510, α
¯

d
3 = 540

and ᾱd
3 = 690. For simplicity, the objective function considered will be the worked time of the

caregiver.
The first service to be scheduled is chosen at random, following a uniform distribution, since

all of them have equal duration. Let us assume that the one selected is Service 1 (see Figure 3.9).

9 10 11 12 13 14 15 16 17 18 19 20 21

1

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

Figure 3.9: Route to be repaired using the basic greedy operator.

The next service to be added to the route is the one that will result in the least increase of
cost. In order to do this, the services are inserted in every feasible position of the route and the
best one will be selected. First, the different positions where Service 2 can be inserted in the route
are evaluated:

• Scheduling Service 2 in the first position of the route (see Figure 3.10) results in a cost of
t1 + η1 − t2 = 160 + 90− 60 = 190 minutes.

9 10 11 12 13 14 15 16 17 18 19 20 21

2 1

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

Figure 3.10: Schedule with Service 2 in first position (basic greedy).

• Scheduling Service 2 in the second position of the route (see Figure 3.11) results in a cost of
t2 + η2 − t1 = 100 + 90− 0 = 190 minutes.

9 10 11 12 13 14 15 16 17 18 19 20 21

1 2

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

Figure 3.11: Schedule with Service 2 in second position (basic greedy).
3If no new service has been added to the solution, it means that it is not feasible to assign the unscheduled

services to the available caregivers.
4For simplicity, the example is presented in minutes and therefore, the time 9:00 corresponds to the minute 0.

3.4. INSERTION OPERATORS 37

Now, the different positions where Service 3 can be introduced in the route are evaluated:

• Scheduling Service 3 in the first position of the route (see Figure 3.12) results in a non feasible
solution, because the hard time window of Service 1 ends before the one of 3 begins.

9 10 11 12 13 14 15 16 17 18 19 20 21

3 1

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

Figure 3.12: Schedule with Service 3 in first position (basic greedy).

• Scheduling Service 3 in the second position of the route (see Figure 3.13) results in a cost of
t3 + η3− t1− (t3− (t1 + η1 + θ1,3)) = 540 + 90− 0− (540− (0 + 90 + 5)) = 185 minutes. Since
this is the option giving the least cost, Service 3 will be scheduled in the second position of
the route.

9 10 11 12 13 14 15 16 17 18 19 20 21

1 3

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

Figure 3.13: Schedule with Service 3 in second position(basic greedy).

Finally, the best position in the schedule for Service 2 is decided:

• Scheduling Service 2 in the first position of the route (see Figure 3.14) results in a cost of
t3 + η3 − t2 − (t3 − (t1 + η1 + θ1,3)) = 540 + 90− 60− (540− (160 + 90 + 5)) = 285 minutes.

9 10 11 12 13 14 15 16 17 18 19 20 21

2 1 3

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

Figure 3.14: Schedule with Service 2 in first position (basic greedy).

• Scheduling Service 2 in the second position of the route (see Figure 3.15) results in a cost of
t3 + η3 − t1 − (t3 − (t2 + η2 + θ2,3)) = 540 + 90− 0− (540− (100 + 90 + 15)) = 295 minutes.

9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 3

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

Figure 3.15: Schedule with Service 2 in second position (basic greedy).

• It is not feasible to schedule Service 2 in the last position of the route, because the hard time
window of 2 ends before the one of 3 starts.

Thus, the best schedule is the one of Figure 3.14, because it is the one with smallest cost.

38 CHAPTER 3. THE METAHEURISTIC ALGORITHM

3.4.2 Random greedy
The random greedy operator, described in Algorithm 3.9, iteratively chooses a service at random
and, then, schedules it at the best position according to the objective function value.

The algorithm, while the stopping criteria is not met, selects a service at random following a
uniform distribution (line 3), assigns it to all available caregivers and schedules it in each feasible
position of the routes (lines 4 - 17), which results in multiple new solutions. Then, from all the
possible solutions, the one with the smallest cost is chosen (line 18). The algorithm stops when all
services have been added to the solution or when a certain number of iterations without adding a
new service to the solution is reached (lines 20 - 23).

Algorithm 3.9: Random greedy operator
Data: the solution (ωωω = (xxx, ttt)) and the number of iterations without improvement (m)

1 Su ← unscheduledService(ωωω)
2 while |Su| > 0 and cont < m do
3 l ← randomService(Su), d ← day(l) //Get a service (and its day) at random

//Schedule the service at every position of the route
4 Ω ← ∅
5 for i ∈ N do
6 Ri ← route(i, d,ωωω) //Route of caregiver i

//Schedule the service at every position of the route
7 for j ∈ Ri = {0, 1, ..., r, s} do
8 if j = 0 then
9 R̄ ← {l, 1, ..., r}

10 else if j = r then
11 R̄ ← {1, ..., r, l}
12 else if j ̸= s then
13 R̄ ← {1, ..., j, l, j + 1, ..., r}

//If service l can be added to R

14 if feasible(R̄, i, d, l) then
15 t̄tt ← ttt, t̄j′∈R̄ ← schedule(R̄, f) //Get the new schedule of R̄

16 x̄xx ← xxx, x̄id
jl ← 1, x̄id

lj+1 ← 1 //Update the route
17 Ω ← Ω ∪ {(x̄xx, t̄tt)} //Add the new solution
18 ωωω ← {ω̃ωω/f(ω̃ωω) = minω̂ωω∈Ω{f(ω̂ωω)}} //Choose the solution with best cost

//Check if a service has been added to the schedule
19 Ŝu ← unscheduledServices(ωωω)
20 if |Su| = |Ŝu| then
21 cont ← cont + 1 //No service has been added to the schedule
22 else
23 Su ← Ŝu, cont ← 0
24 return ωωω

Example 3.4.2. Illustration of random greedy operator.
Let us consider the example in Figure 3.9. The first service to be scheduled is chosen at

random, according to a uniform distribution, because all of them have the same duration. In this
case, service 1 is selected (see Figure 3.16).

3.4. INSERTION OPERATORS 39

9 10 11 12 13 14 15 16 17 18 19 20 21

1

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

Figure 3.16: Route to be repaired using the random greedy operator.

The next service to be added to the route is chosen at random, Service 2, and it will be inserted
at the position resulting in the least increase of cost.

• Scheduling Service 2 in the first position of the route (see Figure 3.17) results in a cost of
t1 + η1 − t2 = 160 + 90− 60 = 190 minutes.

9 10 11 12 13 14 15 16 17 18 19 20 21

2 1

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

Figure 3.17: Schedule Service 2 in the first position (random greedy).

• Scheduling Service 2 in the second position of the route (see Figure 3.18) results in a cost of
t2 + η2 − t1 = 100 + 90− 0 = 190 minutes.

9 10 11 12 13 14 15 16 17 18 19 20 21

1 2

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

Figure 3.18: Schedule Service 2 in the second position (random greedy).

Both options result in the same cost, so the service is randomly scheduled in the second position.
Finally, the best position to schedule Service 3 must be found.

• Scheduling Service 3 in the first or second position of the route results in a no feasible
solution, because the hard time windows of services 1 and 2 end before the one of 3 begins.
This means that the only feasible option is to schedule Service 3 in the last position of the
route (see Figure 3.19), which results in a cost of t3 + η3 − t1 − (t3 − (t2 + η2 + θ2,3)) =
540 + 90− 0− (540− (100 + 90 + 15)) = 295 minutes.

9 10 11 12 13 14 15 16 17 18 19 20 21

1 2 3

α
¯1 ᾱ1

α
¯2 ᾱ2

α
¯3 ᾱ3

Figure 3.19: Schedule Service 3 in the third position (random greedy).

40 CHAPTER 3. THE METAHEURISTIC ALGORITHM

Algorithm 3.10: Different caregiver basic greedy operator
Data: the solution (ωωω = (xxx, ttt)) and the previous solution (ω̂ωω)

1 Su ← unscheduledServices(ωωω)
2 while |Su| > 0 do

//Schedule every service at every position of the route
3 Ω ← ∅
4 for l ∈ Su do
5 d ← day(l), il ← caregiver(l, ω̂ωω)
6 for i ∈ N , i ̸= il do
7 Ri ← route(i, d,ωωω)

//Schedule the service at every position of the route
8 for j ∈ Ri = {0, 1, ..., r, s} do
9 if j = 0 then

10 R̄ ← {l, 1, ..., r}
11 else if j = r then
12 R̄ ← {1, ..., r, l}
13 else if j ̸= s then
14 R̄ ← {1, ..., j, l, j + 1, ..., r}

//Check if service l can be added to R

15 if feasible(R̄, i, d, l) then
16 t̄tt ← ttt, t̄j′∈R̄ ← schedule(R̄, f) //Get the new schedule of R̄

17 x̄xx ← xxx, x̄id
jl ← 1, x̄id

lj+1 ← 1 //Update the route
18 Ω ← Ω ∪ {(x̄xx, t̄tt)} //Add the new solution
19 if Ω = ∅ then // If service l was not assigned to any other caregiver

//Assign the service to the caregiver attending it before
20 i ← il, Ri ← route(i, d,ωωω)

//Schedule the service at every position of the route
21 for j ∈ Ri = {0, 1, ..., r, s} do
22 if j = 0 then
23 R̄ ← {l, 1, ..., r}
24 else if j = r then
25 R̄ ← {1, ..., r, l}
26 else if j ̸= s then
27 R̄ ← {1, ..., j, l, j + 1, ..., r}

//Check if service l can be added to R

28 if feasible(R̄, i, d, l) then
29 t̄tt ← ttt, t̄j′∈R̄ ← schedule(R̄, f) //Get the new schedule of R̄

30 x̄xx ← xxx, x̄id
jl ← 1, x̄id

lj+1 ← 1 //Update the route
31 Ω ← Ω ∪ {(x̄xx, t̄tt)} //Add the new solution
32 ωωω ← {ω̃ωω/f(ω̃ωω) = minω̂ωω∈Ω{f(ω̂ωω)}} //Best solution
33 Ŝu ← unscheduledServices(ωωω)

//Check if a service has been added to the schedule
34 if |Su| = |Ŝu| then
35 break //No service has been added to the schedule
36 else
37 Su ← Ŝu

38 return ωωω

3.4. INSERTION OPERATORS 41

Algorithm 3.11: Different caregiver random greedy operator
Data: the solution (ωωω = (xxx, ttt)), the previous solution (ω̂ωω), iterations without improvement

(m) and the objective function (f)
1 Su ← unscheduledServices(ωωω)
2 while |Su| > 0 and cont < m do
3 l ← randomServices(Su), d ← day(l), il ← caregiver(l, ω̂ωω), Ω ← ∅

// Assign the service to every caregiver
4 for i ∈ N , i ̸= il do
5 Ri ← route(i, d,ωωω)

// Schedule the service at every position of the route
6 for j ∈ Ri = {0, 1, ..., r, s} do
7 if j = 0 then
8 R̄ ← {l, 1, ..., r}
9 else if j = r then

10 R̄ ← {1, ..., r, l}
11 else if j ̸= s then
12 R̄ ← {1, ..., j, l, j + 1, ..., r}

// If service l can be added to R

13 if feasible(R̄, i, d, l) then
14 t̄tt ← ttt, t̄j′∈R̄ ← schedule(R̄, f) // Get the new schedule of R̄

15 x̄xx ← xxx, x̄id
jl ← 1, x̄id

lj+1 ← 1 // Update the route
16 Ω ← Ω ∪ {(x̄xx, t̄tt)} // Add the new solution
17 if Ω = ∅ then // If service l was not assigned to any other caregiver

// Assign the service to the caregiver attending it before
18 i ← il, Ri ← route(i, d,ωωω)

// Schedule the service at every position of the route
19 for j ∈ Ri = {0, 1, ..., r, s} do
20 if j = 0 then
21 R̄ ← {l, 1, ..., r}
22 else if j = r then
23 R̄ ← {1, ..., r, l}
24 else if j ̸= s then
25 R̄ ← {1, ..., j, l, j + 1, ..., r}

// If service l can be added to R

26 if feasible(R̄, i, d, l) then
27 t̄tt ← ttt, t̄j′∈R̄ ← schedule(R̄, f) // Get the new schedule of R̄

28 x̄xx ← xxx, x̄id
jl ← 1, x̄id

lj+1 ← 1 // Update the route
29 Ω ← Ω ∪ {(x̄xx, t̄tt)} // Add the new solution
30 ωωω ← {ω̃ωω/f(ω̃ωω) = minω̂ωω∈Ω{f(ω̂ωω)}} // Best solution
31 Ŝu ← unscheduledServices(ωωω)

// Check if a service has been added to the schedule
32 if |Su| = |Ŝu| then
33 cont ← cont + 1 // No service has been added to the schedule
34 else
35 Su ← Ŝu, cont ← 0
36 return ωωω

42 CHAPTER 3. THE METAHEURISTIC ALGORITHM

3.4.3 Different caregiver basic greedy
The different caregiver basic greedy operator, described in Algorithm 3.10, uses the basic greedy
to add the services but, in this case, trying to guarantee that the services will be assigned to a
different caregiver.

The algorithm tries to assign the services to a different caregiver than the one who was attending
them before the destruction phase (lines 6 - 18). If it is not possible, the service is assigned to the
caregiver attending it before (lines 19 - 31). Then, from all the possible solutions, the one with
minimal cost is chosen (line 32), which means that its corresponding new service is the one added
to the schedule. Finally, the set of unscheduled services is updated (line 33) and, if no service has
been added to the solution, the loop terminates (lines 34 - 35).

3.4.4 Different caregiver random greedy
The different caregiver random greedy operator, described in Algorithm 3.11, is similar to the
random greedy but trying to assign the services to different caregivers than the ones attending
them before the destruction phase.

The algorithm, while the stopping criteria is not met, selects a service at random following a
uniform distribution (line 3). Then, it tries to assign the services to a different caregiver from the
one who was attending them before the destruction phase. Then, it is scheduled in each feasible
position of the routes (lines 4 - 16). In case that is not possible, the service is assigned to the
caregiver attending it before (lines 17 - 29). After that, from all the possible solutions, the one
with minimal cost is chosen (line 30). The algorithm stops when all services have been added to
the solution or when a certain number of iterations without adding a new service to the solution
is reached (lines 32 - 35).

3.5 Obtaining the schedule of a route
Since a routing and scheduling problem is being considered, to evaluate the insertion operators it
is not only necessary to know the routes of each caregiver, but also the starting times of every
service. Because of this, after obtaining a new route using any of the insertion operators, it is
necessary to define its schedule. This is done inside the insertion operators, using the function
schedule(R, f), where R is the route and f is the objective function.

One of the most important aspects when obtaining the schedule of a route is the objective
function to optimize. Note that, once the route is fixed, there is no need to pay attention to the
affinity and the overtime. The affinity cannot be changed because the services are already assigned
to the caregiver. The overtime involves the weekly working time of the caregivers, which means
that the best way to minimize the overtime is by minimizing the working time of the route. On one
hand, prioritizing the welfare over the cost implies that the schedule of the route should minimize
first the soft time window penalization and, after that, the working time of the caregiver. On the
other hand, prioritizing the cost over the welfare requires that the schedule minimizes the working
time and, then, the soft time window penalization.

Three different methods to obtain the schedule of a route have been developed:

First heuristic approach. A heuristic method that, given a route, obtains the schedule
prioritizing the welfare over the cost. It is described in Chapter 4.

Second heuristic approach. A heuristic method that obtains the schedule of a route so it
prioritizes the cost over the welfare. It is described in Chapter 5.

3.5. OBTAINING THE SCHEDULE OF A ROUTE 43

Constraint programming. The optimal starting times of a route can be obtained by modeling
the resulting scheduling problem using constraint programming and optimizing the required
objective function. This method, described in Section 3.5.1, will be used to evaluate the
other two heuristic approaches.

3.5.1 Constraint programming
Constraint Programming (CP), originated in the field of artificial intelligence and computer science,
consists in formulating and solving problems in terms of the set of constraints that define the
problem, rather than focusing on the variables or the objective function (for more information see
Rossi et al. (2006)). These type of problems, defined by a set of constraints, are called Constraint
Satisfaction Problems (CSP) and the goal can be to obtain one, some, or even all feasible solutions.
In addition to this, there are areas of CP where an objective function has to be optimized (mainly
planning, sequencing and scheduling). Associating a CSP with an objective function results in
a Constraint Optimization Problem (COP). When solving a COP the goal is to find the best
solution with respect to the considered objective. Once a feasible solution is found, this can be
done by adding a new constraint requiring that for subsequent solutions the objective value should
be better. Ideally, when solving a COP, there should be guarantees that the solution found is the
optimal one, which could be done using linearization techniques. A short review on mathematical
programming techniques in CP can be found in Focacci et al. (2002).

The advantage of CP, that makes it efficient when solving scheduling problems, is that it has a
rich set of operators and variable types, allowing a more intuitive way of programming. In terms
of variables, CP allows variable indexing, which means that a variable can be used as an index for
other one, which reduces the number of variables involved in the problem. In terms of constraints,
CP uses special constraints such as inequality constraints (e.g. x ̸= y), logical constraints (e.g.
x > y or y > x), maximum/minimum constraints (e.g. x = max{y, z, t}), implication constraints
(e.g. if x > y then x > t) or global constraints (e.g. allDifferent(x), that is, a constraint
guaranteeing that all the values of variable x are different), among others.

CP has been used to solve multiple kinds of scheduling problems: staff scheduling in health
care (see Weil et al. (1995) , Bourdais et al. (2003) and Trilling et al. (2006)), precast
production scheduling (see Chan & Hu (2002)), home care scheduling (see Bertels & Fahle
(2006)) or drone scheduling (see Ham (2018) and Montemanni & Dell’Amico (2023)), among
others. A review on different techniques used in the literature to solve scheduling problems can
be found in Fazel Zarandi et al. (2020)

3.5.1.1 CP model

In the problem under study, the goal is to use CP to obtain the schedule of a given route R =
{1, ..., l}, in such a way that it optimizes a certain objective function5. The variables involved in
the CP problem are:

• tj and ej , which specify the starting and ending time of service j ∈ R. Variable tj is bounded
by the hard time window of service j. Meanwhile, variable ej is bounded by α

¯j and ᾱ+θj,j+1,
that is, the travel time is considered as part of the duration of the service6.

• intervj , which represents the interval variable associated to service j ∈ R and it must meet
the following conditions: starts at variable tj , ends at variable ej and has a duration of
ηj + θj,j+1, where j + 1 is the next service of the route. Therefore, the variable will ensure
that tj + ηj + θj,j+1 = ej (there is no need to add this as a constraint).

5Note that, since a fixed route is being scheduled, the values of i (caregiver) and d (day) are omitted.
6Notice that, in case j = l, there is not service j + 1. So θj,j+1 = 0.

44 CHAPTER 3. THE METAHEURISTIC ALGORITHM

• r, which is is the variable related to the maximum break between the services of the route.

• r̂, which coincides with r if r ≥ πmin. Otherwise, it takes value 0. Note that it represents
the break that will not be considered as working time.

• vstart
j and vend

j , which indicate the penalization of carrying out service j before, or after, its
soft time window.

The objective function of the problem is:

min ω2
∑
j∈R

(vstart
j + vend

j) + ω4(el − t1 − r̂) (3.2)

where the first element of the objective is the soft time window penalization and the second is the
working time associated to the schedule. The weights ω2 and ω4 must be set properly to establish
the element of the objective function that will be prioritized when solving the problem.

The following constraints are necessary in order to make sure that the schedule of the route
will follow the guidelines of the original problem.

Constraint (3.3) ensures that the order of the services of the route will be maintained in the
schedule.

ej ≤ tj+1, ∀j ∈ {1, ..., l − 1} (3.3)

Constraint (3.4) guarantees that there will be no overlap between the services (and their travel
time).

NoOverlap(intervj , ∀j ∈ R) (3.4)

Constraint (3.5) states that each service must start, and end, within its hard time window.

α
¯j ≤ tj ≤ ᾱ− ηj , ∀j ∈ R (3.5)

Constraint (3.6) guarantees that the first service of the route will start after the beginning of
the hard time window.

γ
¯
≤ t1 (3.6)

Constraint (3.7) ensures that the last service of the route ends before the end of the hard time
window of the caregiver.

el ≤ γ̄ (3.7)

The largest break between consecutive services of the route is obtained using Constraint (3.8).
Note that the travel time between services is not considered as part of the break.

r = max
j=1,...,l−1

{tj+1 − ej} (3.8)

Constraint (3.9) is used to obtain the largest break to be discounted from the caregivers working
time (if it is greater than or equal to πmin).

If r ≥ πmin then r̂ = r else r̂ = 0 (3.9)

3.A. AUXILIARY FUNCTIONS 45

Constraint (3.10) guarantees that the schedule does not surpass the maximum allowed daily
working time of the caregiver.

el − t1 − r̂ ≤ ν (3.10)

The penalization for starting the services before their soft time windows is obtained in
Constraint (3.11).

vstart
j = max{0, β

¯j
− tj}, ∀j ∈ R (3.11)

Finally, Constraint (3.12) computes the penalization for ending the services after their soft time
windows.

vend
j = max{0, tj + ηj − β̄j}, ∀j ∈ R (3.12)

3.5.1.2 Resolution

The scheduling problem under study has an objective function to optimize, but CP was developed
to mainly address feasibility problems. This is overcome by using Google OR Tools (see Perron
& Furnon (2022)), in particular its CP solver known as CPSAT, which uses SAT (satisfiability)
methods to solve CP problems. CPSAT has been extended to optimize objective functions, so it
can be used to find optimal solutions or, in case the optimality is not guaranteed, to know the gap
with the objective bound. To solve a problem, CPSAT uses different techniques like the simplex
algorithm, branch and bound or linear relaxations on a SAT solver (which aims to solve the SAT
version of the problem).

CPSAT has been successfully used in the literature to solve a variety of problems: sports
scheduling (see Dimitsas et al. (2022)), resource-constrained project scheduling
(see Teichteil-Königsbuch et al. (2023)), cyclic hoist scheduling (see Efthymiou & Yorke-Smith
(2023)), scheduling automated guided vehicles in production (see Schweitzer et al. (2023)),
electric bus recharging scheduling (see Dhingra et al. (2021)) or drone delivery scheduling
(see Montemanni & Dell’Amico (2023))

Therefore, a version of the ALNS method that obtains the schedules of the routes with CPSAT
will be tested, denoted as ALNS_CPSAT.

Appendix 3.A Auxiliary functions
Some auxiliary functions are needed to correctly use the insertion operators during the
reconstruction phase of the ALNS.

3.A.1 Check if a route is feasible
In order to add a new service to a given route, it is necessary to check if the resulting route is
feasible,as Algorithm 3.12 shows. The method consists in checking whether the hard time windows
of caregivers and services allow the new service to be added to the route.

46 CHAPTER 3. THE METAHEURISTIC ALGORITHM

Algorithm 3.12: feasible - Check if a route is feasible
Data: the route (R = {1, ..., r}), the caregiver (i), the day (d) and the service (j)

1 te, tl ← getEarliestLatest(R\{j}, i, d) // Earliest and latest staring times of R\{j}
2 if j = 1 then
3 a ← max{α

¯
d
j , γ

¯
id} // Earliest starting time of j

4 b ← min{tl
j+1 − θj,j+1, ᾱd

j} // Latest ending time of j

5 if b− a ≥ ηj then
6 return True

7 else if j = r then
8 a ← max{te

j−1 + ηj−1 + θj−1,j , α
¯

d
j} // Earliest starting time of j

9 b ← min{ᾱd
j , γ̄id} // Latest ending time of j

10 if b− a ≥ ηj then
11 return True

12 else
13 a ← max{te

j−1 + ηj−1 + θj−1,j , α
¯

d
j} // Earliest starting time of j

14 b ← min{tl
j+1 − θj,j+1, ᾱd

j} // Latest ending time of j

15 if b− a ≥ ηj then
16 return True

3.A.2 Earliest and latest starting times
The earliest and latest starting times of the services, according to hard time windows, are obtained
using Algorithm 3.13.

Algorithm 3.13: getEarliestLatest - Get earliest and latest staring times
Data: the route (R), the caregiver (i), the day (d)
//Get earliest start for the services, according to hard time windows

1 for j ∈ R do
2 if j = 1 then
3 te

j ← max{α
¯

d
j , γ

¯
id}

4 else
5 te

j ← max{α
¯

d
j , te

j−1 + ηj−1 + θj−1,j}
//Get latest start for the service, according to hard time windows

6 for j ∈ reversed(R) do
7 if j = r then
8 tl

j ← min{ᾱd
j − ηj , γ̄id − ηj}

9 else
10 tl

j ← min{ᾱd
j − ηj , tl

j+1 − θj,j+1 − ηj}
11 return te, tl

Chapter 4

Hierarchical approach: welfare
over cost

As it was explained in Chapter 3, when using the ALNS methodology to solve the problem, it is
necessary to establish the schedule of the routes. In Section 3.5.1 an exact method for obtaining the
schedules is proposed. However, in this chapter a heuristic algorithm is introduced. In particular,
this new algorithm will be used to obtain the schedule of a route, in such a way that the welfare of
the users will be prioritized over the cost of the schedule (which is the first approach considered to
tackle the HCSP, as explained in Section 2.3). The combination of the ALNS with the scheduling
algorithm described in this chapter is denoted by ALNS_WC.

First, the most important features of the algorithm are described in Section 4.1, explaining
the general behavior of the method. After that, some auxiliary functions are presented in
Appendix 4.A, which may be necessary for a deeper understanding of the algorithm.

4.1 Algorithm to schedule a route prioritizing welfare over
cost

Figure 4.1 shows a simple diagram to explain the general scheme of the algorithm developed to
obtain the schedule of a route, in such a way that the welfare is prioritized over the cost.

Select a service

Remove overlap

Divide the route into
blocks

Reduce all breaks

Make one break as
big as possible

Schedule the service
within its stw

Return the best
schedule

Update the schedule

Is it
the last
service?

Overlap with
next service?

Step 1 Step 2

YesNo

No

Yes

Figure 4.1: Scheme of algorithm ALNS_WC.

The algorithm is divided into two steps. In the first one, the schedule with best penalization

47

48 CHAPTER 4. HIERARCHICAL APPROACH: WELFARE OVER COST

value is found. This is done by trying to schedule the services within their soft time window and, if
there are overlaps between them, removing them by working with the blocks of conflicting services.
The second step modifies the schedule in order to improve the cost. To do this the route is divided
into blocks of consecutive services and, after that, the cost is improved by reducing all breaks
between the blocks or by making one of them as big as possible.

Algorithm 4.1 describes the method developed to obtain the schedule for a route (R = {1, ..., r}),
that is, the schedule for each caregiver at each day1. The resulting schedule will have the best value
for the penalization of preferred time windows. Once this is achieved, the algorithm focuses on
minimizing the cost. To do this, it is necessary to obtain the earliest starting times of the services,
as well as the blocks of services overlapping the soft time windows (line 1). Then, a solution
with the optimal value for the penalization of soft time windows is obtained (line 2). Finally, this
schedule is modified in order to reduce its cost (line 3).

Algorithm 4.1: ALNS_WC - Schedule a route prioritizing welfare over cost
Data: the route (R)
//Get earliest and latest times for the services and the blocks

1 te, tl, be, bl, ∆ ← getInfo(R)
//Get the schedule with best penalization value

2 t ← getSchedulePenalization(te, tl, be, bl, ∆, R)
//Get the schedule with best penalization value

3 t̄ ← getScheduleCost(te, tl, t, ∆, R)
4 return t̄

Now the three key functions outlined in the algorithm (getInfo, getSchedulePenalization
and getScheduleCost) will be carefully explained.

4.1.1 Obtain information of the route: getInfo
The function shown in Algorithm 4.2 obtains, for the services, two types of earliest and latest
starting times: according to hard or soft time windows. After that, the route is divided into
blocks, using function getBlocksSTW, where two services (and the ones between them) belong
to the same block if there are incompatibilities between their soft time windows.

1For simplicity, from now on indices i and d will be omitted.

4.1. ALGORITHM TO SCHEDULE A ROUTE PRIORITIZING WELFARE OVER COST 49

Algorithm 4.2: getInfo - Get earliest times and blocks of services
Data: the route (R)
//Get earliest start for the services, according to hard time windows

1 for j ∈ R do
2 if j = 1 then
3 te

j ← max{α
¯j , γ

¯
}

4 else
5 te

j ← max{α
¯j , te

j−1 + ηj−1 + θj−1,j}
//Get latest start for the services, according to hard time windows

6 for j ∈ reversed(R) do
7 if j = r then
8 tl

j ← min{ᾱj − ηj , γ̄ − ηj}
9 else

10 tl
j ← min{ᾱj − ηj , tl

j+1 − θj,j+1 − ηj}
//Get earliest start for the services, according to soft time windows

11 for j ∈ R do
12 be

j ← min{max{β
¯j

, te
j}, tl

j}
//Get latest start for the services, according to soft time windows

13 for j ∈ R do
14 bl

j ← max{min{β̄j − ηj , tl
j}, te

j}
//Get blocks of services with overlapping soft time windows

15 ∆ ← getBlocksSTW(R, te)
16 return te, tl, be, bl, ∆

Example 4.1.1. Illustration of Algorithm 4.2.
The algorithm is illustrated considering a route composed of 6 services, whose time windows are

shown in Figure 4.2 and detailed in Table 4.1. For simplicity, all the services will have a duration of
1 hour and the travel time between them will be 5 minutes. Further, 6:00 is time 0 of the planning
horizon. The available working times for the caregiver are γ

¯
= 0 and γ̄ = 960.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

α
¯1 ᾱ1
β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6 ᾱ6

β
¯6

β̄6

Figure 4.2: Hard and soft time windows of the services (ALNS_WC).

j 1 2 3 4 5 6
α
¯j 0 60 330 180 660 540
ᾱj 300 570 750 510 960 930
β
¯j

0 120 420 300 750 540
β̄j 240 330 690 450 900 720

Table 4.1: Hard and soft time windows of the services (ALNS_WC).

The earliest starting times, according to hard time windows, are:

j = 1. te
1 = max{α

¯1, γ
¯
} = max{0, 0} = 0.

50 CHAPTER 4. HIERARCHICAL APPROACH: WELFARE OVER COST

j = 2. te
2 = max{α

¯2, te
1 + η1 + θ1,2} = max{60, 0 + 60 + 5} = 65.

j = 3. te
3 = max{α

¯3, te
2 + η2 + θ2,3} = max{330, 65 + 60 + 5} = 330.

j = 4. te
4 = max{α

¯4, te
3 + η3 + θ3,4} = max{180, 330 + 60 + 5} = 395.

j = 5. te
5 = max{α

¯5, te
4 + η4 + θ4,5} = max{660, 395 + 60 + 5} = 660.

j = 6. te
6 = max{α

¯6, te
5 + η5 + θ5,6} = max{540, 660 + 60 + 5} = 725.

The latest starting times, according to hard time windows, are:

j = 6. tl
6 = min{ᾱ6 − η6, γ̄ − η6} = min{930− 60, 960− 60} = 870.

j = 5. tl
5 = min{ᾱ5 − η5, tl

6 − θ5,6 − η5} = min{960− 60, 870− 5− 60} = 805.

j = 4. tl
4 = min{ᾱ4 − η4, tl

5 − θ4,5 − η4} = min{510− 60, 805− 5− 60} = 450.

j = 3. tl
3 = min{ᾱ3 − η3, tl

4 − θ3,4 − η3} = min{750− 60, 450− 5− 60} = 385.

j = 2. tl
2 = min{ᾱ2 − η2, tl

3 − θ2,3 − η2} = min{570− 60, 385− 5− 60} = 320.

j = 1. tl
1 = min{ᾱ1 − η1, tl

2 − θ1,2 − η1} = min{300− 60, 320− 5− 60} = 240.

The earliest starting times, according to soft time windows, are:

j = 1. be
1 = min{max{β

¯1, te
1}, tl

1} = min{max{0, 0}, 240} = 0.

j = 2. be
2 = min{max{β

¯2, te
2}, tl

2} = min{max{120, 65}, 320} = 120.

j = 3. be
3 = min{max{β

¯3, te
3}, tl

3} = min{max{420, 330}, 385} = 385.

j = 4. be
4 = min{max{β

¯4, te
4}, tl

4} = min{max{300, 395}, 450} = 395.

j = 5. be
5 = min{max{β

¯5, te
5}, tl

5} = min{max{750, 660}, 805} = 750.

j = 6. be
6 = min{max{β

¯6, te
6}, tl

6} = min{max{540, 725}, 870} = 725.

The latest starting times, according to soft time windows, are:

j = 1. bl
1 = max{min{β̄1 − η1, tl

1}, te
1} = max{min{240− 60, 240}, 0} = 180.

j = 2. bl
2 = max{min{β̄2 − η2, tl

2}, te
2} = max{min{330− 60, 320}, 65} = 270.

j = 3. bl
3 = max{min{β̄3 − η3, tl

3}, te
3} = max{min{690− 60, 385}, 330} = 385.

j = 4. bl
4 = max{min{β̄4 − η4, tl

4}, te
4} = max{min{450− 60, 450}, 395} = 395.

j = 5. bl
5 = max{min{β̄5 − η5, tl

5}, te
5} = max{min{900− 60, 805}, 660} = 805.

j = 6. bl
6 = max{min{β̄6 − η6, tl

6}, te
6} = max{min{720− 60, 870}, 725} = 725.

The earliest and latest starting times of the services, according to hard and soft time windows,
are presented in Figure 4.3. Notice that the hard and soft time windows of the services are presented
in gray.

4.1. ALGORITHM TO SCHEDULE A ROUTE PRIORITIZING WELFARE OVER COST 51

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

te1
tl1

be1 bl1
te2 tl2

be2 bl2

te3 tl3

be3 = bl3

te4 tl4

be4 = bl4

te
tl

be bl te6 tl6

be6 = bl6

Figure 4.3: Earliest and latest starting times.

The function getBlocksSTW returns the list of blocks ∆ = {{1, 2}, {3, 4}, {5, 6}} (for more
information see Example 4.A.1).

4.1.2 Obtain a schedule with best penalization value:
getSchedulePenalization

Algorithm 4.3 describes the procedure used to obtain a schedule with a minimal value for the
penalization of the soft time windows.

Algorithm 4.3: getSchedulePenalization - Get the schedule with best penalization value
Data: the earliest starting times htw (te), the latest starting times htw (tl), the earliest

starting times stw (be), the latest starting times stw (bl), the schedule (t), the blocks
(∆) and the route (R)

//Get the schedule with best penalization value
1 R̄ ← ∅
2 for j ∈ R do
3 if j ̸= r and j /∈ R̄ then

//Get overlap with follower
4 ϖ ← be

j + ηj + θj,j+1 − bl
j+1

5 if ϖ > 0 then
//Get block of services

6 δ̄ ← ∅
7 for δ ∈ ∆ do
8 if j ∈ δ or j + 1 ∈ δ then
9 δ̄ ← δ̄ + δ

//Schedule δ̄ = {δ1, ..., δr} so the services are as close as possible
10 t ← getScheduleBlock(te, tl, t, δ)

//Delay the block in order to reduce its penalization
11 δ̄, t ← delayBlock(te, tl, t, δ, ∆)
12 R̄ ← R̄ ∪ {δ̄}
13 else

//Set time for j

14 tj ← be
j , R̄ ← R̄ ∪ {j}

//Update earliest start, according to soft time window, of j + 1
15 be

j+1 ← max{tj + ηj + θj,j+1, be
j+1}

16 else if j = r and j /∈ R̄ then
17 tj ← be

j

18 return t = tj ∀j ∈ R

This function iterates through the services of the route and tries to schedule them within their
soft time windows (lines 13 - 15). In case there are some services of a block that cannot be

52 CHAPTER 4. HIERARCHICAL APPROACH: WELFARE OVER COST

scheduled within their soft time window, all the services of the block will be taken into account
when minimizing the penalization (lines 5 - 12).

Example 4.1.2. Illustration of Algorithm 4.3.
Continuing with the output obtained in Example 4.1.1, the goal now is to obtain the schedule

of the route with the best soft time window penalization. First, the set of scheduled services is
initialized, R̄ = ∅. So, iterating through the services the following schedule is found:

j = 1. The overlap that will be generated scheduling Service 1 at its earliest starting time,
according to soft time windows, and its follower at the latest starting time is

ϖ = be
1 + η1 + θ1,2 − bl

2 = 0 + 60 + 5− 270 = −205.

This is illustrated in Figure 4.4. As ϖ ≤ 0 (line 13), the schedule of the service is t1 = be
1 = 0

and the scheduled services are updated R̄ = R̄ ∪ {1} = {1} (line 14). Finally, the earliest
starting time of 2 is updated, according to soft time windows, in order to not generate
overlaps between these two services in future iterations, be

2 = max{t1 + η1 + θ1,2, be
2} =

max{0 + 60 + 5, 120} = 120 (line 15).

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2

α
¯1 ᾱ1
β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6 ᾱ6

β
¯6

β̄6

Figure 4.4: Schedule for services 1 and 2.

j = 2. The overlap that will be generated scheduling Service 2 at its earliest starting time,
according to soft time windows, and its follower at the latest starting time is

ϖ = be
2 + η2 + θ2,3 − bl

3 = 120 + 60 + 5− 385 = −200.

This is illustrated in Figure 4.5. As ϖ ≤ 0 (line 13), the schedule of the service is t2 = be
2 = 120

and the scheduled services are updated, R̄ = R̄ ∪ {2} = {1, 2} (line 14). Finally, the earliest
starting time of 3 is updated, according to soft time windows, in order to not generate
overlaps between these two services in future iterations, be

3 = max{t2 + η2 + θ2,3, be
3} =

max{120 + 60 + 5, 385} = 385 (line 15).

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3

α
¯1 ᾱ1
β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6 ᾱ6

β
¯6

β̄6

Figure 4.5: Schedule for services 1, 2 and 3.

j = 3. The overlap that will be generated if Service 3 is scheduled at its earliest starting time,

4.1. ALGORITHM TO SCHEDULE A ROUTE PRIORITIZING WELFARE OVER COST 53

according to soft time windows, and its follower at the latest starting time is

ϖ = be
3 + η3 + θ3,4 − bl

4 = 385 + 60 + 5− 395 = 55.

This is illustrated in Figure 4.6.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4

α
¯1 ᾱ1
β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6 ᾱ6

β
¯6

β̄6

Figure 4.6: Schedule for services 1, 2, 3 and 4.

As ϖ > 0 (line 5), the block of ∆ that contains the services 3 and 4 is found, which is
δ = {3, 4}. The services are scheduled with function getScheduleBlock (for more details see
Example 4.A.3), t3 = 330 and t4 = 395. After that, function delayBlock (for more details
see Example 4.A.5) improves the soft time window penalization of the block. The obtained
elements are δ̄ = {3, 4} and the schedule (see Figure 4.7) is t1 = 0, t2 = 120, t3 = 330 and
t4 = 395. Finally, the list of scheduled services is updated: R̄ = R̄ ∪ δ̄ = {1, 2} ∪ {3, 4} =
{1, 2, 3, 4}.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4

α
¯1 ᾱ1
β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6 ᾱ6

β
¯6

β̄6

Figure 4.7: Schedule for services 1, 2, 3 and 4.

j = 4. This service is already scheduled since 4 ∈ R̄.

j = 5. The overlap that will be generated if Service 5 is scheduled at its earliest starting time,
according to soft time windows, and its follower at the latest starting time is

ϖ = be
5 + η5 + θ5,6 − bl

6 = 750 + 60 + 5− 725 = 90.

This is illustrated in Figure 4.8.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 56

α
¯1 ᾱ1
β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6 ᾱ6

β
¯6

β̄6

Figure 4.8: Schedule for services 1, 2, 3, 5 and 6.

54 CHAPTER 4. HIERARCHICAL APPROACH: WELFARE OVER COST

As ϖ > 0 (line 5), the block of ∆ that contains the services 5 and 6 is found, which is
δ = {5, 6}. The services are scheduled with function getScheduleBlock (see Example 4.A.4
for more details), obtaining t5 = 660 and t6 = 725. After that, function delayBlock (for
more details see Example 4.A.6) improves the soft time window penalization of the block.
The obtained elements are δ̄ = {5, 6} and the schedule, (see Figure 4.9), is t1 = 0, t2 = 120,
t3 = 330, t4 = 395, t5 = 660 and t6 = 725. Finally, the list of scheduled services is updated:
R̄ = R̄ ∪ δ̄ = {1, 2, 3, 4} ∪ {5, 6} = {1, 2, 3, 4, 5, 6}.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1 ᾱ1
β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6 ᾱ6

β
¯6

β̄6

Figure 4.9: Schedule for services 1, 2, 3, 5 and 6.

j = 6. This service is already scheduled since {6} ∈ R̄.

The function returns the schedule shown in Figure 4.10: t1 = 0, t2 = 120, t3 = 330, t4 = 395,
t5 = 660 and t6 = 725. The soft time window penalization is

(β
¯3 − t3) + (β

¯5 − t5) + (t4 + η4 − β̄4) + (t6 + η6 − β̄5) =

= (420− 330) + (750− 660) + (395 + 60− 450) + (725 + 60− 720) = 90 + 90 + 5 + 65 = 250.

This is represented in Figure 4.10 as a dotted line next to the soft time window of the services
with penalization.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1 ᾱ1
β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3 ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6 ᾱ6

β
¯6

β̄6

Figure 4.10: Schedule for the route.

4.1.3 Reduce the cost of the schedule: getScheduleCost
This section presents Algorithm 4.4, the procedure used to update the schedule in order to reduce
its cost while maintaining the soft time window penalization.

This function consists in, first, dividing the route into blocks separated by the breaks. The
schedule cost will be improved by making all breaks as small as possible (lines 6 - 8) or making
one of them as big as possible (lines 10 - 15).

4.1. ALGORITHM TO SCHEDULE A ROUTE PRIORITIZING WELFARE OVER COST 55

Algorithm 4.4: getScheduleCost - Get the schedule that optimizes the cost
Data: the earliest start (te), the latest start (tl), the schedule (t), the blocks (∆) and the

route (R)
//Get block of consecutive services

1 ∆ ← getBlocksConsecutiveServices(R, t)
//Get time window for each block so the penalization is maintained

2 ae, al ← getBlocksEarliestLatestStart(te, tl, ∆, t)
//Improve the cost of the schedule

3 if there is only one block then
4 t̂ ← t

5 else
//Make all breaks between blocks as small as possible

6 t̂h ← al
h ∀h ∈ first block

7 j ← first service of second block
8 t̂h ← max{ae

h, t̂h−1 + ηh−1 + θh−1,h} ∀h ∈ [j, .., r]
9 while δ ∈ ∆ is not the last one do

//Make break after δ as big as possible
10 t̄h ← ae

h ∀h ∈ δ

11 t̄h ← al
h ∀h ∈ δ̂ = δ + 1

12 j ← first service of δ, k ← last service of δ + 1 = δ̂

13 t̄h ← min{al
h, t̄h+1 − θh,h+1 − ηh} ∀h ∈ [j − 1, ..., 1]

14 t̄h ← max{ae
h, t̄h−1 + ηh−1 + θh−1,h} ∀h ∈ [k + 1, ..., r]

15 t̂ ← chooseBestCostSchedules(t̄, t̂) //Choose the schedule with best cost
16 return t̂

Example 4.1.3. Illustration of Algorithm 4.4.
Let us start from the final schedule obtained in Example 4.1.2, depicted in Figure 4.10. First,

function getBlocksConsecutiveServices divides the route into blocks separated by the breaks,
∆ = {{1}, {2}, {3, 4}, {5, 6}} (for more details see Example 4.A.9). Then, function
getBlocksEarliestLatestStart provides the earliest (ae

1 = 0, ae
2 = 120, ae

3 = 330, ae
4 = 395,

ae
5 = 660 and ae

6 = 725) and latest (al
1 = 180, al

2 = 270, al
3 = 385, al

4 = 450, al
5 = 750 and

al
6 = 815) starting times of the services that maintain the penalization of the blocks (for more

details see Example 4.A.10).
To reduce the cost of the schedule it is necessary, on one hand, to make all the breaks between

blocks as small as possible (lines 6 - 8):

h = 1. t̂1 = al
1 = 180.

h = 2. t̂2 = max{ae
2, t̂1 + η1 + θ1,2} = max{120, 180 + 60 + 5} = 245.

h = 3. t̂3 = max{ae
3, t̂2 + η2 + θ2,3} = max{330, 245 + 60 + 5} = 330.

h = 4. t̂4 = max{ae
4, t̂3 + η3 + θ3,4} = max{395, 330 + 60 + 5} = 395.

h = 5. t̂5 = max{ae
5, t̂4 + η4 + θ4,5} = max{660, 395 + 60 + 5} = 660.

h = 6. t̂6 = max{ae
6, t̂5 + η5 + θ5,6} = max{725, 660 + 60 + 5} = 725.

The largest break in this schedule (see Figure 4.11) is the one between services 4 and 5, which has
a duration of t̂5 − (t̂4 + η4 + θ4,5) = 660 − (395 + 60 + 5) = 660 − 460 = 200. The cost of the
schedule is t̂6 + η6 − t̂1 − break = 725 + 60− 180− 200 = 405.

56 CHAPTER 4. HIERARCHICAL APPROACH: WELFARE OVER COST

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1 ᾱ1
β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3 ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6 ᾱ6

β
¯6

β̄6

Figure 4.11: Schedule with the smallest breaks.

The other option is to make one of the breaks between the blocks as big as possible, while
reducing the other ones (lines 9 - 15):

δ = {1}. The schedule that makes the break after the block as big as possible is:

h = 1. t̄1 = ae
1 = 0.

h = 2. t̄2 = al
2 = 270.

h = 3. t̄3 = max{ae
3, t̄2 + η2 + θ2,3} = max{330, 270 + 60 + 5} = 335.

h = 4. t̄4 = max{ae
4, t̄3 + η3 + θ3,4} = max{395, 335 + 60 + 5} = 400.

h = 5. t̄5 = max{ae
5, t̄4 + η4 + θ4,5} = max{660, 400 + 60 + 5} = 660.

h = 6. t̄6 = max{ae
6, t̄5 + η5 + θ5,6} = max{725, 660 + 60 + 5} = 725.

The largest break in this schedule (see Figure 4.12) is the one between services 1 and 2, which
has a duration of t̄2− (t̄1 + η1 + θ1,2) = 270− (0 + 60 + 5) = 270− 65 = 205. The cost of the
schedule is t̄6 + η6 − t̄1 − break = 725 + 60− 0− 205 = 580.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1 ᾱ1
β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3 ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6 ᾱ6

β
¯6

β̄6

Figure 4.12: Schedule with the largest break between services 1 and 2.

δ = {2}. The schedule that makes the break after the block as big as possible is:

h = 2. t̄2 = ae
2 = 120.

h = 3. t̄3 = al
3 = 385.

h = 4. t̄4 = al
4 = 450.

h = 1. t̄1 = min{al
1, t̄2 − θ1,2 − η2} = min{180, 120− 60− 5} = 55.

h = 5. t̄5 = max{ae
5, t̄4 + η4 + θ4,5} = max{660, 400 + 60 + 5} = 660.

h = 6. t̄6 = max{ae
6, t̄5 + η5 + θ5,6} = max{725, 660 + 60 + 5} = 725.

The largest break in this schedule (see Figure 4.13) is the one between services 2 and 3, which
has a duration of t̄3 − (t̄2 + η2 + θ2,3) = 385− (120 + 60 + 5) = 385− 185 = 200. The cost of
the schedule is t̄6 + η6 − t̄1 − break = 725 + 60− 55− 200 = 530.

4.A. AUXILIARY FUNCTIONS 57

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1 ᾱ1
β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3 ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6 ᾱ6

β
¯6

β̄6

Figure 4.13: Schedule with the largest break between services 2 and 3.

δ = {3, 4}. The schedule that makes the break after the block as big as possible is:

h = 3. t̄3 = ae
3 = 330.

h = 4. t̄4 = ae
4 = 395.

h = 5. t̄5 = al
5 = 750.

h = 6. t̄6 = al
6 = 815.

h = 2. t̄2 = min{al
2, t̄3 − θ2,3 − η2} = min{270, 330− 60− 5} = 265.

h = 1. t̄1 = min{al
1, t̄2 − θ1,2 − η2} = min{180, 265− 60− 5} = 180.

The largest break in this schedule (see Figure 4.14) is the one between services 4 and 5, which
has a duration of t̄5 − (t̄4 + η4 + θ4,5) = 750− (395 + 60 + 5) = 750− 460 = 290. The cost of
the schedule is t̄6 + η6 − t̄1 − break = 815 + 60− 180− 290 = 405.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1 ᾱ1
β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3 ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6 ᾱ6

β
¯6

β̄6

Figure 4.14: Schedule with the largest break between services 4 and 5.

The best cost value is 405 and there are two different schedules that reach this value. The first
option is the schedule presented in Figure 4.11, which was obtained by making the breaks between
the blocks as small as possible. The second option is the schedule of Figure 4.14, that was achieved
by maximizing the duration of the break between blocks {3, 4} and {5, 6}.

Appendix 4.A Auxiliary functions
The functions presented in this appendix are used to completely describe the method used to
obtain the schedule of a route in order to prioritize its welfare over its cost.

4.A.1 Obtain blocks: getBlocksSTW
Algorithm 4.5 describes the method used to obtain the blocks of services that have overlapping
soft time windows.

To reach this goal, the algorithm iterates through the services of the route and checks if their
soft time window overlaps with the one of the other services, in which case the services are added

58 CHAPTER 4. HIERARCHICAL APPROACH: WELFARE OVER COST

to the same block (lines 2 - 14). Finally, the blocks are separated if the earliest starting times of
the services are not consecutive (lines 15 - 23).

Algorithm 4.5: GetBlocksSTW - Divide the route into blocks
Data: the route (R), the earliest starting times (te)
//Get blocks of services that have overlapping soft time windows

1 ∆ ← ∅, R̂ ← R

2 for j ∈ R do
3 if j = r then
4 ∆ ← ∆ ∪ {j}, R̂ ← R̂\{j}
5 else if j ∈ R̂ then

//Get services that have overlapping soft time window
6 δ ← ∅
7 for k ∈ F (j, R̂) do
8 if k = j + 1 and β̄j + θj,k > β

¯ k
then

9 δ ← δ ∪ {k}
10 else if β̄j ≥ β

¯ k
then

11 δ ← δ ∪ {k}
//Add more services to the block

12 ∆, R̂ ← updateBlock(∆, δ, R, R̂, j)
13 if R̂ = ∅ then
14 break

//Separate the block if the earliest times are not consecutive
15 ∆̂ ← ∅
16 for δ = {δ1, ..., δr} ∈ ∆ do
17 j ← δ1

18 for k ∈ δ do
19 if k ̸= δr and te

k + ηk + θk,k+1 < te
k+1 then

//Separate the block between services k and k + 1
20 δ̂ ← {j, ..., k}, ∆̂ ← ∆̂ ∪ δ̂

21 j ← k + 1
22 else if k = δr then

//End the block
23 δ̂ ← {j, ..., k}, ∆̂ ← ∆̂ ∪ δ̂

24 return ∆̂

Example 4.A.1. Illustration of Algorithm 4.5. Let us start from the route considered in
Example 4.1.1. In order to divide this route into blocks, the algorithm starts initializing ∆ = ∅
and R̂ = R = {1, 2, 3, 4, 5, 6}. Then, for j = 1 ∈ R̂, its followers ({2, 3, 4, 5, 6}) will be added to
the block (initialized to δ = ∅ (line 6)) if they have overlapping soft time windows with Service 1.

k = 2. In this case β̄1 + θ1,2 = 240 + 5 = 245 and β
¯2 = 120. Therefore, β̄1 + θ1,2 > β

¯2 (line 8) so
δ = δ ∪ {k} = {2}.

k = 3. In this case β̄1 = 240 and β
¯3 = 420. Therefore, β̄1 ≱ β

¯3 (line 10), which means that 3 is
not added to δ.

k = 4. In this case β̄1 = 240 and β
¯4 = 300. Therefore, β̄1 ≱ β

¯4 (line 10), which means that 4 is
not added to δ.

4.A. AUXILIARY FUNCTIONS 59

k = 5. In this case β̄1 = 240 and β
¯4 = 750. Therefore, β̄1 ≱ β

¯4 (line 10), which means that 5 is
not added to δ.

k = 6. In this case β̄1 = 240 and β
¯4 = 540. Therefore, β̄1 ≱ β

¯4 (line 10), which means that 6 is
not added to δ.

Function updateBlock results in ∆ = {{1, 2, 3, 4, 5, 6}} and R̂ = ∅ (see more information in
Example 4.A.2). Therefore, the loop terminates (lines 13 - 14).

Finally, the block is separated if the earliest starting times of the services are not consecutive.
After initializing ∆̂ = ∅, the first service of δ is selected j = δ1 = 1. Then, for each service in the
block their earliest starting times are compared:

k = 1. In this case te
1 + η1 + θ1,2 = 0 + 60 + 5 = 65 and te

2 = 65. Therefore, te
1 + η1 + θ1,2 ≮ te

2
(line 19).

k = 2. In this case te
2 + η2 + θ2,3 = 65 + 60 + 5 = 130 and te

3 = 330. Therefore, te
2 + η2 + θ2,3 < te

3
(line 19), which means that δ̂ = {1, 2}, ∆̂ = {1, 2} and j = k + 1 = 3.

k = 3. In this case te
3 + η3 + θ3,4 = 330 + 60 + 5 = 395 and te

4 = 395. Therefore, te
3 + η3 + θ3,4 ≮ te

4
(line 19).

k = 4. In this case te
4 + η4 + θ4,5 = 395 + 60 + 5 = 460 and te

5 = 660. Therefore, te
4 + η4 + θ4,5 < te

5
(line 19), which means that δ̂ = {3, 4}, ∆̂ = {{1, 2}, {3, 4}} and j = k + 1 = 5.

k = 5. In this case te
5 + η5 + θ5,6 = 660 + 60 + 5 = 725 and te

6 = 725. Therefore, te
5 + η5 + θ5,6 ≮ te

6
(line 19).

k = 6. In this case k = 6 = δr (line 22). Therefore, ∆̂ = {5, 6}, ∆̂ = {{1, 2}, {3, 4}, {5, 6}}.

This function returns the list of blocks ∆̂ = {{1, 2}, {3, 4}, {5, 6}}. Figure 4.15 shows that
scheduling the services at their earliest times results in the three blocks.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

te1
tl1

te2 tl2

te3 tl3

te4 tl4

te
tl

te6 tl6

Figure 4.15: Blocks of services.

4.A.1.1 Update the block: updateBlock

Algorithm 4.6 is used to update the block adding those services that can overlap with the services
belonging to the previous block.

In case there are services in the block (line 1), service j and all the services whose position in
the route is between those already selected are added to the block (lines 2 - 3). Then, the
algorithm checks if the services outside the block have overlapping soft time windows with any of
the ones already in it2 (lines 4 - 17).

2This is done using a while loop, in order to keep performing the method when a new service is added to the
block, so that the services that overlap with it can be added to the block in future iterations.

60 CHAPTER 4. HIERARCHICAL APPROACH: WELFARE OVER COST

Algorithm 4.6: updateBlock - Add more services to the block
Data: the blocks (∆), the block (δ), the route (R), the free services (R̂) and the service (j)
//Add more services to the block

1 if δ ̸= ∅ then
2 δ ← {j} ∪ δ

//Get services between those that overlap soft time windows
3 i1 ← mink∈δ{index(k, R)}, i2 ← maxk∈δ{index(k, R)}, δ ← {R[i1], ..., R[i2]}

//Remove from R̂ the services of δ and its predecessors
4 R̂ ← R̂\(δ ∪ P (δ, R̂))

//Get services that overlap with the ones in δ

5 keep ← True, δ̂ ← δ\{j, r}
6 while keep = True do
7 keep ← False, δ̄ ← ∅
8 for k ∈ δ̂ do
9 for l ∈ R̂ do

10 if l = k + 1 then
11 if β̄k + θk,l > β

¯ l
then

12 δ ← δ ∪ {l}, δ̄ ← δ̄ ∪ {l}, R̂ ← R̂\{l}, keep ← True

13 else
14 if β̄k ≥ β

¯ l
then

15 δ ← δ ∪ {l}, δ̄ ← δ̄ ∪ {l}, R̂ ← R̂\{l}, keep ← True

//Get services between those that overlap soft time windows
16 i1 ← mink∈δ{index(k, R)}, i2 ← maxk∈δ{index(k, R)}
17 δ̂ ← δ̄ ∪ ({R[i1], ..., R[i2]}\δ), δ ← {R[i1], ..., R[i2]}, R̂ ← R̂\δ
18 ∆ ← ∆ ∪ δ

19 else
20 ∆ ← ∆ ∪ {j}, R̂ ← R̂\{j}
21 return ∆, R̂

Example 4.A.2. Illustration of Algorithm 4.6.
Continuing with Example 4.A.1, the given input data are: the list of blocks ∆ = ∅, the

current block δ = {2}, the Service j = 1, the route R = {1, 2, 3, 4, 5, 6}, and the free services
R̂ = {1, 2, 3, 4, 5, 6}. To update the block, Service 1 is added to it, resulting in δ = {1, 2} (line
2). Since there are no services in R between those of δ, no services are added to the block (line
3). Then, the services of the block and its predecessors are removed from the set of free services,
R̂ = R̂\(δ ∪ P (δ, R̂)) = {3, 4, 5, 6} (line 4). The parameter to enter the while loop is initialized,
keep = True, as well as the set of not checked services, δ̂ = δ\{j, r} = {2} (line 5)3.

After that, the while loop (line 6) sets keep = False and δ̄ = ∅. Then, iterating through the
set of not checked services, δ̂, it is verified if there is overlap with any of the free services R̂.

k = 2. Check if any free service has overlapping soft time window with 2:

l = 3. In this case l = 3 = k +1 (line 10). Therefore, β̄2 +θ2,3 = 330+5 = 335 and β
¯3 = 420.

This means that β̄2 + θ2,3 ≯ β
¯3 (line 11), so Service 3 is not added to δ.

l = 4. In this case β̄2 = 330 and β
¯4 = 330. This means that β̄2 ≥ β

¯4 (line 14). Therefore,
the service is added to the block, δ = δ ∪ {4} = {1, 2, 4}, and to the list of checked

3Notice that Service j = 1 is not included in the set because the services that have overlap with it are already in
the block (this was done in Example 4.A.1).

4.A. AUXILIARY FUNCTIONS 61

services, δ̄ = δ̄ ∪ {4} = {4}. The service is removed from the list of free services,
R̂ = R̂\{4} = {3, 5, 6}, setting keep = True.

l = 5. In this case β̄2 = 330 and β
¯5 = 750. Since β̄2 ≯ β

¯5 (line 14), Service 5 is not added to
δ.

l = 6. In this case β̄2 = 330 and β
¯6 = 390. Therefore, β̄2 ≯ β

¯6 (line 14), so Service 6 is not
added to δ.

Figure 4.16 shows that the only free service that has an overlapping soft time window with
2 (blue soft time window) is Service 4 (green soft time window).

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

β
¯1

β̄1

β
¯2

β̄2

β
¯3

β̄3

β
¯4

β̄4

β
¯

β̄

β
¯6

β̄6

Figure 4.16: Overlapping soft time windows of Service 2.

Now the services of R that are between those of δ must be added to the block. The indices of the
services of the block are i1 = min{1, 2, 4} = 1 and i2 = max{1, 2, 4} = 4. Therefore, the list of not
checked services is δ̂ = δ̄ ∪ ({R[i1], ..., R[i2]}\δ) = {4} ∪ ({1, 2, 3, 4}\{1, 2, 4}) = {3, 4}, the block is
δ = {R[i1], ..., R[i2]} = {1, 2, 3, 4}, and the free services are R̂ = R̂ ∩ δc = {3, 5, 6} ∩ {1, 2, 3, 4}c =
{5, 6}.

k = 3. Check if any free service has overlapping soft time window with 3:

l = 5. In this case β̄3 = 690 and β
¯5 = 750. Since β̄3 ≯ β

¯5 (line 14), Service 5 is not added to
δ.

l = 6. In this case β̄3 = 690 and β
¯6 = 540. This means that β̄3 ≥ β

¯6 (line 14). Therefore,
the service is added to the block, δ = δ ∪ {6} = {1, 2, 3, 4, 6}, and to the list of checked
services, δ̄ = δ̄ ∪ {6} = {6}. The service is removed from the list of free services,
R̂ = R̂\{6} = {5}, setting keep = True.

Figure 4.17 shows that the only free service that has an overlapping soft time window with
3 (blue soft time window) is Service 6 (green soft time window).

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

β
¯1

β̄1

β
¯2

β̄2

β
¯3

β̄3

β
¯4

β̄4

β
¯

β̄

β
¯6

β̄6

Figure 4.17: Overlapping soft time windows of Service 3.

k = 4. Check if any free service has overlapping soft time window with 4:

l = 5. In this case l = 5 = k +1 (line 10). Therefore, β̄4 +θ4,5 = 450+5 = 455 and β
¯5 = 750.

Since β̄4 + θ4,5 ≯ β
¯5 (line 11), Service 5 is not added to δ.

62 CHAPTER 4. HIERARCHICAL APPROACH: WELFARE OVER COST

Figure 4.18 shows that no free service has an overlapping soft time window with 4 (blue soft
time window).

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

β
¯1

β̄1

β
¯2

β̄2

β
¯3

β̄3

β
¯4

β̄4

β
¯

β̄

β
¯6

β̄6

Figure 4.18: Overlapping soft time windows of Service 4.

Now it is necessary to add to δ the services of R that are between those of the block. The indices
of the services of the block are i1 = min{1, 2, 3, 4, 6} = 1 and i2 = max{1, 2, 3, 4, 6} = 6. Therefore,
the list of not checked services is δ̂ = δ̄∪({R[i1], ..., R[i2]}\δ) = {6}∪({1, 2, 3, 4, 5, 6}\{1, 2, 4, 6}) =
{3, 5, 6}, the block is δ = {R[i1], ..., R[i2]} = {1, 2, 3, 4, 5, 6} and the free services are R̂ = R̂ ∩ δc =
{3, 5, 6} ∩ {1, 2, 3, 4, 5, 6}c = ∅.

Since there are no more free services, R̂ = ∅, the while loop stops and the block is added to the
list, ∆ = ∆ ∪ δ = {1, 2, 3, 4, 5, 6}.

4.A.2 Schedule the block: getScheduleBlock
The function described in Algorithm 4.7 is used to set the starting times of the services of the
block in such a way that they are as close as possible.

Algorithm 4.7: getScheduleBlock - Schedule the services of a block
Data: the earliest starting times (te), the latest starting times (tl), the schedule (t) and the

block (δ)
//Set the times for the block

1 if δ1 = 1 then
2 tδr

← te
δr

3 else
4 tk ← max{te

k, tk−1 + ηk−1 + θk−1,k} ∀k ∈ δ̄

5 tk ← min{tl
k, tk+1 − θk,k+1 − ηk} ∀k ∈ {δr−1, ..., δ1}

6 return t = tj ∀j ∈ δ̄

Example 4.A.3. Illustration of Algorithm 4.7.
The data provided to this function, given by Example 4.1.2, are: the earliest(te) and latest

(tl) start of the services, the schedule of the services (t1 = 0, t2 = 120) and the block to schedule
(δ = {3, 4}).

To obtain the schedule of the block δ = {3, 4}, the last service of the block is scheduled at its
earliest time, according to its predecessors, (lines 3 - 4):

k = 3. t3 = max{te
3, t2 + η2 + θ2,3} = max{330, 120 + 60 + 5} = 330.

k = 4. t4 = max{te
4, t3 + η3 + θ3,4} = max{395, 330 + 60 + 5} = 395.

After that, the other services are scheduled at their latest possible time (line 5).

k = 3. t3 = min{tl
3, t4 − θ3,4 − η3} = min{385, 395− 60− 5} = 330.

4.A. AUXILIARY FUNCTIONS 63

This function returns the schedule for the services δ = {3, 4}, t3 = 330 and t4 = 395, presented in
Figure 4.19.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4

α
¯1 ᾱ1
β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6 ᾱ6

β
¯6

β̄6

Figure 4.19: Schedule of block {3, 4}.

Example 4.A.4. Illustration of Algorithm 4.7.
The data provided to this function, given by Example 4.1.2, are: the earliest(te) and latest (tl)

start of the services, the schedule of the services (t1 = 0, t2 = 120, t3 = 330 and t4 = 395) and the
block to schedule (δ = {5, 6}).

To obtain the schedule of the block δ = {5, 6}, the last service of the block is scheduled at its
earliest time, according to its predecessors (lines 3 - 4):

k = 5. t5 = max{te
5, t4 + η4 + θ4,5} = max{660, 395 + 60 + 5} = 660.

k = 6. t6 = max{te
6, t5 + η5 + θ5,6} = max{725, 660 + 60 + 5} = 725.

After that, the other services are scheduled at their latest possible time (line 5).

k = 5. t5 = min{tl
5, t6 − θ5,6 − η5} = min{805, 725− 60− 5} = 660.

This function returns the schedule for the services δ = {5, 6}, t5 = 660 and t6 = 725, presented in
Figure 4.20.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1 ᾱ1
β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6 ᾱ6

β
¯6

β̄6

Figure 4.20: Schedule of block {5, 6}.

4.A.3 Delay the block: delayBlock
Algorithm 4.8 delays the block in order to reduce the penalization of the soft time windows. It
obtains the set of all the possible times that the block can be delayed to change its penalization
(line 4). If the delay of the block increases the penalization, then the previous block is added (lines
5 - 7). In case the penalization can be reduced delaying the block (line 8), the new schedule for
the block is computed (lines 8 - 19).

64 CHAPTER 4. HIERARCHICAL APPROACH: WELFARE OVER COST

Algorithm 4.8: delayBlock - Delay the block to improve penalization
Data: the earliest starting times (te), the latest starting times (tl), the schedule (t), the block

(δ) and the blocks (∆)
//Delay block to improve penalization

1 delay ← True

2 while delay = True do
//Obtain the maximum time that the block can be delayed

3 λd ← mink∈δ{tl
k − tk}

//Obtain all the possible times that the block can be delayed
4 E, σ ← getAllDelays(δ, λd, t)
5 if σ > 0 and δ1 ̸= 1 then

//Add the previous block
6 δ̄ ← δ + previousblock

//Schedule δ̄ = {δ1, ..., δr} so the services are as close as possible
7 t ← getScheduleBlock(te, t, δ̄)
8 else if σ < 0 then

//Get the maximum delay time that reduces the block penalization
9 ϵfinal, ϵmax ← getMaxDelay(δ, t)

10 tk ← tk + ϵfinal ∀k ∈ δ

//Add following block if necessary
11 if δ̄ is not the last block and ϵfinal = ϵmax then
12 δ̄ ← δ̄ + nextblock

13 tl ← max{α
¯l, tl−1 + ηl−1 + θl−1,l} ∀l ∈ nextblock

//Obtain all the possible times that the block can be delayed
14 E, σ ← getAllDelays(δ, λd)
15 if σ > 0 then

//Schedule δ̄ = {δ1, ..., δr} so the services are as close as possible
16 t ← getScheduleBlock(te, t, δ̄)
17 else
18 delay ← False

19 else
20 δ̄ ← δ, delay ← False

21 return δ̄, t

Example 4.A.5. Illustration of Algorithm 4.8.
According to Example 4.1.2, the data are: the earliest (te) and latest (tl) starting times for the

services, the schedule (t1 = 0, t2 = 120, t3 = 330 and t4 = 395), the block (δ = {3, 4}) and the list
of blocks ((∆ = {{1, 2}, {3, 4}, {5, 6}}).

After setting delay = True, the maximum delay time of the block is computed,
λd = mink∈δ{tl

k − tk} = min{385 − 330, 450 − 395} = 55. Then, function getAllDelays (more
details in Example 4.A.7) is used to obtain the list of times that the block can be delayed,
E = {55}, and how the penalization will change by delaying it, σ = 0. Because σ ≮ 0 the block is
not delayed (line 8), so δ̄ = δ = {3, 4} and delay = False.

This function returns δ̄ = {3, 4} and t1 = 0, t2 = 120, t3 = 330 and t4 = 395.

Example 4.A.6. Illustration of Algorithm 4.8.
According to Example 4.1.2, the data are: the earliest (te) and latest (tl) starting times for the

services, the schedule (t1 = 0, t2 = 120, t3 = 330, t4 = 395, t5 = 660 and t6 = 725), the block
(δ = {5, 6}) and the list of blocks ((∆ = {{1, 2}, {3, 4}, {5, 6}}).

4.A. AUXILIARY FUNCTIONS 65

After setting delay = True the maximum delay time of the block is computed, λd = mink∈δ{tl
k−

tk} = min{805 − 660, 870 − 725} = 145. Then, function getAllDelays (see Example 4.A.8 for
more information) is used to obtain the list of times that the block can be delayed, E = {90, 145},
and how the penalization will change by delaying it, σ = 0. Because σ ≮ 0 the block is not delayed
(line 8), so δ̄ = δ = {5, 6} and delay = False.

This function returns δ̄ = {3, 4} and t1 = 0, t2 = 120, t3 = 330, t4 = 395, t5 = 660 and
t6 = 725.

4.A.3.1 Obtain potential delay times: getAllDelays

The function presented in Algorithm 4.9 obtains the list of delay times that would change the
penalization of the block.

This method obtains the delay times by iterating through the services and checking if they
have been scheduled before, within or after their soft time window. The algorithm checks if these
situations happen:

a. If a service is scheduled before its soft time window, delaying it would reduce the penalization
(lines 3 - 10).

b. If the service is scheduled after the soft time window, delaying it would increase the
penalization (lines 11 - 12).

c. If the service is within its soft time window, delaying it until the upper bound of its soft time
window would maintain the penalization (lines 13 - 16).

Algorithm 4.9: getAllDelays - Get the possible delay times for the block
Data: the block (δ), the maximum delay (λd) and the schedule (t)
//Get possible delay times for the block

1 E ← ∅, σ ← 0
2 for k ∈ δ do
3 if tk < β

¯ k
then

4 σ ← σ − 1 //The penalization would decrease
5 d ← β

¯k
− tk

6 if d ≤ λd and d /∈ E then
7 E ← E ∪ {d}
8 d ← β̄k − (tk + ηk)
9 if d ≤ λd and d /∈ E then

10 E ← E ∪ {d}
11 else if tk + ηk ≥ β̄k then
12 σ ← σ + 1 //The penalization would increase
13 else if tk + ηk < β̄k then
14 d ← β̄k − (tk + ηk)
15 if d ≤ λd and d /∈ E then
16 E ← E ∪ {d}
17 if λd /∈ E then
18 E ← E ∪ {λd}
19 return E, σ

Example 4.A.7. Illustration of Algorithm 4.9.
The input data, given by Example 4.A.5, are: the block (δ = {2, 3}), the maximum delay

(λd = 55) and the schedule (t3 = 330, t4 = 395).

66 CHAPTER 4. HIERARCHICAL APPROACH: WELFARE OVER COST

This method starts by initializing the list of delay times, E = ∅, and the integer that measures
the change on the penalization, σ = 0 (line 1). Then, the delay times are obtained iterating
through the services:

k = 3. In this case t3 = 330 and β
¯3 = 420, which means that t3 < β

¯3 (line 3). Therefore,
σ = σ − 1 = −1 (line 4) and d = β

¯3 − t3 = 420− 330 = 90 (line 5). Since d ≰ λd (line 6), d

is not added to the list E.

k = 4. In this case t4 = 395 and β̄4 = 450, which means that t4 + η4 = 395 + 60 = 455 ≥ β̄4 (line
11). Therefore, σ = σ + 1 = −1 + 1 = 0 (line 12).

Finally, the maximum delay time is added to the list E = {55} (lines 18 - 19).

Example 4.A.8. Illustration of Algorithm 4.9.
The input data, given by Example 4.A.5, are: the block (δ = {5, 6}), the maximum delay

(λd = 145) and the schedule (t5 = 660, t6 = 725).
This method starts by initializing the list of delay times, E = ∅, and the integer that registers

the change on the penalization, σ = 0 (line 1). Then, the delay times are obtained iterating
through the services:

k = 5. In this case t5 = 660 and β
¯5 = 750, which means that t5 < β

¯5 (line 3). Therefore,
σ = σ − 1 = −1 (line 4) and d = β

¯5 − t5 = 750− 660 = 90 (line 5). Since d ≤ λd (line 6), d

is added to the list E, E = {90}. The delay time get the end of Service 5 with its soft time
window is d = β̄5 − (t5 + η5) = 900 − (660 + 60) = 180, which is greater than λd (line 9).
Therefore, d is not added to E.

k = 6. In this case t6 = 725 and β̄6 = 720, which means that t6 + η6 = 725 + 60 = 785 ≥ β̄6 (line
11). Thus, σ = σ + 1 = −1 + 1 = 0 (line 12).

Finally, the maximum delay time is added to the list E = {90, 145} (lines 18 - 19).

4.A.3.2 Get best delay of the block: getMaxDelay

The function described in Algorithm 4.10 is used to obtain the maximum time that the block
can be delayed, in order to reach its following services. Besides, it also computes the delay time
necessary to reduce the penalization as much as possible.

The first step is to obtain the delay time that makes the block end at the beginning of the
earliest start of the follower (lines 1 - 3). After that, for each delay time (line 4), the change in
the penalization of the block is computed. To this aim, the algorithm iterates through the services
(line 6). If the delayed schedule of the service is before its soft time window, then its penalization
could be decreased (lines 7 - 8). If the delayed service ends when its soft time window finishes, or
after, the penalization of the service would only increase if it is delayed more time (lines 9 - 10).
The maximum delay time is the one that, if delaying the block more, the penalization would not
decrease (lines 11 - 12). In case the penalization always decreases, the delay time would be the
last one of them (lines 13 - 14).

4.A. AUXILIARY FUNCTIONS 67

Algorithm 4.10: getMaxDelay - Get maximum delay time of the block
Data: the block (δ) and the schedule (t)
//Add the delay time needed to reach the follower block

1 if δ̄ is not the last block then
2 ϵmax ← be

δr+1 − (tδr + ηδr + θδr,δr+1)
3 E ← {ϵi ∈ E : ϵi < ϵmax} ∪ {ϵmax}

//Delay time for the block
4 for ϵ ∈ sorted(E) do
5 σ ← 0
6 for k ∈ δ do
7 if tk + ϵ < β

¯ k
then

8 σ ← σ − 1
9 else if tk + ϵ + ηk ≥ β̄k then

10 σ ← σ + 1
11 if σ ≥ 0 then
12 ϵfinal ← ϵ, exit loop
13 else if ϵ = ϵmax then
14 ϵfinal ← ϵmax

15 return ϵfinal, ϵmax

4.A.4 Get blocks of consecutive services: getBlocksConsecutiveServices
Algorithm 4.11 is used to divide the route into blocks, separated by breaks in the schedule.

Algorithm 4.11: getBlocksConsecutiveServices - Separate the route into blocks
Data: the route (R) and the schedule (t)
//Get block of consecutive services

1 ∆ ← ∅, δ ← ∅
2 for j ∈ R do
3 if j ̸= r then
4 if tj + ηj + θj,j+1 < tj+1 then
5 δ ← δ ∪ {j}
6 ∆ ← ∆ ∪ δ

7 δ ← ∅
8 else
9 δ ← δ ∪ {j}

10 else
11 δ ← δ ∪ {j}
12 ∆ ← ∆ ∪ δ

13 return ∆

Example 4.A.9. Illustration of Algorithm 4.11.
According to Example 4.1.3, the input data are: the route (R) and the schedule (t1 = 0,

t2 = 120, t3 = 330, t4 = 395, t5 = 660 and t6 = 725).
After initializing the block, δ = ∅, and the list of blocks, ∆ (line 1), the algorithm iterates over

the services:

j = 1. In this case t1 + η1 + θ1,2 = 0 + 60 + 5 = 65 and t2 = 120, that is, t1 + η1 + θ1,2 < t2.
Therefore, there is a break between 1 and 2 so the service forms a block: δ = δ ∪ {1} = {1},
∆ = ∆ ∪ δ = {{1}} and δ = ∅.

68 CHAPTER 4. HIERARCHICAL APPROACH: WELFARE OVER COST

j = 2. In this case t2 + η2 + θ2,3 = 120 + 60 + 5 = 185 and t3 = 330, that is, t2 + η2 + θ2,3 < t3.
Therefore, there is a break between 2 and 3 so the service forms a block: δ = δ ∪ {j} = {2},
∆ = ∆ ∪ δ = {{1}, {2}} and δ = ∅.

j = 3. In this case t3 + η3 + θ3,4 = 330 + 60 + 5 = 395 and t4 = 395, that is, t3 + η3 + θ3,j+1 ≮ t4.
Therefore, the service is added to the block: δ = δ ∪ {3} = {3}.

j = 4. In this case t4 + η4 + θ4,5 = 395 + 60 + 5 = 460 and t5 = 660, that is, t4 + η4 + θ4,5 < t5.
Therefore, there is a break between 4 and 5 so the service is the last of the block: δ =
δ ∪ {4} = {3, 4}, ∆ = ∆ ∪ δ = {{1}, {2}, {3, 4}} and δ = ∅.

j = 5. In this case t5 + η5 + θ5,6 = 660 + 60 + 5 = 725 and t6 = 725, that is, t5 + η5 + θ5,6 ≮ t6.
Therefore, the service is added to the block: δ = δ ∪ {5} = {5}.

j = 6. In this case j = r. Therefore, the service is the last one of the block: δ = δ ∪ {6} = {5, 6}
and ∆ = ∆ ∪ δ = {{1}, {2}, {3, 4}, {5, 6}}

The list of blocks is ∆ = {{1}, {2}, {3, 4}, {5, 6}}.

4.A.5 Get earliest and latest starting times of the block:
getBlocksEarliestLatestStart

The function described in Algorithm 4.12 obtains the earliest and latest starting times for the
services, in such a way that moving the schedule of the blocks within these times would maintain
the penalization. This is done by obtaining all possible delay and advance times of the block (lines
5 - 7) and choosing the ones that do not increase the penalization (lines 8 - 11). Finally, the time
window of the block is adjusted, in order to guarantee that all blocks can be scheduled at their
earliest and latest times (line 12).

Algorithm 4.12: getBlocksEarliestLatestStart - Get earliest and latest start for the
services

Data: the earliest starting times (te), the latest starting times (tl), the blocks (∆) and the
schedule (t)

//Get starting times for each block so the penalization is maintained
1 for δ ∈ ∆ do
2 if δ only has one service, j then
3 ae

j ← be
j , al

j ← bl
j

4 else
//Get maximum possible delay and advance times for the block

5 λa ← mink∈δ{tk − te
k}, λd ← mink∈δ{tl

k − tk}
6 Ed ← getDelayTimes(t,δ,λd) //Possible delay times for the block
7 Ea ← getAdvanceTimes(t,δ,λa) //Possible advance times for the block
8 ϵd ← getMaxDelayTime(t,δ,Ed) //Delay time to maintain penalization
9 ϵa ← getMaxAdvanceTime(t,δ,Ed) //Advance time to maintain penalization

//Get the time window for the block
10 for j ∈ δ do
11 ae

j ← tj − ϵa, al
j ← tj + ϵd

//Adjust the earliest and latest starting times
12 ae, al ← adjustTimes(ae, al,∆)
13 return ae, al

4.A. AUXILIARY FUNCTIONS 69

Example 4.A.10. Illustration of Algorithm 4.12.
The input data, obtained from Example 4.1.3, are: the earliest (te) an latest (tl) starting times,

the blocks (∆ = {{1}, {2}, {3, 4}, {5, 6}}) and the schedule (t1 = 0, t2 = 120, t3 = 330, t4 = 395,
t5 = 660 and t6 = 725).

For each block, their delay and advance times, so the penalization is maintained, are:

δ = {1}. There is only one service in the block. Thus, ae
1 = be

1 = 0 and al
1 = bl

1 = 180.

δ = {2}. There is only one service in the block. Thus, ae
2 = be

2 = 120 and al
2 = bl

2 = 270.

δ = {3, 4}. The maximum advance and delay time of the services is computed: λa = mink∈δ{tk−
te
k} = min{330 − 330, 395 − 395} = 0 and λd = mink∈δ{tl

k − tk} = min{385 − 330, 450−
395} = 55. Functions getDelayTimes (more information in Example 4.A.11) and
getAdvanceTimes are used to obtain the possible delay, Ed = {55}, and advance,
Ea = {0}, times of the block. After that, function getMaxDelayTime (see
Example 4.A.13 for more details) gets the delay time that does not increase the
penalization, ϵd = 55. Finally, the earliest and latest starting times for the block are
obtained:

j = 3. ae
3 = t3 − ϵa = t3 = 330, al

3 = t3 + ϵd = 330 + 55 = 385.

j = 4. ae
4 = t4 − ϵa = t4 = 395, al

4 = t4 + ϵd = 395 + 55 = 450.

δ = {5, 6}. The maximum advance and delay time of the services is computed: λa = mink∈δ{tk −
te
k} = min{660 − 660, 725 − 725} = 0 and λd = mink∈δ{tl

k − tk} = min{805 − 660, 870 −
725} = 145. Functions getDelayTimes (more details can be found in Example 4.A.12)
and getAdvanceTimes are used to obtain the possible delay, Ed = {90, 145}, and advance,
Ea = {0}, times of the block. After that, function getMaxDelayTime (see Example 4.A.14
for more information) gets the delay time that does not increase the penalization, ϵd = 90.
Finally, the earliest and latest starting times for the block are obtained:

j = 5. ae
5 = t5 − ϵa = t5 = 660, al

5 = t5 + ϵd = 660 + 90 = 750.

j = 6. ae
6 = t6 − ϵa = t6 = 725, al

6 = t6 + ϵd = 725 + 90 = 815.

Finally, function adjustTimes (line 12) adjusts the time window of the blocks, in order to
guarantee that all blocks could be scheduled at their earliest and latest starting times (for more
information see Example 4.A.15).

The obtained earliest starting times are: ae
1 = 0, ae

2 = 120, ae
3 = 330, ae

4 = 395, ae
5 = 660 and

ae
6 = 725. The latest ones are al

1 = 180, al
2 = 270, al

3 = 385, al
4 = 450, al

5 = 750 and al
6 = 815.

4.A.5.1 Get possible delay times of the block: getDelayTimes

Algorithm 4.13 obtains the list of delay times for the block that could result in a change on its soft
time window penalization. To this aim, the algorithm iterates through the services computing the
delay times necessary to change their soft time window penalization.

70 CHAPTER 4. HIERARCHICAL APPROACH: WELFARE OVER COST

Algorithm 4.13: getDelayTimes - Get possible delay times for the block
Data: the schedule (t), the block (δ) and the maximum delay time (λd)
//Get possible delay times for the block

1 Ed ← ∅
2 for k ∈ δ do
3 if tk < β

¯ k
then

//Delay the service to reduce the penalization
4 d ← β

¯k
− tk

5 if d ≤ λd and d /∈ Ed then
6 Ed ← Ed ∪ {d}
7 d ← β̄k − (tk + ηk)
8 if d ≤ λd and d /∈ Ed then
9 Ed ← Ed ∪ {d}

10 else if tk + ηk < β̄k then
//Delay the service to maintain the penalization

11 d ← β̄k − (tk + ηk)
12 if d ≤ λd and d /∈ Ed then
13 Ed ← Ed ∪ {d}
14 if λd /∈ Ed then
15 Ed ← Ed ∪ {λd}
16 return Ed

Example 4.A.11. Illustration of Algorithm 4.13.
The input data, according to Example 4.A.10, are: the schedule (t3 = 330, t4 = 395), the block

(δ = {2, 3}) and the maximum delay (λd = 55). This method starts by initializing the list of delay
times, E = ∅ (line 1). Then, the delay times are obtained iterating through the services:

k = 3. In this case t3 = 330 and β
¯3 = 420, which means that t3 < β

¯3 (line 3). Therefore,
d = β

¯3 − t3 = 420− 330 = 90 (line 4). Since d ≰ λd (line 5), d is not added to E.

k = 4. In this case t4 = 395 and β̄4 = 450, which means that t4 + η4 ≥ β̄4 (line 10).

Finally, the maximum delay time is added to the list Ed = {55} (lines 14 - 15).

Example 4.A.12. Illustration of Algorithm 4.13.
The input data, according to Example 4.A.10, are: the schedule (t5 = 660, t6 = 725), the block

(δ = {5, 6}) and the maximum delay (λd = 145). This method starts by initializing the list of
delay times, Ed = ∅ (line 1). Then the delay times are obtained iterating through the services:

k = 5. In this case t5 = 660 and β
¯5 = 750, which means that t5 < β

¯5 (line 3). Therefore,
d = β

¯5− t5 = 750−660 = 90 (line 4). Since d ≤ λd (line 5), d is added to the list, Ed = {90}.
The delay time needed to have the service end at the same time as its soft time window is
d = β̄5 − (t5 + η5) = 900 − (660 + 60) = 180. This value is greater than λd (line 9) so it is
not added to Ed.

k = 6. In this case t6 = 725 and β̄6 = 720, which means that t6 + η6 ≥ β̄6 (line 10).

Finally, the maximum delay time is added to the list Ed = {90, 145} (lines 14 - 15).

4.A.5.2 Get possible advance times of the block: getAdvanceTimes

The function described in Algorithm 4.14 obtains the list of advance times that would result in
a change on the soft time window penalization of the block. To this aim, the algorithm iterates

4.A. AUXILIARY FUNCTIONS 71

through the services obtaining the advance times necessary to change their soft time window
penalization.

Algorithm 4.14: getAdvanceTimes - Get possible advance times for the block
Data: the schedule (t), the block (δ) and the maximum advance time (λa)
//Get possible advance times for the block

1 Ea ← ∅
2 for k ∈ δ do
3 if tk + ηk > β̄k then

//Advance the service to reduce the penalization
4 a ← tk + ηk − β̄k

5 if d ≤ λa and d /∈ Ea then
6 Ea ← Ea ∪ {d}
7 a ← tk − β

¯k

8 if a ≤ λa and a /∈ Ea then
9 Ea ← Ed ∪ {a}

10 else if tk > β
¯ k

then
//Advance the service to maintain the penalization

11 a ← tk − β
¯k

12 if a ≤ λa and a /∈ Ea then
13 Ea ← Ea ∪ {a}
14 if λa /∈ Ea then
15 Ea ← Ea ∪ {λa}
16 return Ea

4.A.5.3 Get maximum delay time: getMaxDelayTime

Algorithm 4.15 is used to obtain the maximum delay time that maintains the penalization of its
soft time windows.

First, the algorithm checks if the delay of the block maintains the penalization (lines 2 - 6).
Then, for each delay time (line 5) the change in the blocks penalization is computed. This is done
by iterating through the services (line 9). If the delayed schedule of the service starts before its
soft time windows, its penalization could be decreased (lines 10 -11). If the delayed service ends
after, or at, its soft time window, the penalization of the service would increase if it is delayed
more time (lines 12 - 14). The maximum delay time is the highest delay without an increment
in the penalization (lines 15 - 16). In case the penalization would never increase, the delay time
would be the last one of them (lines 17 - 18).

72 CHAPTER 4. HIERARCHICAL APPROACH: WELFARE OVER COST

Algorithm 4.15: getMaxDelayTime - Get maximum delay time for the block
Data: the schedule (t), the block (δ)and the delay times (Ed)
//Get delay time so the penalization is maintained

1 ϵd ← 0, σ ← 0
//Get how the penalization would change if the service is delayed

2 for j ∈ δ do
3 if tj < β

¯ j
then

4 σ ← σ − 1 //Delaying the service decreases the penalization
5 else if tj + ηj ≥ β̄j then
6 σ ← σ + 1 //Delaying the service increases the penalization

//Get how the penalization would change for different delay times
7 if σ ≤ 0 then
8 for ϵ ∈ sorted(Ed) do
9 σd ← 0

10 for j ∈ δ do
11 if tj + ϵ < β

¯ j
then

12 σd ← σd − 1 //Delaying the service decreases the penalization
13 else if tj + ϵ + ηj ≥ β̄j then
14 σd ← σd + 1 //Delaying the service increases the penalization
15 if σd > 0 then

//Delaying the block would increase the penalization
16 ϵd ← ϵ, break loop
17 else if ϵ = max{Ed} then
18 ϵd ← ϵ

19 return ϵd

Example 4.A.13. Illustration of Algorithm 4.15.
According to Example 4.A.10 the input data are: the schedule (t3 = 330, t4 = 395), the block

(δ = {2, 3}) and the delay times (Ed = {55}). This method starts initializing the delay time,
ϵd = 0, and the change of the penalization, σ = 0 (line 1). Then, it checks if a delay of the block
does not affect to its penalization:

j = 3. In this case t3 = 330 and β
¯3 = 420, which means that t3 < β

¯3 (line 3). Therefore, the
penalization is reduced if the service is delayed σ = σ − 1 = −1 (line 4).

j = 4. In this case t4 = 395 and β̄4 = 450, which means that t4 + η4 = 395 + 60 = 455 ≥ β̄4 (line
5). Therefore, the penalization is increased if the service is delayed σ = σ + 1 = 0 (line 4).

After that, because the penalization remains constant if the block is delayed, the maximum delay
time is computed:

ϵ = 55. The change of the penalization is initialized to σd = 0. Then, for each service, the value is
updated:

j = 3. In this case t3 + ϵ = 330 + 55 = 385 and β
¯3 = 420, which means that t3 + ϵ < β

¯3
(line 11). Therefore, the penalization is reduced if the service is delayed, setting σd =
σd − 1 = −1 (line 12).

j = 4. In this case t4 + ϵ = 395 + 55 = 450 and β̄4 = 450, which means that t4 + η4 ≥ β̄4

(line 13). Therefore, the penalization is increased if the service is delayed, setting
σd = σd + 1 = 0 (line 4).

4.A. AUXILIARY FUNCTIONS 73

Since ϵ = max{Ed}, the delay time is ϵd = ϵ = 55.

This function returns the delay time ϵd = 55.

Example 4.A.14. Illustration of Algorithm 4.15.
According to Example 4.A.10 the input data are: the schedule (t5 = 660, t6 = 725), the block

(δ = {5, 6}) and the delay times (Ed = {90, 145}). This method starts initializing the delay time,
ϵd = 0, and the change of the penalization, σ = 0 (line 1). Then, it checks if a delay in the block
affects to the penalization:

j = 5. In this case t5 = 660 and β
¯5 = 750, which means that t5 < β

¯5 (line 3). Therefore, the
penalization is reduced if it is delayed, setting σ = σ − 1 = −1 (line 4).

j = 6. In this case t6 = 725 and β̄6 = 540, which means that t6 + η6 = 725 + 60 = 785 ≥ β̄6 (line
5). Therefore, the penalization is increased if it is delayed, setting σ = σ + 1 = 0 (line 4).

After that, because the penalization remains constant if the block is delayed, the maximum delay
time is computed:

ϵ = 90. The change of the penalization is initialized to σd = 0. Then, for each service, the value is
updated:

j = 5. In this case t5 + ϵ = 660 + 90 = 750 and β
¯5 = 750, which means that t5 + ϵ = β

¯5 (line
11). Therefore, the penalization is maintained if it is delayed.

j = 6. In this case t6 + ϵ = 725 + 90 = 815 and β̄6 = 750, which means that t6 + ϵ + η6 ≥ β̄6

(line 13). Therefore, the penalization is increased if it is delayed, setting σd = σd +1 = 1
(line 4).

Because ϵ > 0 the delay time is ϵd = ϵ = 90 and the loop terminates.

This function returns the delay time ϵd = 90.

4.A.5.4 Get maximum advance time: getMaxAdvanceTime

Algorithm 4.16 is used to obtain the maximum advance time of the block to maintain its soft time
window penalization.

First, the algorithm checks if the penalization is maintained when the block is advanced (lines
2 - 6). Then, for each advance time (line 5), the change in the blocks penalization is computed.
This is done by iterating through the services (line 9). If the advanced schedule of the service ends
after its soft time windows, its penalization could be decreased (lines 10 -11). If the advanced
service starts before, or at, its soft time window, then the penalization of the service would only
increase in case it is advanced more time (lines 12 - 14). The maximum advance time is the one
that, if the block is delayed more, then the penalization would increase (lines 15 - 16). In case the
penalization would never increase, the advance time would be the last one of them (lines 17 - 18).

74 CHAPTER 4. HIERARCHICAL APPROACH: WELFARE OVER COST

Algorithm 4.16: getMaxAdvanceTime - Get maximum advance time for the block
Data: the schedule (t), the block (δ)and the advance times (Ea)
//Get advance time so the penalization is maintained

1 ϵa ← 0, σ ← 0
//Get how the penalization would change if the service is advanced

2 for j ∈ δ do
3 if tj + ηj > β̄j then
4 σ ← σ − 1 //Advancing the service reduces the penalization
5 else if tj ≤ β

¯ j
then

6 σ ← σ + 1 //Advancing the service increases the penalization
//Get how the penalization would change for different advance time

7 if σ ≤ 0 then
8 for ϵ ∈ sorted(Ea) do
9 σa ← 0

10 for j ∈ δ do
11 if tj − ϵ + ηj > β̄j then
12 σa ← σa − 1 //Advancing the service reduces the penalization
13 else if tj − ϵ ≤ β

¯ j
then

14 σa ← σa + 1 //Advancing the service increases the penalization
15 if σa > 0 then

//Advnacing the block increases its penalization
16 ϵa ← ϵ, break
17 else if ϵ = ϵmax then
18 ϵa ← ϵ

19 return ϵa

4.A.5.5 Adjust earliest and latest times: adjustTimes

Algorithm 4.17 adjusts the earliest and latest starting times of the blocks in order to be able to
schedule all of them at the earliest and latest times.

The first part of this function consist in iterating through the services, and updating the earliest
start according to the one of its predecessor (lines 1 - 2). Then, the algorithm iterates through
the services in reverse order, and updates the latest start according to the one of its follower
(lines 3 - 4).

Algorithm 4.17: adjustTimes -Adjust the earliest and latest starts of the blocks
Data: the earliest starting times (ae), the latest starting times (al) and the blocks (∆)
//Guarantee that blocks can start at the beginning of their time window

1 for j ∈ R do
2 ae

j ← max{ae
j , ae

j−1 + ηj−1 + θj−1,j}
//Guarantee that blocks can start at the ending of their time window

3 for j ∈ reversed(R) do
4 al

j ← min{al
j , al

j+1 − θj,j+1 − ηj}
5 return ae, al ∀j ∈ R

Example 4.A.15. Illustration of Algorithm 4.17.
The input data, given by Example 4.A.10, are: the earliest starting times (ae

1 = 0, ae
2 = 120,

ae
3 = 330, ae

4 = 395, ae
5 = 660 and ae

6 = 725), the latest starting times (al
1 = 180, al

2 = 270,

4.A. AUXILIARY FUNCTIONS 75

al
3 = 385, al

4 = 450, al
5 = 750 and al

6 = 815) and blocks (∆ = {{1}, {2}, {3, 4}, {5, 6}}). First, the
earliest starting times are updated:

j = 2. ae
2 = max{ae

2, ae
1 + η1 + θ1,2} = max{120, 0 + 60 + 5} = 120.

j = 3. ae
3 = max{ae

3, ae
2 + η2 + θ2,3} = max{330, 120 + 60 + 5} = 330.

j = 4. ae
4 = max{ae

4, ae
3 + η3 + θ3,4} = max{395, 330 + 60 + 5} = 395.

j = 5. ae
5 = max{ae

5, ae
5 + η5 + θ4,5} = max{660, 395 + 60 + 5} = 660.

j = 6. ae
6 = max{ae

6, ae
6 + η6 + θ5,6} = max{725, 660 + 60 + 5} = 725.

Then, the latest starting times are updated:

j = 5. ae
5 = min{al

5, al
6 − θ5,6 − η5} = min{750, 815− 5− 60} = 750.

j = 4. ae
4 = min{al

4, al
5 − θ4,5 − η4} = min{450, 750− 5− 60} = 450.

j = 3. ae
3 = min{al

3, al
4 − θ3,4 − η3} = min{385, 450− 5− 60} = 385.

j = 2. ae
2 = min{al

2, al
3 − θ2,3 − η2} = min{270, 385− 5− 60} = 270.

j = 1. ae
1 = min{al

1, al
2 − θ1,2 − η1} = min{180, 270− 5− 60} = 180.

76 CHAPTER 4. HIERARCHICAL APPROACH: WELFARE OVER COST

Chapter 5

Hierarchical approach: cost over
welfare

Following on from what was previously explained, this chapter focuses on a new heuristic algorithm
designed to establish the schedule of a route. In this case, the schedules will be obtained so the
cost of the routes will be prioritized over the welfare of the users (which is the second approach
considered to tackle the HCSP, as explained in Section 2.3). The combination of the ALNS with
the scheduling algorithm described in this chapter is denoted by ALNS_CW.

The first part of the chapter, Section 5.1, explains the general behavior of the algorithm,
describing the most important functions that constitute the method. Next, the algorithm is further
elaborated in Appendix 5.A by describing a set of auxiliary functions, which may be helpful to
fully understand the algorithm.

5.1 Algorithm to schedule a route prioritizing cost over
welfare

Figure 5.1 presents a simple diagram to explain the general scheme of the algorithm designed to
obtain the schedule of a route prioritizing the cost over the welfare.

Make one break as
big as possible

Reduce all breaks

Choose best
schedules Select a schedule

Dive the route into
two blocks

Move the block to
improve stw

Keep the best
schedule

Return the scheduleLast
schedule?

Step 1 Step 2
YesNo

Figure 5.1: Scheme of algorithm ALNS_CW.

The algorithm is divided into two steps: in the first one the schedules with best cost value
are found and, in the second step, the schedules are modified in order to improve the soft time

77

78 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

window penalization. In the first step there are two options to obtain the schedules: reduce the
duration of all the breaks between services or making one of the breaks as big as possible. In the
second step, for each schedule obtained before, the route is divided into two blocks (separated by
the largest break1 if it reaches a duration of πmin) and the schedule of each block is modified in
order to reduce its penalization.

Algorithm 5.1 describes de procedure used to obtain the schedule, for a given route (R =
{1, ..., r}), that first minimizes the cost and second the penalization for carrying out the services
outside its preferred time window. It is important to mention that, since the route and its services
have been assigned previously to the caregiver, it is not necessary to take care of the affinity levels
between services and caregivers. First, the earliest and latest starting times of the services are
computed (line 1), and then the schedules with the best cost value are found (line 2). After that,
these schedules are updated in order to improve the soft time window penalization (line 3). Finally,
the schedule with the best penalization value is chosen (lines 5 - 10).

Algorithm 5.1: ALNS_CW - Schedule optimizing first the cost and second the welfare
Data: the route (R)
//Get earliest and latest times for the services

1 te, tl ← getEarliestLatest(R)
//Get schedules with the best cost

2 T ← getBestCostSchedules(R, te, tl)
//Get different schedules with the best stw penalization

3 T̂ ← getBestStwSchedules(R, T , te, tl)
//Define best schedule as one of T

4 t̄ ← T0

//Get preferred time window penalization
5 v̄ ← stwPenalization(t)
6 for t̂ ∈ T̂ do

//Get soft time window penalization
7 v̂ ← stwPenalization(t̂)

//Update the best schedule for the route
8 if v̂ < v̄ then
9 t̄ ← t̂

10 v̄ ← v̂

//Return the best schedule
11 return t̄

Now the three most important functions outlined in the algorithm (getEarliestLatest,
getBestCostSchedules and getBestStwSchedules) will be explained in detail.

5.1.1 Get earliest and latest times: getEarliestLatest
The function presented in Algorithm 5.2 obtains, for the services, the earliest and latest starting
times according to the hard time windows.

1In case the largest break does not reach a duration of πmin the route is considered to be composed by only one
block.

5.1. ALGORITHM TO SCHEDULE A ROUTE PRIORITIZING COST OVER WELFARE 79

Algorithm 5.2: getEarliestLatest - Get earliest times and blocks of services
Data: the route (R)
//Get earliest start for the services, according to hard time windows

1 for j ∈ R do
2 if j = 1 then
3 te

j ← max{α
¯j , γ

¯
}

4 else
5 te

j ← max{α
¯j , te

j−1 + ηj + θj−1,j}
//Get latest start for the service, according to hard time windows

6 for j ∈ reversed(R) do
7 if j = r then
8 tl

j ← min{ᾱj − ηj , γ̄ − ηj}
9 else

10 tl
j ← min{ᾱj − ηj , tl

j+1 − θj,j+1 − ηj}
11 return te, tl

Example 5.1.1. Illustration of Algorithm 5.2.
To illustrate the algorithm a route composed of 6 services is considered, whose time windows

are shown in Figure 5.2. For simplicity, all services have a duration of 1 hour, the travel time
between them is 10 minutes and 7:00 is considered to be time 0 of the planning horizon. The
available working times for the caregiver are γ

¯
= 0 and γ̄ = 900.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 5.2: Hard and soft time windows of the services (ALNS_CW).

The time windows of the services are presented in Table 5.1.

j 1 2 3 4 5 6
α
¯j 0 60 180 390 480 600
ᾱj 240 360 510 810 720 900
β
¯j

90 150 270 540 480 660
β̄j 300 270 480 750 660 870

Table 5.1: Hard and soft time windows of the services (ALNS_CW).

The earliest starting times, according to hard time windows, are:

j = 1. te
1 = max{α

¯1, γ
¯
} = max{0, 0} = 0.

j = 2. te
2 = max{α

¯2, te
1 + η1 + θ1,2} = max{60, 0 + 60 + 10} = 70.

j = 3. te
3 = max{α

¯3, te
2 + η2 + θ2,3} = max{180, 70 + 60 + 10} = 180.

j = 4. te
4 = max{α

¯4, te
3 + η3 + θ3,4} = max{390, 180 + 60 + 10} = 390.

j = 5. te
5 = max{α

¯5, te
4 + η4 + θ4,5} = max{480, 390 + 60 + 10} = 480.

80 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

j = 6. te
6 = max{α

¯6, te
5 + η5 + θ5,6} = max{600, 480 + 60 + 10} = 600.

The latest starting times, according to hard time windows, are:

j = 6. tl
6 = min{ᾱ6 − η6, γ̄ − η6} = min{900− 60, 900− 60} = 840.

j = 5. tl
5 = min{ᾱ5 − η5, tl

6 − θ5,6 − η5} = min{720− 60, 840− 10− 60} = 660.

j = 4. tl
4 = min{ᾱ4 − η4, tl

5 − θ4,5 − η4} = min{810− 60, 660− 10− 60} = 590.

j = 3. tl
3 = min{ᾱ3 − η3, tl

4 − θ3,4 − η3} = min{510− 60, 590− 10− 60} = 450.

j = 2. tl
2 = min{ᾱ2 − η2, tl

3 − θ2,3 − η2} = min{360− 60, 450− 10− 60} = 300.

j = 1. tl
1 = min{ᾱ1 − η1, tl

2 − θ1,2 − η1} = min{240− 60, 300− 10− 60} = 180.

The earliest and latest starting times of the services are presented in Figure 5.3. Notice that
the hard and soft time windows are presented in grey.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

te1 tl1

te2 tl2

te3 tl3

te4 tl4

te tl

te6 tl6

Figure 5.3: Earliest and latest starting times.

5.1.2 Get schedules with best cost value: getBestCostSchedules
Algorithm 5.3 describes the procedure used to obtain schedules with the minimum cost value for
the route. To this aim, services are divided into two groups: the fixed services, that can only be
carried out at one specific time, and the free services, that have a time interval within which they
can be performed (lines 2 - 6).

If there are no free services, the schedule is fixed (lines 7 - 9). Otherwise, different sets of
services are obtained by taking into account whether it is possible to get a break with a duration
equal to or larger than πmin (line 11). If the free services are between fixed services and there
cannot be a break in the route with a duration of at least πmin, the schedule of the free services is
obtained according to their soft time windows2 (lines 12 - 14). Otherwise, the schedule is modified
so that the breaks between services are as small as possible (lines 16 -17). Then, the procedure
iterates through the free services to get the schedule that makes the break before the service as
big as possible (lines 15 - 21).

2It means that the cost of the schedule is fixed. Therefore, the schedule of the free services will only affect to
the soft time window penalization.

5.1. ALGORITHM TO SCHEDULE A ROUTE PRIORITIZING COST OVER WELFARE 81

Algorithm 5.3: getBestCostSchedules - Get a schedule with the best value for the cost
Data: the route (R), the earliest starting times (te) and the latest starting times (tl)
//Define the sets as empty lists

1 T ← ∅, Sfree ← ∅
//Get free and fixed services

2 for j ∈ R do
3 if te

j ̸= tl
j then

4 Sfree ← Sfree ∪ {j}
5 else
6 Sfixed ← Sfixed ∪ {j}

//Get best schedule for the route
7 if Sfree = ∅ then

//Set the schedule as the available starting times
8 t ← te

9 T ← updateBestSchedulesCost(T , t)
10 else

//Get the sets of services
11 S1, S2, S3 ← getSetsOfServices(R, Sfixed, te, tl)

//Set times for the free services
12 if Sfree = S2 ∩ S3 then

//Set the times to reduce stw penal
13 t ← getStwSchedule(T , t)
14 T ← updateBestSchedulesCost(T , t)
15 else

//Set the times to get the breaks as small as possible
16 t ← firstSchedule(R, te, tl)
17 T ← updateBestSchedulesCost(T , t)

//Set the times to find a big break between services
18 for j ∈ R do
19 if j /∈ S1 and j ̸= 1 then
20 t ← secondSchedule(j, R, te, tl)
21 T ← updateBestSchedulesCost(T , t)

//Return the best schedules
22 return T

Example 5.1.2. Illustration of Algorithm 5.3.
Continuing with Example 5.1.1, the algorithm starts by initializing T = ∅ and obtaining the list

of free and fixed services. In this case Sfree = {1, 2, 3, 4, 5, 6} because all the services have different
earliest and latest starting times (line 3). Then, the sets of services S1, S2 and S3 are obtained
using function getSetsOfServices (line 11). In this case, S1, S2, S3 = ∅, which means that there
can be a break of duration at least πmin before each service of the route (for more information see
Example 5.A.1).

Two options are contemplated to get schedules. The first one consists in trying to make the
breaks between services as small as possible, using function firstSchedule. It consists in scheduling
the first service of the route at its latest starting time and, after that, scheduling the remaining
services as early as possible. The obtained schedule is: t1 = 180, t2 = 250, t3 = 320, t4 = 390,
t5 = 480 and t6 = 600 and it is shown in Figure 5.4 (see Example 5.A.3 for more information),
with cost 480. Function updateBestSchedulesCost is used to keep the best solutions (for more

82 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

details see Example 5.A.9).

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 5.4: Schedule with the smallest breaks.

The second option consists in making one of the breaks as big as possible while reducing the
other ones, using function secondSchedule:

j = 2. The obtained schedule, presented in Figure 5.5, is: t1 = 0, t2 = 300, t3 = 370, t4 = 440,
t5 = 510 and t6 = 600 (for more details see Example 5.A.4), with cost 430.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 5.5: Schedule with the largest break between services 1 and 2.

j = 3. The obtained schedule, presented in Figure 5.6, is: t1 = 0, t2 = 70, t3 = 450, t4 = 520,
t5 = 590 and t6 = 660 (for more details see Example 5.A.5), with cost 410.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 5.6: Schedule with the largest break between services 2 and 3.

j = 4. The obtained schedule, presented in Figure 5.7, is: t1 = 40, t2 = 110, t3 = 180, t4 = 590,
t5 = 660 and t6 = 730 (for more details see Example 5.A.6), with cost 410.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 5.7: Schedule with the largest break between services 3 and 4.

5.1. ALGORITHM TO SCHEDULE A ROUTE PRIORITIZING COST OVER WELFARE 83

j = 5. The obtained schedule, presented in Figure 5.8, is: t1 = 180, t2 = 250, t3 = 320, t4 = 390,
t5 = 660 and t6 = 730 (for more details see Example 5.A.7), with cost 410.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 5.8: Schedule with the largest break between services 4 and 5.

j = 5. The obtained schedule, presented in Figure 5.9, is: t1 = 180, t2 = 270, t3 = 340, t4 = 410,
t5 = 480 and t6 = 840 (for more details see Example 5.A.8), with cost 430.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 5.9: Schedule with the largest break between services 5 and 6.

After obtaining each solution, updateBestSchedulesCost is used to keep the ones with best cost
(for more information see Examples 5.A.10, 5.A.11, 5.A.12, 5.A.13 and 5.A.14). The best possible
cost is 410, and the list of schedules that reach this value (denoted by T) is given by:

Schedule 1. t1 = 0, t2 = 70, t3 = 450, t4 = 520, t5 = 590 and t6 = 660, which is the solution
presented in Figure 5.6.

Schedule 2. t1 = 40, t2 = 110, t3 = 180, t4 = 590, t5 = 660 and t6 = 730, which is the solution
presented in Figure 5.7.

Schedule 3. t1 = 180, t2 = 250, t3 = 320, t4 = 390, t5 = 660 and t6 = 730, which is the solution
presented in Figure 5.8.

5.1.3 Improve the soft time window penalization: getBestStwSchedules
Algorithm 5.4, starting from a list of schedules with the same cost, obtains multiple schedules that
maintain the cost but have different soft time window penalization value. Thus, for each of the
schedules, it is necessary to obtain the blocks (separated by the largest break with duration of at
least πmin) that form the schedule (line 2). These blocks are then moved in order to improve their
soft time window penalization (lines 10 - 19). Finally, the schedules of both blocks are combined,
in order to get a new feasible schedule for the route (line 20).

84 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

Algorithm 5.4: GetBestStwSchedules - Get multiple schedules with the same cost
Data: the route (R), the schedules (T), the earliest starting times (te) and the latest starting

times (tl)
1 for t ∈ T do
2 ∆ ← getBreakBlocks(R, t)
3 if there is only one block then
4 ae, al ← getBlockTw(R, t, te, tl)
5 if ae

δ ̸= tδ1 or ae
δr
̸= tδr then

6 t̂ ← moveBlock(δ, t, ae, al) //Schedule if the block can be moved
7 else
8 t̂ ← moveServices(δ, t, ae, al) //Schedule if the block cannot be moved
9 else

//Get schedules for the first block (δ̂)
10 ae, al ← getBlockTw(δ̂, t, te, tl)
11 if ae

δ̂1
̸= tδ̂1

or al
δ̂1
̸= tδ̂1

then
12 t̂ ← moveBlock(δ̂, t, ae, al) //Schedule if the block can be moved
13 else
14 t̂ ← moveServices(δ̂, t, ae, al) //Schedule if the block cannot be moved

//Get schedules for the second block (δ̃)
15 ae, al ← getBlockTw(δ̃, t, te, tl)
16 if ae

δ̃1
̸= tδ̃1

or al
δ̃1
̸= tδ̃1

then
17 t̃ ← moveBlock(δ̃, t, ae, al) //Schedule if the block can be moved
18 else
19 t̃ ← moveServices(δ̃, t, ae, al) //Schedule if the block cannot be moved

//Combine the schedules for the blocks
20 T̂ ← T̂ ∪ getCombinedSchedules(δ1, δ2, t̂, t̃, R, al, ae)

//Return the schedules
21 return T̂

Example 5.1.3. Illustration of Algorithm 5.4.
Let us start from the output obtained in Example 5.1.2, that is, a list of three schedules (T)

with the same cost value (410). The goal of this example is to modify each of the given schedules
to improve their penalization while maintaining the cost.

Schedule 1. The schedule is t1 = 0, t2 = 70, t3 = 450, t4 = 520, t5 = 590 and t6 = 660
(initially presented in Figure 5.6). Function getBreakBlocks (more information available in
Example 5.A.15) is used to divide the route into two blocks: ∆ = {{1, 2}, {3, 4, 5, 6}}. Then,
the following schedules for the blocks are obtained:

δ̂ = {1, 2}. The room for manoeuvre of the blocks is given by function getBlockTw (for
more details see Example 5.A.18): ae

1 = 0, ae
2 = 70, al

1 = 180 and al
2 = 250 (line 10).

In this case, al
δ̂1

= 0 ̸= tδ̂1
= 180. Therefore, the function moveBlock (for more details

see Example 5.A.24) is used to improve the penalization of the block. The obtained
schedule is: t̂1 = 90 and t̂2 = 160 (lines 11 - 12).
The change in the penalization of the block is presented in Figure 5.10. The penalization
of the original schedule is (β

¯1− t1) + (β
¯2− t2) = 90 + 150− 70 = 170 (see Figure 5.10a),

whereas the penalization of the new schedule is 0 (see Figure 5.10b).

5.1. ALGORITHM TO SCHEDULE A ROUTE PRIORITIZING COST OVER WELFARE 85

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2

α
¯1 ᾱ1

β
¯1

β̄1α
¯2 ᾱ2

β
¯2

β̄2

(a) Original schedule.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2

α
¯1 ᾱ1

β
¯1

β̄1α
¯2 ᾱ2

β
¯2

β̄2

(b) New schedule.

Figure 5.10: Schedule of δ̂ = {1, 2}.

δ̂ = {3, 4, 5, 6}. In this case, function getBlockTw (for more details see Example 5.A.19)
returns the following times: ae

3 = 390, ae
4 = 460, ae

5 = 530, ae
6 = 600, al

3 = 450,
al

4 = 520, al
5 = 590 and al

6 = 660 (line 15). Since ae
δ̂3

= 390 ̸= tδ̂3
= 450. Therefore

the function moveBlock is used to improve the penalization of the block (for more
details see Example 5.A.25). The obtained schedule is: t̃3 = 450, t̃4 = 520, t̃5 = 590
and t̃6 = 660 (lines 16 - 17).
Figure 5.11 shows that, in this particular case, both schedules are equal and their
penalization is (t3 + η3− β̄3) + (β

¯4− t4) = (t̃3 + η3− β̄3) + (β
¯4− t̃4) = 450 + 60− 480 +

540− 520 = 50.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

3 4 5 6

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 5.11: Schedule of δ̂ = {3, 4, 5, 6}.

Finally, the schedules of the block are combined using function getCombinedSchedules
(for more details see Example 5.A.39): t̄1 = 90, t̄2 = 160, t̄3 = 450, t̄4 = 520, t̄5 = 590 and
t̄6 = 660.

Schedule 2. The schedule is t1 = 40, t2 = 110, t3 = 180, t4 = 590, t5 = 660 and t6 = 730
(initially presented in Figure 5.7). The function getBreakBlocks (for more details see
Example 5.A.16) divides the route into two blocks: ∆ = {{1, 2, 3}, {4, 5, 6}}. Then, the
schedule of each block is computed:

δ̂ = {1, 2, 3}. The times between which the block can be moved are computed with function
getBlockTw (for more details see Example 5.A.20): ae

1 = 40, ae
2 = 110, ae

3 = 180,
al

1 = 180, al
2 = 250 and al

3 = 320 (line 10). In this case, al
δ̂1

= 180 ̸= tδ̂1
= 40. Thus,

function moveBlock (for more details see Example 5.A.26) improves the penalization
of the block. The obtained schedule is: t̂1 = 130, t̂2 = 200 and t̂3 = 270 (lines 11 - 12).
The change in the penalization of the block is presented in Figure 5.12. The penalization
of the original schedule is (β

¯1 − t1) + (β
¯2 − t2) + (β

¯3 − t3) = 90 − 40 + 150 − 110 +
270 − 180 = 180 (see Figure 5.12a), whereas the penalization of the new schedule is 0
(see Figure 5.12b).

86 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3

α
¯1 ᾱ1

β
¯1

β̄1α
¯2 ᾱ2

β
¯2

β̄2
α
¯3

ᾱ3

β
¯3

β̄3

(a) Original schedule.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3

α
¯1 ᾱ1

β
¯1

β̄1α
¯2 ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

(b) New schedule.

Figure 5.12: Schedule of δ̂ = {1, 2, 3}.

δ̂ = {4, 5, 6}. The range of movement per block is given by function getBlockTw (for more
details see Example 5.A.21): ae

4 = 460, ae
5 = 530, ae

6 = 600 and al
4 = 590, al

5 = 660 and
al

6 = 730 (line 15). In this case, ae
δ̂4

= 460 ̸= tδ̂4
= 590. Therefore function moveBlock

(for more details see Example 5.A.27) improves the penalization of the block. The
obtained schedule is: t̃4 = 530, t̃5 = 600 and t̃6 = 670 (lines 16 - 17).
The change in the penalization of the block is presented in Figure 5.13. The penalization
of the original schedule is t5 +η5− β̄5 = 660+60−660 = 60 (see Figure 5.13a), whereas
the penalization of the new schedule is β

¯4 − t̃4 = 540− 530 = 10 (see Figure 5.13b).

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

4 5 6

α
¯4

ᾱ4

β
¯4

β̄4α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

(a) Original schedule.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

4 5 6

α
¯4

ᾱ4

β
¯4

β̄4α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

(b) New schedule.

Figure 5.13: Schedule of δ̂ = {4, 5, 6}.

Finally, both schedules are combined using function getCombinedSchedules (for more
details see Example 5.A.40): t̄1 = 130, t̄2 = 200, t̄3 = 270, t̄4 = 530, t̄5 = 600 and t̄6 = 670.

Schedule 3. The schedule is t1 = 180, t2 = 250, t3 = 320, t4 = 390, t5 = 660 and t6 =
730 (initially presented in Figure 5.8). The function getBreakBlocks (for more details see
Example 5.A.17) divides the route into two blocks: ∆ = {{1, 2, 3, 4}, {5, 6}}. Then, the
schedule of each block is computed:

δ̂ = {1, 2, 3, 4}. The range of movement of the block is obtained with function getBlockTw
(for more details see Example 5.A.22): ae

1 = 180, ae
2 = 250, ae

3 = 320, ae
4 = 390,

al
1 = 180, al

2 = 250, al
3 = 320 and al

4 = 390 (line 10). In this case, t1 = ae
1 = al

1 = 180,
t2 = ae

2 = al
2 = 250, t3 = ae

3 = al
3 = 320 and t4 = ae

4 = al
4 = 390. Therefore, none of

the services can be moved t̂1 = 180, t̂2 = 250, t̂3 = 320 and t̂4 = 390. Figure 5.14 shows
that the schedule remains unchanged and the penalization is (t2 +η2− β̄2)+(β

¯4− t4) =
(t̂2 + η2 − β̄2) + (β

¯4 − t̂4) = 250 + 60− 270 + 540− 390 = 190.

5.1. ALGORITHM TO SCHEDULE A ROUTE PRIORITIZING COST OVER WELFARE 87

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4

α
¯1 ᾱ1

β
¯1

β̄1α
¯2 ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4 ᾱ4

β
¯4

β̄4

Figure 5.14: Schedule of δ̂ = {1, 2, 3, 4}.

δ̂ = {5, 6}. The range of movement of the block is computed with function getBlockTw (for
more details see Example 5.A.23): ae

5 = 530, ae
6 = 600 and al

5 = 660 and al
6 = 730

(line 15). In this case, ae
δ̂5

= 590 ̸= tδ̂5
= 660. Therefore function moveBlock (for

more details see Example 5.A.28) improves the penalization of the block. The obtained
schedule is: t̃5 = 590 and t̃6 = 660 (lines 16 - 17).
The change in the penalization of the block is presented in Figure 5.15. The penalization
of the original schedule is t5 +η5− β̄5 = 660+60−660 = 60 (see Figure 5.15a), whereas
the penalization of the new schedule is 0 (see Figure 5.15b).

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

5 6

α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

(a) Original schedule.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

5 6

α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

(b) New schedule.

Figure 5.15: Schedule of δ̂ = {5, 6}.

Finally, the schedules of the block are combined using function getCombinedSchedules
(for more details see Example 5.A.41): t̄1 = 180, t̄2 = 250, t̄3 = 320, t̄4 = 390, t̄5 = 590 and
t̄6 = 660.

The list of schedules with best soft time window penalization, T̂ , is composed by the three
solutions obtained before:

Schedule 1. It is represented in Figure 5.16 and the services have the following starting times:
t̄1 = 90, t̄2 = 160, t̄3 = 450, t̄4 = 520, t̄5 = 590 and t̄6 = 660, which is the solution obtained
combining Figures 5.10b and 5.11. The soft time window penalization of the schedule is
(t̄3 + η3 − β̄3) + (β

¯4 − t̄4) = (450 + 60− 480) + (540− 520) = 30 + 20 = 50.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 5.16: Schedule with break between services 2 and 3.

Schedule 2. It is represented in Figure 5.17 and the services have the following starting times:
t̄1 = 130, t̄2 = 200, t̄2 = 270, t̄4 = 530, t̄5 = 600 and t̄6 = 670, which is the solution obtained

88 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

combining Figures 5.12b and 5.13b. The soft time window penalization of the schedule is
β
¯4 − t̄4 = 540− 530 = 10.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 5.17: Schedule with break between services 3 and 4.

Schedule 3. It is represented in Figure 5.18 and the services have the following starting times:
t̄1 = 180, t̄2 = 250, t̄3 = 320, t̄4 = 390, t̄5 = 590 and t̄6 = 660, which is the solution obtained
combining Figures 5.14 and 5.15b. The soft time window penalization of the schedule is
(t̄2 + η2 − β̄2) + (β

¯4 − t̄4) = (250 + 60− 270) + (540− 390) = 40 + 150 = 190.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2

α
¯3

ᾱ3

β
¯3

β̄3

α
¯4

ᾱ4

β
¯4

β̄4α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 5.18: Schedule with break between services 4 and 5.

Therefore, the best solution is Schedule 2, giving a cost of 410 and a soft time window penalization
of 10.

Appendix 5.A Auxiliary functions
This appendix contains the description in detail of all the auxiliary functions employed by the
algorithm to obtain the schedule of a route in order to prioritize its cost over its welfare.

5.A.1 Obtain sets of services: getSetsOfServices
Algorithm 5.5 is devoted to assign the services to different sets. It starts obtaining the largest
break that can happen before each service (line 1). Then, it iterates through the services and add
them to the following sets:

• A service is added to S1 if the break before the service does not reach a duration of πmin

(line 4).

• A service is added to S2 if belongs to S1 and one of its predecessors is fixed (lines 5 - 6).

• A service is added to S3 if belongs to S1 and one of its followers is fixed (lines 7 - 8).

5.A. AUXILIARY FUNCTIONS 89

Algorithm 5.5: getSetsOfServices - Get the sets of services according to the possibility
of having a break bigger than πmin

Data: the route (R), the fixed services (Sfixed), the earliest starting times (te) and the latest
starting times (tl)

//Check between which services there can be a break of π or more
1 D ← maxBreak(R, te, tl)
2 S1, S2, S3 ← ∅ //Initialize the sets
3 for j ∈ {2, ..., r} do

//If the break before the service cannot be equal or bigger than πmin

4 if Dj < πmin then
5 S1 ← S1 ∪ {j}

//If any of its predecessors is fixed
6 if ∃k ∈ P (j, R) such as k ∈ Sfixed then
7 S2 ← S2 ∪ {j}

//If any of its followers is fixed
8 if ∃k ∈ F (j, R) such as k ∈ Sfixed then
9 S3 ← S3 ∪ {j}

//Return the sets
10 return S1, S2, S3

Example 5.A.1. Illustration of Algorithm 5.5.
The data given by Example 5.1.2 are: the route (R = {1, 2, 3, 4, 5, 6}), the fixed services

(Sfixed = ∅), earliest start (te
j) and latest start (tl

j).
To obtain the sets of services, first function maxBreak is used to obtain the largest break that

can happen before the each service D2 = 230, D3 = 310, D4 = 340, D5 = 200 and D6 = 290 (more
information in Example 5.A.2). Because all of these breaks are larger than πmin = 120, all sets
are empty S1, S2, S3 = ∅.

5.A.1.1 Get potential maximum break before each service: maxBreak

Algorithm 5.6 allows us to get the maximum break that can appear before each service of the route.
To obtain these breaks, the algorithm iterates through each service and computes the difference
between its latest starting time and the earliest end of its predecessor (plus travel time) (line 2).

Algorithm 5.6: maxBreak - Get maximum available break before each service
Data: the route (R), the earliest starting times (te) and the latest starting times (tl)

1 for j ∈ {2, ..., r} do
//Get the maximum possible break between the service and its previous one

2 Dj ← tl
j − (te

j−1 + ηj−1 + θj−1,j)
//Return the maximum possible break

3 return D

Example 5.A.2. Illustration of Algorithm 5.6.
Following Example 5.A.1, the input data are: the route (R = {1, 2, 3, 4, 5, 6}), the earliest start

(te
j) and the latest start (tl

j). For each service, except the first one of the route, the following breaks
are found:

j = 2. D2 = tl
2 − (te

1 + η1 + θ1,2) = 300− (0 + 60 + 10) = 230.

j = 3. D3 = tl
3 − (te

2 + η2 + θ2,3) = 450− (70 + 60 + 10) = 310.

90 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

j = 4. D4 = tl
4 − (te

3 + η3 + θ3,4) = 590− (180 + 60 + 10) = 340.

j = 5. D5 = tl
5 − (te

4 + η4 + θ4,5) = 660− (390 + 60 + 10) = 200.

j = 6. D6 = tl
6 − (te

5 + η5 + θ5,6) = 840− (480 + 60 + 10) = 290.

The result obtained is D = (D2, D3, D4, D5, D6).

5.A.2 Obtain the schedule with best penalization value: getStwSchedule
The function presented in Algorithm 5.7 is used to schedule the route according to the soft time
windows of the services.

The first step is to divide the route into blocks according to their soft time windows (line 1) and
obtain the earliest and latest starting times of the services with respect to their soft time windows
(lines 2 - 5). Finally, the schedule of the services is found (line 6).

The functions getBlocksStw and getSchedulePenalization have been previously described
in Sections 4.A.1 and 4.1.2.

Algorithm 5.7: getStwSchedule - Schedule the services according to their soft time window
Data: the route (R), the earliest starting times (te) and the latest starting times (tl)
//Divide the route into blocks according to stw

1 ∆̂ ← getBlocksStw(R)
//Get earliest start for the services, according to soft time windows

2 for j ∈ R do
3 be

j ← min{max{β
¯j

, te
j}, tl

j}
//Get latest start for the services, according to soft time windows

4 for j ∈ R do
5 bl

j ← max{min{β̄j − ηj , tl
j}, te

j}
//Get schedule for the services

6 t̄ ← getSchedulePenalization(t̂e, t̂l, be, bl, ∆̂, R)
7 return ϵfinal

5.A.3 Schedule that minimizes all breaks: firstSchedule
Algorithm 5.8 computes the schedule of the route so the breaks between services are minimum.
To this aim, the first service is scheduled at its latest possible time (line 1). Then, its followers
are scheduled at their earliest possible time, according to the new starting time of the first service
(lines 2 - 3).

Algorithm 5.8: firstSchedule - Get the schedule with the minimum break between services
Data: the route (R), the earliest starting times (te) and the latest starting times (tl)
Set the time for the first service as the latest time

1 t1 ← tl
1

Set the time for the followers as the earliest time (given the new time for
the first service)

2 for j ∈ {2, ..., r} do
3 tj ← max{te

j , tj−1 + ηj−1 + θj−1,l}
Return the schedule

4 return t

5.A. AUXILIARY FUNCTIONS 91

Example 5.A.3. Illustration of Algorithm 5.8.
The input data, given by Example 5.1.2, are: the route (R = {1, 2, 3, 4, 5, 6}), the earliest

starting times (te
j), the latest starting times (tl

j).
To make the breaks as small as possible, the first service is scheduled at its latest time and its

followers at their earliest time:

j = 1. t1 = tl
1 = 180 (line 1).

j = 2. t2 = max{te
2, t1 + η1 + θ1,2} = max{70, 180 + 60 + 10} = 250 (line 3).

j = 3. t3 = max{te
3, t2 + η2 + θ2,3} = max{180, 250 + 60 + 10} = 320 (line 3).

j = 4. t4 = max{te
4, t3 + η3 + θ3,4} = max{390, 320 + 60 + 10} = 390 (line 3).

j = 5. t5 = max{te
5, t4 + η4 + θ4,5} = max{480, 390 + 60 + 10} = 480 (line 3).

j = 6. t6 = max{te
6, t5 + η5 + θ5,6} = max{600, 480 + 60 + 10} = 600 (line 3).

5.A.4 Schedule that makes one break as big as possible: secondSchedule
Algorithm 5.9 schedules the route in such a way that the break between a service and its predecessor
is as big as possible. First, the start of the service is set at its latest possible time (line 1). Then,
its followers are scheduled at their earliest possible time, according to the new time of the given
service (lines 2 - 3). After that, the service’s predecessor are scheduled at its earliest time (line 4).
Finally, the remaining services are scheduled at their latest possible time, according to the new
starting time of the predecessor (lines 5 - 6).

Algorithm 5.9: secondSchedule - Get the schedule with the maximum break between
services

Data: the service (j), the route (R), the earliest starting times (te) and the latest starting
times (tl)

//Set the time for the service at the latest time
1 tj ← tl

j

//Set the time for the followers at the earliest time (according to j)
2 for k ∈ {j + 1, ..., r} do
3 tk ← max{te

k, tk−1 + ηk−1 + θk−1,k}
//Set the time for the previous service at the earliest time

4 tj−1 ← te
j−1

//Set the time for the predecessors at the latest time (according to j − 1)
5 for k ∈ {j − 2, ..., 1} do
6 tk ← min{tl

k, tk+1 − θk,k+1 − ηk}
//Return the schedule

7 return t

Example 5.A.4. Illustration of Algorithm 5.9.
According to Example 5.1.2, the input data are: the service (j = 2), the route

(R = {1, 2, 3, 4, 5, 6}), the earliest start (te
j) and the latest start (tl

j).
To make the break as big as possible, the service is scheduled at its latest time and its

predecessor at the earliest time:

k = 2. t2 = tl
2 = 300 (line 1).

k = 3. t3 = max{te
3, t2 + η2 + θ2,3} = max{180, 300 + 60 + 10} = 370 (line 3).

92 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

k = 4. t4 = max{te
4, t3 + η3 + θ3,4} = max{390, 370 + 60 + 10} = 440 (line 3).

k = 5. t5 = max{te
5, t4 + η4 + θ4,5} = max{480, 440 + 60 + 10} = 510 (line 3).

k = 6. t6 = max{te
6, t5 + η5 + θ5,6} = max{600, 510 + 60 + 10} = 600 (line 3).

k = 1. t1 = te
1 = 0 (line 4).

Example 5.A.5. Illustration of Algorithm 5.9.
According to Example 5.1.2, the input data are: the service (j = 3), the route

(R = {1, 2, 3, 4, 5, 6}), the earliest start (te
j) and the latest start (tl

j).
To make the break as big as possible, the service is scheduled at its latest time and its

predecessor at the earliest time:

k = 3. t3 = tl
3 = 450 (line 1).

k = 4. t4 = max{te
4, t3 + η3 + θ3,4} = max{390, 450 + 60 + 10} = 520 (line 3).

k = 5. t5 = max{te
5, t4 + η4 + θ4,5} = max{480, 520 + 60 + 10} = 590 (line 3).

k = 6. t6 = max{te
6, t5 + η5 + θ5,6} = max{600, 590 + 60 + 10} = 660 (line 3).

k = 2. t2 = te
2 = 70 (line 4).

k = 1. t1 = min{tl
1, t2 − θ1,2 − η1} = min{180, 70− 10− 60} = 0 (line 6).

Example 5.A.6. Illustration of Algorithm 5.9.
According to Example 5.1.2, the input data are: the service (j = 4), the route

(R = {1, 2, 3, 4, 5, 6}), the earliest start (te
j) and the latest start (tl

j).
To make the break as big as possible, the service is scheduled at its latest time and its

predecessor at the earliest time:

k = 4. t4 = tl
4 = 590 (line 1).

k = 5. t5 = max{te
5, t4 + η4 + θ4,5} = max{480, 590 + 60 + 10} = 660 (line 3).

k = 6. t6 = max{te
6, t5 + η5 + θ5,6} = max{600, 660 + 60 + 10} = 730 (line 3).

k = 3. t3 = te
3 = 180 (line 4).

k = 2. t2 = min{tl
2, t3 − θ2,3 − η2} = min{300, 180− 10− 60} = 110 (line 6).

k = 1. t1 = min{tl
1, t2 − θ1,2 − η1} = min{180, 110− 10− 60} = 40 (line 6).

Example 5.A.7. Illustration of Algorithm 5.9.
According to Example 5.1.2, the input data are: the service (j = 5), the route

(R = {1, 2, 3, 4, 5, 6}), the earliest start (te
j), the latest start (tl

j).
To make the break as big as possible, the service is scheduled at its latest time and its

predecessor at the earliest time:

k = 5. t5 = tl
5 = 660 (line 1).

k = 6. t6 = max{te
6, t5 + η5 + θ5,6} = max{600, 660 + 60 + 10} = 730 (line 3).

k = 4. t4 = te
4 = 390 (line 4).

k = 3. t3 = min{tl
3, t4 − θ3,4 − η3} = min{450, 390− 10− 60} = 320 (line 6).

k = 2. t2 = min{tl
2, t3 − θ2,3 − η2} = min{300, 320− 10− 60} = 250 (line 6).

5.A. AUXILIARY FUNCTIONS 93

k = 1. t1 = min{tl
1, t2 − θ1,2 − η1} = min{180, 250− 10− 60} = 180 (line 6).

Example 5.A.8. Illustration of Algorithm 5.9.
According to Example 5.1.2, the input data are: the service (j = 6), the route

(R = {1, 2, 3, 4, 5, 6}), the earliest start (te
j) and the latest start (tl

j).
To make the break as big as possible, the service is scheduled at its latest time and its

predecessor at the earliest time:

k = 6. t6 = tl
6 = 840 (line 1).

k = 5. t5 = te
5 = 480 (line 4).

k = 4. t4 = min{tl
4, t5 − θ4,5 − η4} = min{590, 480− 10− 60} = 410 (line 6).

k = 3. t3 = min{tl
3, t4 − θ3,4 − η3} = min{450, 410− 10− 60} = 340 (line 6).

k = 2. t2 = min{tl
2, t3 − θ2,3 − η2} = min{300, 340− 10− 60} = 270 (line 6).

k = 1. t1 = min{tl
1, t2 − θ1,2 − η1} = min{180, 270− 10− 60} = 180 (line 6).

5.A.5 Update the list of schedules: updateBestSchedulesCost
Algorithm 5.10 is used to only keep the schedules that have the best cost value. That is, given a
list of schedules and a new solution, the cost of the new solution and the cost of the solutions on
the list are obtained (lines 4 -5). Then, the list is updated if the new schedule has a better cost
(lines 6 - 7). If the cost is maintained, the new solution is added to the list of best schedules (lines
8 - 9). In case the list is empty, the new schedule is added to it (lines 1 -2).

Algorithm 5.10: updateBestSchedulesCost - Update the best schedules according to the
cost of the route

Data: the list of solutions (T) and the new solution (t)
1 if T = ∅ then
2 T ← T ∪ {t}
3 else

//Update T with the new solution
4 c ← ScheduleCost(t)
5 ĉ ← ScheduleCost(t̂), where t̂ ∈ T

6 if c < ĉ then
7 T ← {t}
8 else if c = ĉ then
9 T ← T ∪ {t}

//Return the best schedule
10 return T

Example 5.A.9. Illustration of Algorithm 5.10.
Following Example 5.1.2, the input data are: the list of solutions (T = ∅) and the new solution

(t = {t1 = 180, t2 = 250, t3 = 320, t4 = 390, t5 = 480 and t6 = 600}).
In this case, the list is T = {t} because T = ∅ (lines 1 - 2).

Example 5.A.10. Illustration of Algorithm 5.10.
Following Example 5.1.2, the input data are: the list of solutions (T) and the new solution

t = (t1 = 0, t2 = 300, t3 = 370, t4 = 440, t5 = 510 and t6 = 600).

94 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

The largest break of the new schedule happens between services 1 and 2, with a duration of
b = t2 − (t1 + η1 + θ1,2) = 305 − (0 + 60 + 10) = 230. Therefore, the cost of the schedule is
c = t6 + η6 − t1 − b̂ = 600 + 60− 0− 230 = 430 (line 4).

The schedule on the list t̂ = (t̂1 = 180, t̂2 = 250, t̂3 = 320, t̂4 = 390, t̂5 = 480 and t̂6 = 600) does
not have a break with duration largest than πmin, so its cost is ĉ = t̂6+η6−t̂1 = 600+60−180 = 480
(line 5).

The new schedule improves the cost of the list, c < ĉ (line 6), which means that the list is
updated T = {t} (line 7).

Example 5.A.11. Illustration of Algorithm 5.10.
Following Example 5.1.2, the input data are: the list of solutions (T) and the new solution

t = (t1 = 0, t2 = 70, t3 = 450, t4 = 520, t5 = 590 and t6 = 660).
The largest break of the new schedule happens between services 2 and 3, with a duration of

b = t3 − (t2 + η2 + θ2,3) = 450 − (70 + 60 + 10) = 310. Therefore, the cost of the schedule is
c = t6 + η6− t1− b̂ = 660 + 60− 0− 310 = 410 (line 4). The cost of the schedule on the list is 430,
as found in Example 5.A.10 (line 5).

The new schedule improves the cost of the solutions on the list, c < ĉ (line 6), which means
that the list is updated T = {t} (line 7).

Example 5.A.12. Illustration of Algorithm 5.10.
Following Example 5.1.2, the input data are: the list of solutions (T) and the new solution

t = (t1 = 40, t2 = 110, t3 = 180, t4 = 590, t5 = 660 and t6 = 730).
The largest break of the new schedule happens between services 3 and 4, with a duration of

b = t4 − (t3 + η3 + θ3,4) = 590 − (180 + 60 + 10) = 340. Therefore, the cost of the schedule is
c = t6 + η6 − t1 − b̂ = 730 + 60 − 40 − 340 = 410 (line 4). The cost of the schedule on the list is
410, as found in Example 5.A.11 (line 5).

The new schedule has the same cost as the solution on the list, c = ĉ (line 8), which means
that it is added to the list T = T ∪ {t} (line 9).

Example 5.A.13. Illustration of Algorithm 5.10.
Following Example 5.1.2, the input data are: the list of solutions (T) and the new solution

t = (t1 = 180, t2 = 250, t3 = 320, t4 = 390, t5 = 660 and t6 = 730).
The largest break of the new schedule happens between services 4 and 5, with a duration of

b = t5 − (t4 + η4 + θ4,5) = 660 − (390 + 60 + 10) = 200. Therefore, the cost of the schedule is
c = t6 + η6 − t1 − b̂ = 730 + 60− 180− 200 = 410 (line 4). The cost of the schedules on the list is
410, as found in Example 5.A.12 (line 5).

The new schedule has the same cost as the solutions on the list, c = ĉ (line 8), which means
that it is added to the list T = T ∪ {t} (line 9).

Example 5.A.14. Illustration of Algorithm 5.10.
Following Example 5.1.2, the input data are: the list of solutions (T) and the new solution

t = (t1 = 180, t2 = 270, t3 = 340, t4 = 410, t5 = 480 and t6 = 840).
The largest break of the new schedule happens between services 5 and 6, with a duration of

b = t6 − (t5 + η5 + θ5,6) = 840 − (480 + 60 + 10) = 290. Therefore, the cost of the schedule is
c = t6 + η6 − t1 − b̂ = 840 + 60− 180− 290 = 430 (line 4). The cost of the schedule on the list is
410, as found in Example 5.A.12 (line 5).

The new schedule has worst cost than the solutions on the list, c > ĉ, therefore it is not added
to the list.

5.A. AUXILIARY FUNCTIONS 95

5.A.6 Separate the route into two blocks: getBreakBlocks
Algorithm 5.11 presents the function used to separate the route into blocks, divided by the largest
break of duration equal to or greater than πmin. First, the largest break of the schedule is computed
(lines 1 - 6). Then, if the break has a duration equal to or greater than πmin, the first block is
composed by the services before the break and the second block by the ones after the break (lines
7 - 8). If the break does not reach the specified duration, the route is composed of a single block
(lines 9 -10).

Algorithm 5.11: getBreakBlocks - Get blocks of services separated by the largest break
(≥ πmin)

Data: the route (R) and the schedule (t)
1 b̂ ← 0
2 for j ∈ {1, ..., r − 1} do

//Get the break between the service and its follower
3 b ← tj+1 − (tj + ηj + θj,j+1)
4 if b > b̂ then
5 b̂ ← b

6 k ← j

7 if b̂ ≥ π then
8 ∆ ← {{1, ..., k}, {k + 1, ..., r}}
9 else

10 ∆ ← {{1, ..., r}}
//Return the blocks of services

11 return ∆

Example 5.A.15. Illustration of Algorithm 5.11.
The data given by Example 5.1.3 are: the route (R = {1, 2, 3, 4, 5, 6}) and the schedule (t1 = 0,

t2 = 70, t3 = 450, t4 = 520, t5 = 590 and t6 = 660).
First, the largest break of the route is obtained, which is initialized b̂ = 0:

j = 1. The break with j + 1 = 2 is b = t2 − (t1 + η1 + θ1,2) = 70− (0 + 60 + 10) = 0 (line 3).

j = 2. The break with j + 1 = 3 is b = t3 − (t2 + η2 + θ2,3) = 450− (70 + 60 + 10) = 310 (line 3).
In this case b > b̂ so b̂ = b and k = j = 2 (lines 4 - 6).

j = 3. The break with j + 1 = 4 is b = t4 − (t3 + η3 + θ3,4) = 520− (450 + 60 + 10) = 0 (line 3).

j = 4. The break with j + 1 = 5 is b = t5 − (t4 + η4 + θ4,5) = 590− (520 + 60 + 10) = 0 (line 3).

j = 5. The break with j + 1 = 6 is b = t6 − (t5 + η5 + θ5,6) = 660− (590 + 60 + 10) = 0 (line 3).

Thus, the blocks are ∆ = {{1, ..., k}, {k + 1, ..., r}} = {{1, 2}, {3, 4, 5, 6}} because b̂ ≥ πmin = 120
(lines 7 - 8).

Example 5.A.16. Illustration of Algorithm 5.11.
The data given by Example 5.1.3 are: the route (R = {1, 2, 3, 4, 5, 6}) and the schedule (t1 = 40,

t2 = 110, t3 = 180, t4 = 590, t5 = 660, t6 = 730).
First, the largest break of the route is obtained, which is initialized b̂ = 0:

j = 1. The break with j + 1 = 2 is b = t2 − (t1 + η1 + θ1,2) = 110− (40 + 60 + 10) = 0 (line 3).

j = 2. The break with j + 1 = 3 is b = t3 − (t2 + η2 + θ2,3) = 180− (110 + 60 + 10) = 0 (line 3).

96 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

j = 3. The break with j + 1 = 4 is b = t4 − (t3 + η3 + θ3,4) = 590− (180 + 60 + 10) = 340 (line 3).
In this case b > b̂ so b̂ = b and k = j = 3 (lines 4 - 6).

j = 4. The break with j + 1 = 5 is b = t5 − (t4 + η4 + θ4,5) = 660− (590 + 60 + 10) = 0 (line 3).

j = 5. The break with j + 1 = 6 is b = t6 − (t5 + η5 + θ5,6) = 730− (660 + 60 + 10) = 0 (line 3).

Then, the blocks are ∆ = {{1, ..., k}, {k + 1, ..., r}} = {{1, 2, 3}, {4, 5, 6}} because b̂ ≥ πmin = 120
(lines 7 - 8).

Example 5.A.17. Illustration of Algorithm 5.11.
The data given by Example 5.1.3 are: the route (R = {1, 2, 3, 4, 5, 6}) and the schedule (

t1 = 180, t2 = 250, t3 = 320, t4 = 390, t5 = 660, t6 = 730).
First, the largest break of the route is obtained, which is initialized b̂ = 0:

j = 1. The break with j + 1 = 2 is b = t2 − (t1 + η1 + θ1,2) = 250− (180 + 60 + 10) = 0 (line 3).

j = 2. The break with j + 1 = 3 is b = t3 − (t2 + η2 + θ2,3) = 320− (250 + 60 + 10) = 0 (line 3).

j = 3. The break with j + 1 = 4 is b = t4 − (t3 + η3 + θ3,4) = 390− (320 + 60 + 10) = 0 (line 3).

j = 4. The break with j + 1 = 5 is b = t5 − (t4 + η4 + θ4,5) = 660− (390 + 60 + 10) = 200 (line 3).
In this case b > b̂ so b̂ = b and k = j = 4 (lines 4 - 6).

j = 5. The break with j + 1 = 6 is b = t6 − (t5 + η5 + θ5,6) = 730− (660 + 60 + 10) = 0 (line 3).

So, the blocks are ∆ = {{1, ..., k}, {k + 1, ..., r}} = {{1, 2, 3, 4}, {5, 6}} because b̂ ≥ πmin = 120
(lines 7 - 8).

5.A.7 Get earliest and latest start for the block: getBlockTw
Algorithm 5.12 is used to obtain the earliest and latest starting time for a block of services. First
the amount of time3 that all services can be either advanced (line 1) or delayed (line 2) is computed.
Then, these times are used to obtain the earliest and latest start of the services (lines 3 - 5).

Algorithm 5.12: getBlockTw - Get the earliest and latest start for the block
Data: the block (δ), the schedules (t), the earliest starting times (te) and the latest starting

times (tl)
//Get time that all the services of the block can be advanced or delayed

1 e ← minj∈δ{tj − te
j}

2 l ← minj∈δ{tl
j − tj}

//Obtain the earliest and latest start
3 for j ∈ δ do
4 ae

j ← tj − e

5 al
j ← tj + l

//Return the block earliest and latest start of the block
6 return ae, al

Example 5.A.18. Illustration of Algorithm 5.12.
According to Example 5.1.3, the input data are: the block (δ = {1, 2}), the schedule (t1 = 0,

t2 = 70), the earliest (te
j) and latest (tl

j) start.
The time that the block can be advanced is e = min{t1−te

1, t2−te
2} = min{0−0, 70−70} = 0 (line

1). The time that the block can be delayed is l = min{tl
1−t1, tl

2−t2} = min{180−0, 300−70} = 180
(line 2). The earliest and latest starting times of the services in the block (lines 3 - 5) are:

3Note that the minimum values are chosen because this guarantees that, advancing or delaying the block that
amount of time, results in a feasible schedule.

5.A. AUXILIARY FUNCTIONS 97

j = 1. ae
1 = t1 − e = 0− 0 = 0, al

1 = t1 + l = 0 + 180 = 180.

j = 2. ae
2 = t2 − e = 70− 0 = 70, al

2 = t2 + l = 70 + 180 = 250.

Example 5.A.19. Illustration of Algorithm 5.12.
According to Example 5.1.3, the input data are: the block (δ = {3, 4, 5, 6}), the schedule

(t3 = 450, t4 = 520, t5 = 590 and t6 = 660), the earliest (te
j) and latest (tl

j) start.
The time that the block can be advanced is e = min{t3− te

3, t4− te
4, t5− te

5, t6− te
6} = min{450−

180, 520 − 390, 590 − 480, 660 − 600} = 60 (line 1). The time that the block can be delayed is
l = min{tl

3− t3, tl
4− t4, tl

5− t5, tl
6− t6} = min{450− 450, 590− 520, 660− 590, 840− 660} = 0 (line

2). The earliest and latest starting times of the services in the block (lines 3 - 5) are:

j = 3. ae
3 = t3 − e = 450− 60 = 390, al

3 = t3 + l = 450 + 0 = 450.

j = 4. ae
4 = t4 − e = 520− 60 = 460, al

4 = t4 + l = 520 + 0 = 520.

j = 5. ae
5 = t5 − e = 590− 60 = 530, al

5 = t5 + l = 590 + 0 = 590.

j = 6. ae
6 = t6 − e = 660− 60 = 600, al

6 = t6 + l = 660 + 0 = 660.

Example 5.A.20. Illustration of Algorithm 5.12.
According to Example 5.1.3, the input data are: the block (δ = {1, 2, 3}), the schedule (t1 = 40,

t2 = 110, t3 = 180), the earliest (te
j) and latest (tl

j) start.
The time that the block can be advanced is e = min{t1− te

1, t2− te
2, t3− te

3} = min{40−0, 110−
70, 180−180} = 0 (line 1). The time that the block can be delayed is l = min{tl

1−t1, tl
2−t2, tl

3−t3} =
min{180 − 40, 300 − 110, 450 − 180} = 140 (line 2). The earliest and latest starting times of the
services (lines 3 - 5) are:

j = 1. ae
1 = t1 − e = 40− 0 = 40, al

1 = t1 + l = 40 + 140 = 180.

j = 2. ae
2 = t2 − e = 110− 0 = 110, al

2 = t2 + l = 110 + 140 = 250.

j = 3. ae
3 = t3 − e = 180− 0 = 180, al

3 = t3 + l = 180 + 140 = 320.

Example 5.A.21. Illustration of Algorithm 5.12.
According to Example 5.1.3, the input data are: the block (δ = {4, 5, 6}), the schedule (t4 = 590,

t5 = 660, t6 = 730), the earliest (te
j) and latest (tl

j) start.
The time that the block can be advanced is e = min{t4 − te

4, t5 − te
5, t6 − te

6} = min{590 −
410, 660− 480, 730− 600} = 130 (line 1). The time that the block can be delayed is l = min{tl

4 −
t4, tl

5 − t5, tl
6 − t6} = min{590 − 590, 660 − 660, 840 − 730} = 0 (line 2). The earliest and latest

starting times of the services (lines 3 - 5) are:

j = 4 ae
4 = t4 − e = 590− 130 = 460, al

4 = t4 + l = 590 + 0 = 590.

j = 5 ae
5 = t5 − e = 660− 130 = 530, al

5 = t5 + l = 660 + 0 = 660.

j = 6 ae
6 = t6 − e = 730− 130 = 600, al

6 = t6 + l = 730 + 0 = 730.

Example 5.A.22. Illustration of Algorithm 5.12.
According to Example 5.1.3, the input data are: the block (δ = {1, 2, 3, 4}), the schedule

(t1 = 180, t2 = 250, t3 = 320, t4 = 390), the earliest (te
j) and latest (tl

j) start.
The time that the block can be advanced is e = min{t1− te

1, t2− te
2, t3− te

3, t4− te
4} = min{180−

0, 250 − 70, 320 − 180, 390 − 390} = 0 (line 1). The time that the block can be delayed is l =
min{tl

1 − t1, tl
2 − t2, tl

3 − t3, tl
4 − t4} = min{180− 180, 300− 250, 450− 320, 590− 390} = 0 (line 2).

The earliest and latest starting times of the services are equal to the current schedule (because the
services cannot be moved). Therefore ae

j = al
j = tj , ∀jinδ.

98 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

Example 5.A.23. Illustration of Algorithm 5.12.
According to Example 5.1.3, the input data are: the block (δ = {5, 6}), the schedule (t5 = 660,

t6 = 730), the earliest (te
j) and latest (tl

j) start.
The time that the block can be advanced is e = min{t5 − te

5, t6 − te
6} = min{660 − 480, 730 −

600} = 130 (line 1). The time that the block can be delayed is l = min{tl
5 − t5, tl

6 − t6} =
min{660− 660, 840− 730} = 0 (line 2). The earliest and latest starting times of the services (lines
3 - 5) are:

j = 5. ae
5 = t5 − e = 660− 130 = 530, al

5 = t5 + l = 660 + 0 = 660.

j = 6. ae
6 = t6 − e = 730− 130 = 600, al

6 = t6 + l = 730 + 0 = 730.

5.A.8 Move the schedule of the block: moveBlock
Algorithm 5.13 describes the function used to move a block of services in order to obtain a schedule
with better soft time window penalization value. It starts by scheduling all services at their earliest
time (line 1) and obtaining the maximum time they can be delayed (line 2). Then, a list of all
the delay times of the block that could result in a change of the penalization is obtained (line
3). Finally, the block is delayed the maximum amount of time that decreases the penalization
(lines 5 - 7).

Algorithm 5.13: moveBlock - Get possible schedules for a block
Data: the block (δ), the schedule (t), the earliest starting times (ae) and the latest starting

times (al)
//Schedule the block at its earliest time

1 t̂ ← ae

//Get maximum delay
2 λd ← al

δ1
− ae

δ1

//Get possible delay times for the block
3 E, σ ← getDelays(δ, λd, t)

//Delay the bock to improve its penalization
4 if E ̸= ∅ then
5 if σ < 0 then

//Get the maximum delay time that reduces the block penalization
6 ϵfinal ← getBestDelay(δ, t, E)

//Delay the block
7 t̂k ← t̂k + ϵfinal ∀k ∈ δ

//Return the schedule
8 return t̂

Example 5.A.24. Illustration of Algorithm 5.13.
The input data, given by Example 5.1.3, are: the block (R = {1, 2}), the schedule (t1 = 0,

t2 = 70), the earliest start (ae
1 = 0, ae

2 = 70) and the latest start (al
1 = 180, al

2 = 250).
The block is scheduled at its earliest time, t̂1 = 0, t̂2 = 70, and the maximum delay time is

computed λd = al
δ1
− ae

δ1
= 180 − 0 = 180. Then, the delay times that would change the

penalization of the services, E = {80, 90, 180} and σ = −2, are obtained using function
getDelays (see Example 5.A.29 for more information). To obtain the maximum delay that
reduces the penalization of the block, ϵfinal = 90, function getMaxDelay is used (more details
in Example 5.A.34). Finally, the block is delayed: t̂1 = t̂1 + ϵfinal = 0 + 90 = 90,
t̂2 = t̂2 + ϵfinal = 70 + 90 = 160 (line 7).

5.A. AUXILIARY FUNCTIONS 99

Example 5.A.25. Illustration of Algorithm 5.13.
The input data, given by Example 5.1.3, are: the block (R = {3, 4, 5, 6}), the schedule (t3 = 450,

t4 = 520, t5 = 590, t6 = 660), the earliest start (ae
3 = 390, ae

4 = 460, ae
5 = 530, ae

6 = 600) and the
latest start (al

3 = 450, al
4 = 520, al

5 = 590, al
6 = 660).

The block is scheduled at its earliest time, t̂3 = 390, t̂4 = 460, t̂5 = 530, t̂6 = 600, and the
maximum delay time is computed λd = al

δ3
− ae

δ3
= 450 − 390 = 60. Then, the delay times that

would change the penalization of the services, E = {30, 60} and σ = −2, are obtained using function
getDelays (more information in Example 5.A.30). To obtain the maximum delay that reduces
the penalization of the block, ϵfinal = 60, function getBestDelay is used (see Example 5.A.35
for more information). Finally, the block is delayed: t̂3 = t̂3 + ϵfinal = 390 + 60 = 450, t̂4 =
t̂4 +ϵfinal = 460+60 = 520, t̂5 = t̂5 +ϵfinal = 530+60 = 590 and t̂6 = t̂6 +ϵfinal = 600+60 = 660
(line 7).

Example 5.A.26. Illustration of Algorithm 5.13.
The input data, given by Example 5.1.3, are: the block (R = {1, 2, 3}), the schedule (t1 = 40,

t2 = 110, t3 = 180), the earliest start (ae
1 = 40, ae

2 = 110, ae
3 = 180) and the latest start (al

1 = 180,
al

2 = 250, al
3 = 320).

The block is scheduled at its earliest time, t̂1 = 40, t̂2 = 110, t̂3 = 180, and the maximum delay
time is computed λd = al

δ1
− ae

δ1
= 180 − 40 = 140. Then, the delay times that would change

the penalization of the services, E = {50, 40, 90, 140} and σ = −3, are obtained using function
getDelays (see Example 5.A.31 for more details). To obtain the maximum delay that reduces
the penalization of the block, ϵfinal = 90, function getBestDelay is used (more information in
Example 5.A.36). Finally, the block is delayed: t̂1 = t̂1 + ϵfinal = 40 + 90 = 130, t̂2 = t̂2 + ϵfinal =
110 + 90 = 200 and t̂3 = t̂3 + ϵfinal = 180 + 90 = 270 (line 7).

Example 5.A.27. Illustration of Algorithm 5.13.
The input data, given by Example 5.1.3, are: the block (R = {4, 5, 6}), the schedule (t4 = 590,

t5 = 660, t6 = 730), the earliest start (ae
4 = 460, ae

5 = 530, ae
6 = 600) and the latest start (al

4 = 590,
al

5 = 660, al
6 = 730).

The block is scheduled at its earliest time, t̂4 = 460, t̂5 = 530, t̂6 = 600, and the maximum
delay time is computed λd = al

δ4
− ae

δ4
= 590 − 460 = 130. Then, the delay times that would

change the penalization of the services, E = {80, 70, 60, 130} and σ = −2, are obtained using
function getDelays (see Example 5.A.32 for more details). To obtain the maximum delay that
reduces the penalization of the block, ϵfinal = 70, function getBestDelay is used (see more
information in Example 5.A.37). Finally, the block is delayed: t̂4 = t̂4 + ϵfinal = 460 + 70 = 530,
t̂5 = t̂5 + ϵfinal = 530 + 70 = 600 and t̂6 = t̂6 + ϵfinal = 600 + 70 = 670 (line 7).

Example 5.A.28. Illustration of Algorithm 5.13.
The input data, given by Example 5.1.3, are: the block (R = {5, 6}), the schedule (t5 = 660,

t6 = 730), the earliest start (ae
5 = 530, ae

6 = 600) and the latest start (al
5 = 660, al

6 = 730).
The block is scheduled at its earliest time, t̂5 = 530, t̂6 = 600, and the maximum delay time

is computed λd = al
δ5
− ae

δ5
= 660 − 530 = 130. Then, the delay times that would change the

penalization of the services, E = {70, 60, 130} and σ = −2, are obtained using function getDelays
(more information in Example 5.A.33). To obtain the maximum delay that reduces the penalization
of the block, ϵfinal = 60, function getBestDelay is used (more details in Example 5.A.38). Finally,
the block is delayed: t̂5 = t̂5 + ϵfinal = 530 + 60 = 590 and t̂6 = t̂6 + ϵfinal = 600 + 60 = 660
(line 7).

100 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

5.A.8.1 Get potential delay times for the block: getDelays

The function presented in Algorithm 5.14 obtains the list of delay times that would change the
penalization of the block.

This method obtains the delay times by iterating through the services and checking if they are
scheduled before, within or after their soft time window. If a service is scheduled before its soft
time window, there are two options (lines 3 - 10):

• Delaying it until it reaches the time window, which would reduce its penalization.

• Delaying it more than the time, which would maintain the penalization.

If the service is scheduled after the soft time window, delaying it would increase the penalization
(lines 11 - 12). If the service is within its soft time window, delaying it until it finishes at the end
of its soft time window would maintain the penalization (lines 13 - 16).

Algorithm 5.14: getDelays - Get the possible delay times for the block
Data: the block (δ), the maximum delay (λd) and the schedule (t)
//Get possible delay times for the block

1 E ← ∅, σ ← 0
2 for k ∈ δ do
3 if tk < β

¯ k
then

4 σ ← σ − 1 //The penalization would decrease
5 d ← β

¯k
− tk //Delay time to reach the soft time window

6 if d ≤ λd and d /∈ E then
7 E ← E ∪ {d}
8 d ← β̄k − (tk + ηk) //Delay time to reach the end of the soft time window
9 if d ≤ λd and d /∈ E then

10 E ← E ∪ {d}
11 else if tk + ηk ≥ β̄k then
12 σ ← σ + 1 //The penalization would increase
13 else if tk + ηk < β̄k then
14 d ← β̄k − (tk + ηk) //Delay time to reach the end of the soft time window
15 if d ≤ λd and d /∈ E then
16 E ← E ∪ {d}
17 if λd /∈ E then
18 E ← E ∪ {λd}
19 return E, σ

Example 5.A.29. Illustration of Algorithm 5.14.
The input data, given by Example 5.A.24, are: the block (δ = {1, 2}), the maximum delay

(λd = 180) and the schedule (t1 = 0 and t2 = 70).
This method starts by initializing the list of delay times E = ∅, and the integer that registers

the change on the penalization σ = 0 (line 1). Then, the delay times are obtained iterating though
the services:

k = 1. In this case t1 = 0 and β
¯1 = 90, which means that t1 < β

¯1 (line 3). Therefore, σ = σ− 1 =
−1 (line 4) and d = β

¯1 − t1 = 90 − 0 = 90 (line 5). Since d ≤ λd (line 6), d is added to the
list, E = {90}.

k = 2. In this case t2 = 70 and β
¯2 = 150, which means that t2 < β

¯2 (line 3). Therefore, σ =
σ − 1 = −2 (line 4) and d = β

¯2 − t2 = 150 − 70 = 80 (line 5). Since d ≤ λd (line 6), d is
added to the list, E = {90, 80}.

5.A. AUXILIARY FUNCTIONS 101

Finally, the maximum delay time is added to the list E = {90, 80, 180} (lines 18 - 19).

Example 5.A.30. Illustration of Algorithm 5.14.
The input data, given by Example 5.A.25, are: the block (δ = {3, 4, 5, 6}), the maximum delay

(λd = 60) and the schedule (t3 = 390, t4 = 460, t5 = 530 and t6 = 600).
This method starts by initializing the list of delay times E = ∅, and the integer that registers

the change on the penalization σ = 0 (line 1). Then, the delay times are obtained iterating though
the services:

k = 3. In this case, t3 = 390 and β̄3 = 480, which means that t3 + η3 ≤ β̄3 (line 6). Therefore,
d = β̄3 − η3 − t3 = 480 − 60 − 390 = 30 (line 8), which is added to the list because d ≤ λd,
E = {30}.

k = 4. In this case, t4 = 460 and β
¯4 = 540, which means that t4 < β

¯4 (line 3). Therefore,
σ = σ − 1 = −1 (line 4) and d = β

¯4 − t4 = 540− 460 = 80 (line 5), which is greater than λd

(line 9), so d is not added to E.

k = 5. In this case t5 = 530 and β̄5 = 660, this means that t5 + η5 ≤ β̄5 (line 6). Therefore,
d = β̄5 − η5 − t5 = 660− 60− 530 = 70 (line 8), which is greater than λd (line 9), so d is not
added to E.

k = 6. In this case, t6 = 600 and β
¯6 = 660, which means that t6 < β

¯6 (line 3). Therefore,
σ = σ − 1 = −2 (line 4) and d = β

¯6 − t6 = 660− 600 = 60 (line 5). Since d ≤ λd (line 6), d

is added to the list, E = {30, 60}.

Example 5.A.31. Illustration of Algorithm 5.14.
The input data, given by Example 5.A.26, are: the block (δ = {1, 2, 3}), the maximum delay

(λd = 140) and the schedule (t1 = 40, t2 = 110 and t3 = 180).
This method starts by initializing the list of delay times E = ∅, and the integer that registers

the change on the penalization σ = 0 (line 1). Then, the delay times are obtained iterating though
the services:

k = 1. In this case, t1 = 40 and β
¯1 = 90, which means that t1 < β

¯1 (line 3). Therefore, σ =
σ− 1 = −1 (line 4) and d = β

¯1− t1 = 90− 40 = 50 (line 5). Since d ≤ λd (line 6), d is added
to the list, E = {50}.

k = 2. In this case, t2 = 110 and β
¯2 = 150, which means that t2 < β

¯2 (line 3). Therefore,
σ = σ − 1 = −2 (line 4) and d = β

¯2 − t2 = 150− 110 = 40 (line 5). Since d ≤ λd (line 6), d

is added the list, E = {50, 40}.

k = 3. In this case, t3 = 180 and β
¯3 = 270, which means that t3 < β

¯3 (line 3). Therefore,
σ = σ − 1 = −3 (line 4) and d = β

¯3 − t3 = 270− 180 = 90 (line 5). Since d ≤ λd (line 6), d

is added to the list, E = {50, 40, 90}.

Finally, the maximum delay time is added to the list E = {50, 40, 90, 140} (lines 18 - 19).

Example 5.A.32. Illustration of Algorithm 5.14.
The input data, given by Example 5.A.27, are: the block (δ = {4, 5, 6}), the maximum delay

(λd = 130) and the schedule (t4 = 460, t5 = 530 and t6 = 600).
This method starts by initializing the list of delay times E = ∅, and the integer that registers

the change on the penalization σ = 0 (line 1). Then, the delay times are obtained iterating though
the services:

102 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

k = 4. In this case, t4 = 460 and β
¯4 = 540, which means that t4 < β

¯4 (line 3). Therefore,
σ = σ − 1 = −1 (line 4) and d = β

¯4 − t4 = 540− 460 = 80 (line 5). Since d ≤ λd (line 6), d

is added to the list, E = {80}.

k = 5. In this case, t5 = 530 and β̄5 = 660, which means that t5 + η5 < β̄5 (line 3). Therefore,
d = β̄5 − (t5 + η5) = 660 − (530 + 60) = 70 (line 5). Because d ≤ λd (line 6), d is added to
the list, E = {80, 70}.

k = 6. In this case, t6 = 600 and β
¯6 = 660, which means that t6 < β

¯6 (line 3). Therefore,
σ = σ − 1 = −2 (line 4) and d = β

¯6 − t6 = 660− 600 = 60 (line 5). Since d ≤ λd (line 6), d

is added to the list, E = {80, 70, 60}.

Finally, the maximum delay time is added to the list E = {80, 70, 60, 130} (lines 18 - 19).

Example 5.A.33. Illustration of Algorithm 5.14.
The input data, given by Example 5.A.28, are: the block (δ = {5, 6}), the maximum delay

(λd = 130) and the schedule (t5 = 530 and t6 = 600).
This method starts by initializing the list of delay times, E = ∅, and the integer that registers

the change on the penalization, σ = 0 (line 1). Then, the delay times are obtained iterating though
the services:

k = 5. In this case, t5 = 530 and β̄5 = 660, which means that t5 + η5 < β̄5 (line 3). Therefore,
d = β̄5 − (t5 + η5) = 660− (530 + 60) = 70 (line 5). Since d ≤ λd (line 6), d is added to the
list, E = {70}.

k = 6. In this case, t6 = 600 and β
¯6 = 660, which means that t6 < β

¯6 (line 3). Therefore,
σ = σ − 1 = −2 (line 4) and d = β

¯6 − t6 = 660− 600 = 60 (line 5). Since d ≤ λd (line 6), d

is added to the list, E = {70, 60}.

Finally, the maximum delay time is added to the list E = {70, 60, 130} (lines 18 - 19).

5.A.8.2 Get best delay for the block: getBestDelay

Algorithm 5.15 is used to obtain the delay time of the block that reduces its penalization as much
as possible. For each delay time, the change in the penalization of the block is computed (lines 1
- 7). The desired delay time is the last one that reduces penalization (lines 8 - 9), that is, a larger
delay would maintain or increase the penalization. In case the penalization always decreases, the
delay time would be the maximum one (lines 10 - 11).

Algorithm 5.15: getBestDelay - Get maximum delay time for the block
Data: the block (δ), the schedule (t) and the delay times (E)
//Delay time for the block

1 for ϵ ∈ sorted(E) do
2 σ ← 0
3 for k ∈ δ do
4 if tk + ϵ < β

¯ k
then

5 σ ← σ − 1 //The penalization decreases
6 else if tk + ϵ + ηk ≥ β̄k then
7 σ ← σ + 1 //The penalization increases
8 if σ ≥ 0 then
9 ϵfinal ← ϵ, exit loop

10 else if ϵ = ϵmax then
11 ϵfinal ← max{E}
12 return ϵfinal

5.A. AUXILIARY FUNCTIONS 103

Example 5.A.34. Illustration of Algorithm 5.15.
According to Example 5.A.24, the input data are: the block (δ = {1, 2}), the schedule (t1 = 0

and t2 = 70) and the delay times (E = {90, 80, 180}).
For each delay time it is checked if the penalization is reduced:

ϵ = 80. The penalization change is initialized to σd = 0. Then, it is updated for each service:

k = 1. In this case, t1 + ϵ = 0 + 80 = 80 and β
¯1 = 90, which means that t1 + ϵ < β

¯1 (line 4).
Therefore, the penalization is reduced if the service is delayed and σd = σd − 1 = −1
(line 5).

k = 2. In this case, t2 + ϵ = 70 + 80 = 150 and β
¯2 = 150, which means that t2 + ϵ = β

¯2 (line
4).

ϵ = 90. The penalization change is initialized to σd = 0. Then, it is updated for each service:

k = 1. In this case, t1 + ϵ = 0 + 90 = 90 and β
¯1 = 90, which means that t1 + ϵ = β

¯1 and the
penalization does not change.

k = 2. In this case, t2 + ϵ = 70 + 90 = 160 and β̄2 = 270, which means that t2 + ϵ + η2 < β
¯2

and the penalization does not change.

Since ϵ = max{Ed}, the delay time is ϵd = ϵ = 90.

Example 5.A.35. Illustration of Algorithm 5.15.
According to Example 5.A.25 the input data are: the block (δ = {3, 4, 5, 6}), the schedule

(t3 = 390, t4 = 460, t5 = 530 and t6 = 600) and the delay times (E = {30, 60}).
For each delay time it is checked if the penalization is reduced:

ϵ = 30. The penalization change is initialized to σd = 0. Then, it is updated for each service:

k = 3. In this case, t3 + ϵ + η3 = 390 + 60 + 30 = 480 and β̄3 = 480, which means that
t3 + ϵ + η3 = β̄3 and σd = σd + 1 = 1.

k = 4. In this case, t4 + ϵ = 460 + 30 = 490 and β
¯4 = 540, which means that t4 + ϵ < β

¯4 and
σd = σd − 1 = 0.

k = 5. In this case, t5 + ϵ + η5 = 530 + 30 + 60 = 620 and β̄5 = 660, this means that
t5 + ϵ + η5 ≤ β̄5 and the penalization does not change.

k = 6. In this case, t6 + ϵ = 600 + 30 = 630 and β
¯6 = 660, which means that t6 + ϵ < β

¯6 and
σd = σd − 1 = −1.

ϵ = 60. The penalization change is initialized to σd = 0. Then, it is updated for each service:

k = 3. In this case, t3 + ϵ + η3 = 390 + 60 + 60 = 510 and β̄3 = 480, which means that
t3 + ϵ + η3 > β̄3 and σd = σd + 1 = 1.

k = 4. In this case, t4 + ϵ = 460 + 60 = 520 and β
¯4 = 540, which means that t4 + ϵ < β

¯4 and
σd = σd − 1 = 0.

k = 5. In this case, t5 + ϵ + η5 = 530 + 60 + 60 = 650 and β̄5 = 660, this means that
t5 + ϵ + η5 ≤ β̄5 and the penalization does not change.

k = 6. In this case, t6 + ϵ = 600 + 60 = 660 and β
¯6 = 660, which means that t6 + ϵ = β

¯6 and
the penalization does not change.

Since σd = 0, the delay time is ϵd = ϵ = 60.

104 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

Example 5.A.36. Illustration of Algorithm 5.15.
According to Example 5.A.26 the input data are: the block (δ = {1, 2, 3}), the schedule (t1 = 40,

t2 = 110 and t2 = 180) and the delay times (E = {40, 50, 90, 140}).
For each delay time it is checked if the penalization is reduced:

ϵ = 40. The penalization change is initialized to σd = 0. Then, it is updated for each service:

k = 1. In this case, t1 + ϵ = 40 + 40 = 80 and β
¯1 = 90, which means that t1 + ϵ < β

¯1 (line 4).
Therefore, the penalization is reduced if the service is delayed and σd = σd − 1 = −1
(line 5).

k = 2. In this case, t2 + ϵ = 110 + 40 = 150 and β
¯2 = 150, which means that t2 + ϵ = β

¯2 and
the penalization remains unchanged.

k = 3. In this case, t3 + ϵ = 180+40 = 220 and β
¯3 = 270, which means that t3 + ϵ < β

¯3 (line
4). Therefore, the penalization is reduced if the service is delayed and σd = σd−1 = −2
(line 5).

ϵ = 50. The penalization change is initialized to σd = 0. Then, it is updated for each service:

k = 1. In this case, t1 + ϵ = 40 + 50 = 90 and β
¯1 = 90, which means that t1 + ϵ = β

¯1 and
the penalization does not change.

k = 2. In this case, t2 + ϵ = 110+50 = 160 and β̄2 = 270, which means that t2 + ϵ+η2k < β̄2

and the penalization does not change.

k = 3. In this case, t3 + ϵ = 180 + 50 = 230 and β
¯3 = 270, which means that t3 + ϵ < β

¯3.
Therefore, the penalization is reduced if the service is delayed and σd = σd − 1 = −1
(line 5).

ϵ = 90. The penalization change is initialized to σd = 0. Then, it is updated for each service:

k = 1. In this case, t1 + ϵ = 40 + 90 = 130 and β̄1 = 240, which means that t1 + ϵ + η1 < β̄1

and the penalization does not change.

k = 2. In this case, t2 + ϵ = 110 + 90 = 200 and β̄2 = 270, which means that tk + ϵ + η2 < β̄2

and the penalization does not change.

k = 3. In this case, t2 + ϵ = 180 + 90 = 270 and β
¯2 = 270, which means that t2 + ϵ = β

¯2 and
the penalization does not change.

Since σd = 0, the delay time is ϵd = ϵ = 90.

Example 5.A.37. Illustration of Algorithm 5.15.
According to Example 5.A.27 the input data are: the block (δ = {4, 5, 6}), the schedule (t4 =

460, t5 = 530 and t6 = 600) and the delay times (E = {60, 70, 80, 130}).
For each delay time it is checked if the penalization is reduced:

ϵ = 60. The penalization change is initialized to σd = 0. Then, it is updated for each service:

k = 4. In this case, t4 + ϵ = 460+60 = 520 and β
¯4 = 540, which means that t4 + ϵ < β

¯4 (line
4). Therefore, the penalization is reduced if the service is delayed and σd = σd−1 = −1
(line 5).

k = 5. In this case, t5 + ϵ = 530 + 60 = 590 and β̄5 = 660, which means that t5 + ϵ + η5 < β̄5

and the penalization does not change.

k = 6. In this case, t6 + ϵ = 600 + 60 = 660 and β̄6 = 870, which means that t6 + ϵ + η6 < β̄6

and the penalization does not change.

5.A. AUXILIARY FUNCTIONS 105

ϵ = 70. The penalization change is initialized to σd = 0. Then, it is updated for each service:

k = 4. In this case, t4 + ϵ = 460+70 = 530 and β
¯4 = 540, which means that t4 + ϵ < β

¯4 (line
4). Therefore, the penalization is reduced if the service is delayed and σd = σd−1 = −1
(line 5).

k = 5. In this case, t5 + ϵ = 530 + 70 = 600 and β̄5 = 660, which means that t5 + ϵ + η5 = β̄5.
Therefore, the penalization is reduced if the service is delayed and σd = σd + 1 = 0 (line
5).

k = 6. In this case, t6 + ϵ = 600 + 70 = 670 and β̄6 = 870, which means that t6 + ϵ + η6 < β̄6

and the penalization does not change.

Since σd = 1, the delay time is ϵd = ϵ = 70.

Example 5.A.38. Illustration of Algorithm 5.15.
According to Example 5.A.28 the input data are: the block (δ = {5, 6}), the schedule (t5 = 530

and t6 = 600) and the delay times (E = {60, 70, 130}).
For each delay time it is checked if the penalization is reduced:

ϵ = 60. The penalization change is initialized to σd = 0. Then, it is updated for each service:

k = 5. In this case, t5 + ϵ = 530 + 60 = 590 and β̄5 = 660, which means that t5 + ϵ + η5 < β̄5

and the penalization does not change.

k = 6. In this case, t6 + ϵ = 600 + 60 = 660 and β̄6 = 870, which means that t6 + ϵ + η6 < β̄6

and the penalization does not change.

Since σd = 0, the delay time is ϵd = ϵ = 60.

5.A.9 Modify the schedule of some services of the block: moveServices
The function presented in Algorithm 5.16 is used to improve the soft time window penalization of
a block that cannot be moved as a whole.

The algorithm starts by fixing the earliest and latest starting times of the first and last services
of the block (lines 1 - 2), to guarantee that those services will not be moved. Then, the earliest and
latest starting times of the remaining services are updated (lines 3 - 6) according to the ones of the
first and last services. After that, the block is divided into smaller blocks, according to their soft
time windows (line 7). The earliest and latest starting times, considering the soft time windows,
are obtained (lines 8 - 11). Finally, the new schedule of the block is computed (line 12).

The functions getBlocksStw and getSchedulePenalization have been previously described
in 4.A.1 and 4.1.2.

106 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

Algorithm 5.16: moveServices - Move the free services to improve penalization
Data: the block (δ = {δ1, ..., δr}), the schedule (t), the earliest starting times (ae) and the

latest starting times (al)
//Get earliest and latest times

1 t̂e ← te, t̂l ← tl

//Fix first and last service, because the whole block cannot be moved
2 t̂e

δ1
← tδ1 , t̂l

δ1
← tδ1 , t̂e

δr
← tδr

, t̂l
δr
← tδr

//Update earliest and latest times of the other services
3 for k ∈ {δ2, ..., δr} do
4 t̂e

k ← max{t̂e
k, t̂e

k−1 + ηk−1 + θk−1,k}
5 for k ∈ {δr−1, ..., δ1} do
6 t̂l

k ← min{t̂l
k, t̂l

k+1 − θk,k+1 − ηk}
//Divide the block into smaller blocks according to stw

7 ∆̂ ← getBlocksStw(δ)
//Get earliest start for the services, according to soft time windows

8 for j ∈ δ do
9 be

j ← min{max{β
¯j

, t̂e
j}, t̂l

j}
//Get latest start for the services, according to soft time windows

10 for j ∈ δ do
11 bl

j ← max{min{β̄j − ηj , t̂l
j}, t̂e

j}
//Get schedule for the services

12 t̄ ← getSchedulePenalization(t̂e, t̂l, be, bl, ∆̂, δ)
13 return ϵfinal

5.A.10 Combine the schedule of the blocks: getCombinedSchedules
Algorithm 5.17 is used to combine the schedules of the two blocks in such a way that the final
schedule is feasible and it has a break between the blocks of, at least, πmin. The first step is to
combine the schedules of the two blocks into one single schedule (lines 1 - 5). Then, it checks if
the break between the blocks does not reach a duration of πmin, in which case the blocks must
be moved in order for the break to have that duration (lines 6 - 31). This is done by advancing
the first block, and delaying the second one, in such a way that the increment of soft time window
penalization is minimum.

5.A. AUXILIARY FUNCTIONS 107

Algorithm 5.17: getCombinedSchedules - Combine the schedules of the blocks
Data: block 1(δ1), block 2(δ2), the schedule of block 1 (t̂), the schedule of block 2 (t̃), the

route (R), the earliest starting times (ae) and the latest starting times (al)
//Combine the schedules of the blocks

1 for j ∈ R do
2 if j ∈ δ1 then
3 t̄j ← t̂j

4 else
5 t̄j ← t̃j

//Check if the break between blocks is greater or equal than πmin

6 j1 ← last service of δ1, j2 ← first service of δ2

7 if t̄j2 − (t̄j1 + ηj1 + θj1,j2) < πmin then
//Get the change in penalization if δ1 is advanced or δ2 is delayed

8 σd ← delayPenalization(δ2, t̄)
9 σa ← advancePenalization(δ1, t̄)

//Check if it is better to start advancing δ1 or delaying δ2

10 if σa < σb then
11 delay ← false

12 else
13 delay ← true

//Get break between the blocks
14 b ← t̄j2 − (t̄j1 + ηj1 + θj1,j2)

//Increase the break between the blocks
15 while b < πmin do
16 if delay = true then

//Get delay to have a break of duration πmin

17 md ← max{min{t̄j1 + ηj1 + θj1,j2 + πmin, al
j2
}, ae

j2
} − t̄j2

18 if md > 0 then
19 t̄, d ← delay(δ2, t̄, al, ae, σa, σd, md)
20 b ← t̄j2 − (t̄j1 + ηj1 + θj1,j2)
21 delay ← false

22 else
23 delay ← false

24 else
//Get advance to have a break of duration πmin

25 ma ← t̄j1 −max{min{t̄j2 − πmin − θj1,j2 − ηj1 , al
j1
}, ae

j1
}

26 if ma > 0 then
27 t̄, a ← advance(δ1, t̄, al, ae, σa, σd, ma)
28 b ← t̄j2 − (t̄j1 + ηj1 + θj1,j2)
29 delay ← true

30 else
31 delay ← true

32 return t̄

Example 5.A.39. Illustration of Algorithm 5.17.
The input data, obtained in Example 5.1.3, are: the schedule of the first (t̂1 = 90 and t̂2 = 160)

and second (t̃3 = 450, t̃4 = 520, t̃5 = 590 and t̃6 = 660) block.
In this case, the combined schedule is t̄1 = 90, t̄2 = 160, t̄3 = 450, t̄4 = 520, t̄5 = 590 and

108 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

t̄6 = 660. The break between the blocks is t̄3 − (t̄2 + η2 + θ2,3) = 450 − (160 + 60 + 10) = 220 ≥
πmin = 120 (line 7), which means that the schedule does not need to be modified.

Example 5.A.40. Illustration of Algorithm 5.17.
The input data, obtained in Example 5.1.3, are: the schedule of the first (t̂1 = 130, t̂2 = 80

and t̂2 = 270) and second (t̃4 = 530, t̃5 = 600 and t̃6 = 670) block.
In this case, the combined schedule is t̄1 = 130, t̄2 = 80, t̄2 = 270, t̄4 = 530, t̄5 = 600 and

t̄6 = 670. The break between the blocks is t̄4 − (t̄3 + η3 + θ3,4) = 530 − (270 + 60 + 10) = 190 ≥
πmin = 120 (line 7), which means that the schedule does not need to be modified.

Example 5.A.41. Illustration of Algorithm 5.17.
The input data, obtained in Example 5.1.3, are: the schedule of the first (t̂1 = 180, t̂2 = 250,

t̂3 = 320 and t̂4 = 390) and second (t̃5 = 590 and t̃6 = 660) block.
In this case, the combined schedule is t̄1 = 180, t̄2 = 250, t̄3 = 320, t̄4 = 390, t̄5 = 590 and

t̄6 = 660. The break between the blocks is t̄5 − (t̄4 + η4 + θ4,5) = 590 − (390 + 60 + 10) = 130 ≥
πmin = 120 (line 7), which means that the schedule does not need to be modified.

5.A.10.1 Penalization change of the block when it is delayed: delayPenalization

Algorithm 5.18 obtains the change in the penalization if second block is delayed. It starts initializing
a counter (line 1) and then, for each service of the block, checks if its penalization would decrease
or increase (lines 2 - 6). The penalization will be reduced if the service is scheduled before its soft
time window (line 3), in which case the counter is reduced (line 4). The penalization increases if
the service is scheduled at the end of its soft time window or after (line 5), so the counter increases
(line 6).

Algorithm 5.18: delayPenalization - Get the change in penalization when delaying the
block

Data: block 2 (δ2) and the schedule of block 2 (t̃)
//Check if the penalization of δ2 increases if it is delayed

1 σd ← 0
2 for k ∈ δ2 do
3 if t̃k < β

¯ k
then

4 σd ← σd − 1 //The penalization is reduced
5 else if t̃k + ηk ≥ β̄k then
6 σd ← σd + 1 //The penalization increases
7 return σd

5.A.10.2 Penalization change of the block when it is advanced: advancePenalization

Algorithm 5.19 computes how the penalization will change when advancing the first block. After
initializing a counter (line 1), for each service the algorithm tests whether the penalization will
increase or decrease if the block is advanced (lines 2 - 6). If the service ends after its soft time
window (line 3) then its penalization will decrease and, therefore, the counter is reduced (line 4).
If the service is scheduled at the start of its soft time window, or before it, the penalization will
increment (line 5), so the counter increases (line 6).

5.A. AUXILIARY FUNCTIONS 109

Algorithm 5.19: advancePenalization - Get the change in penalization if the block is
advanced

Data: block 1 (δ1) and the schedule of block 2 (t̂)
//Check if the penalization of δ1 increases if it is advanced

1 σa ← 0
2 for k ∈ δ1 do
3 if t̂k + ηk > β̄k then
4 σa ← σa − 1 //The penalization is reduced
5 else if t̂k ≤ β

¯ k
then

6 σa ← σa + 1 //The penalization increases
7 return σa

5.A.10.3 Delay the block: delay

Algorithm 5.20 is used to delay the second block in order to increase the break with the first one.

Algorithm 5.20: delay - Delay the block
Data: Block 2 (δ2), the schedule (t̄), the earliest starting times (ae), the latest starting times

(al), the penalization change for Block 1 (σa), the penalization change for Block 2 (σd)
and the maximum delay time (md)

//Get possible delay times for the block
1 Ed ← ∅
2 for k ∈ δ2 do

//Delay time so the service it leaves its stw
3 d ← max{β̄k − (t̄k + ηk), 0}
4 if d < md and d /∈ Ed then
5 Ed ← Ed ∪ {d}

//Add to the list the maximum possible delay time
6 if md /∈ Ed then
7 Ed ← Ed ∪ {md}

//Delay the block
8 for ϵ ∈ sorted(Ed) do

//Get the change in penalization when delaying the block
9 σ̄d ← 0

10 for j ∈ δ1 do
11 if t̄j + ϵ < β

¯ j
then

12 σ̄d ← σ̄d − 1
13 else if t̄j + ϵ + ηj ≥ β̄j then
14 σ̄d ← σ̄d + 1

//Delay the block and check if the algorithm should end
15 if σ̄d >= σa then
16 t̄k ← t̄k + ϵ, ∀k ∈ δ2, σd ← σ̄d, break
17 else if ϵ = md then
18 t̄k ← t̄k + ϵ, ∀k ∈ δ2, σd ← σ̄d

19 return t̄, σd

The algorithm starts obtaining the amount of time that the block needs to be delayed to make
each service leave its soft time window (lines 1 - 7). To delay the block the algorithm iterates
through the sorted list of times (line 8) and obtains how the penalization would change if the block

110 CHAPTER 5. HIERARCHICAL APPROACH: COST OVER WELFARE

is delayed (lines 9 - 14). That is, for each service, if the penalization would decrease then the
counter is reduced (lines 11 - 12) and, if it would increment, the counter increases (lines 13 - 14).
After that, the block is delayed, the change of penalization d is updated and the method checks
if the loop can be continued (lines 15 - 18). This is done comparing the increase of penalization
when delaying the second block, σd, with the one of the first block, σa. If the value for the first
block is not the biggest one, the algorithm terminates, in any other case it continues.

5.A.10.4 Advance the block: advance

Algorithm 5.21 is the one used to advance the first block in order to increase the break with the
second one. First, the advance time that makes each service of the block leave its soft time window
is obtained (lines 1 - 7). Then, to advance the block, the algorithm iterates through the sorted list
of times (line 8) and computes how the penalization would change if the block is advanced (lines
9 - 14). This means that, for each service, if the penalization would decrease then the counter is
reduced (lines 11 - 12) and, if it would increment, the counter is increased (lines 13 - 14). After
that, the block is advanced, the change of penalization s is updated and the method checks if the
loop can be continued (lines 15 - 18). This is done by comparing the increase of penalization when
advancing the first block, σa, with the one of the second block, σb. If the value for the second
block is not the biggest one, the algorithm terminates, in any other case it continues.

Algorithm 5.21: advance - Advance the block
Data: Block 1 (δ1), the schedule (t̄), the earliest starting times (ae), the latest starting times

(al), the penalization change for Block 1 (σa), the penalization change for Block 2 (σd)
and the maximum advance time (ma)

//Get possible advance times for the block
1 Ea ← ∅
2 for k ∈ δ1 do

//Advance time so the service leaves its stw
3 a ← max{t̄k − β

¯k
, 0}

4 if a < ma and a /∈ Ea then
5 Ea ← Ea ∪ {a}
6 if ma /∈ Ea then
7 Ea ← Ea ∪ {ma}

//Advance the block
8 for ϵ ∈ sorted(Ea) do

//Change of penalization when advancing the block
9 σ̄a ← 0

10 for j ∈ δ1 do
11 if t̄j − ϵ > β̄j then
12 σ̄a ← σ̄a − 1
13 else if t̄j − ϵ ≤ β

¯ j
then

14 σ̄a ← σ̄a + 1
//Advance the block and check if the algorithm should end

15 if σ̄a >= σd then
16 t̄k ← t̄k − ϵ, ∀k ∈ δ1, σa ← σ̄a, break
17 else if ϵ = ma then
18 t̄k ← t̄k − ϵ, ∀k ∈ δ1, σa ← σ̄a

19 return t̄, σa

Chapter 6

The biobjective problem

In previous chapters the HCSP was studied in a hierarchical way, prioritizing either the welfare of
the users or the cost of the schedule. This chapter focuses on the biobjective version of the HCSP,
that is, considering both objectives at the same time to analyze how they interact. Solving the
biobjective problem results in multiple different solutions, giving the supervisor a diverse selection
of schedules to choose from.

The MILP describing the biobjective problem is the one presented in Chapter 2.1, that is,

f1 = min ω1
∑
i∈N

∑
d∈D

∑
j∈S

∑
k∈S1

λi
jxid

jk + ω2
∑
j∈S

(vstart
j + vend

j) (2.1)

f2 = min ω3
∑
i∈N

zi + ω4
∑
i∈N

∑
d∈D

(tid
s − tid

0 − r̂id) (2.2)

subject to: (2.3) - (2.29).
This chapter is structured as follows. Section 6.1 focuses on the epsilon constraint method,

which is a technique that uses the MILP formulation to solve the biobjective problem. Section 6.2
consists in a detailed description of the metaheuristic algorithm proposed for solving the problem.
Finally, Appendix 6.A presents additional information related to the metaheuristic algorithm.

6.1 Epsilon Constraint method
In this section one of the most well known techniques to solve multiobjective problems, the Epsilon
Constraint approach (Haimes et al. (1971)), is introduced.

Let us consider the general formulation of a multiobjective problem, P , with p objectives:

min f1(xxx), ..., fp(xxx) (6.1)
st. xxx ∈ F (6.2)

Given two feasible solutions xxx and yyy, it is said that xxx dominates yyy (denoted as xxx ≻ yyy) if
fk(xxx) ≤ fk(yyy) ∀k ∈ {1, ..., p} and fk(xxx) < fk(yyy) for at least one k ∈ {1, ..., p}. When solving a
multiobjective problem the goal is to find the Pareto frontier, which is the set composed by the
non dominated solutions.

111

112 CHAPTER 6. THE BIOBJECTIVE PROBLEM

6.1.1 AUGMECON2 method
The exact Pareto frontier can be obtained using the improved version of the Augmented Epsilon
Constraint method (known as AUGMECON2), presented by Mavrotas & Florios (2013). The
Epsilon Constraint method, and consequently the AUGMECON2, uses the MILP to calculate the
set of non dominated points.

In order for this method to determine the exact Pareto set, the problem must satisfy two
conditions: the objective function coefficients have to be integer and the nadir points of the Pareto
set must be known (which are composed by the worst objective values of the solutions in the Pareto
set). The first condition can always be achieved by multiplying the coefficients of the objective
functions by the appropriate power of 10. The second condition is met in the context of the problem
under study because it has two objectives, which means that the nadir points can be obtained by
calculating the pay-off table (for problems with more than 2 objectives the nadir points must be
calculated using other methods proposed in the literature, see Deb et al. (2006) to estimate the
nadir points using evolutionary approaches).

The pay-off table, PT , of the original problem P is defined as:

PT =



f1(xxx1) · · · fk(xxx1,k) · · · fp(xxx1,p)
...

f1(xxxk,1) · · · fk(xxxk) · · · fp(xxxk,p)
...

f1(xxxp,1) · · · fk(xxxp,k) · · · fp(xxxp)


, (6.3)

where fk(xxx) is the value of the objective function k when evaluating a solution xxx. Two solutions
are considered: xxxk, which is the solution that optimizes objective k, and xxxk,k′ , which is the solution
of the lexicographic problem that considers k as the first objective and k′ as the second one.

From this pay-off table, the range rk (the difference between the maximum and minimum value
that each objective k takes according to the table) and the upper bound ubk are obtained, with
k = 2, ..., p. Moreover, each rk is divided into qk equal intervals, which results in qk + 1 grid points
(gk).

The AUGMECON2 method, presented in Algorithm 6.1, consists in iteratively solving problem
P̂ , which is:

min f1(xxx) + ε(S2/r2 + 10−1S3/r3 + · · ·+ 10−(p−2)Sp/rp)
st. fk(xxx)− Sk = ek, i = 2, . . . , p

xxx ∈ F

where F represents the constraints of the problem, Sk ∈ R is the surplus variable and ek =
ubk− (ik× (rk/gk)) is the right hand side of the new constraint for objective k, ε is a small number
usually between 10−3 and 10−6 and F is the feasible region of the original problem P .

The AUGMECON2 algorithm starts by initializing the grid point counters (ik) and, then, it
iterates through them to solve problem P̂ . If the solution found is feasible, it is added to the
non dominated set, Ω, and the bypass coefficient, b = ⌊S2/(rk/gk)⌋, is calculated. This coefficient
indicates the number of consecutive iterations that can be skipped, setting i2 = i2 + b. If the
solution of P̂ is not feasible, the loop for objective 2 is restarted, i2 = 0, and the method continues
with the other loops. Finally, the algorithm stops after it has iterated through all the grid points,
that is, after it reaches ip = gp.

6.1. EPSILON CONSTRAINT METHOD 113

Algorithm 6.1: AUGMECON2
Data: the epsilon parameter (ε), the range (rk), the upper bound (ubk) and the number of

intervals (gk)
1 ik ← 1 ∀k = 2, ..., p

2 while ip ≤ gp do
3 P̂ ← generateMILP(ubk, rk, gk, i2, ..., ip, ε)
4 xxx ← solveMILP(P̂)
5 if xxx is not feasible then
6 i2 ← g2

7 else
8 Ω ← Ω ∪ {xxx} //Add the solution to the non dominated set
9 b ← ⌊S2/(rk/gk)⌋, i2 ← i2 + b //Get the number of skippable iterations

10 if i2 < g2 then
11 i2 ← i2 + 1
12 else
13 i2 ← 0
14 ...
15 if ip−1 < gp−1 then
16 ip−1 ← ip−1 + 1
17 else
18 ip−1 ← 0
19 ip ← ip + 1
20 return Ω

6.1.1.1 Biobjective version of AUGMECON2

In this section, the AUGMECON2 for the specific case of the biobjective HCSP is described.
Specifically, for the biojective version of the HCSP, the AUGMECON2 method iteratively solves

the following problem, P̂ :

min [f1(xxx) + ε(S2/r2)]
st. f2(xxx)− S2 = e2

xxx ∈ F,

where f1 is equation (2.1), f2 is equation (2.2) and F represents Constraints (2.3) - (2.29) of the
HCSP problem, S2 is the surplus variable for f2, ub2 is the upper bound of f2, r2 is the range
of f2, g2 indicates the number of intervals that divide the range, i2 is the grid point counter and
e2 = ub2 − (i2 × (r2/g2)) is the right hand side of the new constraint.

As it was previously explained, to obtain ub2 and r2, it is necessary to solve the two
lexicographical versions of the problem. It results in two solutions: one that prioritizes the
welfare over the cost (xxxwc) and another that prioritizes the cost over the welfare (xxxcw). As it can
be seen in Figure 6.1, the upper bound is ub2 = f2(xxxwc) and the range is r2 = f2(xxxwc)− f2(xxxcw).
In the example of Figure 6.1 it is also illustrated how the values of e2 are obtained after dividing
the range in g2 = 3 intervals.

114 CHAPTER 6. THE BIOBJECTIVE PROBLEM

f2(xxx)

f1(xxx)

f2(xxxwc)

f2(xxxcw)

f1(xxxwc) f1(xxxcw)

Pareto
Front

f2(xxx)

f1(xxx)

e2 = ub2 − (1 ∗ r2/g2)

e2 = ub2 − (2 ∗ r2/g2)

r2

ub2

Figure 6.1: Example illustrating the AUGMECON2 method.

The biobjective AUGMECON2 method, presented in Algorithm 6.2, initializes the grid point
counters, i2, (line 1) and iterates through them to solve problem P̂ (lines 3 - 4). If the solution
found is feasible, then it is added to the non dominated set (lines 5 - 6). The bypass coefficient,
b = ⌊S2/(r2/g2)⌋, indicates the number of consecutive iterations that can be skipped, i2 = i2 + b

(line 7). If the solution of P̂ is not feasible (lines 8 - 9), or if all grid points have been evaluated
(lines 10 - 11), the algorithm ends.

Algorithm 6.2: Biobjective AUGMECON2
Data: the epsilon parameter (ε), the range (r2), the upper bound (ub2) and the number of

intervals (g2)
1 i2 ← 1
2 while i2 ≤ g2 do
3 P̂ ← generateMILP(ub2, r2, g2, i2, ε) //Generate the problem
4 xxx ← solveMILP(P̂) //Obtain a solution to the problem
5 if xxx is feasible then
6 Ω ← Ω ∪ {xxx} //Add the solution to the non dominated set
7 b ← ⌊S2/(r2/g2)⌋, i2 ← i2 + b //Get the number of skippable iterations
8 else
9 break //The solution is not feasible

10 if i2 < g2 then
11 i2 ← i2 + 1 //Next grid point
12 return Ω

6.2 Biobjective metaheuristic algorithm
This section is focused on the algorithm (from now on denoted as BIALNS) designed to solve the
biobjective version of the HCSP, that is, to obtain non dominated solutions. A solution of the
problem is ωωω = (xxx, ttt) and it is composed by the routes (xxx) and the schedules (ttt). The routes
describe the order of services to be performed by each caregiver and the schedules are the starting
times of each service. The goal of the algorithm is to obtain the set of non dominated solutions
(Ω), so it relies on a set of solutions that are composed by different routes (Ω̂).

Figure 6.2 presents a simple diagram to explain the general scheme of the algorithm designed

6.2. BIOBJECTIVE METAHEURISTIC ALGORITHM 115

to solve the biobjective HCSP under study. The algorithm is divided into three steps: in the first
one the hierarchical versions of the problem are solved, in the second step solutions composed by
different routes are generated and, in the final step, non dominated solutions are obtained.

Solve hierarchical
problem:

ALNS_WC

Solve hierarchical
problem:

ALNS_CW

Update non
dominated set

Update set of
different routes

Choose random
solution

Modify the solution
with ALNS_WC

Modify the solution
with ALNS_CW

Update non
dominated set

Update set of
different routes

Choose random
solution

Update non
dominated set

Custom heuristic to
obtain non

dominated solutions
Stop?

Stop?

Return non
dominated set

Yes

YesNo

No

Step 1 Step 2 Step 3

Figure 6.2: Scheme of algorithm BIALNS.

The pseudocode presented in Algorithm 6.3 is the one used to obtain non dominated solutions
for the problem, that is, solutions that cannot improve one objective without deteriorating the
other one. The three functions involved in the algorithm correspond to the three steps outlined in
the diagram.

Algorithm 6.3: BIALNS - Metaheuristic algorithm to obtain non dominated solutions
Data: the set of services (S) and the set of caregivers (N)
//Get the set of initial solutions

1 Ω, Ω̂ ← initialiseSets(S, N)
//Get solutions composed by different routes

2 Ω, Ω̂1, Ω̂2 ← getDifferentSolutions(S, Ω, Ω̂)
//Get non dominated solutions

3 Ω ← getNonDominatedSet(S, Ω, Ω̂1, Ω̂2)
4 return Ω

Now the three steps involved in the algorithm (initialiseSets, getDifferentSolutions and
getNonDominatedSet) will be thoroughly explained.

6.2.1 Initialise the sets: initialiseSets
The non dominated set is initialized using Algorithm 6.4, which is based on the methodology
explained in Chapter 3, Section 3.1. First, initial solutions of each lexicographical objective are
generated (following the procedure described in Section 3.2), improving them using the ALNS
method (lines 1 - 4). After that, the set of non dominated solutions is updated (lines 5 - 7).

116 CHAPTER 6. THE BIOBJECTIVE PROBLEM

Algorithm 6.4: initialiseSets - Get solutions for each lexicographic objective
Data: the set of services (S), the set of caregivers (N), the set of solutions (Ω̂ = ∅) and the

set of non dominated solutions (Ω = ∅)
//Get initial solution for the lexicographic welfare-cost

1 ωωωwc ← initialSolution(S, N , fwc)
//ALNS for the lexicographic welfare-cost

2 ωωωwc, Ω̂ ← ALNS(fwc, ωωωwc, Ω̂)
//Get initial solution for the lexicographic cost-welfare

3 ωωωcw ← initialSolution(S, N , fcw)
//ALNS for the lexicographic cost-welfare

4 ωωωcw, Ω̂ ← ALNS(fcw, ωωωcw, Ω̂)
//Get non dominated solutions

5 Ω ← updateNonDominatedSet(Ω, ωωωwc)
6 Ω ← updateNonDominatedSet(Ω, ωωωcw)
7 Ω ← updateNonDominatedSet(Ω, ω̂ωω) ∀ω̂ωω ∈ Ω̂
8 return Ω, Ω̂

6.2.2 Generate solutions composed by different routes:
getDifferentSolutions

The function used to generate solutions composed by different routes is described in Algorithm 6.5.
The first step is to filter the set of solutions, that is, to remove the solutions that are too far from
the non dominated ones (line 1). Then, until a stopping criteria is not met, the solutions are
modified to obtain different routes. To this aim, a solution is selected at random (line 3) and it is
updated with the ALNS for each lexicographic objective (lines 4 and 6). Then, two new solutions
are generated, by updating the schedules of the ones obtained before in order to optimize the other
lexicographic objective function (lines 5 and 7). Finally, these new solutions are used to update
the non dominated set and the ones composed by different routes (lines 8 - 9).

Algorithm 6.5: getDifferentSolutions - Get set of solutions with different routes
Data: the set of services (S), the set of non dominated solutions (Ω) and the set of solutions

(Ω̂)
//Remove the solutions that are too far from Ω

1 Ω̂1, Ω̂2 ← filterSet(Ω̂, Ω)
2 while stopping criteria is not met do

//Get solution to modify
3 ω̄ωω ← chooseRandomSolution(Ω̂1, Ω̂2, Ω)

//Get solutions that improve each lexicographic objective
4 ωωωwc ← ALNS(S, N , fwc, ω̄ωω) //ALNS for the lexicographic welfare-cost
5 ω̃ωωcw ← schedule(ωωωwc, fcw) //Get schedule that optimizes fcw

6 ωωωcw ← ALNS(S, N , fcw, ω̄ωω) //ALNS for the lexicographic cost-welfare
7 ω̃ωωwc ← schedule(ωcw, fwc) //Get schedule that optimizes fwc

//Update the non dominated solutions
8 Ω ← updateNonDominatedSet(Ω, ωωω) ∀ωωω ∈ {ωωωwc,ωωωcw, ω̃ωωcw, ω̃ωωwc}

//Update the sets of solutions
9 Ω̂1, Ω̂2 ← updateSetsOfSolutions(Ω̂1, Ω̂2, Ω, ω) ∀ωωω ∈ {ωωωwc,ωωωcw, ω̃ωωcw, ω̃ωωwc}

10 return Ω, Ω̂1, Ω̂2

6.2. BIOBJECTIVE METAHEURISTIC ALGORITHM 117

6.2.3 Generate non dominated solutions: getNonDominatedSet
The function shown in Algorithm 6.6 is devoted to generate non dominated solutions. The method,
until a stopping criteria is met (line 1), chooses a solution, route and service at random, following
a uniform distribution, (lines 2 - 4) and modifies its schedule to obtain non dominated solutions
(lines 4 - 25). To this aim, the service is delayed and/or advanced in order to improve the soft
time window penalization (lines 7 - 16) or the cost (lines 17 - 25) of the schedule.

Algorithm 6.6: getNonDominatedSet - Get set of non dominated solutions
Data: the set of services (S), the set of non dominated solutions (Ω) and the sets of solutions

(Ω̂1, Ω̂2)
1 while stopping criteria not met do

//Get service to move
2 ω̄ωω ← chooseRandomSolution(Ω̂, Ω̂1, Ω̂2) //Get solution to modify
3 R ← chooseRandomRoute(ω̄ωω) //Get route to modify
4 j ← chooseRandomService(R) //Get service to move
5 te, tl ← getInfo(R) //Get earliest and latest times for the services

//Get delay and advance times to improve penalization
6 d, a ← getTimeStw(j, R, ω̄, te, tl)

//Delay the service to improve penalization
7 R̂ ← getAffectedServicesDelay(j, R, ω̄ωω, d, F (j, R)) //Get affected services
8 d̄ ← updateDelay(j, R, ω̄ωω, d, R̂) //Update maximum delay time
9 ω̃ωω ← randomDelay(j, R, ω̄ωω, 0, d̄, d, R̂) //Delay at random the service

10 Ω ← updateNonDominatedSet(Ω, ω̃ωω) //Update the non dominated solutions
11 Ω̂1, Ω̂2 ← updateSetsOfSolutions(Ω̂1, Ω̂2, Ω, ω̃ωω) //Update the sets of solutions

//Advance the service to improve penalization
12 R̂ ← getAffectedServicesAdvance(j, R, ω̄ωω, a, P (j, R)) //Get affected services
13 ā ← updateAdvance(j, R, ω̄ωω, a, R̂) //Update maximum advance time
14 ω̃ωω ← randomAdvance(j, R, ω̄ωω, 0, ā, a, R̂) //Advance at random the service
15 Ω ← updateNonDominatedSet(Ω, ω̃ωω) //Update the non dominated solutions
16 Ω̂1, Ω̂2 ← updateSetsOfSolutions(Ω̂1, Ω̂2, Ω, ω̃ωω) //Update the sets of solutions

//Get delay and advance time to improve cost
17 D, A ← getTimeCost(j, R, ω̄ωω, te, tl)
18 for (d

¯
, d̄) ∈ D do

//Delay the service
19 ω̃ωω ← randomDelay(j, R, ω̄ωω, d

¯
, d̄, d, F (j, R)) //Delay at random the service

20 Ω ← updateNonDominatedSet(Ω, ω̃ωω) //Update the non dominated solutions
21 Ω̂1, Ω̂2 ← updateSetsOfSolutions(Ω̂1, Ω̂2, Ω, ω̃ωω) //Update the sets of solutions
22 for (a

¯
, ā) ∈ A do

//Advance the service
23 ω̃ωω ← randomAdvance(j, R, ω̄ωω, a

¯
, ā, a, P (j, R)) //Advance at random the service

24 Ω ← updateNonDominatedSet(Ω, ω̃ωω) //Update the non dominated solutions
25 Ω̂1, Ω̂2 ← updateSetsOfSolutions(Ω̂1, Ω̂2, Ω, ω̃) //Update the sets of solutions
26 return Ω

Figure 6.3 presents a simple diagram to explain the scheme of Algorithm 6.6. After choosing a
route and a service at random (lines 2 - 4) the method modifies its schedule in six possible ways:

a. Delay the service to improve the penalization (lines 7 - 9).

b. Advance the service to improve the penalization (lines 12 - 14).

118 CHAPTER 6. THE BIOBJECTIVE PROBLEM

c. Delay the service to reduce the duration of the breaks that occur after it (lines 17 and 19).

d. Advance the service to reduce the duration of the breaks that occur before it (lines 17 and 23).

e. Delay the service to increase the duration of the break that occurs before it, with the aim of
making this break reach a duration of at least πmin (lines 17 and 19).

f. Advance the service to increase the duration of the break that occurs after it, with the aim
of making this break reach a duration of at least πmin (lines 17 and 23).

These schedules are then used to update the set of non dominated solutions.

Choose random
route

Choose random
service

Delay the service to
improve

penalization

Advance the service
to improve

penalization

Delay the service to
reduce breaks

Advance the service
to reduce breaks

Delay the service to
increase the break

before itself

Advance the service
to increase the break

after itself

Return the
schedules

Figure 6.3: Scheme of the method to obtain non dominated solutions.

Example 6.2.1. Illustration of Algorithm 6.6.
To illustrate Algorithm 6.6, the schedule of a route composed of 6 services will be modified,

performing one iteration of the while loop. The schedule and time windows of the route are shown
in Figure 6.4 and Table 6.1. For simplicity, all services have a duration of 1 hour, the travel time is
ignored and 8:00 is time 0 of the planning horizon. The available working times for the caregiver
are γ

¯
= 0 and γ̄ = 840.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2α
¯3

ᾱ3

β
¯3

β̄3α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 6.4: Schedule to modify.

6.2. BIOBJECTIVE METAHEURISTIC ALGORITHM 119

j 1 2 3 4 5 6
α
¯j 0 120 60 180 450 540
ᾱj 240 330 480 660 750 810
β
¯j

0 210 330 240 480 570
β̄j 150 330 450 600 630 720

Table 6.1: Hard and soft time windows of the services (BIALNS).

The current schedule of the services is: t1 = 90, t2 = 210, t3 = 300, t4 = 390, t5 = 510 and
t6 = 600. Since there is no break larger than two hours, the cost of the schedule is f2 = t6+η6−t1 =
600 + 60−90 = 570. The soft time window penalization is f1 = t3 + η3− β̄3 = 300 + 60−330 = 30.

Let us now suppose that Service 4 is the randomly selected service to obtain non dominated
solutions. The earliest and latest starting times of the services are obtained with function getInfo
(see details in Example 6.A.1): te

1 = 0, te
2 = 120, te

3 = 180, te
4 = 240, te

5 = 450, te
6 = 540, tl

1 = 180,
tl
2 = 270, tl

3 = 450, tl
4 = 600, tl

5 = 720 and tl
6 = 780.

Then, the schedule is modified according to each objective:

Welfare. The penalization is improved applying the function getTimeStw (line 7), which gets
the maximum possible advance and delay times for the services. As a result of applying the
function, the maximum delay time is d = 150 and the maximum advance time is a = 150
(for more information see Example 6.A.2).

Delay. To delay the service, first the list of services that will be affected by the maximum
delay is computed, with the function getAffectedServicesDelay (see Example 6.A.3
for more information), R̂ = {5, 6} (line 8). Then the function updateDelay updates
the delay time so it guarantees that the penalization of the schedule will not increase,
d̄ = 120 (see details in Example 6.A.5). The interval within which Service 4 can be
delayed is presented in Figure 6.5 as a bolded segment in the hard time window of the
service.
Finally, the schedule of Service j = 4 is delayed 90 minutes with randomDelay (for
more details see Example 6.A.15), resulting in the schedule presented in Figure 6.5:
t̃1 = 90, t̃2 = 210, t̃3 = 300, t̃4 = 480, t̃5 = 540 and t̃6 = 600 (line 10).

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2α
¯3

ᾱ3

β
¯3

β̄3α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 6.5: Delay Service 4.

The largest break of the schedule is between services 3 and 4, which has a duration of
b = t̃4− (t̃3 + η3 + θ3,4) = 480− (300 + 60) = 120. Therefore, the cost of the schedule is
f2 = t̃6 + η6 − t̃1 − b = 600 + 60− 90− 120 = 450. The soft time window penalization
is f1 = β

¯3 − t̃3 = 330− 300 = 30.

Advance. To advance the service, first the list of services that will be affected by the
maximum advance is obtained, getAffectedServicesAdvance (see Example 6.A.7 for
more information), R̂ = {3, 2, 1} (line 12). Function updateAdvance is used to

120 CHAPTER 6. THE BIOBJECTIVE PROBLEM

update the advance time so it guarantees that the penalization of the schedule will not
increase, ā = 0, (see more details in Example 6.A.8). The interval within which Service
4 can be advanced is presented in Figure 6.6 as a bolded segment in the hard time
window of the service.
Finally, the schedule of Service j = 4 is advanced 90 minutes with randomAdvance (for
more information see Example 6.A.18), resulting in the schedule presented in Figure 6.6:
t̃1 = 90, t̃2 = 180, t̃3 = 240, t̃4 = 300, t̃5 = 510 and t̃6 = 600 (line 15).

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2α
¯3

ᾱ3

β
¯3

β̄3α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 6.6: Advance Service 4.

The largest break of the schedule is between services 4 and 5, which has a duration of
b = t5− (t̃4 + η4 + θ4,5) = 510− (300 + 60) = 150. Therefore, the cost of the schedule is
f2 = t̃6 + η6 − t̃1 − b = 600 + 60− 90− 150 = 420. The soft time window penalization
is f1 = (β

¯2 − t̃2) + (β
¯3 − t̃3) = (210− 180) + (330− 240) = 120.

Cost. To improve the cost of the schedule, the maximum possible advance and delay times for
the service is found using function getTimeCost (for more details see Example 6.A.10).
Therefore, two delay times and two advance times are possible:

Delay: d
¯

= 0 and d̄ = 90. The schedule of Service j = 4 is delayed 60 minutes with
randomDelay (for more information see Example 6.A.16), resulting in the schedule:
t̃1 = 90, t̃2 = 210, t̃3 = 300, t̃4 = 450, t̃5 = 510 and t̃6 = 600 (line 18), Figure 6.7. The
interval within which Service 4 can be delayed is presented in Figure 6.7 as a bolded
segment in the hard time window of the service.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2α
¯3

ᾱ3

β
¯3

β̄3α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 6.7: Delay Service 4 to reduce breaks.

There is no break larger that two hours, therefore the cost of the schedule is f2 =
t̃6 + η6− t̃1 = 600 + 60− 90 = 570. The soft time window penalization is f1 = β

¯3− t̃3 =
330− 300 = 30.

Delay: d
¯

= 90 and d̄ = 210. The schedule of servService j = 4 is delayed 180 minutes with
randomDelay (for more details see Example 6.A.17), resulting in the schedule shown
in Figure 6.8: t̃1 = 90, t̃2 = 210, t̃3 = 300, t̃4 = 570 and t̃5 = 630, t̃6 = 690 (line 18).

6.2. BIOBJECTIVE METAHEURISTIC ALGORITHM 121

The interval within which Service 4 can be delayed is presented in Figure 6.8 as a bolded
segment in the hard time window of the service. Note that, this interval is obtained
considering that the break between services 3 and 4 should have a duration of at least
πmin, which is represented in the schedule as a bolded segment after the end of Service
3.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6π in

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2α
¯3

ᾱ3

β
¯3

β̄3α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 6.8: Delay Service 4 to increase the previous break.

The largest break of the schedule is between services 3 and 4, which has a duration
of b = t4 − (t̃3 + η3 + θ3,4) = 570 − (300 + 60) = 210. Therefore, the cost of the
schedule is f2 = t̃6 + η6 − t̃1 − b = 690 + 60 − 90 − 210 = 450. The soft time window
penalization is f1 = (β̄3 − t̃3) + (t̃4 + η4 − β̄4) + (t̃5 + η5 − β̄5) + (t̃6 + η6 − β̄6) =
(330− 300) + (570 + 60− 600) + (630 + 60− 630) + (690 + 60− 720) = 150.

Advance: a
¯

= 0 and ā = 120. The schedule of Service j = 4 is advanced 30 minutes with
randomAdvance (see Example 6.A.19 for more information), resulting in the schedule
shown in Figure 6.9: t̃1 = 90, t̃2 = 210, t̃3 = 300, t̃4 = 360, t̃5 = 510 and t̃6 = 600 (line
21). The interval within which Service 4 can be advanced is presented in Figure 6.9 as
a bolded segment in the hard time window of the service.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2α
¯3

ᾱ3

β
¯3

β̄3α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 6.9: Advance Service 4 to reduce breaks.

There is no break larger that two hours, therefore the cost of the schedule is f2 =
t̃6 + η6− t̃1 = 600 + 60− 90 = 570. The soft time window penalization is f1 = β

¯3− t̃3 =
330− 300 = 30.

Advance: a
¯

= 60 and ā = 150. The schedule of Service j = 4 is advanced 120 minutes with
randomAdvance (for more information see Example 6.A.20), resulting in the schedule
shown in Figure 6.10: t̃1 = 90, t̃2 = 150, t̃3 = 210, t̃4 = 270, t̃5 = 510 and t̃6 = 600 (line
21). The interval within which Service 4 can be advanced is presented in Figure 6.10
as a bolded segment in the hard time window of the service. Note that, this interval is
obtained considering that the break between services 4 and 5 should have a duration of
at least πmin, which is represented in the schedule as a bolded segment before the start
of Service 5.

122 CHAPTER 6. THE BIOBJECTIVE PROBLEM

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6π in

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2α
¯3

ᾱ3

β
¯3

β̄3α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 6.10: Advance Service 4 to increase the next break.

The largest break of the schedule is between services 4 and 5, which has a duration of
b = t̃5− (t̃4 + η4 + θ4,5) = 510− (270 + 60) = 180. Therefore, the cost of the schedule is
f2 = t̃6 + η6 − t̃1 − b = 600 + 60− 90− 180 = 390. The soft time window penalization
is f1 = (β̄2 − t̃2) + (β̄3 − t̃3) = (210− 150) + (330− 210) = 180.

The non dominated solutions are the ones presented in Figure 6.5 (B: f1 = 30, f2 = 450),
Figure 6.6 (C: f1 = 120, f2 = 420) and Figure 6.10 (G: f1 = 180, f2 = 390). The dominated
solutions are the ones shown in Figure 6.4 (A: f1 = 30, f2 = 570), Figure 6.7 (D: f1 = 30,
f2 = 570), Figure 6.8 (E: f1 = 150, f2 = 450) and Figure 6.9 (F: f1 = 30, f2 = 570), because
the schedule of Figure 6.5 is better, or equal, in terms of both objectives. Figure 6.11 shows the
dominated (in red) and non dominated points (in blue) obtained in this example.

B

C

G

A

D

E

F

400

450

500

550

50 100 150
welfare

co
st type

Dominated

Non dominated

Figure 6.11: Dominated and non dominated points.

6.A. AUXILIARY FUNCTIONS 123

Appendix 6.A Auxiliary functions
The functions described in this appendix are used to completely describe the method used to obtain
the Pareto frontier.

6.A.1 Adaptive Large Neighborhood Search: ALNS
Algorithm 6.7 presents the ALNS version used to improve solutions. This method is the same
than the one described in Section 3.1, but now it also stores the solutions that are composed by
different routes (line 9).

Algorithm 6.7: ALNS - Adaptive Large Neighborhood search
Data: the objective function (f), the initial solution (ωωω), the removal operators (Σrem), the

insertion operators (Σins) and the the set of solutions (Ω̂)
1 σrem ← (1, ..., 1), σins ← (1, ..., 1), ωωω′ ← ωωω

//Improve the solution
2 while stopping criteria not met do

//Get removal and insertion operators
3 ςrem ← chooseRandom(σrem, Σrem)
4 ςins ← chooseRandom(σins, Σins)

//Obtain new solution
5 ω̄ωω ← destroySolution(ωωω, ςrem, f)
6 ωωω∗ ← repairSolution(ω̄ωω, ςins, f)

//Update best solution
7 if f(ωωω∗) < f(ωωω′) then
8 ωωω′ ← ωωω∗

//Update the set of multiple routes
9 Ω̂ ← updateMultipleRoutes(Ω̂, ωωω∗)

//Update current solution
10 ωωω ← acceptanceCriteria(ωωω∗, ωωω′)

//Update the weights of the operators
11 σrem ← updateWeights(σrem, f , ωωω′, ωωω∗), σins ← updateWeights(σins, f , ωωω′, ωωω∗)
12 return ωωω′, Ω̂

6.A.1.1 Update the set of solutions based on different routes: updateMultipleRoutes

Algorithm 6.8: updateMultipleRoutes - Update the set that contains solutions with
different routes

Data: the set of solutions (Ω̂) and the new solution (ωωω = (xxx, ttt))
1 add ← true

2 for ω̂ωω ∈ Ω̂ do
//Check if the routes are equal

3 if xxx = x̂xx then
4 add ← false

5 break
//Add the route to the set

6 if add = true then
7 Ω̂ ← Ω̂ ∪ {ωωω}
8 return Ω̂

124 CHAPTER 6. THE BIOBJECTIVE PROBLEM

Algorithm 6.8 describes the function used to update the set that stores solutions composed by
different routes. To check if a new solution needs to be added to the set, the algorithm iterates
through the solutions and verifies if the routes are equal (lines 1 - 4). The new solution is added
to the set if it is composed by routes different from those already in the set (lines 5 - 6).

6.A.2 Update the non dominated solutions: updateNonDominatedSet
Algorithm 6.9 studies the dominance relation between the new solutions and the ones in the set
(line 1 - 9).

There are three possible scenarios:

• If the solutions are equal, the new solution cannot be added to the set (lines 4 - 5).

• In case the new solution is dominated by any one of the set (lines 6 - 7), the solution will
not be added to the set.

• If the new solution dominates any one of the set (lines 8 - 9), it is added to the set (line 13)
and all the dominated solutions are removed (lines 11 - 12).

Algorithm 6.9: updateNonDominatedSet - Update the set that contains solutions with
different routes

Data: the set of non dominated solutions (Ω) and the new solution (ω̄ωω)
1 d ← ∅ //Solutions dominated by the new one
2 stop ← false //Stop if the new solution is dominated

//Check the dominance relation of the new solution with the ones on the set
3 for ωωω ∈ Ω do
4 if ωωω = ω̄ωω then

//The solutions are equal
5 stop ← true, break
6 else if (f1(ωωω) ≤ f1(ω̄ωω) and f2(ωωω) ≤ f2(ω̄ωω)) and (f1(ωωω) < f1(ω̄ωω) or f2(ωωω) < f2(ω̄ωω)) then

//The new solution is dominated
7 stop ← true, break
8 else if (f1(ω̄ωω) ≤ f1(ωωω) and f2(ω̄ωω) ≤ f2(ωωω)) and (f1(ω̄ωω) < f1(ωωω) or f2(ω̄ωω) < f2(ωωω)) then

//The solution of the set is dominated by the new one
9 d ← d ∪ {ωωω}

//Update the non dominated set
10 if stop = false then
11 if d ̸= ∅ then

//Remove dominated solutions from the set
12 Ω ← Ω \ {d}

//Add the new solution to the set
13 Ω ← Ω ∪ {ω̄ωω}
14 return Ω̂

6.A.3 Filter the set of solutions: filterSet
Algorithm 6.10 filters the set of solutions in order to only keep those that are close to the non
dominated ones. To do this, for each solution of Ω̂, the schedules that optimize the two different
lexicographic functions are obtained (line 3). Then, if the distance between any of the three
solutions (original, optimizing welfare over cost or optimizing cost over welfare) and the set of non

6.A. AUXILIARY FUNCTIONS 125

dominated solutions is lower than a certain small value, υ1, the solutions are added to the set Ω̂1

(lines 4 - 5). In case the distance is lower than a moderate value, υ2, the solutions are added to
Ω̂2 (lines 6 - 7).

Algorithm 6.10: filterSet - Keep solutions close to the non dominated ones
Data: the set of solutions composed by different routes (Ω̂) and the set of non dominated

solutions (Ω)
1 Ω̂1, Ω̂2 ← ∅ //Initialize sets
2 for ω̂ωω ∈ Ω̂ do

//Get schedules of ω̂ωω that optimise each lexicographic objective function
3 ω̂ωωwc ←schedule(ω̂ωω, fwc), ω̂ωωcw ←schedule(ω̂ωω, fcw)
4 if distance(ω̂ωω, Ω) < υ1 or distance(ω̂ωωwc, Ω) < υ1 or distance(ω̂ωωcw, Ω) < υ1 then

//If the distance with Ω is small
5 Ω̂1 ← Ω̂1 ∪ {ω̂ωω, ω̂ωωwc, ω̂ωωcw}
6 else if distance(ω̂ωω, Ω) < υ2 or distance(ω̂ωωwc, Ω) < υ2 or distance(ω̂ωωcw, Ω) < υ2 then

//If the distance with Ω is moderate
7 Ω̂2 ← Ω̂2 ∪ {ω̂ωω, ω̂ωωwc, ω̂ωωcw}
8 return Ω̂1, Ω̂2

6.A.4 Update the schedule of a solution: schedule
To obtain the schedule of a solution, so that the welfare is prioritized over the cost (or the cost
is prioritized over the welfare) the methodology described in Chapter 3 Subsection 3.5 is used.
The only difference is that, in this case, the new schedule must be obtained for every route that
composes the solution.

6.A.5 Update the set of solutions: updateSetsOfSolutions
Algorithm 6.11 updates the sets of solutions to add those that are close to the non dominated ones.
If the distance between the solution and the non dominated set is lower than a certain small value,
υ1, the solution is added to Ω̂1 (lines 1 - 2). In case the distance is lower than a moderate value,
υ2, the solution is added to Ω̂2 (lines 3 - 4).

Algorithm 6.11: updateSetsOfSolutions - Add solutions close to the non dominated ones
Data: the sets of solutions (Ω̂1, Ω̂2), the non dominated solutions (Ω) and the new solution

(ωωω)
1 if distance(ωωω, Ω) < υ1 then

//If the distance with Ω is small
2 Ω̂1 ← Ω̂1 ∪ {ωωω}
3 else if distance(ωωω, Ω) < υ2 then

//If the distance with Ω is moderate
4 Ω̂2 ← Ω̂2 ∪ {ωωω}
5 return Ω̂1, Ω̂2

6.A.6 Get earliest and latest starting times: getEarliestLatest
This function is the one described in Section 5.1.1.

126 CHAPTER 6. THE BIOBJECTIVE PROBLEM

Example 6.A.1. Illustration of Algorithm 5.2.
The earliest starting times, for the route presented in Example 6.2.1, according to hard time

windows are:

j = 1. te
1 = max{α

¯1, γ
¯
} = max{0, 0} = 0.

j = 2. te
2 = max{α

¯2, te
1 + η1 + θ1,2} = max{120, 0 + 60} = 120.

j = 3. te
3 = max{α

¯3, te
2 + η2 + θ2,3} = max{60, 120 + 60} = 180.

j = 4. te
4 = max{α

¯4, te
3 + η3 + θ3,4} = max{180, 180 + 60} = 240.

j = 5. te
5 = max{α

¯5, te
4 + η4 + θ4,5} = max{450, 240 + 60} = 450.

j = 6. te
6 = max{α

¯6, te
5 + η5 + θ5,6} = max{540, 450 + 60} = 540.

The latest starting times according to hard time windows are:

j = 6. tl
6 = min{ᾱ6 − η6, γ̄ − η6} = min{840− 60, 840− 60} = 780.

j = 5. tl
5 = min{ᾱ5 − η5, tl

6 − θ5,6 − η5} = min{780− 60, 780− 60} = 720.

j = 4. tl
4 = min{ᾱ4 − η4, tl

5 − θ4,5 − η4} = min{660− 60, 780− 60} = 600.

j = 3. tl
3 = min{ᾱ3 − η3, tl

4 − θ3,4 − η3} = min{510− 60, 600− 60} = 450.

j = 2. tl
2 = min{ᾱ2 − η2, tl

3 − θ2,3 − η2} = min{330− 60, 450− 60} = 270.

j = 1. tl
1 = min{ᾱ1 − η1, tl

2 − θ1,2 − η1} = min{240− 60, 270− 60} = 180.

6.A.7 Obtain the maximum time the service can be delayed or advanced
according to soft time windows: getTimeStw

Algorithm 6.12 computes the maximum time a service can be advanced or delayed, according to
the soft time window penalization.

Algorithm 6.12: getTimeStw - Get maximum advance and delay time of the service
according to stw

Data: the service (j), the route (R), the solution (ωωω = (xxx, ttt)), the earliest starting times (te)
and the latest starting times (tl)

1 a ← 0, d ← 0 //Initialize advance and delay times
2 if tj < β

¯ j
then

//The service is before its time window
3 d ← min{β̄j − ηj − tj , tl

j − tj}
4 else if tj > β̄j − ηj then

//The service is after its time window
5 a ← min{tj − β

¯j
, tj − te

j}
6 else
7 if min{β̄j − ηj − tj , tl

j − tj} ̸= 0 then
//The service is within its soft time window, but can be delayed

8 d ← min{β̄j − ηj − tj , tl
j − tj}

9 if min{tj − β
¯ j

, tj − te
j} ̸= 0 then

//The service is within its soft time window, but can be advanced
10 a ← min{tj − β

¯j
, tj − te

j}
11 return d, a

6.A. AUXILIARY FUNCTIONS 127

Three possible options are considered:

• If the service is scheduled before its soft time window (line 2), the delay is the time needed
to finish the service at the same time as its soft time window (line 3).

• If the service ends after its soft time window (line 4), the advance time is the one needed for
the service to start at its soft time window (line 5).

• In case the service is within its soft time window, the delay is the time needed to end the
service when its soft time window finishes (lines 7 - 8). The advance is the time needed to
start the service at its soft time window (lines 9 - 10).

Example 6.A.2. Illustration of Algorithm 6.12.
The data given by Example 6.2.1 are: the service to move (j = 4), the route

(R = {1, 2, 3, 4, 5, 6}), the schedule to modify (ωωω = (xxx, ttt), t1 = 90, t2 = 210, t3 = 300, t4 = 390,
t5 = 510 and t6 = 600), the earliest starting times (te) and the latest starting times (tl).

In this case, Service j = 4 is scheduled within its soft time window, t4 = 390 ∈ [β
¯4, β̄4 − η4] =

[240, 540]. Therefore, the maximum delay time is d = min{β̄4 − η4 − t4, tl
4 − t4} = min{600 −

60 − 390, 600 − 390} = 150 (line 8). The maximum advance time is a = min{t4 − β
¯4, t4 − te

4} =
min{390− 240, 390− 240} = 150 (line 10).

6.A.8 Get services affected by the delay time: getAffectedServicesDelay

Algorithm 6.13: getAffectedServicesDelay - Get services affected by a potential delay
of j

Data: the service (j), the route (R), the solution (ωωω = (xxx, ttt)), the delay time (d) and the
followers of j (R̄)

1 R̂ ← ∅
//Delay the service

2 tj ← tj + d

3 for k ∈ R̄ do
4 if tk < tk−1 + ηk−1 + θk−1,k then

//The start of the service is affected by the delay
5 tk ← tk−1 + ηk−1 + θk−1,k

6 R̂ ← R̂ ∪ {k}
7 else
8 break
9 return R̂

Algorithm 6.13 obtains the services that will be affected by the delay of a given service. The
method begins delaying service j (line 2) and then, for each of its followers, checks if they will be
affected by the delay of j (lines 3 - 8).

Example 6.A.3. Illustration of Algorithm 6.13.
The data provided by Example 6.2.1 are: the service to move (j = 4), the route

(R = {1, 2, 3, 4, 5, 6}), the schedule to modify (ωωω = (xxx, ttt), t1 = 90, t2 = 210, t3 = 300, t4 = 390,
t5 = 510 and t6 = 600), the delay time (d = 150) and the followers of 4 (R̄ = {5, 6}).

The algorithm starts initializing the set of affected services, R̂ = ∅, and delaying service 4,
t4 = t4 + d = 390 + 150 = 540. Then, the method checks if the followers are affected by the delay
of 4:

k = 5. In this case, t5 = 510 and t4 + η4 + θ4,5 = 540 + 60 = 600, which means that 5 is affected by
the delay (line 4). Therefore, t5 = t4 + η4 + θ4,5 = 600 and R̂ = R̂ ∪ {6} = {5} (lines 5 - 6).

128 CHAPTER 6. THE BIOBJECTIVE PROBLEM

k = 6. In this case, t6 = 600 and t5 + η5 + θ5,6 = 600 + 60 = 660, which means that 6 is affected
by the delay (line 4). Therefore, t6 = t5 + η5 + θ5,6 = 660 and R̂ = R̂ ∪ {5} = {5, 6} (lines 5
- 6).

Example 6.A.4. Illustration of Algorithm 6.13.
The data provided by Example 6.2.1 are: the service to move (j = 4), the route

(R = {1, 2, 3, 4, 5, 6}), the schedule to modify (ωωω = (xxx, ttt), t1 = 90, t2 = 210, t3 = 300, t4 = 390,
t5 = 510 and t6 = 600), the delay time (d = 210) and the followers of 4 (R̄ = {5, 6}).

The algorithm starts initializing the set of affected services, R̂ = ∅, and delaying service 4,
t4 = t4 + d = 390 + 210 = 600. Then, the method checks if the followers are affected by the delay
of 4:

k = 5. In this case, t5 = 510 and t4 + η4 + θ4,5 = 600 + 60 = 660, which means that 5 is affected by
the delay (line 4). Therefore, t5 = t4 + η4 + θ4,5 = 660 and R̂ = R̂ ∪ {6} = {5} (lines 5 - 6).

k = 6. In this case, t6 = 600 and t5 + η5 + θ5,6 = 660 + 60 = 720, which means that 6 is affected
by the delay (line 4). Therefore, t6 = t5 + η5 + θ5,6 = 720 and R̂ = R̂ ∪ {5} = {5, 6} (lines 5
- 6).

6.A.9 Delay time so the penalization does not increase: updateDelay
Algorithm 6.14 updates the delay time of the service, in order to guarantee that by delaying the
service the penalization of the route will not be increased. First, the possible delay times for
the services are obtained (lines 1 - 3). Then, for each possible delay time (line 4), the algorithm
computes the penalization of the original (lines 6 - 10) and new (lines 11 - 16) schedules of the
service, which are used to obtain the change in the penalization (line 17). After that, for each
follower, their change of penalization is obtained (lines 17 - 32). Finally, the delay time is updated
if the penalization does not increase with the delay (lines 35 - 36).

6.A. AUXILIARY FUNCTIONS 129

Algorithm 6.14: updateDelay - Get maximum delay to not increase penalization
Data: the service (j), the route (R), the solution (ωωω = (xxx, ttt)), the delay time (d) and the

affected services (R̂)
//Possible delay times of j

1 D ← delayTimes(j, R, ω̄ωω, d, R̂)
2 if d /∈ D then
3 D ← D ∪ {d}

//Get maximum delay time that does not increase penalization
4 d̄ ← 0
5 for d̂ ∈ sorted(D) do
6 σ ← 0 //Change in the penalization
7 σo ← 0 //Old penalization
8 if tj < β

¯ j
then

9 σo ← β
¯j
− tj //The service is before its stw start

10 else if tj + ηj ≥ β̄j then
11 σo ← tj + ηj − β̄j //The service ends after its stw ends
12 t̂j ← tj + d̂ //Delay the service
13 σn ← 0 //New penalization
14 if t̂j < β

¯ j
then

15 σn ← β
¯j
− t̂j //The delayed service is before its stw start

16 else if t̂j + ηj ≥ β̄j then
17 σn ← t̂j + ηj − β̄j //The delayed service is before its stw start
18 σ ← σ + (σn − σo)

//Delay the affected services
19 for k ∈ R̂ do
20 t̄k ← t̂k−1 + ηk−1 + θk−1,k //Earliest start of k according its predecessors
21 if tk < t̄k then

//If k is affected by the delay
22 t̂k ← t̄k

23 σo ← 0 //Old penalization
24 if tk < β

¯ k
then

25 σo ← β
¯k
− tk //The service is before its stw start

26 else if tk + ηk ≥ β̄k then
27 σo ← tk + ηk − β̄k //The service ends after its stw ends
28 σn ← 0 //New penalization
29 if t̂k < β

¯ k
then

30 σn ← β
¯k
− t̂k //The delayed service is before its stw start

31 else if t̂k + ηk ≥ β̄k then
32 σn ← t̂k + ηk − β̄k //The delayed service is before its stw start
33 σ ← σ + (σn − σo)
34 else
35 break
36 if σ ≤ 0 then
37 d̄ ← d̂ //If the penalization did not increase
38 else
39 break
40 return d̄

130 CHAPTER 6. THE BIOBJECTIVE PROBLEM

Example 6.A.5. Illustration of Algorithm 6.14.
The input data given by Example 6.2.1 are: the service to move (j = 4), the route (R =

{1, 2, 3, 4, 5, 6}), the schedule to modify (ωωω = (xxx, ttt), t1 = 90, t2 = 210, t3 = 300, t4 = 390, t5 = 390
and t6 = 600), the delay time (d = 150) and the affected services (R̄ = {5, 6}).

The first step is to obtain the list of possible delay times using function delayTimes (see
Example 6.A.6 for more details), D = {120, 150}. Then, the algorithm iterates through the delay
times to get the largest one that does not increase the penalization:

d̂ = 120. Compute how the penalization of each service changes when delaying 4 120 minutes:

j = 4. The original schedule of Service 4 is t4 = 390 ∈ [β
¯4, β̄4 − η4] = [240, 540], that is, its

original penalization is σo = 0 (lines 7 - 11). The delayed schedule is t̂4 = t4 + d̂ =
510 ∈ [β

¯4, β̄4 − η4] = [240, 540], which means that its new penalization is σn = 0 (lines
13 - 17). Therefore, there is no change in the penalization of Service 4, σ = 0 (line 18).

k = 5. The delayed schedule of Service 5 is t̄5 = t̂4 + η4 + θ4,5 = 510 + 60 = 570 and
t5 = 510 < t̄5. Therefore, t̂5 = t̄5 = 570 (lines 21 - 21). The original schedule of 5 is
t5 = 510 ∈ [β

¯5, β̄5 − η5] = [480, 570], that is, its original penalization is σo = 0 (lines 22
- 27). Since t̂5 = 570 ∈ [β

¯5, β̄5 − η5] = [480, 570], its new penalization is σn = 0 (lines
28 - 32). Which means that there is no change in the penalization of Service 5, σ = 0
(line 33).

k = 6. The delayed schedule of Service 6 is t̄6 = t̂5 + η5 + θ5,6 = 570 + 60 = 630 and
t6 = 600 < t̄6. Therefore, t̂6 = t̄6 = 630 (lines 21 - 21). The original schedule of 6 is
t6 = 600 ∈ [β

¯6, β̄6 − η6] = [570, 660], that is, its original penalization is σo = 0 (lines 22
- 27). Since t̂6 = 630 ∈ [β

¯6, β̄6 − η6] = [570, 660], its new penalization is σn = 0 (lines
28 - 32). Which means that there is no change in the penalization of Service 6, σ = 0
(line 33).

Thus, σ ≤ 0 and the maximum delay time is updated to d̄ = d̂ = 120 (lines 36 - 37), as it
can be seen in Figure 6.12.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2α
¯3

ᾱ3

β
¯3

β̄3α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 6.12: Delay of 120 minutes.

d̂ = 150. Compute how the penalization of each service changes when delaying 4 150 minutes:

j = 4. The original schedule of Service 4 is t4 = 390 ∈ [β
¯4, β̄4 − η4] = [240, 540], that is, its

original penalization is σo = 0 (lines 7 - 11). The delayed schedule is t̂4 = t4 + d̂ =
540 ∈ [β

¯4, β̄4 − η4] = [240, 540], which means that its new penalization is σn = 0 (lines
13 - 17). Therefore, there is no change in the penalization of Service 4, σ = 0 (line 18).

k = 5. The delayed schedule of Service 5 is t̄5 = t̂4 + η4 + θ4,5 = 540 + 60 = 600 and
t5 = 510 < t̄5, meaning that t̂5 = t̄5 = 600 (lines 21 - 21). The original schedule of 5
is t5 = 510 ∈ [β

¯5, β̄5 − η5] = [480, 570], that is, its original penalization is σo = 0 (lines

6.A. AUXILIARY FUNCTIONS 131

22 - 27). Since t̂5 = 600 > β̄5 − η5 = 570 its new penalization is σn = t̂5 + η5 − β̄5 =
600 + 60− 630 = 30 (lines 31 - 32). Therefore, the change in the penalization of Service
5 is σ = 30 (line 33).

k = 6. The delayed schedule of Service 6 is t̄6 = t̂5 + η5 + θ5,6 = 600 + 60 = 660 and
t6 = 600 < t̄6, so t̂6 = t̄6 = 660 (lines 21 - 21). The original schedule of 6 is t6 =
600 ∈ [β

¯6, β̄6−η6] = [570, 660], that is, its original penalization is σo = 0 (lines 22 - 27).
Since t̂6 = 660 ∈ [β

¯6, β̄6 − η6] = [570, 660] its new penalization is σn = 0 (lines 38 - 32).
Therefore, there is no change in the penalization of Service 6, σ = 0 (line 33).

Thus σ > 0 and the maximum delay time is not updated, d̄ = 120, (lines 36 - 39) as it can
be seen in Figure 6.13.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2α
¯3

ᾱ3

β
¯3

β̄3α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 6.13: Delay of 150 minutes.

6.A.9.1 Get list of potential delay times: delayTimes

To obtain the delay times that can result in a change on the penalization Algorithm 6.15 is used.
For the given service, the method obtains the delay time necessary for it to start at the beginning,
and finish at the end, of its soft time window (lines 2 - 6). The same is done for each follower
affected by the delay (lines 8 - 37). Two possibilities are considered:

• If the follower is scheduled within its soft time window, the delay1 time needed for it to end
when the window finishes is computed (lines 8 - 17).

• In case the service starts before the soft time window, the delay time necessary for the service
to start at its soft time window is obtained (lines 19 - 28). In addition, the algorithm also
gets the delay time that would cause the service to end at the same time as its soft time
window (lines 28 - 37).

1Note that the delay times obtained are those needed to delay the given service j so that the penalization of its
followers changes.

132 CHAPTER 6. THE BIOBJECTIVE PROBLEM

Algorithm 6.15: delayTimes - Get possible delay times to not increase penalization
Data: the service (j), the route (R), the solution (ωωω = (xxx, ttt)), the delay time (d) and the set

of affected services (R̂)
1 D ← ∅
2 if tj + d ≥ β

¯ j
then

//The delayed service is after its stw start
3 if β

¯ j
− tj > 0 then

4 D ← D ∪ {β
¯j
− tj}

5 if tj + d ≥ β̄j − ηj and β̄j − ηj − tj > 0 then
//The delayed service is after its stw end

6 D ← D ∪ {β̄j − ηj − tj}
7 for k ∈ R̂ do
8 if β

¯ k
≤ tk ≤ β̄k − ηk then

//Get delay time needed for the service leaves its stw
9 ϵ1 ← tk − tj

//Service time and travel time between j and k

10 ϵ2 ← 0
11 for l ∈ {j, ..., k − 1} do
12 ϵ2 ← ϵ2 + ηl + θl,l+1

13 ϵ3 ← ϵ1 − ϵ2 //Free time between services j and k

14 ϵ4 ← β̄k − ηk − tk //Delay time needed for k to end at its stw
15 ϵ5 ← ϵ4 + ϵ3 //Delay time of j needed to have k ends at its stw
16 if 0 < ϵ5 ≤ d and ϵ5 /∈ D then
17 D ← D ∪ {ϵ5}
18 else if tk < β

¯ k
then

//Get delay time needed for the service enters its stw
19 ϵ1 ← tk − tj

//Service time and travel time between j and k

20 ϵ2 ← 0
21 for l ∈ {j, ..., k − 1} do
22 ϵ2 ← ϵ2 + ηl + θl,l+1

23 ϵ3 ← ϵ1 − ϵ2 //Free time between services j and k

24 ϵ4 ← β
¯k
− tk //Delay time needed for k to enter its stw

25 ϵ5 ← ϵ4 + ϵ3 //Delay time of j needed to have k enters its stw
26 if 0 < ϵ5 ≤ d then
27 if ϵ5 /∈ D then
28 D ← D ∪ {ϵ5}
29 ϵ4 ← β̄k − ηk − tk //Delay time needed for k to end at its stw
30 ϵ5 ← ϵ4 + ϵ3 //Delay time of j needed to have k ends at its stw
31 if 0 < ϵ5 ≤ d and ϵ5 /∈ D then
32 D ← D ∪ {ϵ5}
33 return D

Example 6.A.6. Illustration of Algorithm 6.15.
According to Example 6.A.5, the input data are: the service to move (j = 4), the route

(R = {1, 2, 3, 4, 5, 6}), the schedule to modify (ωωω = (xxx, ttt), t1 = 90, t2 = 210, t3 = 300, t4 = 390,
t5 = 510 and t6 = 600), the delay time (d = 150) and the affected services (R̄ = {5, 6}).

First, the list of delay times D = ∅ is initialized. Since t4 + d = 390 + 150 = 540 = β̄4 − η4 =

6.A. AUXILIARY FUNCTIONS 133

600− 60 = 540 (line 5) the delay time of Service 4 is D = D ∪{β̄4− η4− t4} = {540− 390} = 150.
Then, for each of the affected services, the delay times that could change their penalization are
computed:

k = 5. In this case, t5 = 510 ∈ [β
¯5, β̄5 − η5] = [480, 570] (line 8), which means that the delay time

of j = 4 so k = 5 ends at its soft time window must be obtained:

• The time between the schedules of 4 and 5 is ϵ1 = t5 − t4 = 510− 390 = 120 (line 9).
• The service and travel times between 4 and 5 is ϵ2 = η4 + θ4,5 = 60 (lines 9 - 12).
• The free time between 4 and 5 is ϵ3 = ϵ1 − ϵ2 = 120− 60 = 60 (line 13).
• The delay time of 5 so it end when its soft time window finishes is ϵ4 = β̄5 − η5 − t5 =

630− 60− 510 = 60.
• The delay time of 4 so Service 5 ends with its soft time window is ϵ5 = ϵ4 + ϵ3 =

60 + 60 = 120.

Finally, ϵ5 = 120 is added to the list, D = D ∪ {ϵ5} = {150, 120} (lines 16 - 17).

k = 6. In this case, t6 = 600 ∈ [β
¯6, β̄6 − η6] = [570, 660] (line 8) which means that the delay time

of j = 4 so k = 6 ends at its soft time window must be obtained:

• The time between the schedules of 4 and 6 is ϵ1 = t6 − tj = 600− 390 = 210 (line 9).
• The service and travel times between 4 and 6 is ϵ2 = η4 + θ4,5 + η5 + θ5,6 = 120 (lines 9

- 12).
• The free time between 4 and 6 is ϵ3 = ϵ1 − ϵ2 = 210− 120 = 90 (line 13).
• The delay time of 6 so it end when its soft time window finishes is ϵ4 = β̄6 − η6 − t6k =

720− 60− 600 = 60.
• The delay time of 4 so Service 6 ends with its soft time window is ϵ5 = ϵ4 + ϵ3 =

60 + 90 = 150.

Therefore, ϵ5 is not added to the list, because 150 is already on it.

6.A.10 Get services affected by the advance time:
getAffectedServicesAdvance

The services that will be affected by the advance of a given service are obtained using
Algorithm 6.16.

Algorithm 6.16: getAffectedServicesAdvance - Get services affected by a potential
advance of j

Data: the service (j), the route (R), the solution (ωωω = (xxx, ttt)), the advance time (a) and the
predecesors of j (R̄)

1 R̂ ← ∅
2 tj ← tj − a //Advance service j

3 for k ∈ reversed(R̄) do
4 if tk > tk+1 − θk,k+1 − ηk then

//If the new start of k is affected by the advance of j

5 tk ← tk+1 − θk,k+1 − ηk

6 R̂ ← R̂ ∪ {k}
7 else
8 break
9 return R̂

134 CHAPTER 6. THE BIOBJECTIVE PROBLEM

First, the service is advanced (line 2) and then, it is check if its predecessors are affected by
the advance (lines 3 - 8). This is done updating the starting time of the service according to the
advanced start of its follower (lines 4 - 5) and, if the new starting time is different than the original
one, the service is added to the list (line 6). In case the new start of the service is not affected,
the method terminates (lines 7 - 8).

Example 6.A.7. Illustration of Algorithm 6.16.
According to Example 6.2.1, the available data are: the service to move (j = 4), the route

(R = {1, 2, 3, 4, 5, 6}), the schedule to modify (ωωω = (xxx, ttt), t1 = 90, t2 = 210, t3 = 300, t4 = 390,
t5 = 510 and t6 = 600), the advance time (d = 150) and the predecessors of 4 (R̄ = {1, 2, 3}).

The set of affected services is initialized, R̂ = ∅, and Service j = 4 is advanced, t4 = t4 − d =
390− 150 = 240. After that, the method checks if the predecessors are affected by the advance of
4:

k = 3. In this case, t3 = 300 and t4 − η3 − θ3,4 = 240 − 60 = 180, which means that 3 is affected
by the advance (line 4). Therefore, t3 = t4 − η3 − θ3,4 = 180 and R̂ = R̂ ∪ {3} = {3} (lines 5
- 6).

k = 2. In this case, t2 = 210 and t3 − η2 − θ2,3 = 180 − 60 = 120, which means that 2 is affected
by the advance (line 4). Therefore, t2 = t3 − η2 − θ2,3 = 120 and R̂ = R̂∪ {2} = {3, 2} (lines
5 - 6).

k = 1. In this case, t1 = 90 and t2 − η1k − θ1,2 = 120− 60 = 60, which means that 1 is affected by
the advance (line 4). Therefore, t1 = t2 − η1 − θ1,2 = 60 and R̂ = R̂ ∪ {1} = {3, 2, 1} (lines 5
- 6).

6.A.11 Obtain advance time so the penalization does not increase:
updateAdvance

Algorithm 6.17 updates the advance time of the service to guarantee that the penalization of
the route will not increase when advancing. First, all possible advance times for the services are
computed (lines 1 - 3). Then, for each advance time (line 4), the method obtains their penalization
before (lines 6 - 10), and after (lines 11 - 16), advancing them. These two values are used to obtain
how the penalization changes (line 17). After that, if a service is affected by the advance of its
following service (lines 20 - 21), it is advanced and its change of penalization is computed (lines
22 - 32). In case the service is not affected by the advance, the loop ends (lines 33 - 34). Finally,
the advance time is updated if the penalization does not increase when the services are advanced
(lines 35 - 36). Otherwise, the algorithm terminates (lines 37 - 38).

6.A. AUXILIARY FUNCTIONS 135

Algorithm 6.17: updateAdvance - Get maximum advance to not increase penalization
Data: the service (j), the route (R), the solution (ωωω = (xxx, ttt)), the advance time (a) and the

affected services (R̂)
//Possible advance times of j

1 A ← advanceTimes(j, R, ω̄ωω, a, R̂)
2 if a /∈ A then
3 A ← A ∪ {a}

//Get maximum delay time that does not increase penalization
4 ā ← 0
5 for â ∈ sorted(A) do
6 σ ← 0
7 t̂j ← tj − â //Advance the services
8 σo ← 0 //Old penalization
9 if tj < β

¯ j
then

10 σo ← β
¯j
− tj //The service is before its stw start

11 else if tj + ηj ≥ β̄j then
12 σo ← tj + ηj − β̄j //The service ends after its stw ends
13 σn ← 0 //New penalization
14 if t̂j < β

¯ j
then

15 σn ← β
¯j
− t̂j //The advanced service is before its stw start

16 else if t̂j + ηj ≥ β̄j then
17 σn ← t̂j + ηj − β̄j //The advanced service is before its stw start
18 σ ← σ + (σn − σo)
19 for k ∈ R̂ do
20 t̄k ← t̂k+1 − ηk − θk,k+1 //Latest start of k according to its followers
21 if tk > t̄k then

//If k is affected by the advance
22 t̂k ← t̄k

23 σo ← 0 //Old penalization
24 if tk < β

¯ k
then

25 σo ← β
¯k
− tk //The service is before its stw start

26 else if tk + ηk ≥ β̄k then
27 σo ← tk + ηk − β̄k //The service ends after its stw ends
28 σn ← 0 //New penalization
29 if t̂k < β

¯ k
then

30 σn ← β
¯k
− t̂k //The advanced service is before its stw start

31 else if t̂k + ηkj ≥ β̄k then
32 σn ← t̂k + ηk − β̄k //The advanced service is before its stw start
33 σ ← σ + (σn − σo)
34 else
35 break
36 if σ ≤ 0 then

//If by advancing the penalization did not increase
37 ā ← â

38 else
39 break
40 return ā

136 CHAPTER 6. THE BIOBJECTIVE PROBLEM

Example 6.A.8. Illustration of Algorithm 6.17.
The data given by Example 6.2.1 are: the service to move (j = 4), the route

(R = {1, 2, 3, 4, 5, 6}), the schedule to modify (ωωω = (xxx, ttt), t1 = 90, t2 = 210, t3 = 300, t4 = 390,
t5 = 510 and t6 = 600), the advance time (d = 150) and the affected services (R̄ = {3, 2, 1}).

The first step is to obtain the list of possible advance times using function advanceTimes
(Example 6.A.9), A = {150}. Then, iterating through the advance times, the largest one that does
not increase the penalization is computed:

â = 150. Obtain how the penalization of each service changes when Service 4 is advanced 150
minutes:

j = 4. The original schedule of Service 4 is t4 = 390 ∈ [β
¯4, β̄4 − η4] = [240, 540], that is, its

original penalization is σo = 0 (lines 7 - 11). The advanced schedule is t̂4 = t4 + d̂ =
240 ∈ [β

¯4, β̄4 − η4] = [240, 540], which means that its new penalization is σn = 0 (lines
13 - 17). Therefore, there is no change in the penalization of Service 4, σ = 0 (line 18).

k = 3. The advanced schedule of Service 3 is t̄3 = t̂4 − η3 − θ3,4 = 240 − 60 = 180 and
t3 = 300 > t̄3, which means that t̂3 = t̄3 = 180 (line 22). The original schedule of
Service 3 is t3 = 300 < β

¯3 = 330, that is, its original penalization is σo = β
¯3 − t3 =

330 − 300 = 30 (line 24 - 25). Since t̂3 = 180 < β
¯3 = 330, its new penalization

is σn = β
¯3 − t̂3 = 330 − 180 = 150 (lines 29 - 30). Therefore, the change in the

penalization of Service 3 is σ = σn − σ0 = 150− 30 = 120 (line 33).

k = 2. The advanced schedule of Service 2 is t̄2 = t̂3 − η2 − θ2,3 = 180 − 60 = 120 and
t2 = 210 > t̄2, which means that t̂2 = t̄2 = 120 (line 22). The original schedule of
Service 2 is t2 = 210 = β

¯2, that is, its original penalization is σo = 0 (line 24 - 25). Since
t̂2 = 120 < β

¯2 = 210, its new penalization is σn = β
¯2−t̂2 = 210−120 = 90 (lines 29 - 30).

Therefore, the total change in the penalization is σ = σ+(σn−σ0) = 120+(90−0) = 210
(line 33).

k = 1. The advance schedule of Service 1 is t̄1 = t̂2 − η1 − θ1,2 = 120 − 60 = 60 and
t1 = 90 > t̄1, which means that t̂1 = t̄1 = 60 (line 22). The original schedule of Service
1 is t1 = 90 ∈ [β

¯1, β̄1 − η1] = [0, 90], that is, its original penalization is σo = 0 (line 23
- 27). Since t̂k = 60 ∈ [β

¯1, β̄1 − η1] = [0, 90], its new penalization is σn = 0 (lines 28 -
32). Therefore, there is no change in the penalization of Service 1, which means that
σ = 210 (line 33).

In this example σ > 0 so the maximum delay time is not updated, ā = 0, (lines 36 - 39), as
can be seen in Figure 6.14.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2α
¯3

ᾱ3

β
¯3

β̄3α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 6.14: Advance of 150 hours.

6.A. AUXILIARY FUNCTIONS 137

6.A.11.1 Get list of potential advance times: advanceTimes

Algorithm 6.18 computes the advance times that can result in a change on the penalization.

Algorithm 6.18: advanceTimes - Get possible advance times to improve penalization
Data: the service (j), the route (R), the solution (ωωω = (xxx, ttt)), the advance time (a) and the

affected services (R̂)
1 A ← ∅
2 if tj − a ≤ β̄j − ηj then

//The advanced service is before its stw end
3 if tj − (β̄j − ηj) > 0 then
4 A ← A ∪ {tj − (β̄j − ηj)}
5 if tj − a ≤ β

¯ j
and tj − β

¯ j
> 0 then

//The advanced service is after its stw end
6 A ← A ∪ {tj − β

¯j
}

7 for k ∈ R̂ do
8 if β

¯ k
≤ tk ≤ β̄k − ηk then

//Get advance time of the service so it leaves its stw
9 ϵ1 ← tj − tk

//Service time and travel time between j and k

10 ϵ2 ← 0
11 for l ∈ {j, ..., k − 1} do
12 ϵ2 ← ϵ2 + ηl + θl,l+1

13 ϵ3 ← ϵ1 − ϵ2 //Free time between services j and k

14 ϵ4 ← tk − β
¯k

//Advance time so k to leave its stw

15 ϵ5 ← ϵ4 + ϵ3 //Advance time of j to have k leave its stw
16 if 0 < ϵ5 < a and ϵ5 /∈ A then
17 A ← A ∪ {ϵ5}
18 else if tk > β̄k − ηk then

//Get advance time of the service so it enters its stw
19 ϵ1 ← tj − tk

20 ϵ2 ← 0
21 for l ∈ {j, ..., k − 1} do
22 ϵ2 ← ϵ2 + ηl + θl,l+1

23 ϵ3 ← ϵ1 − ϵ2 //Free time between services j and k

24 ϵ4 ← tk − (β̄k − ηk) //Advance time so k to enter its stw
25 ϵ5 ← ϵ4 + ϵ3 //Advance time of j to have k enter its stw
26 if 0 < ϵ5 < a then
27 if ϵ5 /∈ A then
28 A ← A ∪ {ϵ5}

//Get advance time of the service so it leaves its stw
29 ϵ4 ← tk − β

¯k
//Advance time so k to leave its stw

30 ϵ5 ← ϵ4 + ϵ3 //Advance time of j to have k leave its stw
31 if 0 < ϵ5 < a and ϵ5 /∈ A then
32 A ← A ∪ {ϵ5}
33 return A

For the given service, two advance times are obtained: the one needed for it to end at the same
time as its soft time window, and the time needed for the service to start at the beginning of the

138 CHAPTER 6. THE BIOBJECTIVE PROBLEM

soft time window (lines 2 - 6). After that, the same is done for each predecessor affected by the
advance (lines 7 - 32). Two possibilities are considered:

• If the predecessor is scheduled within its soft time window, the advance2 time needed for it
to start when the window begins is computed (lines 8 - 17).

• In case the service ends after the soft time window, the advance time needed for the service to
end when its soft time window finishes is obtained (lines 19 - 25). Furthermore, the advance
time needed for the service to start at the same time as its soft time window is also computed
(lines 26 - 32).

Example 6.A.9. Illustration of Algorithm 6.18.
The available data, given by Example 6.A.8, are: the service to move (j = 4), the route

(R = {1, 2, 3, 4, 5, 6}), the schedule to modify (ωωω = (xxx, ttt), t1 = 90, t2 = 210, t3 = 300, t4 = 390,
t5 = 510 and t6 = 600), the advance time (d = 150) and the affected services (R̄ = {3, 2, 1}).

First, the list of advance times is initialized A = ∅. Since t4 − d = 390− 150 = 240 = β
¯4 (line

5) the advance time is A = A ∪ {t4 − β̄4} = {390− 240} = {150}.
Then, for each of the affected services, the advance times that could change their penalization

are computed:

k = 3. In this case, t3 = 300 < β
¯3 = 330, which means that the service cannot be advanced

without increasing its penalization.

k = 2. In this case, t2 = 210 = β
¯2, which means that the service cannot be advanced without

increasing, its penalization.

k = 1. In this case t1 = 90 ∈ [β
¯1, β̄1−η1] = [60, 120] (line 8). Therefore, the advance time of j = 4

so Service k = 1 starts at its soft time window is obtained:

• The time between the schedules of services 4 and 1 is ϵ1 = t4 − t1 = 390 − 90 = 300
(line 9).

• The service and travel times between services 4 and 1 is ϵ2 = η1 + θ1,2 + η2 + θ2,3 + η3 +
θ3,4 = 180 (lines 9 - 12).

• The free time between services 4 and 1 is ϵ3 = ϵ1 − ϵ2 = 300− 180 = 120 (line 13).

• Advance time of Service 1 so it begins when its soft time window starts is ϵ4 = t1−β
¯1 =

90− 0 = 90.

• Delay time of Service 4 so Service 1 ends with its soft time window is ϵ5 = ϵ4 + ϵ3 =
90 + 120 = 210.

In this case ϵ5 is not added to the list because 210 > 150.

6.A.12 Obtain the maximum time the service can be delayed or
advanced according to the cost: getTimeCost

Algorithm 6.19 obtains the minimum and maximum times the service can be moved in order to
improve the cost of the schedule. First, the delay times that would either reduce the breaks after
the service (line 1) or make the break before the service reach a duration of πmin (line 2) are
computed. Then, the advance time that reduces the breaks before the service (line 4) or makes
the break after the service have a duration of πmin (line 5) is obtained.

2Note that the advance times obtained are those needed to move the given service j so that the penalization of
its predecessors changes.

6.A. AUXILIARY FUNCTIONS 139

Algorithm 6.19: getTimeCost - Get possible advance and delay times for j to improve
the cost

Data: the service (j), the route (R), the solution (ωωω = (xxx, ttt)), the earliest starting times (te)
and the latest starting times (tl)

//Get delay times
1 d

¯1, d̄1 ← delayReduceBreak(j, R, ωωω, tl)
2 d

¯2, d̄2 ← delayIncreaseBreak(j, R, ωωω, te)
3 D ← {(d

¯1, d̄1), (d
¯2, d̄2)}

//Get advance times
4 a

¯1, ā1 ← advanceReduceBreak(j, R, ωωω, tl)
5 a

¯2, ā2 ← advanceIncreaseBreak(j, R, ωωω, te)
6 A ← {(a

¯1, ā1), (a
¯2, ā2)}

7 return D, A

Example 6.A.10. Illustration of Algorithm 6.19.
According to Example 6.2.1, the available data are: the service (j = 4), the route (R =

{1, 2, 3, 4, 5, 6}), the schedule (ωωω = (xxx, ttt), t1 = 90, t2 = 210, t3 = 300, t4 = 390, t5 = 510 and
t6 = 600) and the earliest (te) and latest starting times (tl).

Two different delay times are obtained, depending on whether the break would increase or
decrease:

Reduce break. The maximum and minimum times Service 4 can be delayed to reduce the breaks
after it are d

¯1 = 0 and d̄1 = 90, which are obtained using function delayReduceBreak
(Example 6.A.11).

Increase break. The maximum and minimum times Service 4 can be delayed to increase the
break before it are d

¯2 = 90 and d̄2 = 210, which are obtained using function
delayIncreaseBreak (Example 6.A.12).

Two different advance times are computed, depending on whether the break would increase or
decrease:

Reduce break. The maximum and minimum times Service 4 can be advanced to reduce the
breaks before it are a

¯1 = 0 and ā1 = 120, which are obtained using function
advanceReduceBreak (Example 6.A.13).

Increase break. The maximum and minimum times Service 4 can be advanced to increase the
break after it are a

¯2 = 60 and ā2 = 150, which are obtained using function
delayIncreaseBreak (Example 6.A.14).

6.A.12.1 Get delay time needed to reduce breaks: delayReduceBreak

The function described in Algorithm 6.20 checks if the breaks can be reduced by delaying the
service. First, the maximum delay time for the service is computed (line 1). Then, the list of
services that will be affected by that delay is obtained (line 2). After that, iterating through the
affected services (line 5), the algorithm checks if there is a break between them (line 7), in which
case the delay time is updated (lines 8 - 16).

140 CHAPTER 6. THE BIOBJECTIVE PROBLEM

Algorithm 6.20: delayReduceBreak - Get delay time to reduce the breaks after the service
Data: the service (j), the route (R), the solution (ωωω = (xxx, ttt)) and the latest starting times (tl)
//Get delay times

1 d ← tl
j − tj

2 R̂ ← getAffectedServicesDelay(j, R, ωωω, d, F (j, R)) //Get services affected by the
delay

3 R̂ ←{j} ∪ R̂ //Add the service to the set
4 d

¯
, d̄ ← 0

//Check if there is a break between the affected services
5 for k ∈ R̂ do
6 if k + 1 ∈ R then
7 b ← tk+1 − (tk + ηk + θk,k+1)
8 if 0 < b < πmin then

//Get delay time so the service reaches k + 1
9 ϵ1 ← tk+1 − tj //Time between j and k + 1

//Service time and travel time between j and k + 1
10 ϵ2 ← 0
11 for l ∈ {j, ..., k} do
12 ϵ2 ← ϵ2 + ηl + θl,l+1

13 ϵ3 ← ϵ1 − ϵ2 //Free time between services j and k + 1
14 d̄ ← ϵ3

15 else if b ≥ πmin then
16 break
17 return d

¯
, d̄

Example 6.A.11. Illustration of Algorithm 6.20.
The data, provided by Example 6.A.10, are: the service (j = 4), the route (R = {1, 2, 3, 4, 5, 6}),

the schedule (ωωω = (xxx, ttt), t1 = 90, t2 = 210, t3 = 300, t4 = 390, t5 = 510, t6 = 600) and the earliest
(te) and latest starting times (tl).

The maximum time that the service can be delayed is d = tl
4 − t4 = 600 − 390 = 210 (line 1)

and the services that will be affected by this delay are R̂ = {5, 6} (Example 6.A.4). Now Service
4 is added to the affected services, R̂ = {4, 5, 6} and the maximum and minimum delay times are
initialized, d

¯
, d̄ = 0 (lines 3 - 4).

After that, the algorithm checks if there is a break after the services of R̂:

k = 4. The break between 4 and 5 is b = t5 − (t4 + η4 + θ4,5) = 510 − (390 + 60) = 60 (line 7).
Therefore, b < πmin (line 8), which means that the delay time of 4 needed to reach 5 must
be computed:

• The time between the schedules of 4 and 5 is ϵ1 = t5 − t4 = 510− 390 = 120 (line 9).
• The service and travel times between services 4 and 5 is ϵ2 = η4 + θ4,5 = 60 (lines 9 -

12).
• The free time between services 4 and 5 is ϵ3 = ϵ1 − ϵ2 = 120− 60 = 60 (line 13).

The delay is set as d̄ = ϵ3 = 60.

k = 5. The break between 5 and 6 is b = t5 − (t5 + η5 + θ5,5) = 600 − (510 + 60) = 30 (line 7).
Therefore, b < πmin (line 8), which means that the delay time of 44 needed to have service
5 reach 6 must be computed:

• The time between the schedules of 4 and 6 is ϵ1 = t6 − t4 = 600− 390 = 210 (line 9).

6.A. AUXILIARY FUNCTIONS 141

• The service and travel times between services 4 and 6 is ϵ2 = η4 + θ4,5 + η5 + θ5,6 = 120
(lines 9 - 12).

• The free time between services 4 and 6 is ϵ3 = ϵ1 − ϵ2 = 210− 120 = 90 (line 13).

The delay is set as d̄ = ϵ3 = 90, as it can be seen in Figure 6.15.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2α
¯3

ᾱ3

β
¯3

β̄3α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 6.15: Delay to reduce breaks.

6.A.12.2 Get delay time needed to increase the break: delayIncreaseBreak

Algorithm 6.20 checks if the break before the service can reach a duration of πmin by delaying the
service. After obtaining the maximum time the service can be delayed (line 1), it is necessary to
check if there is another break in the route with a duration of πmin (lines 3 - 7). If there is no
other big break, the algorithm tests if setting the start of the service at its latest time results in a
break of, at least, πmin (lines 8 - 9). In that case, the delay time is set as the maximum one (line
10). Finally, the minimum delay time that guarantees the break will have a duration of πmin, is
computed (lines 11 - 13).

Algorithm 6.21: delayIncreaseBreak - Get delay time to increase the break before the
service

Data: the service (j), the route (R), the solution (ωωω = (xxx, ttt)) and the latest starting times (tl)
//Get delay times

1 d ← tl
j − tj

2 d
¯
, d̄ ← 0

//Check if there is a big break in the route
3 b ← false

4 for k ∈ R do
5 if k ̸= 1 and k ̸= j then
6 if tk − (tk−1 + ηk−1 + θk−1,k) ≥ πmin then
7 b ← true

//Check if the break before j can be increased
8 if j ̸= 1 and b = false then
9 if tl

j − (tj−1 + ηj−1 + θj−1,j) ≥ πmin then
//If the break before j can cave a duration of πmin

10 d̄ ← d

//End of j − 1 + travel to j

11 t̄j ← tj−1 + ηj−1 + θj−1,j

12 if t̄j + πmin > tj then
//Minimum delay of j to get a break of πmin

13 d
¯
← t̄j + πmin − tj

14 return d
¯
, d̄

142 CHAPTER 6. THE BIOBJECTIVE PROBLEM

Example 6.A.12. Illustration of Algorithm 6.21.
The data, provided by Example 6.A.10, are: the service (j = 4), the route (R = {1, 2, 3, 4, 5, 6}),

the schedule (ωωω = (xxx, ttt), t1 = 90, t2 = 210, t3 = 300, t4 = 390, t5 = 510 and t6 = 600) and the
earliest (te) and latest starting times (tl).

The maximum time that the service can be delayed is d = tl
4 − t4 = 600 − 390 = 210 and the

maximum and minimum delay times are initialized to d
¯
, d̄ = 0 (lines 1 - 2).

The first step is to check if there is a break with a duration greater than or equal to πmin:

k = 2. The break between 1 and 2 is t2 − (t1 + η1 + θ1,2) = 210 − (90 + 60) = 60 which does not
reach a duration of πmin (line 6).

k = 3. The break between 2 and 3 is t3 − (t2 + η2 + θ2,3) = 300− (210 + 60) = 30 which does not
reach a duration of πmin (line 6).

k = 5. The break between 4 and 5 is t5 − (t4 + η4 + θ4,5) = 510− (390 + 60) = 60 which does not
reach a duration of πmin (line 6).

k = 6. The break between 5 and 6 is t6 − (t5 + η5 + θ5,6) = 600− (510 + 60) = 30 which does not
reach a duration of πmin (line 6).

To see if the break between services 3 and 4 can reach a duration of πmin, the method schedules
Service 4 at its latest time, which results in a break with a duration of tl

4 − (t3 + η3 + θ3,4) =
600 − (330 + 60) = 240 ≥ πmin (line 9). Therefore, the delay time is updated, d̄ = d = 210, and
the minimum delay is set as the time needed to have a break of πmin between services 3 and 4:

• The time when the break starts is t̄4 = t3 + η3 + θ3,4 = 300 + 60 = 360 (line 11).

• The starting time of Service 4, to guarantee a break duration of πmin, is t̄4 + πmin = 360 +
120 = 480. Because this starting time is later than the current schedule of Service 4, t4 =
390 < 480 (line 12), a minimum delay time is needed: d

¯
= t̄4+πmin−t4 = 360+120−390 = 90

(line 13).

The maximum and minimum delay times are shown in Figure 6.16.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6π in

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2α
¯3

ᾱ3

β
¯3

β̄3α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 6.16: Delay to increase the break before Service 4.

6.A.12.3 Get advance time needed to reduce breaks: advanceReduceBreak

Algorithm 6.22 checks if the breaks can be reduced when advancing the service. First, the maximum
time the service can be advanced (line 1) and the list of services affected by that advance (line 2)
are obtained. After that, the algorithm iterates through the affected services (line 5) to check if
there is a break between them (line 7), in which case the advance time is updated (lines 8 - 16).

6.A. AUXILIARY FUNCTIONS 143

Algorithm 6.22: advanceReduceBreak - Get advance time to reduce the breaks after the
service

Data: the service (j), the route (R), the solution (ωωω = (xxx, ttt)) and the earliest starting times
(te)

//Get advance times
1 a ← tj − te

j

2 R̂ ← getAffectedServicesAdvance(j, R, ωωω, d, P (j, R)) //Get services affected by
advance

3 R̂ ←{j} ∪ R̂ //Add the service to the set
4 a

¯
, ā ← 0

//Check if there is a break between the affected services
5 for k ∈ R̂ do
6 if k + 1 ∈ R then
7 b ← tk − (tk+1 + ηk+1 + θk+1,k)
8 if 0 < b < πmin then

//Advance time so service j reaches k + 1
9 ϵ1 ← tj − tk+1 //Time between j and k + 1

//Service time and travel time between j and k + 1
10 ϵ2 ← 0
11 for l ∈ {j, ..., k} do
12 ϵ2 ← ϵ2 + ηl + θl,l+1

13 ϵ3 ← ϵ1 − ϵ2 //Free time between services j and k + 1
14 ā ← ϵ3

15 else if b ≥ πmin then
16 break
17 return a

¯
, ā

Example 6.A.13. Illustration of Algorithm 6.22.
The data, provided by Example 6.A.10, are: the service (j = 4), the route (R = {1, 2, 3, 4, 5, 6}),

the schedule (ωωω = (xxx, ttt), t1 = 90, t2 = 210, t3 = 300, t4 = 390, t5 = 510 and t6 = 600) and the
earliest (te) and latest starting times (tl).

The maximum time that the service can be advanced is a = t4 − te
4 = 390 − 240 = 150 (line

1) and the services that will be affected by this advance are R̂ = {3, 2, 1} (Example 6.A.7). Now
j = 4 is added to the affected services, R̂ = {4, 3, 2, 1}, and the maximum and minimum advance
times are initialized to a

¯
, ā = 0 (lines 3 - 4).

After that, the algorithm checks if there is a break between the services of R̂:

k = 4. The break between services 4 and 3 is b = t4 − (t3 + η3 + θ3,4) = 390 − (300 + 60) = 30
(line 7). In this case, b < πmin (line 8), so the advance time of 4 so it reaches 3 must be
computed:

• The time between the schedules of services 4 and 3 is ϵ1 = t4 − t3 = 390 − 300 = 90
(line 9).

• The service and travel times between 4 and 3 is ϵ2 = η3 + θ3,4 = 60 (lines 9 - 12).
• The free time between services 4 and 3 is ϵ3 = ϵ1 − ϵ2 = 90− 60 = 30 (line 13).

The advance time is set as ā = ϵ3 = 30.

k = 3. The break between services 3 and 2 is b = t3− (t2 + η2 + θ2,3) = 300− (210 + 60) = 30 (line
7). In this case, b < πmin (line 8), so the advance time of 4 so service 3 reaches 2 must be
computed:

144 CHAPTER 6. THE BIOBJECTIVE PROBLEM

• The time between the schedules of services 4 and 2 is ϵ1 = t4 − t2 = 390 − 210 = 180
(line 9).

• The service and travel times between 4 and 2 is ϵ2 = η2 + θ2,3 + η3 + θ3,4 = 120 (lines 9
- 12).

• The free time between services 4 and 2 is ϵ3 = ϵ1 − ϵ2 = 180− 120 = 60 (line 13).

The advance time is set as ā = ϵ3 = 60.

k = 2. The break between 2 and 1 is b = t2− (t1 +η1 +θ1,2) = 210− (90+60) = 60 (line 7). In this
case, b < πmin (line 8), so the advance time of 4 so Service 2 reaches 1 must be computed:

• The time between the schedules of services 4 and 1 is ϵ1 = t4 − t1 = 390 − 90 = 300
(line 9).

• The service and travel times between 4 and 1 is ϵ2 = η1 +θ1,2 +η2 +θ2,3 +η3 +θ3,4 = 180
(lines 9 - 12).

• The free time between services 4 and 1 is ϵ3 = ϵ1 − ϵ2 = 300− 180 = 120 (line 13).

The advance time is set as ā = ϵ3 = 120, as it can be seen in Figure 6.17.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2α
¯3

ᾱ3

β
¯3

β̄3α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 6.17: Advance to reduce breaks before Service 4.

6.A.12.4 Get advance time needed to increase the break: advanceIncreaseBreak

Algorithm 6.23 is used to see if the break after the service can reach a duration of πmin when
advancing the service. After obtaining the maximum advance time (line 1), the algorithm checks
if there is another break in the route with a duration of πmin (lines 3 - 7). If there is no other big
break, the algorithm tests if setting the start of the service at its earliest time results in a break
of, at least, πmin (lines 8 - 9). In that case, the advance time is set as the maximum one (line
10). Finally, the minimum advance time, that guarantees the break will have a duration of πmin,
is computed (lines 11 - 13).

6.A. AUXILIARY FUNCTIONS 145

Algorithm 6.23: advanceIncreaseBreak - Get advance time to increase the break after
the service

Data: the service (j), the route (R), the solution (ωωω = (xxx, ttt)) and the earliest starting times
(te)

//Get advance times
1 d ← tj − te

j

2 a
¯
, ā ← 0

//Check if there is a big break in the route
3 b ← false

4 for k ∈ R do
5 if k ̸= 1 and k ̸= j + 1 then
6 if tk − (tk−1 + ηk−1 + θk−1,k) ≥ πmin then
7 b ← true

//Check if the break after j can be increased
8 if j ̸= r and b = false then
9 if tj+1 − (te

j + ηj + θj,j+1) ≥ πmin then
//If the break after j can cave a duration of πmin

10 ā ← a

//Start of j according to j + 1 to have a break of πmin

11 t̄j ← tj+1 − πmin − θj,j+1 − ηj

12 if t̄j < tj then
//Minimum advance of j to get a break of πmin

13 a
¯
← tj − t̄j

14 return a
¯
, ā

Example 6.A.14. Illustration of Algorithm 6.23.
The data, provided by Example 6.A.10, are: the service (j = 4), the route (R = {1, 2, 3, 4, 5, 6}),

the schedule (ωωω = (xxx, ttt), t1 = 90, t2 = 210, t3 = 300, t4 = 390, t5 = 510, t6 = 600) and the earliest
(te) and latest starting times (tl).

The maximum time that the service can be advanced is a = t4 − te
4 = 390 − 240 = 150, the

maximum and minimum advance times are initialized to a
¯
, ā = 0 (lines 1 - 2).

Then, the algorithm checks if there is a break with duration greater then or equal to πmin on
the route:

k = 2. The break between 1 and 2 is t2 − (t1 + η1 + θ1,2) = 210− (90 + 60) = 60, which does not
reach a duration of πmin (line 6).

k = 3. The break between 2 and 3 is t3 − (t2 + η2 + θ2,3) = 300− (210 + 60) = 30, which does not
reach a duration of πmin (line 6).

k = 5. The break between 4 and 5 is t5 − (t4 + η4 + θ4,5) = 510− (390 + 60) = 60, which does not
reach a duration of πmin (line 6).

k = 6. The break between 5 and 6 is t6 − (t5 + η5 + θ5,6) = 600− (510 + 60) = 30, which does not
reach a duration of πmin (line 6).

To check if the break after Service 4 can reach a duration of πmin, the algorithm schedules
it at its earliest time. This results in a break with 5 with duration of t5 − (te

4 + η4 + θ4,5) =
510 − (180 + 60) = 270 ≥ πmin (line 9). Therefore, the advance time is updated to ā = a = 150.
Finally, the minimum advance, to find a break of πmin between 4 and 5, is computed:

146 CHAPTER 6. THE BIOBJECTIVE PROBLEM

• The start of Service 4 so the break with Service 5 has a duration of πmin is t̄4 = t5 − πmin −
θ4,5 − η4 = 510− 120− 60 = 330 (line 11).

• Since this time is before the current schedule of 4, t4 = 390 > 330 (line 12), a minimum
advance time is needed: a

¯
= t4 − t̄4 = 390− 330 = 60 (line 13).

The maximum and minimum advance times are shown in Figure 6.18.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6π in

α
¯1

ᾱ1

β
¯1

β̄1α
¯2

ᾱ2

β
¯2

β̄2α
¯3

ᾱ3

β
¯3

β̄3α
¯4

ᾱ4

β
¯4

β̄4

α
¯

ᾱ

β
¯

β̄ α
¯6

ᾱ6

β
¯6

β̄6

Figure 6.18: Advance to increase the break after service 4.

6.A.13 Delay the service a random amount of time: randomDelay
The function shown in Algorithm 6.24 delays the service. First, the number of minutes that the
service will be delayed is randomly obtained following a uniform distribution (lines 2 - 5). Then,
the service and its affected followers are delayed (lines 6 - 12).

Algorithm 6.24: randomDelay - Delay service j at random
Data: the service (j), the route (R), the solution (ωωω = (xxx, ttt)), the minimum delay time (d

¯
),

the delay time (d̄), the maximum delay time (d)and the affected services (R̂)
1 t̃ ← t, x̃ ← x

//Select a delay time
2 if R̂ ̸= ∅ and d̄ > 0 then
3 d′ ← chooseRandom(d

¯
, d̄)

4 else
5 d′ ← chooseRandom(d

¯
, d)

//Delay the service
6 t̃j ← tj + d′

7 for k ∈ R̂ do
8 t̄k ← t̃k−1 + ηk−1 + θk−1,k //Earliest start of k according to the delay
9 if t̃k < t̄k then

//If k is affected by the delay
10 t̃k ← t̄k

11 else
12 break
13 return ω̃ωω = (̃ttt, x̃xx)

Example 6.A.15. Illustration of Algorithm 6.24.
The data given by Example 6.2.1 are: the service (j = 4), the schedule (ωωω = (xxx, ttt), t1 = 90,

t2 = 210, t3 = 300, t4 = 300, t5 = 510 and t6 = 600), the minimum delay time (d
¯

= 0), the
updated delay time (d̄ = 600), the maximum delay time (d = 150) and the list of affected services
(R̂ = {5, 6}).

6.A. AUXILIARY FUNCTIONS 147

First, the new schedule is initialized, t̃ = t. Then, a random number between d
¯

= 0 and d̄ = 120
is chosen, in this case, d′ = 90 (lines 2 - 3). Finally, Service 4 is delayed, t̃4 = t4 + d′ = 390 + 90 =
480, as well as its followers:

k = 5. The earliest start of 5 according to the new schedule of 4 is t̄5 = t̃4+η4+θ4,5 = 480+60+0 =
540. Therefore, t̃5 = 510 < t̄5 and its starting time is updated t̃5 = t̄5 = 540 (line 10).

k = 6. The earliest start of 6 according to the new schedule of 5 is t̄6 = t̃5+η5+θ5,6 = 540+60+0 =
600. Therefore, t̃6 = 600 = t̄6 and its starting time is not updated.

Therefore, the modified schedule is t̃1 = 90, t̃2 = 210, t̃3 = 300, t̃4 = 480, t̃5 = 540 and t̃6 = 600.

Example 6.A.16. Illustration of Algorithm 6.24.
The data given by Example 6.2.1 are: the service (j = 4), the schedule (ωωω = (xxx, ttt), t1 = 90,

t2 = 210, t3 = 300, t4 = 390, t5 = 510 and t6 = 600), the minimum delay time (d
¯

= 0), the
updated delay time (d̄ = 90), the maximum delay time (d = 150) and the list of affected services
(R̂ = {5, 6}).

First, the new schedule is initialized, t̃ = t. Then, a random number between d
¯

= 0 and d̄ = 90 is
chosen, in this case, d′ = 60 (lines 2 - 3). Finally, Service 4 is delayed, t̃4 = t4 +d′ = 390+60 = 450,
as well as its followers:

k = 5. The earliest start of 5 according to the new schedule of 4 is t̄5 = t̃4+η4+θ4,5 = 450+60+0 =
510. Therefore, t̃5 = 510 = t̄5, its starting time is not updated and the loop terminates (lines
11 - 12).

Therefore, the modified schedule is t̃1 = 90, t̃2 = 210, t̃3 = 300, t̃4 = 450, t̃5 = 510 and t̃6 = 600.

Example 6.A.17. Illustration of Algorithm 6.24.
The data given by Example 6.2.1 are: the service (j = 4), the schedule (ωωω = (xxx, ttt), t1 = 90,

t2 = 210, t3 = 300, t4 = 390, t5 = 510 and t6 = 600), the minimum delay time (d
¯

= 90), the
updated delay time (d̄ = 210), the maximum delay time (d = 210) and the list of affected services
(R̂ = {5, 6}).

First, the new schedule is initialized, t̃ = t. Then, a random number between d
¯

= 0 and d̄ = 210
is chosen. In this case, d′ = 180 (lines 2 - 3). Finally, Service 4 is delayed, t̃4 = t4 +d′ = 390+180 =
570, as well as its followers:

k = 5. The earliest start of 5 according to the new schedule of 4 is t̄5 = t̃4+η4+θ4,5 = 570+60+0 =
630. Therefore, t̃5 = 510 < t̄5 and its starting time is updated t̃5 = t̄5 = 630 (line 10).

k = 6. The earliest start of 6 according to the new schedule of 5 is t̄6 = t̃5+η5+θ5,6 = 630+60+0 =
690. Therefore, t̃6 = 600 < t̄6 and its starting time is updated t̃6 = t̄6 = 690 (line 10).

Therefore, the modified schedule is t̃1 = 90, t̃2 = 210, t̃3 = 300, t̃4 = 570, t̃5 = 630 and t̃6 = 690.

6.A.14 Advance the service a random amount of time: randomAdvance
The function shown in Algorithm 6.25 is the one used to advance the service. First, a random
number between 0 and the updated advance time (lines 2 - 3), or the maximum possible advance
(lines 4 - 5) is obtained (following a uniform distribution). Then, the service is advanced that
amount of time (line 6). Finally, if the predecessors are affected (lines 7 - 8), their schedule is
advance (lines 9 - 10), in other case the algorithm terminates (lines 11 - 12).

148 CHAPTER 6. THE BIOBJECTIVE PROBLEM

Algorithm 6.25: randomAdvance - Advance service j a random amount of time
Data: the service (j), the route (R), the solution (ωωω = (xxx, ttt)), the minimum advance time (a

¯
),

the advance time (ā), the maximum advance time (a) and the affected services (R̂)
1 t̃ ← t, x̃ ← x

//Select advance time
2 if R̂ ̸= ∅ and ā > 0 then
3 a′ ← chooseRandom(a

¯
, ā)

4 else
5 a′ ← chooseRandom(a

¯
, a)

//Advance the service
6 t̃j ← tj − a′

7 for k ∈ R̂ do
8 t̄k ← t̃k+1 − θk,k+1 − ηk //Latest start of k according to the advance
9 if t̃k < t̄k then

//If k is affected by the advance
10 t̃k ← t̄k

11 else
12 break
13 return ω̃ωω = (̃ttt, x̃xx)

Example 6.A.18. Illustration of Algorithm 6.25.
The data obtained in Example 6.2.1 are: the service (j = 4), the schedule (ωωω = (xxx, ttt), t1 = 90,

t2 = 180, t3 = 300, t4 = 390, t5 = 510 and t6 = 600), the minimum advance time (a
¯

= 0), the
updated advance time (ā = 0), the maximum advance time (a = 150) and the list of affected
services (R̂ = {3, 2, 1}).

First, the new schedule is initialized, t̃ = t. Then, a random number between a
¯

= 0 and a = 150
is chosen following a uniform distribution. In this case, a′ = 90 (lines 4 - 5). Finally, Service 4 is
advanced, t̃4 = t4 − d′ = 390− 90 = 300, as well as its predecessors:

k = 3. The latest start of 3 according to the new schedule of 4 is t̄3 = t̃4−η4−θ3,4 = 300−60−0 =
240. Therefore, t̃3 = 300 > t̄3, its starting time is updated t̃3 = t̄3 = 240 (lines 9 - 10).

k = 2. The latest start of 2 according to the new schedule of 3 is t̄2 = t̃3−η2−θ2,3 = 240−60−0 =
180. Therefore, t̃2 = 210 > t̄2 and its starting time is updated t̃2 = t̄2 = 180 (lines 9 - 10).

k = 1. The latest start of 1 according to the new schedule of 2 is t̄1 = t̃2−η1−θ1,2 = 180−60−0 =
120. Therefore, t̃1 = 90 < t̄1 and its starting time is not updated (lines 11 - 12).

Thus, the modified schedule is t̃1 = 90, t̃2 = 180, t̃3 = 240, t̃4 = 300, t̃5 = 510 and t̃6 = 600.

Example 6.A.19. Illustration of Algorithm 6.25.
The data obtained in Example 6.2.1 are: the service (j = 4), the schedule (ωωω = (xxx, ttt), t1 = 90,

t2 = 210, t3 = 300, t4 = 390, t5 = 510 and t6 = 600), the minimum advance time (a
¯

= 0), the
updated advance time (ā = 120), the maximum advance time (a = 150) and the list of affected
services (R̂ = {3, 2, 1}).

First, the new schedule is initialized, t̃ = t. Then, a random number between a
¯

= 0 and ā = 120
is chosen according to a uniform distribution. In this case, a′ = 30 (lines 4 - 5). Finally, Service 4
is advanced, t̃4 = t4 − d′ = 390− 30 = 360, as well as its predecessors:

k = 3. The latest start of 3 according to the new schedule of 4 is t̄3 = t̃4−η3−θ3,4 = 360−60−0 =
300. Therefore, t̃3 = 300 = t̄3, its starting time is not updated and the loop terminates (lines
11 - 12).

6.A. AUXILIARY FUNCTIONS 149

Thus, the modified schedule is t̃1 = 90, t̃2 = 210, t̃3 = 300, t̃4 = 360, t̃5 = 510 and t̃6 = 600.

Example 6.A.20. Illustration of Algorithm 6.25.
The data obtained in Example 6.2.1 are: the service (j = 4), the schedule (ωωω = (xxx, ttt), t1 = 90,

t2 = 210, t3 = 300, t4 = 390, t5 = 510 and t6 = 600), the minimum advance time (a
¯

= 60), the
updated advance time (ā = 150), the maximum advance time (a = 150) and the list of affected
services (R̂ = {3, 2, 1}).

First. the new schedule is initialized, t̃ = t. Then, a random number between a
¯

= 60 and
ā = 150 is chosen following a uniform distribution. In this case, a′ = 120 (lines 4 - 5). Finally,
Service 4 is advanced, t̃4 = t4 − d′ = 390− 120 = 270, as well as its predecessors:

k = 3. The latest start of 3 according to the new schedule of 4 is t̄3 = t̃4−η3−θ3,4 = 270−60−0 =
210. Therefore, t̃3 = 300 > t̄3 and its starting time is updated t̃3 = t̄3 = 210 (lines 9 - 10).

k = 2. The latest start of 2 according to the new schedule of 3 is t̄2 = t̃3−η2−θ2,3 = 210−60−0 =
150. Therefore, t̃2 = 210 > t̄2 and its starting time is updated t̃2 = t̄2 = 150 (lines 9 - 10).

k = 1. The latest start of 1 according to the new schedule of 2 is t̄1 = t̃2−η1−θ1,2 = 150−60−0 =
90. Therefore, t̃1 = 90 = t̄1 and its starting time is not updated (lines 11 - 12).

Thus, the modified schedule is t̃1 = 90, t̃2 = 150, t̃3 = 210, t̃4 = 270, t̃5 = 510 and t̃6 = 600.

150 CHAPTER 6. THE BIOBJECTIVE PROBLEM

Chapter 7

Computational results

This chapter presents the computational study to analyze the performance of the methods described
in Chapters 3, 4, 5 and 6.

The metaheuristic algorithms and the AUGMECON2 method have been implemented in
Python 3.7 (Van Rossum & Drake (2009)), whereas the MILP problem has been solved with
Gurobi 9.1.1 (Gurobi Optimization, LLC (2021)) via its Python interface. All the experiments
were run in an Intel(R) Xeon(R) Gold 6146 CPU 3.20GHz processor, with 16GB of RAM, 2 cores
and 100GB of HDD, located in Centre for Information and Communications Technology
Research (CITIC).

The chapter is structured as follows. Section 7.1 describes the data used to evaluate the
algorithms developed to tackle the HCSP. In Section 7.2 the results related to the metaheuristic
approach that prioritizes the welfare over the cost are presented (ALNS_WC). In a similar
manner, Section 7.3 presents the results of the approach that prioritizes the cost over the welfare
(ALNS_CW). Finally, Section 7.5 shows the results of the biobjective version of the problem
(BIALNS).

7.1 Data
The performance of the methods will be tested with two different datasets: the Solomon
instances and real data provided by the company. The Solomon instances are used to compare
the performance of the algorithms with respect to the resolution of the MILP formulation, but
with the main focus of analyzing the parameters of the metaheuristic algorithms. On the other
hand, the real instances are used to compare the solutions given by the algorithms with the real
schedules employed by the company.

7.1.1 Solomon instances
The instances considered in this computational study are based on the ones presented in Solomon
(1987), which are 100-service euclidean problems. The characteristics provided in those instances
are: services to carry out, locations, duration, hard time windows, caregivers availability and
total working times. Furthermore, some additional data required by the HCSP were randomly
generated: services-caregivers affinity levels and soft time windows of the services.

The Solomon instances are classified into three groups, depending on the geographical
distribution of the services: clustered, random and a combination of both. Apart from that,
instances can have services with wide hard time windows and large caregiver working time or

151

152 CHAPTER 7. COMPUTATIONAL RESULTS

tight hard time windows and small caregiver working time. Therefore, the combination of these
characteristics has made the dataset to be one of the most used in the literature.

Table 7.1 contains a basic description of 5 types of Solomon instances, in terms of the number of
services (S) and the number of caregivers (N). For each type, 10 different instances were randomly
generated, specifying: minimum and maximum duration of the services, minimum and maximum
length of the hard time windows (htw) and soft time windows (stw), minimum and maximum travel
times between the services and size of the problems in terms of the MILP formulation (number of
variables × number of constraints). In addition, the affinity levels were randomly set to 3 or 5.

S N duration length of htw length of stw travel time size (vars × constr)min max min max min max min max
10 2 10 90 65 3380 11 93 1 75 496× 950
15 2 10 90 83 1343 12 93 1 89 1036× 2010
25 4 10 90 53 896 12 93 1 84 5382× 10560
50 6 10 90 49 1226 11 93 1 96 31048× 61490
100 14 10 90 20 1225 12 93 1 101 284512× 566210

Table 7.1: Data instances.

7.1.2 Real Data
Table 7.2 shows the data of 15 real instances, taken by the schedule of the company during
consecutive weeks between years 2016 and 2017. For these instances, the number of services vary
from 633 to 950 and their duration is between 30 and 180 minutes. The available caregivers for
each week vary from 35 to 39 and the affinity levels between users and caregivers are 3, 4 or 5.

week S N duration length of htw length of stw travel time size (vars × constr)min max min max min max min max
1 865 39 30 168 90 630 60 450 0 22 409242965× 817811191
2 880 38 30 168 90 630 60 450 0 22 412686700× 824704562
3 895 35 30 168 90 630 60 450 0 22 393163615× 785700695
4 863 37 30 168 90 630 60 450 0 22 386464469× 772290281
5 633 38 30 160 90 630 60 450 0 22 213674848× 426868578
6 822 37 30 160 90 630 60 450 0 22 350646500× 700684683
7 894 36 30 160 90 630 60 450 0 22 403494396× 806345076
8 760 39 30 168 90 630 60 450 0 22 315995510× 631398181
9 808 36 30 168 90 630 60 450 0 22 329657720× 658733644
10 911 37 30 160 90 630 60 450 0 22 430610597× 860547017
11 870 39 30 160 90 630 60 450 0 22 413983620× 827288601
12 840 39 30 180 90 630 60 450 0 22 385949190× 771243141
13 950 38 30 180 90 630 60 480 0 22 480891900× 961061762
14 925 38 30 180 90 630 60 480 0 22 455934400× 911165762
15 939 38 30 180 90 630 60 480 0 22 469828672× 938943666

Table 7.2: Real data instances.

7.2 Hierarchical approach: welfare-cost
This section deals with the computational study to evaluate the good performance of the method
which combines the ALNS metaheuristic for the routes with the heuristic for the schedules described
in Section 4.1, denoted by ALNS_WC.

7.2. HIERARCHICAL APPROACH: WELFARE-COST 153

7.2.1 Gurobi results
The MILP has been solved using Gurobi with a time limit of 12 hours. The results are presented
in Table 7.3. Note that, although Gurobi finds a feasible solution for 80% of the instances, it only
ensures the global optimality (“-” in the gap column means that it closes it) in 67.5% of them.

instance feasible opt gap secs instance feasible opt gap secs
10_01 ✓ ✓ - 0.56 10_06 ✓ ✓ - 0.34
10_02 ✓ ✓ - 0.60 10_07 ✓ ✓ - 0.58
10_03 ✓ ✓ - 0.77 10_08 ✓ ✓ - 0.64
10_04 ✓ ✓ - 63.93 10_09 ✓ ✓ - 1.24
10_05 ✓ ✓ - 4.48 10_10 ✓ ✓ - 160.16
15_01 ✓ ✓ - 0.22 15_06 ✓ ✓ - 0.67
15_02 ✓ ✓ - 0.27 15_07 ✓ ✓ - 2169.01
15_03 ✓ ✓ - 0.28 15_08 ✓ ✓ - 14.92
15_04 ✓ ✓ - 0.20 15_09 ✓ ✓ - 12.69
15_05 ✓ ✓ - 0.12 15_10 ✓ ✓ - 21.92
25_01 ✓ ✓ - 41.37 25_06 ✓ ✓ - 29.84
25_02 ✓ ✓ - 2009.30 25_07 ✓ ? 1.76 limit
25_03 ✓ ✓ - 37.02 25_08 - - - -
25_04 ✓ ? 2.915 limit 25_09 ✓ ✓ - 28.26
25_05 - - - - 25_10 ✓ ✓ - 158.94
50_01 - - - - 50_06 ✓ ? 2.80 limit
50_02 ✓ ? 49.05 limit 50_07 - - - -
50_03 ✓ ✓ - 410.92 50_08 ✓ ? 0.008 limit
50_04 ✓ ? 0.01 limit 50_09 ✓ ? 0.005 limit
50_05 ✓ ? 0.01 limit 50_10 ✓ ? 0.01 limit
100_01 ✓ ? 0.008 limit 100_06 - - - -
100_02 - - - - 100_07 - - - -
100_03 ✓ ? 346.04 limit 100_08 - - - -
100_04 - - - - 100_09 - - - -
100_05 ✓ ? 269.05 limit 100_10 ✓ ? 0.003 limit

Table 7.3: Gurobi computational results (prioritizing welfare over cost).

7.2.2 ALNS_WC results
Regarding the configuration of the ALNS_WC algorithm, the parameters considered are the
number of iterations (50, 100, 150, 200, 250, 500, 750 and 1000) and the proportion of solution to
be destroyed, from now on p, (25%, 50%, 75% and 100%). Further, an automatic version that
dynamically updates this parameter is employed, denoted as auto_p, which is a method that
starts with a proportion of p and decreases after each iteration of the ALNS (auto_25%,
auto_50%, auto_75% and auto_100%). Each combination of parameters has been run 5 times
with a time limit of 1 hour.

7.2.2.1 Gurobi vs ALNS_WC

Let x and x′ be two solutions, the Relative Percentage Deviation (RPD) of x from x′, is defined as

RPD(x, x′) = f(x)− f(x′)
f(x′) × 100.

In this case, the RPD is used to obtain the mean deviation between the solutions given by the
algorithms and the ones obtained using the Gurobi solver.

Tables 7.4 and 7.5 present, for the instances with 10 and 15 services, the mean RPD with
respect to the first and second objective, respectively. This means that Table 7.4 shows the RPD

154 CHAPTER 7. COMPUTATIONAL RESULTS

value for the first objective and, if this value is 0 (for an instance), the RPD value for the second
objective is shown in Table 7.5. In this case, the algorithm was run for 1000 iterations, considering
the different values of p.

According to the results, the behavior of the ALNS_WC in small instances is better for the
configurations with a larger value of p (75%, auto_75%, 100% and auto_100%). Therefore, it can
be deduced that in small instances it is advisable to focus on major changes in the solution that
allow the solution space to be adequately explored. In fact, for p = auto_100%, the RPD shows
that the algorithm finds the same solutions as Gurobi for all instances.

25% 50% 75% 100% auto_25% auto_50% auto_75% auto_100%
10_01 0 0 0 0 0 0 0 0
10_02 0 0 0 0 0 0 0 0
10_03 0 0 0 0 0 0 0 0
10_04 9.61e-4 0 0 0 0 1.18e-3 0 0
10_05 5.68e-3 0 0 0 0 0 0 0
10_06 0 0 0 0 0 0 0 0
10_07 0 0 0 0 0 0 0 0
10_08 0 0 0 0 0 0 0 0
10_09 0 0 0 0 0 0 0 0
10_10 2.19e-3 2.19e-3 2.19e-3 0 1.66e-2 0 0 0
15_01 0 0 0 0 0 0 0 0
15_02 0 0 0 0 0 0 0 0
15_03 0 0 0 0 0 0 0 0
15_04 0 0 0 0 0 0 0 0
15_05 0 0 0 0 0 0 0 0
15_06 0 0 0 0 0 0 0 0
15_07 0 0 0 0 0 0 0 0
15_08 7.42e-4 0 4.94e-4 0 7.42e-4 9.89e-4 2.47e-4 0
15_09 0 0 0 0 4.34e-5 0 0 0
15_10 0 0 0 0 0 0 0 0

Table 7.4: Mean RPD values comparing ALNS_WC with Gurobi (first objective).

25% 50% 75% 100% auto_25% auto_50% auto_75% auto_100%
10_01 0 0 0 0 0 0 0 0
10_02 4.94e-2 0 0 0 1.48e-1 4.94e-2 0 0
10_03 0 0 0 0 0 0 0 0
10_04 - 0 0 0 0 - 0 0
10_05 - 0 0 0 0 0 0 0
10_06 0 0 0 0 0 0 0 0
10_07 0 0 0 0 0 0 0 0
10_08 2.08 0 0 0 1.39 0 0 0
10_09 3.98e-1 0 0 0 0 0 0 0
10_10 - - - 0 - 0 0 0
15_01 0 0 0 0 0 0 0 0
15_02 0 0 0 0 0 0 0 0
15_03 0 0 0 0 0 0 0 0
15_04 0 0 0 0 0 0 0 0
15_05 0 0 0 0 0 0 0 0
15_06 0 0 0 0 0 0 0 0
15_07 0 0 0 0 0 0 0 0
15_08 - 0 - 0 - - - 0
15_09 0 0 0 0 - 0 0 0
15_10 0 0 0 0 0 0 0 0

Table 7.5: Mean RPD values comparing ALNS_WC with Gurobi (second objective).

7.2. HIERARCHICAL APPROACH: WELFARE-COST 155

25% 50% 75% 100% auto_25% auto_50% auto_75% auto_100%
10_01 0 0 0 0 0 0 0 0
10_02 0 0 0 0 0 0 0 0
10_03 0 0 0 0 0 0 0 0
10_04 9.61e-4 0 0 0 0 1.18e-3 0 0
10_05 5.68e-3 0 0 0 0 0 0 0
10_06 0 0 0 0 0 0 0 0
10_07 0 0 0 0 0 0 0 0
10_08 0 0 0 0 0 0 0 0
10_09 0 0 0 0 0 0 0 0
10_10 2.19e-3 2.19e-3 2.19e-3 0 1.66e-2 0 0 0
15_01 0 0 0 0 0 0 0 0
15_02 0 0 0 0 0 0 0 0
15_03 0 0 0 0 0 0 0 0
15_04 0 0 0 0 0 0 0 0
15_05 0 0 0 0 0 0 0 0
15_06 0 0 0 0 0 0 0 0
15_07 0 0 0 0 0 0 0 0
15_08 7.42e-4 0 4.94e-4 0 7.42e-4 9.89e-4 2.47e-4 0
15_09 0 0 0 0 4.34e-5 0 0 0
15_10 0 0 0 0 0 0 0 0
25_01 2.83e-3 0 0 0 3.92e-3 0 0 0
25_02 8.34e-3 6.45e-3 6.45e-3 6.45e-3 3.02e-3 9.09e-4 7.27e-4 6.45e-3
25_03 2.15 0 0 0 0 0 0 0
25_04 4.67 3.79 5.19 2.58 4.83 3.11 1.72 2.58
25_05 9.89e-1 6.57e-1 6.74e-1 6.52e-1 3.58 1.96 3.35e-1 6.52e-1
25_06 1.22e-3 9.32e-4 7.29e-4 8.13e-4 6.44e-4 0 0 8.13e-4
25_07 1.29 3.24e-1 9.72e-1 6.43e-1 5.82 2.57 1.29 6.43e-1
25_08 1.33 1.97 1.32 1.63 1.96 1.96 1.64 1.63
25_09 2.03e-5 0 0 0 4.07e-5 2.03e-5 2.03e-5 0
25_10 3.69e-4 0 0 0 0 1.62e-3 0 0
50_01 2.89e-3 3.16e-3 4.66e-3 5.28e-3 6.49e-4 8.59e-4 6.17e-4 2.22e-3
50_02 6.52e-1 6.62e-1 5.26e-1 1.47 7.68e-3 1.68e-1 8.07e-1 3.45e-1
50_03 0 0 0 0 0 0 0 0
50_04 6.07e-4 1.01e-3 8.04e-4 1.44e-3 1.09e-3 1.17e-3 1.49e-4 2.51e-4
50_05 4.91e-4 4.95e-4 7.70e-4 1.16e-3 7.70e-4 3.97e-4 2.08e-4 4.54e-4
50_06 6.72e-5 2.69e-5 2.02e-4 3.97e-4 6.72e-5 0 2.02e-5 6.72e-6
50_07 1.61e-3 8.10e-4 6.29e-4 1.40e-3 8.02e-4 1.03e-3 3.62e-4 8.02e-4
50_08 3.22e-4 1.82e-4 4.41e-4 1.12e-3 1.18e-3 7.84e-4 3.08e-4 2.66e-4
50_09 4.03e-4 9.34e-4 1.84e-3 3.15e-3 1.67e-3 9.41e-4 7.40e-4 8.87e-4
50_10 9.63e-4 1.06e-3 2.30e-3 3.59e-3 1.53e-3 2.53e-4 6.82e-4 3.67e-4
100_01 8.91e-1 1.29 1.93 2.98 4.06e-1 6.43e-1 1.21 1.93
100_02 8.33e-2 9.70e-1 1.65 2.21 4.82e-1 5.65e-1 1.13 1.81
100_03 0 0 0 0 0 0 0 0
100_04 2.57 8.46 7.30 8.08 7.76e-1 3.73 5.44 5.56
100_05 0 0 0 0 0 0 0 0
100_06 1.16e-4 2.44e-4 - - 8.93e-5 2.30e-4 2.72e-4 1.65e-4
100_07 3.22e-4 5.41e-4 - - 3.19e-4 3.21e-4 4.23e-4 3.75e-4
100_08 2.30e-5 2.01e-5 - - 1.04e-5 0 2.76e-5 3.45e-5
100_09 2.62e-4 - - - 1.13e-4 4.28e-4 4.09e-4 3.40e-4
100_10 6.78e-6 0 2.37e-5 5.08e-5 0 0 0 0

Table 7.6: RPD values comparing ALNS_WC with the best solution found.

Considering all the instances, it is important to highlight that the ALNS_WC is able to find
solutions of the same quality as Gurobi. Therefore, to explore the stability of the algorithm in
each instance, the relative deviation of the solutions of the ALNS_WC with respect to the best
solution (that can be found by Gurobi or by the algorithm) is studied. The mean RPD value
(first objective) for all instances, comparing the solutions obtained by the algorithm with the best

156 CHAPTER 7. COMPUTATIONAL RESULTS

solution found, is shown in Table 7.6.
The best RPD values are obtained using different configurations of p, depending on the size

of the instance considered. The results reported in Table 7.6 show that the ALNS_WC is very
stable for all the instances considered. For instances with 10 and 15 services, big values of p

report the best solution. When the number of services increases, the configurations with smaller
values of p are the most suitable. This trend is clearly reflected in the instances with 100 services,
where p ∈ {25%, auto_25%} leads to acceptable solutions in all cases. However, for some of these
instances (4 out of 10), the configurations with p ∈ {75%, 100%} do not even provide solutions in
the set time.

7.2.2.2 Parameter analysis of ALNS_WC

Figures 7.1, 7.2 and 7.3 present the evolution of the success rate (the proportion of times where
the best solution is found) and the computational time (in seconds) along the iterations.

0.4

0.6

0.8

1.0

50 100 150 200 250 500 750 1000

Success rate vs iterations.

0

10

20

50 100 150 200 250 500 750 1000

Computational time vs iterations.

Proportion (%)
25

50

75

100

auto_25

auto_50

auto_75

auto_100

Figure 7.1: Computational results for instances with 10 services (ALNS_WC).

Figure 7.1 is related to instances with 10 services, where configurations of
p ∈ {auto_75%, auto_100%} present really good behavior according to the success rate and the
computational time. It can be seen that p = 100% also shows a good performance in terms of the
success rate, but its computational time is worse than the ones of p ∈ {auto_75%, auto_100%}.
It is clear that, for these instances, the worst configurations are the ones of p ∈ {25%, auto_25%}.

0.25

0.50

0.75

1.00

50 100 150 200 250 500 750 1000

Success rate vs iterations.

0

20

40

60

80

50 100 150 200 250 500 750 1000

Computational time vs iterations.

Proportion (%)
25

50

75

100

auto_25

auto_50

auto_75

auto_100

Figure 7.2: Computational results for instances with 15 services (ALNS_WC).

7.2. HIERARCHICAL APPROACH: WELFARE-COST 157

With regard to instances with 15 services, Figure 7.2 shows that any
p ∈ {50%, 100%, auto_100%} is a good choice according to the success rate, although
p = auto_100% is faster. Figure 7.3 indicates that, for instances with 25 services, p = auto_75%
outperforms the other configurations of p in terms of success rate and computational time.

0.0

0.1

0.2

0.3

0.4

0.5

50 100 150 200 250 500 750 1000

Success rate vs iterations.

0

250

500

750

50 100 150 200 250 500 750 1000

Computational time vs iterations.

Proportion (%)
25

50

75

100

auto_25

auto_50

auto_75

auto_100

Figure 7.3: Computational results for instances with 25 services (ALNS_WC).

Figures 7.4 and 7.5 evaluate the mean RPD and computational time along the iterations for
instances with 50 and 100 services.

0.00

0.25

0.50

0.75

1.00

50 100 150 200 250 500 750 1000

Mean RPD vs iterations.

0

1000

2000

50 100 150 200 250 500 750 1000

Computational time vs iterations.

Proportion (%)
25

50

75

100

auto_25

auto_50

auto_75

auto_100

Figure 7.4: Computational results for instances with 50 services (ALNS_WC).

1

2

3

50 100 150 200 250 500 750 1000

Mean RPD vs iterations.

1000

2000

3000

50 100 150 200 250 500 750 1000

Computational time vs iterations.

Proportion (%)
25

50

75

100

auto_25

auto_50

auto_75

auto_100

Figure 7.5: Computational results for instances with 100 services (ALNS_WC).

158 CHAPTER 7. COMPUTATIONAL RESULTS

As far as instances with 50 services, p = auto_25% is the best configuration in terms of the mean
RPD and computational time (see Figure 7.4). For instances with 100 services (see Figure 7.5)
only three configurations, any p ∈ {25%, auto_25%, auto_50%}, are able to solve the instances for
750 and 1000 iterations in the given time limit. From these configurations, the best one (according
to the mean RPD and computational time) is p = auto_25%.

Note that, as the number of services increases, it is desirable to reduce the initial value of the
proportion in the automatic configurations. In this way, the lowest initial values for auto behave
better in the largest instances, obtaining fast computational times.

7.2.3 Constraint programming results
The Constraint Programming method and the heuristic algorithm presented in Chapter 4
(Algorithm 4.1) are used to find the best schedule once a route (a set of ordered services assigned
to a caregiver) is given, prioritizing the welfare over the cost. Although Algorithm 4.1 does not
guarantee that an optimal solution will be obtained in all cases, the computational experiments
showed that high quality solutions can be found in a short computational time. Therefore, to
evaluate the behavior of the heuristic algorithm, the two methods are used to obtain the
schedules of the same set of routes. Apart from that, in order to compare the performance of the
ALNS with CP, the same computational experiments than for ALNS_WC (with the same
configuration of parameters) are run. Regarding the implementation, the resulting CP scheduling
problems are solved using the CPSAT solver from the Python interface of the Google OR-Tools
(see Perron & Furnon (2022)). From now on, the version of the ALNS algorithm with Constraint
Programming is denoted as ALNS_CPSAT.

7.2.3.1 Heuristic scheduling algorithm vs CPSAT

To carry out the comparison between Algorithm 4.1 and CP a set of 3000000 routes was randomly
generated, out of which 1108371 were feasible (in terms of hard time windows of services and
caregivers). For each feasible route, its schedule was obtained using Constraint Programming
(CPSAT) and Algorithm 4.1. In 99.995% of the routes the algorithm finds the optimal schedule
whereas CPSAT always achieves optimality. This means that the solution given by the heuristic
algorithm was not the optimal in only 54 cases.

Figure 7.6 shows a boxplot of the differences between objective values (soft time window
penalization and cost) of the schedules found by the algorithm and CPSAT. It can be seen that
the most common scenario is that the objective values are equal, with only a few outliers where
there are differences between the values obtained by the algorithm and those provided by
CPSAT. Comparing the two objectives, the differences in the penalization are smaller than those
of the cost, which makes sense as a hierarchical approach that prioritizes the welfare (soft time
window penalization when working with only routes) over the cost is being considered.

In terms of computational time, the mean time the heuristic algorithm needs to obtain the
schedule of a route is 0.00457 seconds, meanwhile for CPSAT is 0.03358 seconds. Therefore, it can
be concluded that the heuristic algorithm, despite not being an exact method, obtains very good
results in short computational times.

7.2. HIERARCHICAL APPROACH: WELFARE-COST 159

0

30

60

90

120

stw penalization cost
objective

di
ffe

re
nc

e

Figure 7.6: Objective function value differences (CPSAT vs Algorithm 4.1).

7.2.3.2 Gurobi vs ALNS_CPSAT

The results of ALNS_CPSAT have been compared with the solutions given by Gurobi over the
Solomon instances of 10 and 15 services. Tables 7.7 and 7.8 show the mean RPD with respect to the
first and second objectives, respectively. As it can be seen, the performance of the ALNS_CPSAT
is similar to the one obtained for ALNS_WC (see Tables 7.4 and 7.4). For this set of instances,
the ALNS_CPSAT behaves better for the configurations with a larger value of p, and for each of
the instances there exist several configurations of the parameters finding a better than or equal to
Gurobi solution.

25% 50% 75% 100% auto_25% auto_50% auto_75% auto_100%
10_01 0 0 0 0 0 0 0 0
10_02 0 0 0 0 0 0 0 0
10_03 0 0 0 0 0 0 0 0
10_04 0 0 0 0 4.0e-4 0 0 0
10_05 0 0 0 0 0 0 0 0
10_06 0 0 0 0 0 0 0 0
10_07 0 0 0 0 0 0 0 0
10_08 0 0 0 0 0 0 0 0
10_09 0 0 0 0 0 0 0 0
10_10 0 4.0e-3 2.0e-3 0 0 4.0e-3 0 0
15_01 0 0 0 0 0 0 0 0
15_02 0 0 0 0 0 0 0 0
15_03 0 0 0 0 0 0 0 0
15_04 0 0 0 0 0 0 0 0
15_05 0 0 0 0 0 0 0 0
15_06 0 0 0 0 0 0 0 0
15_07 0 0 0 0 0 0 0 0
15_08 2.0e-4 2.0e-4 0 0 2.0e-4 2.0e-4 2.0e-4 0
15_09 4.3e-5 0 0 0 0 0 0 0
15_10 0 0 0 0 0 0 0 0

Table 7.7: Mean RPD values comparing ALNS_CPSAT with Gurobi (first objective).

160 CHAPTER 7. COMPUTATIONAL RESULTS

25% 50% 75% 100% auto_25% auto_50% auto_75% auto_100%
10_01 0 0 0 0 0 0 0 0
10_02 0.09 0 0 0 0 0 0 0
10_03 0 0 0 0 0 0 0 0
10_04 0 0 0 0 - 0 0 0
10_05 0 0 0 0 0 0 0 0
10_06 0 0 0 0 0 0 0 0
10_07 0 0 0 0 0 0 0 0
10_08 0.69 0 0 0 0.69 0 0 0
10_09 0 0 0 0 0.39 0 0 0
10_10 0 - - 0 0 - 0 0
15_01 0 0 0 0 0 0 0 0
15_02 0 0 0 0 0 0 0 0
15_03 0 0 0 0 0 0 0 0
15_04 0 0 0 0 0 0 0 0
15_05 0 0 0 0 0 0 0 0
15_06 0 0 0 0 0 0 0 0
15_07 0 0 0 0 0 0 0 0
15_08 - - 0 0 - - - 0
15_09 - 0 0 0 0 0 0 0
15_10 0 0 0 0 0 0 0 0

Table 7.8: Mean RPD values comparing ALNS_CPSAT with Gurobi (second objective).

7.2.3.3 ALNS_WC vs ALNS_CPSAT

It is also interesting to compare the ALNS_CPSAT with the ALNS_WC. To this aim, for each
instance (and for each configuration of the parameters), the worst solutions (in terms of the first
objective function) obtained by both algorithms are compared1.

25% 50% 75% 100% auto_25% auto_50% auto_75% auto_100%
10_01 0 0 0 0 0 0 0 0
10_02 0 0 0 0 0 0 0 0
10_03 0 0 0 0 0 0 0 0
10_04 2.4e-5 0 0 0 1.1e-5 0 0 0
10_05 2.8e-4 0 0 0 0 0 0 0
10_06 0 0 0 0 0 0 0 0
10_07 0 0 0 0 0 0 0 0
10_08 0 0 0 0 0 0 0 0
10_09 0 0 0 0 0 0 0 0
10_10 1.1e-4 0 0 0 2.8e-4 -1.0e-4 0 0
15_01 0 0 0 0 0 0 0 0
15_02 0 0 0 0 0 0 0 0
15_03 0 0 0 0 0 0 0 0
15_04 0 0 0 0 0 0 0 0
15_05 0 0 0 0 0 0 0 0
15_06 0 0 0 0 0 0 0 0
15_07 0 0 0 0 0 0 0 0
15_08 0 -1.2e-5 1.2e-5 0 0 0 0 0
15_09 -2.1e-6 0 0 0 2.1e-6 0 0 0
15_10 0 0 0 0 0 0 0 0

Table 7.9: Comparing the worst solution obtained by ALNS_CPSAT and ALNS_WC.
1Notice that the worst solutions are being compared because the best solutions found by the two methods are

the same for all configurations.

7.2. HIERARCHICAL APPROACH: WELFARE-COST 161

The results are presented in Table 7.9, where it can be seen that both algorithms behave
similarly2, with only really small differences probably due to the randomness inside the
removal/insertion operators.

Figures 7.7 and 7.8 show the computational time of ALNS_WC (on the left) and
ALNS_CPSAT (on the right) for the instances with 10 and 15 services, respectively. Although
the trend of the computational time over the iterations is similar for both algorithms (for the
different configurations of parameter p), it is clear that ALNS_WC is much more faster than
ALNS_CPSAT3.

0

10

20

50 100 150 200 250 500 750 1000
Iterations

Ti
m

e
(s

ec
s)

Proportion
25

50

75

100

auto_25

auto_50

auto_75

auto_100

Computational time vs iterations.

(a) ALNS_WC computational time.

0

500

1000

50 100 150 200 250 500 750 1000
Iterations

Ti
m

e
(s

ec
s)

Proportion
25

50

75

100

auto_25

auto_50

auto_75

auto_100

Computational time vs iterations.

(b) ALNS_CPSAT computational time.

Figure 7.7: Computational time for instances with 10 services.

0

20

40

60

80

50 100 150 200 250 500 750 1000
Iterations

Ti
m

e
(s

ec
s)

Proportion
25

50

75

100

auto_25

auto_50

auto_75

auto_100

Computational time vs iterations.

(a) ALNS_WC computational time.

0

500

1000

1500

2000

2500

50 100 150 200 250 500 750 1000
Iterations

Ti
m

e
(s

ec
s)

Proportion
25

50

75

100

auto_25

auto_50

auto_75

auto_100

Computational time vs iterations.

(b) ALNS_CPSAT computational time.

Figure 7.8: Computational time for instances with 15 services.

Finally, the ALNS_CPSAT was also used to solve the real case study. Figure 7.9 shows a
comparison of the solutions obtained by the different approaches. Again, the solution of ALNS_WC
and ALNS_CPSAT are really similar, finding better results than those employed by the company.
Further, the ALNS_CPSAT is more time consuming than ALNS_WC (see Figure 7.10).

To conclude, it can be said that ALNS_WC and ALNS_CPSAT present a similar behavior in
terms of the objective function. However, ALNS_WC is clearly much more faster than
ALNS_CPSAT. Note that these results highlight the good performance of the algorithm
described in Section 4.1 when computing the schedules inside the insertion operators, which is
more efficient than solving the scheduling problems with a CP solver.

2Note that the table shows the relative difference of the worst solution found by ALNS_CPSAT minus the
worst solution of ALNS_WC. Therefore, positive values mean that the ALNS_CPSAT solution is worse than the
ALNS_WC one.

3Note the different scales in both figures.

162 CHAPTER 7. COMPUTATIONAL RESULTS

2.0e+08

2.5e+08

3.0e+08

3.5e+08

4.0e+08

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Solution
COMPANY

ALNS_WC

ALNS_CPSAT

Welfare for each week.

(a) Welfare for each week.

5e+04

6e+04

7e+04

8e+04

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Solution
COMPANY

ALNS_WC

ALNS_CPSAT

Cost for each week.

(b) Cost for each week.

Figure 7.9: Computational results (objective functions) for real case study.

2500

5000

7500

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Solution ALNS_WC ALNS_CPSAT

Computational time (secs) for each week.

Figure 7.10: Computational time for each week.

In view of these results, it can be safely assumed that it is not worthwhile to use Constraint
Programming to obtain the schedule of the routes (inside the ALNS method), since the
computational times are significantly worse. Therefore, ALNS_CPSAT will not be taken into
account in the remainder of this chapter.

7.2.4 Real data results
To solve the real data using the ALNS_WC method the following automatic configurations of p

were considered: auto_10%, auto_5%, auto_4%, auto_3%, auto_2% and auto_1%, with a time
limit of 90 minutes. The reason for choosing these values is that, during the analysis of the Solomon
instances, it was noticeable that the higher the number of services, the lower the proportion should
be. Moreover, the automatic configurations of the parameter have presented better results.

Figure 7.11 presents the boxplots of the objective function values for the different configurations
of p. In terms of overall welfare (see Figure 7.11a), it is not easy to appreciate the difference
between the configurations of p. However, if it is separated into the affinity and the soft time
window penalization (Figures 7.11c and 7.11e), it can be observed that p = auto_1% reaches the
best results. The same configuration of p is slightly better in the case of the cost (Figure 7.11b),
since it presents an improvement of the overtime (Figure 7.11d). Therefore, p = auto_1% is the
configuration used in the computational analysis presented below.

7.2. HIERARCHICAL APPROACH: WELFARE-COST 163

2.0e+08

2.5e+08

3.0e+08

3.5e+08

4.0e+08

1 2 3 4 5 10
proportion

w
el

fa
re

(a) Welfare.

50000

60000

70000

1 2 3 4 5 10
proportion

co
st

(b) Cost.

3000

3500

4000

4500

1 2 3 4 5 10
proportion

af
fin

ity

(c) Affinity.

2500

5000

7500

10000

12500

1 2 3 4 5 10
proportion

ov
er

tim
e

(d) Overtime.

2000

3000

4000

1 2 3 4 5 10
proportion

st
w

 p
en

al
iz

at
io

n

(e) Soft time window penalization.

45000

50000

55000

60000

1 2 3 4 5 10
proportion

w
or

ke
d

tim
e

(f) Worked time.

Figure 7.11: Objective function values in terms of p (ALNS_WC).

A comparison between the results obtained by the ALNS_WC and the schedules used by the
company during the considered weeks is shown in Figure 7.12.

It can be seen in Figures 7.12a and 7.12b that the ALNS_WC always finds better results than
those employed by the company. In addition, if breaking down the welfare into the affinity (see
Figure 7.12c) and the penalization (see Figure 7.12e), it can also be observed that the ALNS_WC
improves the results in both cases. Similar conclusions are obtained when disaggregating the cost
in overtime (see Figure 7.12d) and worked time (see Figure 7.12f).

164 CHAPTER 7. COMPUTATIONAL RESULTS

2.0e+08

2.5e+08

3.0e+08

3.5e+08

4.0e+08

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
Solution ALNS_CW Company

Welfare for each week.

(a) Welfare for each week.

50000

60000

70000

80000

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
Solution ALNS_CW Company

Cost for each week.

(b) Cost for each week.

3000

3500

4000

4500

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
Solution ALNS_CW Company

Affinity for each week.

(c) Affinity for each week.

5000

10000

15000

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
Solution ALNS_CW Company

Overtime for each week.

(d) Overtime for each week.

5000

10000

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
Solution ALNS_CW Company

Penalization for each week.

(e) Penalization for each week.

50000

60000

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
Solution ALNS_CW Company

Worked time for each week.

(f) Worked time for each week.

Figure 7.12: Objective functions values for real instances (ALNS_WC).

To explore the results in more detail, the solution will be deeply analyzed with respect to the
following characteristics: affinity, penalization, overtime, travel time, unpaid break and idle time
(paid break).

Thus, Table 7.10 shows the results with respect to the affinity and the penalization on a weekly
basis, both globally and on average per user. In all the weeks, the algorithm clearly outperforms
the results of the company.

7.2. HIERARCHICAL APPROACH: WELFARE-COST 165

Global Per user
Week Solution Welfare Affinity Penalization Affinity Penalization

(×e8) (×e3) (×e3)

1 Algorithm 3.36 3.81 2.33 4.33 2.73
Company 3.22 3.64 11.55 4.14 13.73

2 Algorithm 3.60 4.10 2.65 4.66 2.76
Company 3.48 3.94 11.93 4.50 14.94

3 Algorithm 3.72 4.28 2.33 4.76 2.75
Company 3.66 4.19 11.89 4.66 14.66

4 Algorithm 3.44 4.06 2.29 4.66 3.18
Company 3.44 4.02 11.53 4.62 15.19

5 Algorithm 1.88 2.99 1.84 4.73 2.95
Company 1.82 2.86 9.27 4.60 16.10

6 Algorithm 3.03 3.68 2.26 4.37 2.61
Company 2.97 3.58 11.60 4.25 15.39

7 Algorithm 3.77 4.29 2.63 4.75 3.15
Company 3.68 4.17 11.96 4.62 14.60

8 Algorithm 2.62 3.59 1.96 4.73 2.50
Company 2.56 3.48 10.16 4.64 15.03

9 Algorithm 2.81 3.73 2.30 4.57 2.92
Company 2.71 3.58 10.52 4.44 15.21

10 Algorithm 3.72 4.24 2.55 4.65 2.93
Company 3.66 4.15 11.66 4.59 14.49

11 Algorithm 3.50 4.18 3.09 4.76 3.11
Company 3.45 4.09 11.29 4.64 14.50

12 Algorithm 3.26 3.99 2.45 4.73 3.25
Company 3.22 3.92 10.53 4.65 14.66

13 Algorithm 4.19 4.53 3.15 4.78 3.14
Company 4.09 4.38 13.54 4.67 15.83

14 Algorithm 3.88 4.43 2.09 4.80 2.58
Company 3.85 4.35 12.32 4.75 14.20

15 Algorithm 4.00 4.50 2.37 4.81 3.10
Company 3.97 4.44 11.77 4.71 13.70

Table 7.10: Computational results for real instances according to ALNS_WC (welfare).

On the other hand, the quality of the solutions can be measured in terms of affinity obtaining
the percentage of services where the best possible level of affinity is reached, which means that
the best caregivers (according to the level of affinity) have been assigned to these services. Thus,
Table 7.11 shows a comparison between the results of the company and the ones of the algorithm
per week. In all the cases, the algorithm solution is clearly better than the solution proposed by
the company. The percentages of services that have the highest affinity for the company and the
algorithm are 81.04% and 88.87%, respectively, when considering all the services across all the
weeks.

Week Company Algorithm Week Company Algorithm
1 76.30% 86.24% 9 78.46% 90.09%
2 75.90% 85.00% 10 79.58% 87.70%
3 82.79% 90.27% 11 84.82% 90.91%
4 82.96% 86.21% 12 83.09% 88.69%
5 77.40% 89.41% 13 80.52% 91.05%
6 76.64% 86.00% 14 86.59% 91.35%
7 83.89% 91.27% 15 85.83% 91.48%
8 78.42% 86.44%

Table 7.11: Weekly percentage of services with maximum affinity level (ALNS_WC).

166 CHAPTER 7. COMPUTATIONAL RESULTS

0

250

500

750

Company ALNS_WC
solution

pe
na

liz
at

io
n

 p
er

 u
se

r

(a) For the users.

0

100

200

300

Company ALNS_WC
solution

pe
na

liz
at

io
n

 p
er

 s
er

vi
ce

(b) For the services.

Figure 7.13: Soft time window penalization according to ALNS_WC (all weeks).

The soft time window penalization for the users and the services in all the weeks is represented in
the boxplots of Figures 7.13a and 7.13b. The graphical results confirm a remarkable improvement
with respect to the solutions of the company.

Global Per caregiver
Week Solution Cost Overtime Worked time Overtime Travel time Break Idle time

1 Algorithm 1062.49 97.66 964.82 2.55 1.23 6.48 0.10
Company 1290.31 211.38 1078.93 5.42 1.29 7.48 3.05

2 Algorithm 1110.62 131.21 979.40 3.48 1.34 6.67 0.13
Company 1330.55 242.13 242.13 6.37 1.37 7.28 2.97

3 Algorithm 1187.72 192.33 995.38 5.58 1.51 8.17 0.32
Company 1383.23 280.06 1103.16 8.24 1.54 7.70 3.41

4 Algorithm 1052.64 108.07 944.56 2.92 1.32 6.45 0.18
Company 1247.58 203.93 1043.65 5.51 1.33 7.22 2.86

5 Algorithm 729.22 20.44 708.77 0.53 0.89 4.99 0.08
Company 833.06 48.33 784.73 1.27 0.94 6.51 2.07

6 Algorithm 1028.19 129.28 898.90 3.59 1.30 4.79 0.12
Company 1207.38 218.10 989.28 5.89 1.31 6.76 2.62

7 Algorithm 1132.08 156.60 975.47 4.48 1.53 6.52 0.21
Company 1297.50 227.71 1069.78 6.51 1.53 8.22 2.90

8 Algorithm 881.07 43.12 837.94 1.05 1.08 5.30 0.16
Company 1047.96 116.53 931.43 2.99 1.11 6.15 2.53

9 Algorithm 972.19 94.20 877.99 2.55 1.28 6.65 0.20
Company 1162.40 192.08 970.31 5.49 1.33 8.53 2.75

10 Algorithm 1069.21 92.89 976.32 2.46 1.42 5.84 0.19
Company 1286.75 206.65 1080.10 5.59 1.41 6.58 2.99

11 Algorithm 1045.20 111.42 933.78 3.20 1.43 5.98 0.08
Company 1226.06 195.60 1030.46 5.29 1.38 7.12 2.71

12 Algorithm 980.80 75.60 905.19 1.94 1.31 5.68 0.13
Company 1154.76 148.68 1006.08 3.81 1.34 6.21 2.72

13 Algorithm 1184.37 152.59 1031.78 4.06 1.53 6.14 0.16
Company 1377.91 234.85 1143.06 6.18 1.47 7.13 3.18

14 Algorithm 1149.30 136.22 1013.08 3.39 1.42 6.34 0.22
Company 1358.13 240.00 1118.13 6.32 1.44 6.87 3.01

15 Algorithm 1172.04 153.46 1018.58 4.18 1.52 6.58 0.23
Company 1350.56 219.73 1130.83 5.94 1.50 7.47 3.29

Table 7.12: Computational results in hours for real instances according to ALNS_WC (cost).

Table 7.12 shows the results per week with respect to the global overtime and worked time, as
well as the average per caregiver with respect to the overtime, the travel time, the duration of the

7.2. HIERARCHICAL APPROACH: WELFARE-COST 167

unpaid break and the idle time (i.e., the total duration of the paid breaks).
Since the overtime, the travel time, the duration of the unpaid break and the idle time are

associated with the cost and are in the same time units, all their global results have been aggregated
in Figure 7.14. So, Figure 7.14 shows the mean weekly times per caregiver according to the results
in all the weeks.

0

5

10

15

ALNS_WC Company
method

ho
ur

s

variable
overtime

idle time

break time

travel time

Figure 7.14: Mean weekly times per caregiver according to ALNS_WC (all weeks).

Both Table 7.12 and Figure 7.14 evidence the good behavior of the algorithm with respect to
the results of the company. In the figure it can be appreciated that the mean of the overtime, the
idle time and the break time are drastically reduced if the algorithm is employed. However, the
difference is negligible in the case of travel times. The table also shows similar results over the
weeks.

A more detailed study of the overtime, the unpaid break, the idle time and the travel time
can be found in Figure 7.15. As sake of illustration, the four characteristics are shown in week4 6.
Hence, Figure 7.15a presents the comparison of the evolution of the overtime with respect to the
agreed weekly working time for the different caregivers in both solutions, showing again the good
performance of the algorithm. Figures 7.15b to 7.15d make a comparison of both solutions on a
daily basis. It is worth mentioning that there is a drastically reduction of the idle times every day
(see Figure 7.15c). This reduction can be one of the key factors in reducing the overtimes. In terms
of travel time, both solutions perform quite reasonably, with a median time of approximately 5
minutes every day and travel times that will never exceed 25 minutes.

4A similar behavior is observed in the other weeks.

168 CHAPTER 7. COMPUTATIONAL RESULTS

0

10

20

30

ALNS_WC Company
method

ov
er

tim
e

(h
ou

rs
)

(a) Overtime for the caregivers.

2

4

6

8

10

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
day

no
 p

ai
d

br
ea

k
tim

e
(h

ou
rs

)

method ALNS_WC Company

(b) Unpaid break for the caregivers per day.

0

1

2

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
day

id
le

 ti
m

e
(h

ou
rs

)

method ALNS_WC Company

(c) Idle time for the caregivers per day.

0

5

10

15

20

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
day

tra
ve

l t
im

e
(m

in
ut

es
)

method ALNS_WC Company

(d) Travel time between services per day.

Figure 7.15: Overtime, unpaid break, idle time and travel time for week 6 (ALNS_WC).

Caregiver
31

153

157

18

154

168

11

142

137

24

145

141

161

146

17

147

19

79

50

95

40

5

129

123

104

173

172

51

Figure 7.16: Routes for a random day (ALNS_WC).

Finally, Figure 7.16 illustrates the routes that caregivers follow on a random day, according

7.2. HIERARCHICAL APPROACH: WELFARE-COST 169

to the solution given by the ALNS_WC. Analyzing these routes it can be seen that they cover
two different areas: a rural and an urban one. The urban area (surrounded by the frame) is
distinguished for having a lot of clustered services while the rural area has fewer services, but
spread over a more extensive area.

To illustrate the different areas, 5 random caregivers who work on the urban area (see
Figure 7.17a) and 5 caregivers who cover the rural area (see Figure 7.17b) were selected. It can
be seen that the caregivers working in the rural area also have to carry out some urban services.
This is necessary to balance the working time of the caregivers, because there are more services
required in the urban area.

Caregiver
11

137

24

79

123

(a) Urban area.

Caregiver
31

154

142

146

19

(b) Rural area.

Figure 7.17: Routes separated into areas (ALNS_WC).

With the aim of analyzing more in detail the solution, Figure 7.18 presents the routes of
caregiver 24 in four consecutive days (Tuesday is a day off). Notice that, even though the routes
are different, some services (3, 78, 140, 141, 155 and 199) appear on the three routes. This is a
reasonable behavior since users prefer not to change the caregiver that attends them and recurring
services tend to be assigned to the same caregiver.

170 CHAPTER 7. COMPUTATIONAL RESULTS

3

78

140

149

150

199

141

155

(a) Monday.

3

78

149

140

150

34

164

155

141

199

(b) Wednesday.

78

3

140

34

161

162

155

141

199

(c) Thursday.

78

3

150

149

140

34

155

141

199

(d) Friday.

Figure 7.18: Routes of caregiver 24.

Figure 7.19 shows the details of the schedule for the four days. Note that the caregiver only has
one break per day, with a duration of more than two hours, which means that it is not considered
as working time. It can be seen that, when the services are close to each other (for example,
see services 149 and 150 on Figure 7.18a) the travel time between them is neglected. The daily
availability of the caregiver starts at 7:25 and ends at 21:51, which is respected by all her services.
According to the schedule, the caregiver works 7.55 hours on Monday, 9.12 hours on Wednesday, 8.5
hours on Thursday and 8.53 on Friday, resulting in a total of 33.7 hours. These working times do
not exceed the daily and weekly maximum working time imposed by the contract of the caregiver,
which is 13.42 hours and 38.5 hours, respectively.

7.2. HIERARCHICAL APPROACH: WELFARE-COST 171

Monday
09:00 - 12:00 09:00 - 10:03

Service 3
09:00 − 10:03
Travel: 4 min

07:30 - 13:00 09:00 - 10:30

Service 78
10:07 − 11:11
Travel: 6 min

09:00 - 13:00 09:00 - 12:00

Service 140
11:17 − 12:21
Travel: 5 min

09:00 - 15:00 09:00 - 12:00

Service 149
12:26 − 12:56

09:00 - 15:30 09:00 - 15:30

Service 150
12:56 − 13:26
Travel: 3 min

Break: 267 min
16:00 - 21:00 16:00 - 21:00

Service 199
17:56 − 18:56
Travel: 2 min

18:00 - 23:00 18:00 - 23:00

Service 141
18:58 − 19:59
Travel: 1 min

16:00 - 21:00 16:00 - 21:00

Service 155
20:00 − 21:00

Wednesday
09:00 - 12:00 09:00 - 10:03

Service 3
09:00 − 10:03
Travel: 4 min

07:30 - 13:00 09:00 - 10:30

Service 78
10:07 − 11:11
Travel: 3 min

09:00 - 15:00 09:00 - 12:00

Service 149
11:14 − 11:44
Travel: 5 min

09:00 - 13:00 09:00 - 12:00

Service 140
11:49 − 12:53
Travel: 5 min

09:00 - 15:30 09:00 - 15:30

Service 150
12:58 − 13:28
Travel: 2 min

09:00 - 16:00 10:30 - 13:30

Service 34
13:30 − 14:30

Break: 224 min
16:00 - 21:00 16:30 - 19:30

Service 164
18:14 − 18:44
Travel: 3 min

16:00 - 21:00 16:00 - 21:00

Service 155
18:47 − 19:47
Travel: 1 min

18:00 - 23:00 18:00 - 23:00

Service 141
19:48 − 20:49
Travel: 2 min

17:30 - 22:30 17:30 - 22:30

Service 199
20:51 − 21:51

Thursday
07:30 - 14:00 09:00 - 10:30

Service 78
07:52 − 08:56
Travel: 4 min

09:00 - 12:00 09:00 - 10:03

Service 3
09:00 − 10:03
Travel: 5 min

09:00 - 13:00 09:00 - 12:00

Service 140
10:08 − 11:12
Travel: 3 min

09:00 - 16:00 10:30 - 13:30

Service 34
11:15 − 12:15
Travel: 3 min

10:00 - 16:00 10:00 - 13:00

Service 161
12:18 − 12:48

10:00 - 16:00 10:00 - 15:30

Service 162
12:48 − 13:18

Break: 278 min
16:00 -21:00 16:00 - 21:00

Service 155
17:56 − 18:56
Travel: 1 min

18:00 -23:00 18:00 - 23:00

Service 141
18:57 − 19:58
Travel: 2 min

16:00 -21:00 16:00 - 21:00

Service 199
20:00 − 21:00

Friday
07:30 - 13:00 09:00 - 10:30

Service 78
07:52 − 08:56
Travel: 4 min

09:00 - 12:00 09:00 - 10:03

Service 3
09:00 − 10:03
Travel: 1 min

09:00 - 15:30 09:00 - 15:30

Service 150
10:04 − 10:34

09:00 - 15:00 09:00 - 12:00

Service 149
10:34 − 11:04
Travel: 5 min

09:00 - 13:00 09:00 - 12:00

Service 140
11:09 − 12:13
Travel: 3 min

09:00 - 16:00 09:00 - 14:00

Service 34
12:16 − 13:16
Travel: 4 min

Break: 276 min
16:00 -21:00 16:00 -21:00

Service 155
17:56 − 18:56
Travel: 1 min

18:00 - 23:00 18:00 -23:00

Service 141
18:57 − 19:58
Travel: 2 min

16:00 - 21:00 16:00 21:00

Service 199
20:00 − 21:00

Figure 7.19: Schedules of caregiver 24.

Finally, Figure 7.20 presents the schedules of the caregiver including the hard and soft time
windows for each service. According to the schedules, services are as close as possible to their soft
time windows, and they are always within the corresponding hard time windows.

172 CHAPTER 7. COMPUTATIONAL RESULTS

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

3 78 140 149 150 199 141 155

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

(a) Monday.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

3 78 149 140 150 34 164 155 141 199

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

(b) Wednesday.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

78 3 140 34 161 162 155 141 199

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

(c) Thursday.

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

78 3 150 149 140 34 155 141 199

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

(d) Friday.

Figure 7.20: Schedule for each day of caregiver 24.

7.3 Hierarchical approach: cost-welfare
This section deals with the computational study to evaluate the good performance of the
ALNS_CW method. Note that this method combines the ALNS metaheuristic for the routes
with the heuristic for the schedules described in Section 5.1.

7.3. HIERARCHICAL APPROACH: COST-WELFARE 173

7.3.1 Gurobi results
The MILP has been solved using Gurobi with a time limit of 12 hours. The results are presented
in Table 7.13. Note that, although Gurobi finds a feasible solution for 72% of the instances, it only
ensures the global optimality in 30.5% of them. It is worth noting that it is not able to solve any
of the instances with 100 services.

instance feasible opt gap secs instance feasible opt gap secs
10_01 ✓ ✓ - 0.56 10_06 ✓ ✓ - 13.24
10_02 ✓ ✓ - 2532.30 10_07 ✓ ✓ - 17654.99
10_03 ✓ ✓ - 2882.26 10_08 ✓ ✓ - 11095.85
10_04 ✓ ? 143.98 limit 10_09 ✓ ? 486.50 limit
10_05 ✓ ? 1294.81 limit 10_10 ✓ ✓ - 3955.34
15_01 ✓ ✓ - 1811.69 15_06 ✓ ? 904.22 limit
15_02 ✓ ✓ - 15162.27 15_07 ✓ ? 1251.06 limit
15_03 ✓ ✓ 278.51 limit 15_08 ✓ ? 618.82 limit
15_04 ✓ ? 30.99 limit 15_09 ✓ ? 984.49 limit
15_05 ✓ ? 176.83 limit 15_10 ✓ ? 968.86 limit
25_01 ✓ ? 198.27 limit 25_06 ✓ ? 1247.53 limit
25_02 ✓ ? 314.39 limit 25_07 ✓ ? 388.51 limit
25_03 ✓ ? 433.10 limit 25_08 - - - -
25_04 - - - - 25_09 ✓ ? 1734.74 limit
25_05 - - - - 25_10 ✓ ? 2056.57 limit
50_01 ✓ ? 364.33 limit 50_06 ✓ ? 905.70 limit
50_02 ✓ ? 172.99 limit 50_07 ✓ ? 1480.54 limit
50_03 ✓ ? 636.62 limit 50_08 ✓ ? 749.31 limit
50_04 ✓ ? 1116.37 limit 50_09 ✓ ? 10.67 limit
50_05 ✓ ? 1295.95 limit 50_10 - - - -
100_01 - - - - 100_06 - - - -
100_02 - - - - 100_07 - - - -
100_03 - - - - 100_08 - - - -
100_04 - - - - 100_09 - - - -
100_05 - - - - 100_10 - - - -

Table 7.13: Gurobi computational results prioritizing cost over welfare.

7.3.2 ALNS_CW results
Regarding the configuration of the ALNS_CW, the parameters considered are the same as the
ones used when prioritizing the welfare over the cost in Section 7.2. The number of iterations is
50, 100, 150, 200, 250, 500, 750 and 1000. The proportion of solution to be destroyed is 25%, 50%,
75%, 100%, auto_25%, auto_50%, auto_75% and auto_100%. Each combination of parameters
has been run 5 times with a time limit of 1 hour.

7.3.2.1 Gurobi vs ALNS_CW

Tables 7.14 and 7.15 present, for the instances with 10 and 15 services, the mean RPD with respect
to the first and second objective, respectively. So, Table 7.14 shows the RPD value for the first
objective and, in the instances where this value is 0, the RPD value for the second objective is
shown in Table 7.15. The values indicate the mean of the deviations of the solutions found by the
ALNS_CW from the ones found by Gurobi. For the ALNS_CW, the different values of p have
been combined with 1000 iterations.

Analyzing the results, they show that the ALNS_CW is able to find solutions of the same
quality or even better5 than the ones provided by Gurobi. In particular, as it happened when

5Negative values of the RPD mean that the solution of the ALNS_CW improves the one found using Gurobi.

174 CHAPTER 7. COMPUTATIONAL RESULTS

prioritizing the welfare over the cost, the best solutions are found using larger values of p (75%,
auto_75%, 100% and auto_100%). This suggests that, for small instances, it is better to explore
the solution space by allowing major changes in the solution.

25% 50% 75% 100% auto_25% auto_50% auto_75% auto_100%
10_01 2.27 0 0 0 1.52 0 0 0
10_02 0 0 0 0 0 0 0 0
10_03 0 0.170 0 0 0.68 0 0 0
10_04 0.08 0 0 0 0.12 0.04 0 0
10_05 0 0 0 0 0 0 0 0
10_06 3.52 0 0 0 2.05 0.88 0 0
10_07 0.36 0.73 0 0 0.36 0.73 0.36 0
10_08 2.81 0.58 0 0 2.81 0.58 0 0
10_09 0 0 0 0 0 0 0 0
10_10 2.145 0 0 0 1.03 0 0 0
15_01 0 0.44 0.22 0 0.22 0.66 0.22 0
15_02 0.35 0.13 0.27 0.41 0.70 0.54 0.27 0.41
15_03 0 0 0 0 0.42 0 0 0
15_04 0 0 0 0 0 0 0 0
15_05 0 0 0 0 0 0 0 0
15_06 1.35 0.45 0.33 0 1.80 0.78 0.39 0.39
15_07 -2.00 -2.18 -2.73 -2.73 -1.64 -2.73 -2.73 -2.73
15_08 -1.47 -4.58 -4.58 -4.58 -2.08 -3.41 -4.58 -4.58
15_09 -0.15 -0.85 -1.55 -1.39 0.07 -0.62 -1.16 -1.55
15_10 -0.29 -1.19 -1.19 -1.19 0.05 -1.19 -1.19 -1.19

Table 7.14: Mean RPD values comparing ALNS_CW with Gurobi (first objective).

25% 50% 75% 100% auto_25% auto_50% auto_75% auto_100%
10_01 - 0 0 0 - 0 0 0
10_02 0 0 0 0 0 0 0 0
10_03 0 - 0 0 - 0 0 0
10_04 - -8.04 -8.04 -8.04 - - -8.04 -8.04
10_05 -2.48 -2.48 -2.48 -2.48 -2.48 -2.48 -2.48 -2.48
10_06 - 0 0 0 - - 0 0
10_07 - - 0 0 - - - 0
10_08 - - 0 0 - - 0 0
10_09 -19.32 -19.39 -19.39 -19.39 -19.33 -19.39 -19.39 -19.39
10_10 - 0 0 0 - 0 0 0
15_01 0 - - 0 - - - 0
15_02 - - - - - - - -
15_03 -5.11 -5.11 -5.11 -5.11 - -5.11 -5.11 -5.11
15_04 -1.51 -1.51 -1.51 -1.51 -1.51 -1.51 -1.51 -1.51
15_05 -5.34 -5.34 -5.34 -5.34 -5.34 -5.34 -5.34 -5.34
15_06 - - - -16.21 - - - -
15_07 - - - - - - - -
15_08 - - - - - - - -
15_09 - - - - - - - -
15_10 - - - - - - - -

Table 7.15: Mean RPD values comparing ALNS_CW with Gurobi (second objective).

Since the solutions found by Gurobi are not necessary the best ones, Table 7.16 presents the
mean RPD value (first objective) for all the instances, comparing the solutions obtained by the
algorithm with the best solution found.

7.3. HIERARCHICAL APPROACH: COST-WELFARE 175

25% 50% 75% 100% auto_25% auto_50% auto_75% auto_100%
0_01 2.27 0 0 0 1.52 0 0 0
10_02 0 0 0 0 0 0 0 0
10_03 0 0.17 0 0 0.68 0 0 0
10_04 0.08 0 0 0 0.12 0.04 0 0
10_05 0 0 0 0 0 0 0 0
10_06 3.52 0 0 0 2.05 0.88 0 0
10_07 0.36 0.73 0 0 0.36 0.73 0.36 0
10_08 2.81 0.58 0 0 2.81 0.58 0 0
10_09 0 0 0 0 0 0 0 0
10_10 2.145 0 0 0 1.03 0 0 0
15_01 0 0.44 0.22 0 0.22 0.66 0.22 0
15_02 0.35 0.13 0.27 0.41 0.70 0.54 0.27 0.41
15_03 0 0 0 0 0.42 0 0 0
15_04 0 0 0 0 0 0 0 0
15_05 0 0 0 0 0 0 0 0
15_06 1.35 0.45 0.33 0 1.80 0.78 0.39 0.39
15_07 0.75 0.56 0 0 1.12 0 0 0
15_08 3.25 0 0 0 2.61 1.22 0 0
15_09 1.41 0.71 0 0.15 1.65 0.94 0.39 0
15_10 0.91 0 0 0 1.27 0 0 0
25_01 0 0 0 0 0.01 0 0 0
25_02 0.03 0.02 0.02 0.01 0.03 0.02 0.03 0.03
25_03 0.05 0.02 0 0.03 0.08 0.01 0.01 0.03
25_04 6.88 6.27 6.27 7.49 8.17 7.21 5.67 5.67
25_05 1.48 0.37 1.15 0.91 1.41 0.66 0.78 0.70
25_06 1.61 0.52 0.36 0.44 1.45 0.36 0.44 0.08
25_07 0 0 0 0 0.24 0 0 0
25_08 0 0 0 0 0 0 0 0
25_09 0.24 0 0 0 0.49 0 0 0
25_10 0 0 0 0 0 0 0 0
50_01 0.01 0.03 0.06 0.06 0.02 0 0.02 0
50_02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01
50_03 0.04 0.02 0.03 0.04 0.03 0.03 0.04 0.05
50_04 2.44 1.66 3.13 3.73 1.69 1.23 0.64 1.47
50_05 0.11 0.53 0.78 1.64 0.55 0.51 0.53 0.64
50_06 1.89 1.27 2.15 2.48 2.46 1.62 1.39 0.69
50_07 0.37 0.92 2.47 1.48 0.25 1.70 0.71 0.89
50_08 2.70 0.91 1.88 3.67 3.37 2.58 0.62 1.38
50_09 0.42 0.05 0.42 0.58 1.37 0.08 0.06 0.28
50_10 0.22 0.71 0.74 0.41 0.68 0.22 0.25 0.25
100_01 0.06 0.09 0.16 1.29 0.05 0.07 0.09 0.09
100_02 0.12 0.72 1.45 1.55 0.05 0.07 0.19 0.35
100_03 0.05 0.15 0.23 0.27 0.04 0.07 0.09 0.14
100_04 2.93 8.04 15.38 9.88 1.34 3.23 6.01 5.98
100_05 2.50 3.37 6.17 6.59 1.36 2.97 3.89 3.41
100_06 0.88 4.46 6.39 - 0.33 1.78 2.03 4.72
100_07 1.47 - - - 1.04 2.05 3.53 -
100_08 1.55 3.28 2.92 - 1.00 1.17 2.54 1.45
100_09 0.81 2.26 - - 0.81 1.25 0.94 1.49
100_10 1.52 1.47 3.64 4.69 0.96 0.95 2.10 2.49

Table 7.16: RPD values comparing ALNS_CW with the best solution found.

According to the results in Table 7.16, big values of p, like 75%, 100% and auto_100%, would
be the best option for instances with 10 and 15 services. However, when the number of services

176 CHAPTER 7. COMPUTATIONAL RESULTS

increases, it can be seen that smaller values of p result in better solutions. Furthermore, for
instances with 100 services, the configurations p ∈ {50%, 75%, 100%, auto_100%} are not able to
solve some of the instances in the given time.

7.3.2.2 Parameter analysis of ALNS_CW

Figures 7.21, 7.22 and 7.23 present the evolution of the success rate (the proportion of times where
the best solution is found) and the computational time (in seconds) along the iterations. With
regard to instances with 10 services (see Figure 7.21) the best configurations, according to the
success rate, are p ∈ {75%, 100%, auto_75%, auto_100%}, being auto_75% and auto_100% the
fastest ones. Figure 7.22 shows that, for instances with 15 services, p = auto_100% is the best
configuration in terms of success rate and computational time. For instances with 25 services,
Figure 7.23 shows that both p = 75% and p = auto_100% behave similarly in terms of success
rate, but p = auto_100% is faster. Apart from that, any p ∈ {auto_50%, auto_75%} also shows
a good success rate and the experiments are faster than the ones with p ∈ {75%, auto_100%}.

0.4

0.6

0.8

1.0

50 100 150 200 250 500 750 1000

Success rate vs iterations.

0

10

20

30

50 100 150 200 250 500 750 1000

Computational time vs iterations.

Proportion (%)
25

50

75

100

auto_25

auto_50

auto_75

auto_100

Figure 7.21: Computational results for instances with 10 services (ALNS_CW).

0.25

0.50

0.75

50 100 150 200 250 500 750 1000

Success rate vs iterations.

0

30

60

90

120

50 100 150 200 250 500 750 1000

Computational time vs iterations.

Proportion (%)
25

50

75

100

auto_25

auto_50

auto_75

auto_100

Figure 7.22: Computational results for instances with 15 services (ALNS_CW).

7.3. HIERARCHICAL APPROACH: COST-WELFARE 177

0.0

0.1

0.2

0.3

0.4

50 100 150 200 250 500 750 1000

Success rate vs iterations.

0

100

200

300

400

50 100 150 200 250 500 750 1000

Computational time vs iterations.

Proportion (%)
25

50

75

100

auto_25

auto_50

auto_75

auto_100

Figure 7.23: Computational results for instances with 25 services (ALNS_CW).

Figures 7.24 and 7.25 evaluate the mean RPD and computational time along the iterations for
instances with 50 and 100 services.

1

2

3

4

50 100 150 200 250 500 750 1000

Mean RPD vs iterations.

0

1000

2000

50 100 150 200 250 500 750 1000

Computational time vs iterations.

Proportion (%)
25

50

75

100

auto_25

auto_50

auto_75

auto_100

Figure 7.24: Computational results for instances with 50 services (ALNS_CW).

0

2

4

6

50 100 150 200 250 500 750 1000

Mean RPD vs iterations.

1000

2000

3000

50 100 150 200 250 500 750 1000

Computational time vs iterations.

Proportion (%)
25

50

75

100

auto_25

auto_50

auto_75

auto_100

Figure 7.25: Computational results for instances with 100 services (ALNS_CW).

For instances with 50 services (see Figure 7.24), multiple configurations (any
p ∈ {50%, auto_75%, auto_100%}) present good behaviour in terms of RPD and computational
times. Notice that, even though p = 100% has similar RPD values, it is slower than the other
configurations. For instances with 100 services (see Figure 7.25) only three configurations, any

178 CHAPTER 7. COMPUTATIONAL RESULTS

p ∈ {25%, auto_25%, auto_50%}, allow to solve the instances within the time limit for 1000
iterations. From these configurations, the best one according to the mean RPD is p = auto_50%,
although p = auto_25% is faster and also reaches similar RPD values.

7.3.3 Constraint programming results
In view of the results presented in Section 7.2.3, the behavior of the ALNS combined with
Constraint Programming or with the heuristic algorithm is similar. The main difference between
the two methodologies is that the computational times when using the CPSAT solver are
significantly worse. Therefore, this section focuses on the comparison between the algorithm
presented in Chapter 5 and the Constraint Programming method.

7.3.3.1 Heuristic scheduling algorithm vs CPSAT

The Constraint Programming method and the heuristic algorithm presented in Chapter 5
(Algorithm 5.1) are used to find the best schedule once a route (that is, a set of ordered services
assigned to a caregiver) is given, prioritizing the cost over the welfare. Although Algorithm 5.1
does not guarantee that an optimal solution will be obtained in all cases, although the
computational experiments showed that high quality solutions can be found in a very short time.
Thus, to evaluate the behavior of the heuristic algorithm, the two methods are used to obtain the
schedules of the same set of routes.

To carry out the comparison a set of 3000000 routes was randomly generated, out of which
1109129 were feasible (in terms of hard time windows of services and caregivers). For each
feasible route, its schedule was obtained using Constraint Programming (CPSAT) and the
heuristic algorithm. In 99.997% of the routes the algorithm finds the optimal schedule whereas
CPSAT always achieves optimality. The solution given by the algorithm was not the optimal in
only 33 cases.

0

5

10

15

stw penalization cost
objective

di
ffe

re
nc

e

Figure 7.26: Objective function value differences (CPSAT vs Algorithm 5.1).

Figure 7.26 shows a boxplot of the differences between objective values (soft time window
penalization and cost) of the schedules found by the algorithm and CPSAT. It can be seen that
the most common scenario is the one where the objective values are equal, with only few outliers

7.3. HIERARCHICAL APPROACH: COST-WELFARE 179

with differences between the values obtained by the algorithm and the ones given by CPSAT. In
particular, the cost values are always equal and the only differences are found in the soft time
window penalization. This makes sense as the cost of the scheduled is being prioritized over the
welfare.

In terms of computational time, the mean time the heuristic algorithm needs to obtain the
schedule of a route is 0.0077 seconds. Meanwhile, the mean CPSAT time per route is 0.0337
seconds. Therefore, it can be concluded that the heuristic scheduling algorithm, despite not being
an exact method, finds very good results in short computational times.

7.3.4 Real data results

1.5e+08

2.0e+08

2.5e+08

3.0e+08

1 2 3 4 5 10
proportion

w
el

fa
re

(a) Welfare.

40000

45000

50000

55000

60000

65000

1 2 3 4 5 10
proportion

co
st

(b) Cost.

2100

2400

2700

3000

1 2 3 4 5 10
proportion

af
fin

ity

(c) Affinity.

0

2000

4000

6000

1 2 3 4 5 10
proportion

ov
er

tim
e

(d) Overtime.

9000

12000

15000

18000

1 2 3 4 5 10
proportion

st
w

 p
en

al
iz

at
io

n

(e) Soft time window penalization.

40000

45000

50000

55000

60000

1 2 3 4 5 10
proportion

w
or

ke
d

tim
e

(f) Worked time.

Figure 7.27: Objective function values in terms of p (ALNS_CW).

The conclusions reached during the analysis of the Solomon instances were that the higher the
number of services, the lower the proportion should be, and that the automatic configurations of
the parameter have presented better results. Therefore, the configurations of p considered to solve

180 CHAPTER 7. COMPUTATIONAL RESULTS

the real data were: auto_10%, auto_5%, auto_4%, auto_3%, auto_2% and auto_1%, with a
time limit of 90 minutes.

Figure 7.27 presents the boxplots of the objective function values for the different configurations
of p. In terms of overall cost (see Figure 7.27b), p = auto_1% presents slightly better results.
Separating the cost into overtime and worked time (Figures 7.27d and 7.27f), it can be seen
that auto_1% is better than the other configurations for the overtime. In terms of the welfare
(see Figure 7.27a), it is not easy to appreciate the difference between the configurations of p.
However, splitting it into affinity and soft time window penalization (Figures 7.27c and 7.27e), it
can be observed that p = auto_1% presents better results in terms of the penalization. Therefore,
p = auto_1% is the configuration used in the computational analysis presented below.

A comparison between the results obtained by the ALNS_CW and the schedules used by the
company during the considered weeks is shown in Figure 7.28. Figures 7.28a, 7.28c and 7.28e are
devoted to study the welfare, whereas Figures 7.28b, 7.28d and 7.28f are related to the cost.

2e+08

3e+08

4e+08

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
Solution ALNS_CW Company

Welfare for each week.

(a) Welfare for each week.

40000

50000

60000

70000

80000

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
Solution ALNS_CW Company

Cost for each week.

(b) Cost for each week.

2500

3000

3500

4000

4500

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
Solution ALNS_CW Company

Affinity for each week.

(c) Affinity for each week.

0

5000

10000

15000

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
Solution ALNS_CW Company

Overtime for each week.

(d) Overtime for each week.

10000

12500

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
Solution ALNS_CW Company

Penalization for each week.

(e) Penalization for each week.

40000

50000

60000

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
Solution ALNS_CW Company

Worked time for each week.

(f) Worked time for each week.

Figure 7.28: Computational results for real instances (ALNS_CW).

Let us start analyzing the cost, which is the objective function prioritized in this case. It can
be seen in Figure 7.28b that the ALNS_CW finds better results for the cost than the schedules
employed by the company. In addition, if the cost is analyzed in terms of the overtime (see
Figure 7.28d) and working time (see Figure 7.28f), it can be seen that the ALNS_CW improves
the results in both cases.

However, the ALNS_CW is not competitive with the company in the case of the second

7.3. HIERARCHICAL APPROACH: COST-WELFARE 181

objective (see Figure 7.28a). This was to be expected, since the company prioritizes the welfare
over the cost. Thus, Figure 7.28 it is only useful to show that it is possible to improve
considerably the cost by sacrificing the welfare. It evidences that it may be interesting to try to
strike a balance between both objectives in order to achieve the satisfaction of all parties involved
in the problem, as it will be discussed in Section 7.5.

To explore the results in more detail, the solution will be deeply analyzed with respect to the
following characteristics: overtime, travel time, unpaid break, idle time (paid break), affinity and
penalization.

First, the results per week with respect to the global overtime and worked time, as well as the
average per caregiver with respect to the overtime, the travel time, the duration of the unpaid break
and the idle time are presented in Table 7.17. The solutions found by the algorithm are better
than the ones used by the company in all the weeks. Specifically, the most improved elements are
the overtime, which is greatly reduced, and the idle time, which is juts 0 for all weeks.

Global Per caregiver
Week Solution Cost Overtime Worked time Overtime Travel time Break Idle time

1 Algorithm 927.37 0.00 927.37 0.00 0.47 6.86 0.00
Company 1290.31 211.38 1078.93 5.42 1.29 7.48 3.05

2 Algorithm 946.16 0.00 946.16 0.00 0.62 7.28 0.00
Company 1330.55 242.13 242.13 6.37 1.37 7.28 2.97

3 Algorithm 1053.99 97.69 956.30 2.87 0.64 7.29 0.00
Company 1383.23 280.06 1103.16 8.24 1.54 7.70 3.41

4 Algorithm 929.11 12.92 916.19 0.36 0.74 5.64 0.00
Company 1247.58 203.93 1043.65 5.51 1.33 7.22 2.86

5 Algorithm 679.26 0.00 679.26 0.00 0.23 6.60 0.00
Company 833.06 48.33 784.73 1.27 0.94 6.51 2.07

6 Algorithm 878.57 6.08 872.49 0.21 0.81 5.56 0.00
Company 1207.38 218.10 989.28 5.89 1.31 6.76 2.62

7 Algorithm 988.54 50.22 938.32 1.45 0.68 6.30 0.00
Company 1297.50 227.71 1069.78 6.51 1.53 8.22 2.90

8 Algorithm 801.07 0.00 801.07 0.00 0.28 6.63 0.00
Company 1047.96 116.53 931.43 2.99 1.11 6.15 2.53

9 Algorithm 849.78 0.00 849.78 0.00 0.64 6.97 0.00
Company 1162.40 192.08 970.31 5.49 1.33 8.53 2.75

10 Algorithm 951.77 6.57 945.19 0.15 0.70 6.30 0.00
Company 1286.75 206.65 1080.10 5.59 1.41 6.58 2.99

11 Algorithm 928.79 25.42 903.37 0.67 0.65 6.99 0.00
Company 1226.06 195.60 1030.46 5.29 1.38 7.12 2.71

12 Algorithm 865.12 0.00 865.12 0.00 0.48 6.04 0.00
Company 1154.76 148.68 1006.08 3.81 1.34 6.21 2.72

13 Algorithm 1025.43 34.93 990.50 0.90 0.62 7.10 0.00
Company 1377.91 234.85 1143.06 6.18 1.47 7.13 3.18

14 Algorithm 1011.21 34.90 976.31 0.94 0.78 6.20 0.00
Company 1358.13 240.00 1118.13 6.32 1.44 6.87 3.01

15 Algorithm 993.78 13.22 980.55 0.34 0.71 7.51 0.00
Company 1350.56 219.73 1130.83 5.94 1.50 7.47 3.29

Table 7.17: Computational results in hours for real instances according to ALNS_CW (cost).

Figure 7.29 shows the aggregated mean weekly overtime, travel time, unpaid break and idle
time per caregiver. It can be seen that the idle time disappears, the travel time decreases and the
overtime is drastically reduced.

182 CHAPTER 7. COMPUTATIONAL RESULTS

0

5

10

15

ALNS_CW Company
method

ho
ur

s

variable
overtime

idle time

break time

travel time

Figure 7.29: Mean weekly times per caregiver according to ALNS_CW (all weeks).

0

10

20

30

ALNS_CW Company
method

ov
er

tim
e

(h
ou

rs
)

(a) Overtime for the caregivers.

2

4

6

8

10

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
day

no
 p

ai
d

br
ea

k
tim

e
(h

ou
rs

)

method ALNS_CW Company

(b) Unpaid break for the caregivers per day.

0

1

2

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
day

id
le

 ti
m

e
(h

ou
rs

)

method ALNS_CW Company

(c) Idle time for the caregivers per day.

0

5

10

15

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
day

tra
ve

l t
im

e
(m

in
ut

es
)

method ALNS_CW Company

(d) Travel time between services per day.

Figure 7.30: Overtime, unpaid break, idle time and travel time for week 6 (ALNS_CW).

A more detailed study of the overtime, the unpaid break, the idle time and the travel time for
week 6 can be found in Figure 7.30. The comparison of the overtime for the caregivers is presented
in Figure 7.30a, showing again the good performance of the algorithm. Then, Figures 7.30b to 7.30d

7.3. HIERARCHICAL APPROACH: COST-WELFARE 183

make a comparison of the solutions on a daily basis. In all three cases the solutions found by the
algorithm improve the ones of the company6.

The results with respect to the affinity and the penalization on a weekly basis, both globally
and on average per user, are presented in Table 7.18. It can be seen that the results of the company
are better than the ones provided by ALNS_CW.

Global Per user
Week Solution Welfare Affinity Penalization Affinity Penalization

(×e8) (×e3) (×e3)

1 Algorithm 2.45 2.78 12.87 3.22 15.93
Company 3.22 3.64 11.55 4.14 13.73

2 Algorithm 2.56 2.91 13.51 3.30 18.09
Company 3.48 3.94 11.93 4.50 14.94

3 Algorithm 2.59 2.98 13.31 3.33 16.96
Company 3.66 4.19 11.89 4.66 14.66

4 Algorithm 2.44 2.87 13.54 3.27 17.59
Company 3.44 4.02 11.53 4.62 15.19

5 Algorithm 1.36 2.15 7.97 3.36 13.63
Company 1.82 2.86 9.27 4.60 16.10

6 Algorithm 2.20 2.67 13.74 3.23 18.25
Company 2.97 3.58 11.60 4.25 15.39

7 Algorithm 2.63 2.99 13.51 3.41 18.48
Company 3.68 4.17 11.96 4.62 14.60

8 Algorithm 1.89 2.58 10.20 3.35 15.05
Company 2.56 3.48 10.16 4.64 15.03

9 Algorithm 2.03 2.69 11.74 3.36 17.95
Company 2.71 3.58 10.52 4.44 15.21

10 Algorithm 2.67 3.04 13.32 3.38 14.96
Company 3.66 4.15 11.66 4.59 14.49

11 Algorithm 2.46 2.93 12.60 3.32 16.01
Company 3.45 4.09 11.29 4.64 14.50

12 Algorithm 2.31 2.82 12.10 3.32 17.02
Company 3.22 3.92 10.53 4.65 14.66

13 Algorithm 2.97 3.20 14.54 3.36 16.45
Company 4.09 4.38 13.54 4.67 15.83

14 Algorithm 2.74 3.12 14.22 3.40 16.46
Company 3.85 4.35 12.32 4.75 14.20

15 Algorithm 2.84 3.19 13.26 3.46 13.75
Company 3.97 4.44 11.77 4.71 13.70

Table 7.18: Computational results for real instances according to ALNS_CW (welfare).

Week Company Algorithm Week Company Algorithm
1 76.30% 27.39% 9 78.46% 22.52%
2 75.90% 17.50% 10 79.58% 20.41%
3 82.79% 18.99% 11 84.82% 18.62%
4 82.96% 19.35% 12 83.09% 18.80%
5 77.40% 22.59% 13 80.52% 21.78%
6 76.64% 16.42% 14 86.59% 22.81%
7 83.89% 22.37% 15 85.83% 21.51%
8 78.42% 20.39%

Table 7.19: Weekly percentage of services with maximum affinity level (ALNS_CW).
6Week 6 has been chosen to explain in more detail the behavior of the solution of the ALNS_CW and the one

of the company in a typical week. The behavior of the solutions in the other weeks would be similar.

184 CHAPTER 7. COMPUTATIONAL RESULTS

On the other hand, Table 7.19 shows the percentage of services where the best possible level of
affinity is reached. The percentages of services that have the highest affinity for the company and
the algorithm are 81.04% and 20.76%, respectively, when considering all the services across all the
weeks. Therefore, the solution proposed by the company presents a much better behavior, which
was to be expected, since the company tries to maintain the allocation of caregivers to users as
much as possible.

Finally, the soft time window penalization for the users and the services in all the weeks is
represented in the boxplots of Figures 7.31a and 7.31b. It can be seen that the company is better
in terms of the penalization for the users. But, both solutions are closer regarding the penalization
of the services, although the ALNS_CW solution presents more outliers. These results may be
because, even though there is generally little penalization for the services, users tend to have some
service with a penalty.

0

250

500

750

1000

Company ALNS_CW
solution

pe
na

liz
at

io
n

 p
er

 u
se

r

(a) For the users.

0

100

200

300

400

Company ALNS_CW
solution

pe
na

liz
at

io
n

 p
er

 s
er

vi
ce

(b) For the services.

Figure 7.31: Soft time window penalization according to ALNS_CW (all weeks).

Caregiver
31

143

18

11

137

17

24

145

35

169

97

146

42

19

50

165

5

162

62

171

157

79

Figure 7.32: Routes for a random day (ALNS_CW).

Continuing with the analysis of the results, Figure 7.32 illustrates the routes that caregivers
follow, according to the solutions given by the ALNS_CW, on a random day. It can be seen that the

7.3. HIERARCHICAL APPROACH: COST-WELFARE 185

routes tend to be concentrated either in the urban7 (see Figure 7.33a) or rural (see Figure 7.33b)
areas, since there is only one route that connects rural and urban services. It means that the
traveling times of caregivers are smaller than the ones of the routes presented in Figure 7.16,
where caregivers usually travel between areas.

Caregiver
137

35

146

19

171

(a) Urban routes.

Caregiver
18

17

169

5

157

(b) Rural routes.

Figure 7.33: Routes separated into areas (ALNS_CW).

To analyze in more detail the solution, Figure 7.34 shows the routes of Caregiver 157 in four
days (no services are scheduled on Thursday). On Monday and Wednesday, the caregiver works
in the rural area, meanwhile, on Tuesday and Friday, she is assigned to urban services. This is
different to what happened when the welfare was prioritized (see Figure 7.18), where the caregiver
would stay in the same area and repeat several services throughout the week. The reason for such
differences is that now the cost is being prioritized over welfare, meaning that routes do not have to
be consistent in terms of the services performed by the caregivers (affinity levels). Instead, routes
should minimize breaks and travel times.

7The urban area is the one surrounded by the frame in Figure 7.32.

186 CHAPTER 7. COMPUTATIONAL RESULTS

18

131

176

20

90 38

156

10

132

52

(a) Monday.

67 29
105

49 50

5
183

187

(b) Tuesday.

51

180

80

52

156

132

(c) Wednesday.

79

129

110

85

130

74

178

10

(d) Friday.

Figure 7.34: Routes of Caregiver 157.

7.4. COMPARISON OF THE TWO HIERARCHICAL SOLUTIONS IN THE REAL CASE STUDY187

Figure 7.35 shows the details of the schedule for the four days. Note that on Tuesday,
Wednesday and Friday the caregiver only has one break per day, with a duration of two hours,
which means that it will not considered as working time. According to the schedules, the soft
time windows are not usually upheld (for example, on Monday, service 18 could be carried out at
9:00 and service 131 at 10:18, but this would result in a break with service 176). It can be seen
that, when the services are close to each other (for example, see services 90 and 38 on
Figure 7.34a), the travel time between them is neglected. The daily availability of the caregiver
starts at 8:00 and ends at 22:30, which is respected by all her services. The caregiver works 10.53
hours on Monday, 10.13 hours on Tuesday, 7.38 hours on Wednesday and 8.01 on Friday, resulting
in a total of 36.05 hours. These working times do not exceed the daily and weekly maximum
working time imposed by the contract of the caregiver, which is of 12 and 40 hours, respectively.

Monday
09:00 - 12:00 09:00 - 11:00

Service 18
10:00 − 11:15
Travel: 3 min

08:00 - 13:00 09:00 - 12:00

Service 131
11:18 − 12:19
Travel: 2 min

11:00 - 16:00 12:00 - 15:00

Service 176
11:21 − 13:21
Travel: 1 min

10:00 - 19:00 15:00 - 18:00

Service 20
13:22 − 14:22
Travel: 3 min

11:00 - 17:00 11:00 - 17:00

Service 90
14:25 − 15:25

11:00 - 17:00 11:00 - 17:00

Service 38
15:25 − 16:25
Travel: 1 min

15:00 - 20:00 15:00 - 20:00

Service 156
16:26 − 17:27
Travel: 1 min

12:00 - 20:00 12:00 - 18:00

Service 10
17:28 − 18:28
Travel: 3 min

18:30 - 23:30 18:30 - 23:30

Service 132
18:31 − 19:31
Travel: 1 min

15:00 - 22:00 15:00 - 20:00

Service 52
19:32 − 20:32

Tuesday
09:00 - 15:00 11:30 - 13:00

Service 67
10:17 − 11:17
Travel: 2 min

09:00 - 16:00 09:30 - 14:00

Service 29
11:19 − 13:18
Travel: 1 min

11:00 - 17:00 11:00 - 17:00

Service 105
13:19 - 13:49
Travel: 1 min

12:00 - 15:00 12:00 - 15:00

Service 49
13:50 - 14:35

Break: 120 min
15:00 - 23:59 15:00 - 20:00

Service 50
16:35 - 18:08
Travel: 2 min

17:00 - 22:00 18:00 - 20:00

Service 50
18:10 − 19:43
Travel: 2 min

16:00 - 21:00 16:00 - 21:00

Service 183
19:45 - 20:20
Travel: 2 min

18:00 - 23:00 18:00 - 23:00

Service 187
20:022 − 22:25

Wednesday
10:00 - 13:00 11:00 - 12:30

Service 51
10:49 - 11:49
Travel: 6 min

08:00 - 16:00 08:00 - 14:00

Service 180
11:55 - 13:55
Travel: 4 min

08:00 - 15:00 08:00 - 15:00

Service 80
13:59 - 15:00
Travel: 2 min

15:00 - 22:00 15:00 - 20:00

Service 52
15:02 - 16:02
Travel: 5 min

15:00 - 20:00 15:00 - 20:00

Service 156
16:07 - 17:08
Travel: 4 min

Break: 120 min
18:30 - 23:30 18:30 - 23:30

Service 132
19:12 - 20:12

Friday
09:00 - 12:00 09:00 - 10:00

Service 79
08:26 − 09:30
Travel: 2 min

07:30 - 13:00 09:00 - 10:30

Service 129
09:32 − 10:32
Travel: 7 min

09:00 - 13:00 09:00 - 12:00

Service 110
10:39 − 11:40
Travel: 6 min

09:00 - 15:00 09:00 - 12:00

Service 85
11:46 − 12:46
Travel: 2 min

18:00 - 23:00 18:00 - 23:00

Service 130
12:48 − 13:48
Travel: 7 min

16:00 - 21:00 16:00 - 21:00

Service 74
13:55 − 14:25
Travel: 4 min

09:00 - 15:30 09:00 - 15:30

Service 178
12:49 − 13:50
Travel: 2 min

Break: 120 min
16:00 - 21:00 16:00 - 21:00

Service 10
17:32 − 18:32

Figure 7.35: Schedules of caregiver 157.

7.4 Comparison of the two hierarchical solutions in the real
case study

The real instances have been solved prioritizing the welfare over the cost, with algorithm
ALNS_WC, and prioritizing the cost over the welfare, with algorithm ALNS_CW. Therefore,
the results obtained will now be compared in order to analyze the trade-off between welfare and
cost.

First, Table 7.20 presents the percentage of reduction of the proportion of services with

188 CHAPTER 7. COMPUTATIONAL RESULTS

maximum affinity, that is, how much the proportion is reduced when the instances are solved
prioritizing the cost instead of prioritizing the welfare. It can be seen that this proportion is
greatly reduced in all weeks, with a mean of 76.62%, which means that the number of services
attended by their best caregiver decreases drastically.

Week Algorithm
1 68.24%
2 79.41%
3 78.96%
4 77.55%
5 74.73%
6 80.91%
7 75.49%
8 76.41%
9 75.00%
10 76.73%
11 79.52%
12 78.80%
13 76.08%
14 75.03%
15 76.49%

Mean 76.62%

Table 7.20: Reduction of the percentage of services with maximum affinity.

Second, Table 7.21 presents the percentage of reduction of the objectives related with the
welfare, i.e., how much the welfare, affinity and penalization8 (global and per user) are reduced if the
instances are solved with ALNS_CW instead of using ALNS_WC. The global welfare is reduced by
28.73% and the global affinity is decreased by 28.88%. In terms of the global penalization, it can be
seen that it increases 429.05%, which means that the soft time window penalization obtained when
the cost is prioritized is much greater than the one obtained prioritizing the welfare. Similarly, the
affinity per user is reduced by 28.53% and the penalization per user increases by 468.53%.

Global Per user
Week Welfare Affinity Penalization Affinity Penalization

1 27.08% 27.03% −452.36% 25.64% −483.52%
2 28.89% 29.02% −409.81% 29.18% −555.43%
3 30.38% 30.37% −471.24% 30.04% −516.73%
4 29.07% 29.31% −491.27% 29.83% −453.14%
5 27.66% 28.09% −333.15% 28.96% −362.03%
6 27.39% 27.45% −507.96% 26.09% −599.23%
7 30.24% 30.30% −413.69% 28.21% −486.67%
8 27.86% 28.13% −420.41% 29.18% −502.00%
9 27.76% 27.88% −410.43% 26.48% −514.73%
10 28.23% 28.30% −422.35% 27.31% −410.58%
11 29.71% 29.90% −307.77% 30.25% −414.79%
12 29.14% 29.32% −393.88% 29.81% −423.69%
13 29.12% 29.36% −361.59% 29.71% −423.89%
14 29.38% 29.57% −580.38% 29.17% −537.98%
15 29.00% 29.11% −459.49% 28.07% −343.55%

Mean 28.73% 28.88% −429.05% 28.53% −468.53%

Table 7.21: Reduction of the welfare related objectives.
8Notice that, since the goal is to reduce the penalization, the percentages of the table related to this element

are negative. Which means that the penalization increases when solving the instances with ALNS_CW instead of
using ALNS_WC.

7.4. COMPARISON OF THE TWO HIERARCHICAL SOLUTIONS IN THE REAL CASE STUDY189

Finally, Table 7.22 contains the percentage of reduction of the objectives related to the cost,
i.e., how much the objectives decrease when prioritizing the cost instead of the welfare. There is a
reduction of the global cost of 12.05% and, when dividing the cost into overtime and worked time,
the mean reduction is 87.56% and 3.66%, respectively. In terms of the values per caregiver, it can
be seen that the overtime is reduced by 87.53%, the travel time by 55.66% and the idle time by
100%. Meanwhile, the unpaid break increases by 8.34%. The reason for this increment may be
that this break is not considered as worked time.

Global Per caregiver
Week Cost Overtime Worked time Overtime Travel time Break Idle time

1 12.72% 100.00% 3.88% 100.00% 61.79% −5.86% 100.00%
2 14.81% 100.00% 3.39% 100.00% 53.73% −9.15% 100.00%
3 11.26% 49.21% 3.93% 48.57% 57.62% 10.77% 100.00%
4 11.74% 88.04% 3.00% 87.67% 43.94% 12.56% 100.00%
5 6.85% 100.00% 4.16% 100.00% 74.16% −32.26% 100.00%
6 14.55% 95.30% 2.94% 94.15% 37.69% −16.08% 100.00%
7 12.68% 67.93% 3.81% 67.63% 55.56% 3.37% 100.00%
8 9.08% 100.00% 4.40% 100.00% 74.07% −25.09% 100.00%
9 12.59% 100.00% 3.21% 100.00% 50.00% −4.81% 100.00%
10 10.98% 92.93% 3.19% 93.90% 50.70% −7.88% 100.00%
11 11.14% 77.19% 3.26% 79.06% 54.55% −16.89% 100.00%
12 11.79% 100.00% 4.43% 100.00% 63.36% −6.34% 100.00%
13 13.42% 77.11% 4.00% 77.83% 59.48% −15.64% 100.00%
14 12.02% 74.38% 3.63% 72.27% 45.07% 2.21% 100.00%
15 15.21% 91.39% 3.73% 91.87% 53.29% −14.13% 100.00%

Mean 12.05% 87.56% 3.66% 87.53% 55.66% −8.34% 100.00%

Table 7.22: Reduction of the cost related objectives.

Therefore, to reduce the cost by 12.05%, the welfare needs to be decreased by 28.73%. In
particular, there is a 87.53% reduction of the overtime per caregiver, a 55.66% decrease in travel
time, an increase of the unpaid break of 8.34% and a 100% reduction of idle time for the caregivers.
In order to achieve this, the affinity per user is reduced by 28.53%, the penalization increases by
468.53% and the percentage of services with maximum affinity decreases by 76.62%.

7.4.1 Trade-off between soft time window penalization and cost
The previous results indicate that it is necessary to sacrifice welfare to improve the cost, but the
continuity of care is usually one of the priority targets in HCSP. Therefore, the impact that the
soft time window penalization has on the cost will be studied.

To this aim, for each service, a system of weights has been applied to relax the soft time window
according to the difference between the hard and the soft time windows. Thus, a weight of 100%
means that the original soft time windows are considered, a weight of 95% means that the soft
time windows are expanded according to the 5% of the difference between the hard and the soft
time window, and so on. In this way, the soft time windows are expanded, in increments of the
5% of the difference between the hard and the soft time window, until the hard time windows are
reached. This relaxation will make possible to seek solutions for cost improvement.

The results are presented in Figures 7.36 and 7.37, which show the evolution of the affinity
and the soft time window penalization with weights from 100% to 60%. For each weight, the
ALNS_WC algorithm was executed. The last weight considered is 60% because the value 55%
gives worse solutions (in terms of the soft time window penalization) than those of the company
(although not in all weeks). As it can be seen in Figure 7.36, the affinity hardly changes, given the

190 CHAPTER 7. COMPUTATIONAL RESULTS

stability of the algorithm and the fact that the weights do not affect the affinity. However, as it
was to be expected, the penalty increases as the weight decreases (see Figure 7.37).

3000

3500

4000

4500

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Solution
60

65

70

75

80

85

90

95

100

Company

Affinity for each week.

Figure 7.36: Affinity for different weights.

5000

10000

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Solution
60

65

70

75

80

85

90

95

100

Company

Penalization for each week.

Figure 7.37: Soft time window penalization for different weights.

Figures 7.38 and 7.39 are used to study better the effect of the relaxation of the soft windows
in the cost. Figure 7.38 presents the cost objective value obtained for each week using the different
weight values and Figure 7.39 shows overtime, idle time, break time and travel time. Analyzing the
figures it can be appreciated that, although the total cost is not drastically reduced, it is possible to
reduce the overtime, idle time and break time while providing better solutions than the company
as far as the weight decreases.

7.5. BIOBJECTIVE ALGORITHM 191

50000

60000

70000

80000

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Solution
60

65

70

75

80

85

90

95

100

Company

Cost for each week.

Figure 7.38: Cost for different weights.

0

2500

5000

7500

company weight_060 weight_065 weight_070 weight_075 weight_080 weight_085 weight_090 weight_095 weight_100
method

va
lu

e

variable
overtime

idle time

break time

travel time

Figure 7.39: Decomposition of the cost for different weights.

7.5 Biobjective algorithm
This section details the computational results related to the biobjective version of the HCSP. Again,
to study the performance of the methods, two types of different instances were considered: the
Solomon instances and the real instances of the company.

The first results presented in this section are the ones obtained when solving the problem using
the AUGMECON2 method. Then, a set of performance indicators is described, which will be
used to compare the solutions obtained using the metaheuristic algorithm (BIALNS) with the ones
found by the AUGMECON2 method. After that, a study of the BIALNS parameters is shown.
Finally, several examples are used to illustrate the types pf Pareto frontiers that can appear.

192 CHAPTER 7. COMPUTATIONAL RESULTS

7.5.1 AUGMECON2 method
The AUGMECON2 method was used to solve the Solomon instances with 10 and 15 services. For
this purpose, a time limit of 12 hours has been established to solve each lexicographical MILP with
the optimization solver Gurobi, in order to obtain the range of the objective functions necessary to
define the grid points. Then, the MILP associated to each grid point has been solved with Gurobi
with a time limit of 1 hour. Table 7.23 presents the computational times, in hours, needed to solve
each instance9. The fastest one is solved in 2.58 hours, while the slowest one needs 236.69 hours.
Therefore, the AUGMECON2 method will not be suitable to solve large size instances. However,
the results obtained with this method might be useful to evaluate the performance of the BIALNS
algorithm.

Instance 01 02 03 04 05 06 07 08 09 10
10 4.92 2.58 7.23 20.39 5.22 5.83 7.08 5.13 14.99 3.58
15 77.68 36.67 13.05 58.97 86.51 236.69 143.44 124.00 164.72 90.29

Table 7.23: AUGMECON2 computational times (in hours).

Figure 7.40 presents an illustration of the Pareto frontier obtained for an instance of 10
(Figure 7.40a) and 15 (Figure 7.40b) services. It can be seen that the figures are defined in
sections, which is due to the effect of the affinity on the welfare. In these instances, each segment
of the frontier usually corresponds to a different value of the affinity and the breaks in the
frontier are due to an abrupt change in the value of the affinity.

−250000

−245000

−240000

−235000

−230000

200 300 400 500
cost

w
el

fa
re

(a) Instance 10_06.

−460000

−450000

−440000

−430000

1500 1800 2100 2400
cost

w
el

fa
re

(b) Instance 15_01.

Figure 7.40: Pareto frontier.

7.5.2 Performance indicators
Since there are two different objectives involved in the problem, it is not immediate to evaluate
the quality of a solution or to decide which solutions are the best ones. Therefore, to compare
the solutions of the biobjective problem, a set of performance indicators are used. The formal
definition of the indicators is presented in Table 7.24 and they measure the convergence and the
diversity of the solutions. To introduce them, it is necessary to consider an approximation of the
Pareto frontier, A, and a reference set, RF . The set A is the solution of the problem that has
to be evaluated (for example, an approximation of the Pareto frontier obtained using BIALNS).
Meanwhile, the reference set RF is composed exclusively of non dominated points (since this set
is usually not known a priori, a common approach is to define RF by selecting the non dominated
points of the solutions that are being evaluated by the indicator).

9Notice that, because of the time limit considered, there is no guarantee that the Pareto frontier given by the
AUGMECON2 method is the optimal one.

7.5. BIOBJECTIVE ALGORITHM 193

The indicators studied are the following ones.

Coverage. It represents the percentage of elements of A dominated by RF . The smaller the value
of this measure, the better the quality of the approximation of the Pareto front.

Generational Distance. It measures how far are the elements of A from those of RF . This
indicator is obtained using di, which is the euclidean distance between the elements i ∈ A

and the nearest one of RF . The smaller the value of this measure, the closer A is to RF .

Inverted Generational Distance. This variant of GD measures how far are the elements of the
reference set RF to the set A. Now, it is done taken the euclidean distance between the
element i ∈ RF and the nearest one of A, represented by d̃i. For this indicator, smaller
values are preferred because it means that RF is close to the approximation A.

Epsilon. It computes the minimum distance needed to translate every element of A so it dominates
the solution RF . It is said that x ≻ϵ y if, for each objective k ∈ {1, ..., p}, fk(x) < ϵ+fk(y). If
the value of this indicator is small, all the elements of solution A are close to the solution RF ,
because it is necessary to translate them a small distance in order to achieve the dominance
of RF . Therefore the smaller the value, the better the quality of the approximation of the
Pareto front.

All of these indicators, except the coverage, are implemented in the jMetal framework, described
in Durillo & Nebro (2011).

Indicator Formula

Coverage (CV) CV (RF, A) = |{x ∈ A : ∃y ∈ RF/y ≻ x}|
|A|

Generational Distance (GD) GD(RF, A) =

√∑|A|
i=1 d2

i

|A|

Inverted Generational Distance (IGD) IGD(RF, A) =

√∑|RF |
i=1 d̃2

i

|RF |

Epsilon (EPS) EPS(RF, A) = inf
ϵ∈R
{∀y ∈ RF ∃x ∈ A : x ≻ϵ y}

Table 7.24: Performance indicators for the biobjective problem.

7.5.3 BIALNS method
As far as the configuration of the biobjective algorithm is concerned, it is necessary to set multiple
parameters. Below, the values of the parameters fixed at each stage of the BIALNS are indicated.

Step 1: Initialize the sets. In the first step it is necessary to establish the parameters for each
lexicographic ALNS method. The values used are the ones giving good results, in reasonable
computational times, during the study presented in Sections 7.2 and 7.3:

10 services. Number of iterations (n): 1000. Proportion of solution to destroy (p):
auto_100%.

15 services. Number of iterations (n): 1000. Proportion of solution to destroy (p):
auto_100%.

194 CHAPTER 7. COMPUTATIONAL RESULTS

25 services. Number of iterations (n): 1000. Proportion of solution to destroy (p):
auto_75%.

50 services. Number of iterations (n): 1000. Proportion of solution to destroy (p):
auto_25%.

100 services. Number of iterations (n): 1000. Proportion of solution to destroy (p):
auto_25%.

Step 2: Generate different solutions. This step deals with the parameters related to the
stopping criteria, as well as the parameters for each lexicographic ALNS method.

Stopping criteria. Number of iterations (nroutes): 1000, 2000, 3000, 4000, 5000, 6000,
7000, 8000, 9000 and 10000.

ALNS. Number of iterations (nalns): 5, 10, 25 and 50. Proportion of solution to destroy
(pr): 5%, 10% and 25%.

Step 3: Get non dominated solutions. In the third step, it is necessary to fix the stopping
criteria parameter.

Stopping criteria. Number of iterations (nsols): 1× 105, 2× 105 and 3× 105.

Next, a computational analysis is presented to study the behavior of the BIALNS with respect
to its different parameters, as well as their most suitable values for steps 2 and 3. For 10 and
15 services, the solutions found by the algorithm were compared to the ones obtained with the
AUGMECON2 method using the performance indicators. Since for 25 and 50 services there are
no solutions obtained with the AUGMECON2 method, the solutions given by the BIALNS will
be compared with a reference set (which was obtained, for each instance, by combining all the
solutions found and keeping only the non dominated points).

7.5.3.1 ALNS parameters for step 2: generation of different solutions

To analyze the parameters of the ALNS (number of iterations and proportion of solution to
destroy), the instances of 10 services were solved five times for each combination of parameters10.

The 95% confidence intervals of each indicator, obtained when solving the instances using each
number of iterations (nalns), are shown in Figure 7.41. It can be seen that, for all indicators, big
values of the nalns result in worse solutions. Specifically, similar values of CV, GD and IGD are
found setting the parameter to be 5 or 10.

10The value of nroutes considered in this analysis is 1000, this parameter will be studied in more detail later on.

7.5. BIOBJECTIVE ALGORITHM 195

0.04

0.06

0.08

0.10

0.12

nalns

5 10 25 50

(a) Coverage.

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

nalns

5 10 25 50

(b) Generational Distance.

0.001

0.002

0.003

0.004

nalns

5 10 25 50

(c) Inverted Generational Distance.

0.005

0.006

0.007

0.008

0.009

0.010

nalns

5 10 25 50

(d) Epsilon.

Figure 7.41: Confidence intervals of the indicators in terms of nalns.

0.05

0.06

0.07

0.08

0.09

pr

5 10 25

(a) Coverage.

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

pr

5 10 25

(b) Generational Distance.

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

pr

5 10 25

(c) Inverted Generational Distance.

0.0060

0.0065

0.0070

0.0075

0.0080

pr

5 10 25

(d) Epsilon.

Figure 7.42: Confidence intervals of the indicators in terms of pr.

196 CHAPTER 7. COMPUTATIONAL RESULTS

Figure 7.42 presents the 95% confidence intervals of the indicators for the different proportion of
solution to destroy (pr). As it has already happened with nalns, setting big values for the proportion
results in worse solutions. But it is not clear which configuration is the best, because the behavior
of proportions 5% and 10% is indicator dependant: 5% is better for IGD (see Figure 7.42c), 10%
is better in terms of GD (see Figure 7.42d) and CV (see Figure 7.42a), and both are similar for
EPS (see Figure 7.42d).

7.5.3.2 Number of iterations in step 3: get non dominated solutions

The values of the indicators, according to the number of iterations when obtaining non dominated
solutions (nsols), are shown in Figure 7.43. The three configurations seem to be similar in terms
of CV (see Figure 7.43a) and EPS (see Figure 7.43d), but 2× 105 and 3× 105 iterations result in
better values of GD (see Figure 7.43b) and IGD (see Figure 7.43c).

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

nsols

100000 200000 300000

(a) Coverage.

0.000

0.005

0.010

0.015

nsols

100000 200000 300000

(b) Generational Distance.

0.002

0.003

0.004

0.005

0.006

0.007

0.008

nsols

100000 200000 300000

(c) Inverted Generational Distance.

0.016

0.018

0.020

0.022

0.024

0.026

nsols

100000 200000 300000

(d) Epsilon.

Figure 7.43: Confidence intervals of the indicators in terms of nsols.

7.5.3.3 Number of iterations in step 2: generation of different solutions

In a preliminary study it was found that this parameter is one of the most relevant when solving
the problem, as it highly affects the quality of the solutions. Therefore, the BIALNS was used to
solve the instances with 10, 15, 25 and 50 services, with the other parameters fixed. The
algorithm was run five times for all possible values of the parameter, while setting nalns=5,
pr=5% and nsols=3× 105.

Results of instances with 10 services
Analyzing the 95% confidence intervals presented in Figure 7.44, it can be concluded that

choosing a number of iterations bigger than 6000 would not guarantee better results for instances

7.5. BIOBJECTIVE ALGORITHM 197

with 10 services. Furthermore, according to some indicators, like CV and EPS, the quality of the
solutions found with 7000 and 8000 decreases.

0.01

0.02

0.03

0.04

0.05

nroutes

1000 3000 5000 7000 9000

(a) Coverage.

0.0000

0.0001

0.0002

0.0003

0.0004

nroutes

1000 3000 5000 7000 9000

(b) Generational Distance.

0.0000

0.0002

0.0004

0.0006

0.0008

nroutes

1000 3000 5000 7000 9000

(c) Inverted Generational Distance.

0.002

0.004

0.006

0.008

0.010

nroutes

1000 3000 5000 7000 9000

(d) Epsilon.

Figure 7.44: Confidence intervals of the indicators in terms of nroutes (10 services).

The results obtained are presented in Table 7.25, which shows the indicator values, as well as
the number of non dominated (NDP) and total (TP) points found by the AUGMECON2 method
and the BIALNS algorithm11.

In this case, no method performs better than the others. Instead, the behavior of the methods is
instance dependant: AUGMECON2 has better results for instances 10_01, 10_02, 10_06, 10_07
and 10_08, meanwhile the BIALNS is better for instances 10_03, 10_04, 10_05 and 10_09.
Finally, for instance 10_10 both methods behave similarly.

11Notice that, for each instance, the results obtained for the 5 runs of the BIALNS are shown. The best values,
for each indicator and run, are highlighted in bold to easily compare the methods.

198 CHAPTER 7. COMPUTATIONAL RESULTS

CV EPS GD IGD NDP TP
Instance AUGM ALG AUGM ALG AUGM ALG AUGM ALG AUGM ALG AUGM ALG

10_01

0 2.98e-2 0 4.10e-3 0 5.73e-5 0 1.03e-4 237 228 237 235
0 4.27e-3 0 4.35e-5 0 6.19e-8 0 9.12e-5 237 233 237 234
0 2.11e-2 0 1.09e-3 0 4.78e-5 0 4.02e-5 237 232 237 237
0 2.55e-2 0 9.68e-3 0 1.43e-4 0 2.47e-4 237 229 237 235
0 2.55e-2 0 4.20e-3 0 4.04e-5 0 1.28e-4 237 229 237 235

10_02

0 3.13e-1 2.64e-5 7.22e-3 0 6.25e-5 1.34e-5 5.21e-4 268 182 268 265
0 3.70e-3 2.64e-5 2.64e-5 0 9.78e-8 2.67e-5 9.78e-8 268 269 268 270
0 1.50e-2 2.64e-5 1.37e-3 0 5.56e-6 2.67e-5 5.90e-5 268 262 268 266
0 2.22e-2 2.64e-5 1.37e-3 0 6.16e-6 2.67e-5 6.16e-6 268 264 268 270
0 1.49e-2 2.64e-5 1.37e-3 0 5.40e-6 2.67e-5 1.88e-5 268 265 268 269

10_03

0 0 2.37e-5 0 0 0 3.38e-4 0 98 102 98 102
0 0 7.12e-5 0 0 0 4.18e-4 0 98 103 98 103
0 0 2.37e-5 0 0 0 3.38e-4 0 98 102 98 102
0 0 7.12e-5 0 0 0 4.18e-4 0 98 103 98 103
0 0 7.12e-5 0 0 0 4.18e-4 0 98 103 98 103

10_04

8.33e-2 0 6.52e-2 0 1.62e-2 0 3.05e-2 0 11 13 12 13
8.33e-2 0 6.52e-2 0 1.62e-2 0 3.05e-2 0 11 13 12 13
8.33e-2 0 6.52e-2 0 1.62e-2 0 3.05e-2 0 11 13 12 13
8.33e-2 0 6.52e-2 0 1.62e-2 0 3.05e-2 0 11 13 12 13
8.33e-2 0 6.52e-2 0 1.62e-2 0 3.05e-2 0 11 13 12 13

10_05

0 0 4.73e-5 0 0 0 1.57e-4 0 50 51 50 51
0 0 4.73e-5 0 0 0 1.57e-4 0 50 51 50 51
0 0 4.73e-5 0 0 0 1.57e-4 0 50 51 50 51
0 0 4.73e-5 0 0 0 1.57e-4 0 50 51 50 51
0 0 4.73e-5 0 0 0 1.57e-4 0 50 51 50 51

10_06

0 9.01e-2 0 2.06e-2 0 7.12e-4 0 6.12e-4 222 202 222 222
0 9.01e-3 0 8.85e-5 0 5.98e-7 0 5.98e-7 222 220 222 222
0 7.80e-2 0 4.71e-2 0 1.84e-3 0 1.97e-3 222 201 222 218
0 1.36e-2 0 8.85e-5 0 8.01e-7 0 1.40e-5 222 218 222 221
0 2.75e-2 0 2.94e-3 0 1.55e-5 0 1.09e-4 222 212 222 218

10_07

0 2.78e-2 1.47e-4 5.16e-4 0 1.02e-5 1.37e-4 7.88e-5 107 105 107 108
0 8.26e-2 1.47e-4 7.46e-3 0 1.60e-4 1.37e-4 1.80e-4 107 100 107 109
0 9.43e-3 1.47e-4 1.48e-2 0 7.04e-5 1.37e-4 4.36e-4 107 105 107 106
0 9.26e-2 1.47e-4 1.49e-2 0 5.89e-4 1.37e-4 6.71e-4 107 98 107 108
0 2.78e-2 1.47e-4 4.20e-3 0 4.43e-5 1.37e-4 1.12e-4 107 105 107 108

10_08

0 4.47e-2 0 2.97e-4 0 7.48e-6 0 4.64e-5 181 171 181 179
0 4.44e-2 0 7.14e-3 0 1.37e-4 0 1.66e-4 181 172 181 180
0 6.08e-2 0 7.14e-3 0 1.41e-4 0 1.50e-4 181 170 181 181
0 4.49e-2 0 1.19e-3 0 7.52e-6 0 6.69e-5 181 170 181 178
0 3.33e-2 0 7.44e-4 0 1.24e-5 0 3.18e-5 181 174 181 180

10_09

1.28e-2 2.56e-2 1.28e-2 1.28e-2 2.15e-4 3.17e-4 6.26e-4 2.31e-4 77 76 78 78
1.28e-2 1.28e-2 1.28e-2 1.21e-4 2.15e-4 1.55e-6 6.26e-4 1.55e-6 77 77 78 78
1.28e-2 1.30e-2 1.28e-2 1.28e-2 2.15e-4 1.57e-6 6.26e-4 2.87e-4 77 76 78 77
1.28e-2 2.56e-2 1.28e-2 1.22e-2 2.15e-4 1.58e-4 6.26e-4 1.58e-4 77 76 78 78
1.28e-2 2.56e-2 1.28e-2 1.21e-4 2.15e-4 3.11e-6 6.26e-4 3.11e-6 77 76 78 78

10_10

0 0 0 0 0 0 0 0 6 6 6 6
0 0 0 0 0 0 0 0 6 6 6 6
0 0 0 0 0 0 0 0 6 6 6 6
0 0 0 0 0 0 0 0 6 6 6 6
0 0 0 0 0 0 0 0 6 6 6 6

Table 7.25: Indicator values for 6000 iterations (10 services).

5

10

15

20

10_01 10_02 10_03 10_04 10_05 10_06 10_07 10_08 10_09 10_10
instance

tim
e

(h
)

(a) AUGMECON2 time (hours).

2.5

5.0

7.5

10_01 10_02 10_03 10_04 10_05 10_06 10_07 10_08 10_09 10_10
instance

m
ea

n
tim

e
(m

)

iterations
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(b) BIALNS time (minutes).

Figure 7.45: Computational times (10 services).

7.5. BIOBJECTIVE ALGORITHM 199

Figure 7.45 and Table 7.26 show the computational times12 after solving the instances with 10
services. The AUGMECON2 method needs more than 4 hours to solve most of the considered
instances, meanwhile the BIALNS solves all of them in less than 10 minutes. Interestingly, the
comparison of the two figures shows that the most time-consuming instances for the AUGMECON2
method (10_04 and 10_09) are also the slowest ones for the algorithm.

AUGMECON2 Algorithm mean time (minutes)
Instance (hours) 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10_01 4.92 2.30 2.71 3.13 3.60 4.03 4.50 4.99 5.46 5.97 6.52
10_02 2.58 2.28 2.65 3.06 3.50 3.98 4.43 4.91 5.46 6.00 6.57
10_03 7.23 2.24 2.71 3.17 3.59 4.07 4.60 5.10 5.57 6.09 6.56
10_04 20.39 2.50 3.04 3.56 4.22 4.83 5.52 6.19 6.94 7.56 8.29
10_05 5.22 2.01 2.39 2.76 3.13 3.60 3.99 4.44 4.88 5.35 5.80
10_06 5.83 2.20 2.60 3.06 3.47 3.99 4.45 4.92 5.46 5.93 6.49
10_07 7.08 2.33 2.80 3.33 3.79 4.31 4.85 5.33 5.87 6.43 6.99
10_08 5.13 2.05 2.41 2.84 3.18 3.61 4.02 4.47 4.90 5.39 5.87
10_09 14.99 2.57 3.27 3.92 4.56 5.21 5.98 6.64 7.60 8.32 9.10
10_10 3.58 1.40 1.63 1.83 2.09 2.33 2.58 2.83 3.05 3.28 3.58

Table 7.26: Computational time for instances with 10 services.

Note that the first step of the BIALNS mainly consists in solving the hierarchical versions of
the problem, whose computational study has already being studied in previous sections. For this
reason, it is interesting to study the aggregated time that the BIALNS needs to generate different
solutions (step 2) and to obtain non dominated points (step 3). Figure 7.46 presents a boxplot of
the computational time associated with steps 2 and 3 of the algorithm, for two instances. According
to the figures it is clear that the BIALNS is consistent, in the sense that the time needed to solve
an instance (for each number of iterations) is similar in every run. Notice that, since the behavior
of the remaining instances is very similar to the ones presented in Figure 7.46, they are omitted to
avoid redundancy.

2

4

6

8

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iterations

tim
e

(m
)

(a) Instance 10_09.

1.0

1.5

2.0

2.5

3.0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iterations

tim
e

(m
)

(b) Instance 10_10.

Figure 7.46: Computational time of steps 2 and 3 (10 services).

The study finished with the comparison of the number of total and non dominated points
found by both methods, represented in Figure 7.47. The values are obtained considering, for each
instance, the best and worst solutions obtained by the BIALNS algorithm. Given an instance, the
best solution is the one that has the largest number of non dominated points, when comparing it
to the AUGMECON2 solution. In a similar way, the worst solution would be the one with the
minimum number of non dominated points.

12Notice that the BIALNS algorithm was run 5 times. Therefore, the figure presents the mean time employed to
solve each instance for each value of the parameter.

200 CHAPTER 7. COMPUTATIONAL RESULTS

In terms of the total number of points, the worst and best solutions are very similar. According
to the non dominated points, the best solution is as good as the AUGMECON2 one while in the
worst case BIALNS finds considerably fewer points than the AUGMECON2 solution.

Non dominated points Total points

worst best worst best
0

100

200

solution

nu
m

be
r o

f p
oi

nt
s

method AUGMECON2 BIALNS

Figure 7.47: Number of non dominated and total points (10 services).

Figure 7.48 shows the number of non dominated points for different values of the iterations
of the BIALNS. It can be observed that, when the best solution is chosen, the BIALNS is very
competitive with AUGMECON2 in terms of the number of non dominated points. However, this
is not the case of the worse solution. Specifically, the number of non dominated points for the
worst solution increases with the iterations, reaching its best value from 2000 onwards.

6000 7000 8000 9000 10000

1000 2000 3000 4000 5000

worst best worst best worst best worst best worst best

worst best worst best worst best worst best worst best
0

100

200

0

100

200

solution

nu
m

be
r o

f n
on

 d
om

in
at

ed
 p

oi
nt

s

method AUGMECON2 BIALNS

Figure 7.48: Number of non dominated points by iterations (10 services).

Results of instances with 15 services
Figure 7.49 presents the indicator values obtained for instances with 15 services. It can be seen

that the quality of the solution improves as the number of iterations increases. For these instances,
an adequate number of iterations could be 5000, because it presents good values for all indicators

7.5. BIOBJECTIVE ALGORITHM 201

and its increment would not necessary improve the results. Additionally, another configuration
that shows good results is 8000, which slightly improves the values of some of the indicators.

0.10

0.15

0.20

0.25

0.30

0.35

0.40

nroutes

1000 3000 5000 7000 9000

(a) Coverage.

0.0000

0.0005

0.0010

0.0015

0.0020

nroutes

1000 3000 5000 7000 9000

(b) Generational Distance.

0.0005

0.0010

0.0015

nroutes

1000 3000 5000 7000 9000

(c) Inverted Generational Distance.

0.002

0.003

0.004

0.005

0.006

0.007

0.008

nroutes

1000 3000 5000 7000 9000

(d) Epsilon.

Figure 7.49: Confidence intervals of the indicators in terms of nroutes (15 services).

Table 7.27 presents the indicator values for all the instances. In terms of CV, AUGMECON2
tends to find better values but, according to EPS, GD and IGD, the smaller values are usually found
by the BIALNS. The CV values indicate that the proportion of dominated points of the algorithm
is larger than the one of the AUGMECON2 method, which is consistent with the number of total
and non dominated points (TP and NDP). Meanwhile, indicators EPS, GD and IGD analyze
the distances between the solutions (found by the two methods) and the reference set (all non
dominated points found by the two methods). Therefore, the values obtained indicate that the
distances are larger for the AUGMECON2 solutions. Thus, it can be concluded that, although the
BIALNS finds more dominated points than the AUGMECON2 method, the solutions given by the
algorithm are closer to the reference set, which reinforces the good performance of the BIALNS.

202 CHAPTER 7. COMPUTATIONAL RESULTS

CV EPS GD IGD NDP TP
Instance AUGM ALG AUGM ALG AUGM ALG AUGM ALG AUGM ALG AUGM ALG

15_01

1.01e-02 4.37e-01 8.94e-04 6.26e-03 2.87e-06 1.53e-03 9.27e-06 1.36e-04 685 378 692 671
1.01e-02 1.27e-01 1.79e-03 3.58e-03 5.92e-07 7.35e-06 3.12e-05 1.23e-04 685 572 692 655
1.01e-02 1.74e-01 8.94e-04 8.94e-04 5.92e-07 9.21e-06 2.35e-05 1.01e-04 685 527 692 638
1.01e-02 3.50e-02 1.79e-03 5.45e-03 5.92e-07 4.26e-05 4.44e-05 9.80e-05 685 661 692 685
1.01e-02 3.06e-02 1.79e-03 5.99e-03 5.92e-07 1.60e-05 3.90e-05 9.33e-05 685 665 692 686

15_02

1.68e-02 2.11e-03 2.77e-02 2.20e-03 1.64e-03 8.18e-08 1.42e-03 1.76e-04 409 473 416 474
1.68e-02 4.15e-03 2.77e-02 1.29e-04 1.64e-03 3.48e-07 1.51e-03 1.21e-04 409 480 416 482
1.68e-02 6.24e-03 2.77e-02 4.78e-04 1.64e-03 2.07e-06 1.49e-03 1.03e-04 409 478 416 481
1.68e-02 8.39e-03 2.77e-02 2.61e-03 1.64e-03 2.10e-05 1.56e-03 2.34e-04 409 473 416 477
1.68e-02 2.09e-03 2.77e-02 3.62e-04 1.64e-03 8.11e-08 1.46e-03 1.58e-04 409 477 416 478

15_03

0 0 3.75e-05 1.50e-04 0 0 9.11e-05 6.64e-05 165 166 165 166
0 0 3.75e-05 3.00e-04 0 0 9.11e-05 3.04e-04 165 164 165 164
0 0 3.75e-05 1.50e-04 0 0 9.11e-05 1.58e-04 165 164 165 164
0 0 3.75e-05 0 0 0 9.11e-05 0 165 168 165 168
0 0 3.75e-05 1.50e-04 0 0 9.11e-05 6.64e-05 165 166 165 166

15_04

5.88e-03 5.81e-03 2.22e-03 1.36e-03 3.26e-04 4.63e-06 4.27e-04 2.37e-05 845 856 850 861
5.88e-03 8.17e-03 2.22e-03 9.99e-03 3.26e-04 3.66e-05 2.34e-04 9.02e-05 845 850 850 857
4.71e-03 1.17e-02 2.22e-03 1.74e-03 3.23e-04 1.95e-05 4.21e-04 6.58e-05 846 846 850 856
5.88e-03 6.04e-03 2.22e-03 1.42e-04 3.26e-04 9.18e-08 4.34e-04 7.40e-05 845 823 850 828
4.71e-03 6.00e-02 2.22e-03 1.82e-03 3.25e-04 1.24e-05 2.24e-04 7.15e-05 846 783 850 833

15_05

4.52e-02 2.55e-01 4.43e-02 5.11e-03 2.96e-03 8.06e-04 3.10e-03 6.55e-04 190 184 199 247
3.52e-02 9.72e-02 4.43e-02 3.94e-03 2.88e-03 1.35e-04 2.82e-03 1.31e-04 192 223 199 247
4.52e-02 1.33e-01 4.43e-02 1.95e-03 2.92e-03 1.09e-04 3.06e-03 9.46e-05 190 215 199 248
4.52e-02 1.96e-01 4.01e-02 3.60e-03 3.03e-03 6.65e-04 2.45e-03 3.35e-04 190 197 199 245
2.51e-02 1.41e-01 4.43e-02 2.22e-03 2.86e-03 2.43e-04 2.80e-03 1.86e-04 194 213 199 248

15_06

7.09e-03 1.19e-02 6.05e-02 4.26e-04 3.11e-03 3.29e-05 8.64e-03 1.27e-06 280 333 282 337
7.09e-03 0 7.03e-02 0 6.17e-04 0 8.89e-03 0 280 337 282 337
7.09e-03 1.18e-02 7.03e-02 1.04e-02 1.87e-03 7.66e-05 1.28e-02 3.09e-05 280 336 282 340
7.09e-03 0 7.03e-02 0 1.87e-03 0 1.37e-02 0 280 341 282 341
7.09e-03 0 7.03e-02 1.17e-05 1.87e-03 0.00e+00 9.70e-03 2.34e-05 280 332 282 332

15_07

7.41e-02 2.32e-01 1.29e-01 2.06e-03 2.13e-03 3.83e-04 1.75e-02 4.02e-04 150 208 162 271
6.79e-02 2.16e-01 1.29e-01 2.50e-03 2.24e-03 4.99e-04 1.80e-02 5.18e-04 151 214 162 273
7.41e-02 2.19e-01 1.29e-01 2.62e-03 2.04e-03 5.18e-04 1.69e-02 4.94e-04 150 214 162 274
6.17e-02 2.80e-01 9.66e-02 1.02e-03 1.19e-03 7.37e-04 3.59e-02 6.83e-04 152 195 162 271
4.94e-02 3.53e-01 1.07e-01 4.34e-03 2.11e-03 1.01e-03 1.27e-02 9.19e-04 154 172 162 266

15_08

4.26e-02 1.52e-01 6.05e-02 1.89e-03 1.05e-03 1.84e-04 3.49e-02 7.36e-04 180 206 188 243
2.13e-02 4.90e-01 3.78e-02 1.32e-02 7.21e-05 8.95e-04 2.04e-02 2.10e-03 184 126 188 247
3.19e-02 1.91e-01 5.86e-02 1.66e-03 1.59e-03 1.40e-04 2.51e-02 9.85e-04 182 186 188 230
4.26e-02 1.74e-01 4.91e-02 1.89e-03 1.19e-04 1.38e-04 2.27e-02 2.03e-03 180 199 188 241
4.26e-02 2.25e-01 6.05e-02 1.92e-03 1.05e-03 2.36e-04 2.89e-02 1.07e-03 180 176 188 227

15_09

3.08e-02 4.93e-01 1.31e-01 1.74e-03 4.85e-03 8.72e-04 5.89e-02 1.76e-03 126 110 130 217
3.08e-02 5.71e-01 1.31e-01 3.06e-03 4.83e-03 2.26e-03 6.52e-02 2.02e-03 126 94 130 219
7.69e-03 6.65e-01 1.23e-01 7.37e-03 2.83e-05 1.42e-03 4.31e-02 4.99e-03 129 72 130 215
2.31e-02 6.61e-01 1.31e-01 5.85e-03 4.82e-03 3.40e-03 8.20e-02 2.91e-03 127 84 130 248
7.69e-03 5.34e-01 1.31e-01 3.35e-03 4.80e-03 1.41e-03 4.36e-02 1.85e-03 129 97 130 208

15_10

2.23e-02 3.85e-01 6.70e-03 1.92e-04 1.45e-03 3.14e-05 2.08e-04 7.38e-05 395 256 404 416
2.72e-02 2.01e-01 1.17e-02 1.68e-03 1.53e-03 2.10e-05 2.96e-04 9.06e-05 393 330 404 413
2.97e-02 2.40e-01 1.17e-02 1.54e-04 1.53e-03 1.89e-05 3.04e-04 5.36e-05 392 319 404 420
2.97e-02 1.60e-01 1.17e-02 1.68e-03 1.53e-03 9.68e-06 2.87e-04 4.47e-05 392 352 404 419
1.73e-02 3.07e-01 6.70e-03 1.68e-03 1.45e-03 3.84e-05 2.10e-04 7.69e-05 397 289 404 417

Table 7.27: Indicator values for 8000 iterations (15 services).

50

100

150

200

15_01 15_02 15_03 15_04 15_05 15_06 15_07 15_08 15_09 15_10
instance

tim
e

(h
)

(a) AUGMECON2 time (hours).

5

10

15

15_01 15_02 15_03 15_04 15_05 15_06 15_07 15_08 15_09 15_10
instance

m
ea

n
tim

e
(m

)

iterations
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(b) BIALNS time (minutes).

Figure 7.50: Computational times (15 services).

In terms of computational time, Figure 7.50 and Table 7.28 show the behavior of the instances
for both resolution methods. Notice that, in both methods, the behavior of the instances in terms
of computational time is similar but in different magnitudes: while the computational times in the

7.5. BIOBJECTIVE ALGORITHM 203

AUGMECON2 vary from 13.05 to 236.69 hours, the highest computational time is lower than 20
minutes.

AUGMECON2 BIALNS mean time (minutes)
Instance (hours) 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10_01 77.68 3.13 3.53 4.01 4.46 4.89 5.37 5.88 6.40 6.90 7.55
10_02 36.67 3.68 4.14 4.68 5.25 5.84 6.48 7.14 7.84 8.66 9.31
10_03 13.05 3.20 3.61 4.05 4.54 4.93 5.49 5.80 6.31 6.80 7.40
10_04 58.97 4.58 5.27 5.96 6.74 7.31 8.01 8.81 9.63 10.47 11.44
10_05 86.51 4.33 5.00 5.76 6.58 7.44 8.29 9.10 10.13 11.24 12.33
10_06 236.69 6.62 7.78 8.76 10.15 11.46 12.58 14.27 15.51 17.13 18.64
10_07 143.44 4.59 5.45 6.45 7.41 8.50 9.49 10.53 11.75 13.14 14.33
10_08 124.00 4.98 5.82 6.63 7.52 8.56 9.47 10.52 11.62 12.62 13.98
10_09 164.72 6.19 7.35 8.43 9.82 11.27 12.71 13.95 15.40 12.62 18.82
10_10 90.29 3.46 3.96 4.45 5.00 5.47 6.05 6.61 7.23 7.97 8.58

Table 7.28: Computational time for instances with 15 services.

Figure 7.51 presents the boxplot of the computational time, for two instances (for the other
ones the behavior is similar), necessary to carry out steps 2 and 3 in the BIALNS method. As it
happened with 10 services, the BIALNS is very consistent with respect to the computational time
in the 5 runs.

2

3

4

5

6

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iterations

tim
e

(m
)

(a) Instance 15_03.

5

10

15

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iterations

tim
e

(m
)

(b) Instance 15_06.

Figure 7.51: Computational time for steps 2 and 3 (15 services).

Figure 7.52 presents boxplots, for the best and worst solutions, of the number of non dominated
and total points found by both resolutions methods. According to the total points, both solutions
of the BIALNS have a similar behavior, finding more points than the AUGMECON2 method. In
terms of the number of non dominated points, it can be seen that the worst solution has significantly
fewer points than the AUGMECON2 one. Meanwhile, the best solutions improve the ones of the
AUGMECON2 method.

204 CHAPTER 7. COMPUTATIONAL RESULTS

Non dominated points Total points

worst best worst best
0

250

500

750

solution

nu
m

be
r o

f p
oi

nt
s

method AUGMECON2 BIALNS

Figure 7.52: Number of non dominated and number of total points (15 services).

The evolution of the non dominated points, according to the number of iterations, is presented
in Figure 7.53. The best solution is practically not affected by the parameter, usually finding more
non dominated points than the AUGMECON2 method. Meanwhile, when considering a small
number of iterations, the number of points is notably smaller for the worst solution. However,
from 5000 iterations onwards the worst solutions are similar to the AUGMECON2 one.

6000 7000 8000 9000 10000

1000 2000 3000 4000 5000

worst best worst best worst best worst best worst best

worst best worst best worst best worst best worst best
0

250

500

750

0

250

500

750

solution

nu
m

be
r o

f n
on

 d
om

in
at

ed
 p

oi
nt

s

method AUGMECON2 BIALNS

Figure 7.53: Number of non dominated points by iterations (15 services).

Results of instances with 25 services
For the instances with 25 services, increasing the number of iterations results in better solutions.

Figure 7.49 shows that the values of the indicators decrease as the number of iterations increases.
Thus, setting the parameter to 9000 seems to be the better configuration. Notice that, due to high
computational times, the AUGMECON2 method was not used to solve these instances.

7.5. BIOBJECTIVE ALGORITHM 205

0.80

0.85

0.90

0.95

nroutes

1000 3000 5000 7000 9000

(a) Coverage.

0.010

0.015

0.020

0.025

0.030

nroutes

1000 3000 5000 7000 9000

(b) Generational Distance.

0.015

0.020

0.025

0.030

0.035

0.040

nroutes

1000 3000 5000 7000 9000

(c) Inverted Generational Distance.

0.06

0.07

0.08

0.09

0.10

0.11

nroutes

1000 3000 5000 7000 9000

(d) Epsilon.

Figure 7.54: Confidence intervals of the indicators in terms of nroutes (25 services).

The mean computational times necessary to solve the instances are presented in Figure 7.55.
The slowest ones are 25_06, 25_09 and 25_10 which, for 10000 iterations, take between 30 and
45 minutes to be solved.

10

20

30

40

25_01 25_02 25_03 25_04 25_05 25_06 25_07 25_08 25_09 25_10
instance

m
ea

n
tim

e
(m

)

iterations
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 7.55: Computational times (25 services).

According to Figure 7.56, for the two presented instances, the time taken by the BIALNS
to generate different solutions and to obtain non dominated ones is very consistent for all the
configurations. The behavior of the remaining instances is similar to those shown in the figure,
therefore they are not included.

206 CHAPTER 7. COMPUTATIONAL RESULTS

2

4

6

8

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iterations

tim
e

(m
)

(a) Computational time instance 25_01.

10

20

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iterations

tim
e

(m
)

(b) Computational time instance 25_10.

Figure 7.56: Computational time for steps 2 and 3 (25 services).

7.5.3.4 Pareto frontier

With respect to the appearance of the Pareto frontier, three different scenarios arise when
comparing the BIALNS and the AUGMECON2. In order to facilitate the interpretation of the
results, three colors are used in the figures: red for the points only found by the BIALNS, green
for the points only found by the AUGMECON2 method and blue for the points found by both
resolution methods13.

Figure 7.57 shows the non dominated points for instance 15_03. In this case, the solution found
by the BIALNS is almost equal to the one given by the AUGMECON2 method (blue points).
The methods only differ in 5 points: 3 found by the BIALNS (red points) and 2 found by the
AUGMECON2 method (green points).

−4
50

00
0

−4
40

00
0

−4
30

00
0

1450 1500 1550 1600 1650
cost

w
el

fa
re

BIALNS AUGMECON2 Common points

Figure 7.57: Pareto frontier for instance 15_03.

In Figure 7.58 the solutions for instance 15_06 are presented. In this case, the BIALNS finds
13Notice that, as it was explained in Chapter 2, in order to maximize the affinity in a minimization problem the

weight assigned to it has to be negative. Thus, the values of the welfare in the Pareto frontiers are negative.

7.5. BIOBJECTIVE ALGORITHM 207

the same points than the AUGMECON2 method (blue points) and even more (red points). This
is because, due to the time limit of 1 hour for each grid point, the AUGMECON2 is not able to
find feasible solutions to cover the left side of the front. To be precise, the only point found by
AUGMECON2 in the left side of the frontier (green point) is dominated by the BIALNS.

−7
00

00
0

−6
50

00
0

−6
00

00
0

−5
50

00
0

400 500 600 700
cost

w
el

fa
re

BIALNS AUGMECON2 Common points

Figure 7.58: Pareto frontier for instance 15_06.

−4
80

00
0

−4
60

00
0

−4
40

00
0

−4
20

00
0

−4
00

00
0

400 500 600 700 800 900
cost

w
el

fa
re

BIALNS AUGMECON2 Common points

Figure 7.59: Pareto frontier for instance 15_09.

The solutions for instance 15_09 are presented in Figure 7.59. It can be seen, by the reduced
number of points in common (blue points), that the solutions given by the two methods are quite
different. In this case, some of the points found by the AUGMECON2 method are slightly better

208 CHAPTER 7. COMPUTATIONAL RESULTS

than the ones provided by the BIALNS (some green points dominate the red ones), although they
are really close. It is important to remark that, although these points are dominated, the values
of GD, IGD and EPS (the measures of the distance between solutions) in Figure 7.49 are close to
0. As before, only the BIALNS (red points) is able to cover the left side of the frontier, because of
the time limit in the AUGMECON2 method.

7.5.4 Real instances
Finally, to conclude this chapter the BIALNS is used to solve the real instances. The parameters
considered are:

Step 1: Initialize the sets. Proportion of solution to destroy is auto_1%. Time limit: 90
minutes.

Step 2: Generate different solutions. Number of iterations (nroutes): 10000. Number of
iterations (nalns): 1. Proportion of solution to destroy (pr): 1%.

Step 3: Get non dominated solutions. Number of iterations (nsols): 3e5.

Figure 7.60 shows the Pareto frontier obtained for week 9. To analyze the solutions found, six
points along the frontier have been selected (denoted as A - F). Point A (F) is the solution of the
hierarchical problem that prioritizes the welfare over the cost (the cost over the welfare). Points
B, C, D and E are intermediate solutions.

A
B

C

D

E

F

−2.70e+08

−2.65e+08

−2.60e+08

53000 54000 55000 56000 57000 58000
cost

w
el

fa
re

Figure 7.60: Pareto frontier for week 9.

Because all the points presented in the frontier are non dominated, in order to improve the
welfare it is necessary to increase the cost. This can be seen in more detail in Table 7.29, which
presents the objective values of the selected points, as well as the ones of the solution considered
by the company. Regarding the cost, all the solutions considered are better than the one of the
company, which can also be assessed analyzing the overtime and working time of the solutions.

7.5. BIOBJECTIVE ALGORITHM 209

In terms of the welfare, the solution of the company is between points B and C, although the
penalization value of C is much better than the one of the company.

Solution Cost Overtime Worked time Welfare (×e8) Affinity Penalization
Company 69744 11525 58219 -2.71 3576 10518

A 57780 4692 53088 -2.74 3631 3342
B 56294 3761 52533 -2.73 3622 4005
C 55044 2733 52311 -2.71 3595 4436
D 53913 1670 52243 -2.68 3563 5218
E 52965 722 52243 -2.65 3516 7900
F 52292 273 52019 -2.60 3450 9961

Table 7.29: Objective values of the solutions.

To complete the comparison of the solutions Figures 7.61 and 7.62 are presented. Figure 7.61
represents the mean overtime, idle time, break time and travel time per caregiver according to
the considered solutions. Figure 7.62 displays the mean soft time window penalization per user.
According to these figures it is clear that the six solutions taken from the Pareto frontier are better
than the one of the company. Specifically, one can observe that solution A (which prioritizes the
welfare over the cost) is the one with highest overtime and idle time but, as more priority is given
to the cost, the idle time disappears and the overtime decreases. In a similar way, Figure 7.62
shows that as the priority of the welfare decreases, the soft time window penalization increases.

0

5

10

15

Company A B C D E F
solution

ho
ur

s

variable
overtime

idle time

break time

travel time

Figure 7.61: Mean weekly time per caregiver (week 9).

210 CHAPTER 7. COMPUTATIONAL RESULTS

0

5

10

15

Company A B C D E F
solution

pe
na

liz
at

io
n

(m
in

ut
es

)

Figure 7.62: Mean soft time window penalization per user (week 9).

Conclusions

In this work, a real problem of a home care company is addressed. The problem shares many of the
characteristics of other routing and scheduling problems in home care. But, despite the extensive
literature devoted to the understanding of this type of problems, commonly known by the acronym
HCSP, there is a special feature that substantially distinguishes it from the others and makes its
study of great interest. In accordance with this characteristic, the longest break between two daily
consecutive services of each caregiver will not be included as part of her working day, provided
that it is greater than a fixed number of hours.

In order to gather all the requirements of the company, a MILP with two clearly differentiated
objectives was formulated. The first objective is related to the welfare of the users, since improving
the living conditions of the users is a crucial issue for the company. The second objective is to
reduce the cost of the salaries of the caregivers as much as possible. Three different approaches to
solve the problem were proposed: two hierarchical ones (prioritizing the welfare over the cost, or
the cost over the welfare) and a biobjective one (considering the welfare and the cost at the same
time).

In a first attempt, the hierarchical problems were tackled with an optimization solver. However,
due to the difficulty of the model, it only provided feasible solutions for small instances. With the
purpose of solving the problem in a more realistic setting, a metaheuristic based on the ALNS
algorithm was developed, incorporating new methods to improve the quality of the solutions.
Specifically, these methods arise from the difficulty of, once the services and their order have
been assigned to the caregivers, determining the starting time of each service. When prioritizing
the welfare, the method combines the margin of service movements within the hard and soft
time windows with the grouping of services into blocks, thus allowing to manage the impact of
the breaks between services. When prioritizing the cost, the method works with the hard time
windows to reduce the impact of breaks between services in the solution, either by making them
as small as possible or by making one of them as large as possible. This is not an easy task,
since many different scenarios might occur. Thus, it could be seen as the most innovative part
of the framework. To evaluate the performance of the algorithms, instances of 10, 15, 25, 50 and
100 services (which were obtained adapting the Solomon instances, for routing and scheduling
problems with time windows constraints, to the characteristics of the HCSP under study) were
tested. Finally, real data instances of 15 consecutive weeks from 2016 to 2017 were considered to
compare the schedules provided by the company with the algorithm solutions. The results were
very promising, since multiple configurations of the algorithm can be used to obtain good solutions
for the Solomon instances, depending on their size. In terms of the real instances, the schedules
obtained using the algorithm improved those provided by the company.

In terms of the biobjective version of the problem, the AUGMECON2 method was used to
obtain the exact Pareto front, but it was only able to solve small instances, usually needing large
computational times. Therefore, a metaheuristic algorithm, that uses the ALNS technique and the
two scheduling methods designed for the hierarchical problems, was developed. This metaheuristic
algorithm consists in generating different solutions and then modifying its schedules to obtain

211

non dominated solutions. To validate the algorithm, several computational experiments using the
Solomon instances were run, considering different configurations for the algorithm, in order to select
the ones that provide the best solutions. The quality of the solutions was analyzed by comparing
them to the ones obtained with the AUGMECON2 method, using a set of performance indicators,
as well as the computational times needed to solve the instances. Apart from that, the different
scenarios that can arise when evaluating the Pareto fronts obtained by both resolution methods
were reviewed. Finally, an example illustrating the Pareto front obtained for a real instance was
presented, comparing it with the company solution.

Just to conclude, some future research lines are summarized, remarking that there is a wide
range of possibilities for further studying this home care scheduling problem:

• Study the same problem but considering the minimization of the number of caregivers
necessary to carry out all services. This version of the problem would be useful for the
company when they want to start working in a new area, being necessary to hire caregivers
to attend the new users.

• Implement other metaheuristic techniques to solve the problem, instead of the ALNS. For
example: Greedy Randomized Adaptive Search Procedure (GRASP), Iterated Local Search
(ILS) or Tabu Search (TS). These methods could perform well when solving the HCSP
problem, in which case they would be useful to study the behavior of the ALNS in more
detail.

• Consider other metaheuristic techniques to solve the biobjective problem, specifically the
Non-dominated Sorting Genetic Algorithm (NSGA-II), which is a method widely used in the
literature when solving multiobjective problems. Thus, there would be another method to
compare the BIALNS with, specially for the instances that the AUGMECON2 method was
not able to solve.

• Tackle the problem using decomposition techniques, considering three different steps:
clustering, assignation and routing. The clustering step would be in charge of dividing the
services into groups, according to the distances between them. The assignation step would
be used to allocate the caregivers to the clusters of services. Finally, the routing step would
obtain the schedules for each route of the caregivers.

212

Resumen en castellano

Este trabajo surge del proyecto Innterconecta GIRO - Generación, Gestión e Integración de
Rutas en OLAP (ITC-20151247), en el que participaron un grupo de empresas de diferentes
sectores, pero con retos similares en cuanto a la optimización de sus procesos organizativos. La
actividad de estas empresas requería la movilidad de sus empleados, es decir, sus trabajadores
debían desplazarse para completar tareas, o prestar servicios, en diferentes ubicaciones. Otra
característica común a todas estas empresas era la necesidad de ajustar de forma continua sus
horarios para solventar una serie de contingencias tales como: altas o bajas de clientes, ausencia
de un trabajador, incompatibilidad de tareas y horarios, etc. De modo que los problemas
logísticos de las empresas estaban relacionados con la planificación de tareas, la elaboración de
horarios y la obtención de rutas. Por lo tanto, nuestra tarea en el proyecto consistió en explorar
la integración de técnicas de investigación operativa y optimización matemática en los procesos
de planificación de rutas y horarios de las empresas participantes. El objetivo del proyecto era
diseñar herramientas automáticas para ayudar a las empresas con la toma de decisiones. Así, una
vez conocida la situación de los trabajadores, las herramientas serían capaces de proporcionar un
plan de trabajo para cada uno de ellos y adaptarlo en función de las contingencias que pudieran
surgir.

En el proyecto participaron seis empresas:

Gesuga (gesuga.com) Esta empresa presta un servicio de recogida de subproductos cárnicos no
destinados al consumo humano. Dispone de una flota de vehículos, ubicados en varias
plantas, que siguen la programación diaria establecida por el departamento de rutas de la
empresa. Estos horarios deben cubrir los pedidos de recogida del día cumpliendo una serie
de restricciones. La empresa pretende mejorar la planificación de estas rutas, minimizando
las distancias recorridas por los vehículos y su consumo de combustible. Además, también
es necesario hacer frente a contingencias imprevistas, como la llegada de nuevos pedidos de
recogida. Es decir, las rutas iniciales deben adaptarse a las necesidades que vayan surgiendo
a lo largo del día.

Biogas Fuel Cell Esta empresa está especializada en la gestión y transformación de residuos
orgánicos en biogás, para lo cual dispone de su propia planta de biogás con una zona de
recepción de residuos. Los residuos son transportados tanto por contratistas externos como
por los propios vehículos de la empresa, por lo que es necesario coordinar las llegadas de
ambos tipos de vehículos. De ello se derivan dos problemas: organizar la recepción de los
residuos en la planta y establecer las rutas para los vehículos propios. Además, se debe de
tener en cuenta que estas rutas pretenden minimizar la distancia recorrida y deben cumplir
los horarios marcados por el primer problema.

Mayores (mayores.es) Esta empresa presta servicios de atención a domicilio a personas
mayores/dependientes y a sus familias. Para ello, el personal especializado visita a los
usuarios en sus propios domicilios y realiza las tareas que les han sido asignadas. Por tanto,

213

https://www.gesuga.com/
https://www.mayores.es/

la empresa necesita determinar las rutas que deben seguir sus auxiliares, con el objetivo de
mantener los horarios de los pacientes y reducir el tiempo de desplazamiento. Este
problema presenta una característica importante, que consiste en que las rutas deben
favorecer la asignación de las mismas auxiliares a los mismos usuarios, puesto que al estar
trabajando con personas dependientes su bienestar y satisfacción es lo más importante. La
herramienta propuesta debe ser capaz de obtener una planificación de horarios y rutas que
se adapte dinámicamente a todo tipo de contingencias: solicitudes de cambios en los
horarios, servicios cancelados, modificación de la duración de los servicios, etc.

Grupo On (seguridadon.es) Esta empresa se especializa en sistemas de seguridad que implican la
instalación de dispositivos de alarma, tanto para empresas como para viviendas particulares.
Un equipo de técnicos está constantemente desplazándose para la instalación de alarmas y su
mantenimiento, lo cual incluye inspecciones periódicas y trabajos de reparación. La empresa
se enfrenta a problemas de planificación debido a la necesidad de organizar las rutas de sus
técnicos para cumplir las citas con cada cliente, con el objetivo de reducir los tiempos de
desplazamiento y maximizar la prioridad de los clientes, satisfaciendo al mismo tiempo su
disponibilidad.

Mugatra (mugatra.es) Esta empresa ofrece a sus clientes un conjunto de servicios que
proporcionan una cobertura total en materia de seguridad y prevención de riesgos laborales.
El servicio más importante es la vigilancia de la salud, cuyo objetivo es realizar
evaluaciones periódicas, con el fin de valorar si el estado de salud del personal de la empresa
es satisfactorio para el desempeño de sus funciones. El problema que presenta esta empresa
es una combinación de tres problemas de planificación diferentes:

• Establecer las fechas de servicio para cada cliente.
• Decidir si utilizar unidades móviles o alquilar salas, lo cual implica programar el envío

de equipos médicos.
• Programar los exámenes para todos los empleados de la empresa cliente.

El objetivo es minimizar los tiempos de desplazamiento entre clientes y maximizar el número
de clientes que pueden ser atendidos en el mismo lugar.

Taprega (taprega.com) La empresa ofrece a sus clientes servicios en el ámbito de la seguridad
laboral, especializándose en la prevención de riesgos laborales. En la empresa hay dos tipos
de trabajadores: técnicos y comerciales. Los técnicos se encargan de realizar las inspecciones
a los clientes. Los comerciales visitan a los clientes, o potenciales clientes, con el objetivo
de hacer publicidad de la empresa y formalizar nuevos contratos. De este modo, la empresa
se enfrenta a dos problemas de planificación: por un lado, la planificación de la agenda de
sus técnicos y, por otro, la planificación de sus comerciales. En el problema de planificación
de las rutas de los técnicos, los objetivos son minimizar los tiempos de desplazamiento y
maximizar la urgencia de las visitas realizadas. En el problema de los representantes de
ventas, el objetivo es minimizar los tiempos de viaje. Además, en ambos casos es necesario
tener en cuenta una periodicidad en las visitas.

Esta tesis se centra en el problema planteado por Mayores, la empresa de asistencia a
domicilio. Los servicios de atención a domicilio tienen como objetivo ayudar a personas mayores
o dependientes a mantener o mejorar su calidad de vida sin necesidad de abandonar sus hogares,
ya que estas personas suelen sentirse más cómodas si pueden continuar viviendo en sus casas, en
lugar de tener que trasladarse a un centro especializado. La empresa Mayores lleva desde 1997
prestando servicios de atención a domicilio en A Coruña y alrededores.

Los principales objetivos de los servicios de atención a domicilio son:

214

https://www.seguridadon.es/
https://www.mugatra.es/
https://www.taprega.com/

• Mejorar la calidad de vida de sus usuarios.

• Favorecer la adquisición de habilidades que permitan un desarrollo más independiente en la
vida diaria.

• Ayudar a los familiares del usuario en sus responsabilidades de cuidado.

• Evitar, o retrasar, el traslado del usuario a una residencia.

Los usuarios son personas que necesitan cuidados o ayuda para realizar determinadas tareas y
acuden a la empresa para mejorar su calidad de vida. Los usuarios demandan un conjunto de
servicios que deberán ser atendidos por las empleadas14 de la empresa en sus domicilios. Durante
estos servicios las empleadas deben realizar determinadas tareas, que pueden ser domésticas,
personales o sanitarias. Algunas de estas actividades deben realizarse en un horario determinado,
por ejemplo, levantarse y acostarse deben realizarse por la mañana y por la noche,
respectivamente. Otras actividades pueden realizarse en cualquier momento del día, como limpiar
el polvo o hacer la colada. En concreto, se debe disponer de la siguiente información para cada
uno de los servicios a realizar: su duración, la franja horario en la que se debe llevar a cabo y el
día de la semana en que debe realizarse.

A las empleadas de la empresa se le denominan auxiliares, que son las encargadas de visitar a
los usuarios en sus domicilios para realizar las tareas asignadas. Las auxiliares solo pueden trabajar
por contrato un número máximo de horas a la semana, considerando como tiempo de trabajo:

• El tiempo que emplean en llevar a cabo los servicios en los domicilios de los usuarios.

• El tiempo de desplazamiento entre servicios.

• Todos los descansos entre servicios (que se denominará tiempo libre) que puedan tener
durante la jornada diaria, a excepción del de mayor duración si es de dos o más horas.

Los tiempos de desplazamiento pueden variar en función de la región de actividad. En las zonas
urbanas, los usuarios están más concentrados, por lo que las auxiliares suelen poder desplazarse
a pie o en transporte público. Lo contrario ocurre en las zonas rurales, donde los usuarios suelen
estar muy repartidos y las auxiliares generalmente tienen que utilizar su propio vehículo. Cabe
destacar que la empresa sólo cobra por las horas que las auxiliares están atendiendo a los usuarios.
Por este motivo, los desplazamientos y los tiempos libres de las auxiliares pueden interpretarse
como pérdidas económicas para la empresa.

La empresa tiene contratadas también a un conjunto de supervisoras, a las que se les ha asignado
un número de usuarios y auxiliares. La asignación de usuarios se hace teniendo en cuenta su
ubicación y no puede modificarse, ya que las supervisoras son las encargadas de estar en constante
contacto con los familiares de los usuarios (redactan informes y monitorizan la evolución de los
usuarios).

La empresa considera que la consistencia en la asignación de usuarios a auxiliares es muy
importante, hasta el punto de que es preferible cambiar el horario de un servicio para que la auxiliar
que lo realice sea siempre la misma. A veces incluso es necesario que un usuario sea atendido por
más de una auxiliar. De este modo, las asignaciones anteriores y las preferencias entre usuarios y
auxiliares, o problemas que hayan podido surgir entre ellos, se utilizan para obtener una lista de
niveles de afinidad. La afinidad establece un nivel de compatibilidad entre usuarios y auxiliares,
quedando estos niveles definidos de la siguiente manera:

Nivel 0. El usuario no debe ser atendido por esta auxiliar bajo ningún concepto. Esta situación
puede darse porque la auxiliar no esté capacitada para atender al usuario o porque haya
habido algún tipo de incidente entre ellos.

14Nótese que se habla de auxiliares en femenino puesto que las empleadas de la empresa on mujeres.

215

Nivel 1. La auxiliar podría atender al usuario sólo si no hay otra opción. Esto puede ocurrir
cuando la auxiliar ha recibido alguna queja de poca importancia por parte del usuario.

Nivel 2. La auxiliar podría atender al usuario aunque todavía no se ha establecido el grado de
compatibilidad entre ellos. En este nivel, el usuario no requiere ningún tipo de característica
especial por parte de las auxiliares.

Nivel 3. La auxiliar aún no ha atendido al usuario pero, por las características de la misma, el
supervisor piensa que podría ser una muy buena candidata para llevar a cabo sus servicios.

Nivel 4. El usuario fue atendido con éxito por la auxiliar en el pasado, ya fuera de forma
esporádica o continuada.

Nivel 5. La auxiliar se encuentra atendiendo al usuario de forma continuada y de manera
satisfactoria.

En la empresa, las supervisoras se encargan de organizar manualmente los planes de trabajo de
todas las auxiliares que tienen asignadas. Es decir, asignan cada servicio requerido por un usuario,
durante la semana, a una auxiliar y establecen las horas concretas en las que comenzarán dichos
servicios.

La tesis se organiza como sigue:
Capítulo 1:
El Capítulo 1 se centra en el problema original propuesto por la empresa. El objetivo principal
era actualizar los horarios semanales de las auxiliares, que se repiten en el tiempo hasta que
surge la necesidad de modificarlos de nuevo. Los horarios deben ser actualizados para resolver
un conjunto de posibles incidencias, que representan cambios permanentes en las planificaciones
tales como: altas/bajas de usuarios, aumento/disminución del número de servicios requeridos y
modificación de parámetros de los mismo (duración, franja horaria,...). Una característica especial
de este problema es que en Mayores no están excesivamente interesados en modificar los horarios
originales de las auxiliares, ya que para ellos lo realmente importante es el bienestar de los usuarios.
Por ello, las incidencias deben resolverse modificando lo menos posible los horarios previos.

Este problema se abordó mediante el algoritmo Simulated Annealing (SA), un método
metaheurístico de optimización inspirado en el proceso de templado de metales. Este método está
integrado dentro de un algoritmo heurístico desarrollado a medida para resolver los incidentes a
los que se enfrenta la empresa. El heurístico puede dividirse en tres etapas: fase inicial (para
extraer la información principal), programación de servicios (para asignar los servicios a las
auxiliares) y optimización (para mejorar los horarios). En la fase de optimización se utiliza el SA,
que parte de una solución inicial y luego se mueve aleatoriamente por el espacio de soluciones
para encontrar mejores horarios. En este capítulo se ofrece una descripción detallada del
algoritmo heurístico, la metaheurística SA y los movimientos diseñados para explorar el espacio
de soluciones.

Este algoritmo forma parte del núcleo de en una herramienta de software, la cual se desarrolló
para proporcionar a la empresa un sistema de apoyo a la toma de decisiones que les ayude a obtener
los horarios semanales de las auxiliares. En el capítulo puede verse una descripción del planificador
de horarios de la herramienta así como un ejemplo de cómo el algoritmo resolvería un conjunto de
incidencias (dar de baja a un usuario, aumentar la duración de los servicios de otro usuario y dar
de alta a dos nuevos usuarios).

El contenido de este capítulo ha sido publicado en Méndez-Fernández et al. (2020).

216

Capítulo 2:
El Capítulo 2 presenta la formulación matemática (un modelo de programación lineal entera mixta
(MILP)) de una versión más general del problema. La nueva versión del problema pretende obtener
las soluciones desde cero, con el fin de conseguir los mejores horarios posibles. Es decir, en lugar
de partir de un horario inicial que no debe modificarse excesivamente, existe total libertad para
diseñar un horario óptimo para las auxiliares. Una característica muy importante del problema es
que si el descanso diario más grande de una auxiliar tiene una duración de 2 horas o más, éste no
se considera como tiempo de trabajo y no se pagará, lo que añade una dificultad considerable al
problema.

Las principales variables de decisión son las que determinan las rutas que seguirán las auxiliares
y aquellas que establecen las horas en las que deben realizarse los servicios. Se consideran dos
funciones objetivo diferentes: el bienestar de los usuarios, que evalúa el grado de satisfacción de
los usuarios con las planificaciones, y el coste de la planificación, que cuantifica la carga de trabajo
de las auxiliares. Por un lado, el bienestar está compuesto por la afinidad entre los usuarios y
las auxiliares que los atienden, y la penalización por realizar servicios fuera de su ventana de
tiempo preferida. Por otro lado, el coste de los horarios está compuesto por las horas extras de
las auxiliares y su tiempo total de trabajo. El modelo incluye restricciones relacionadas con los
requisitos de la empresa (ventanas de tiempo de servicios y auxiliares o tiempo máximo de trabajo
diario), restricciones de ruta (inicio y fin en los servicios ficticios, que la hora de inicio entre
servicios consecutivos debe permitir que la auxiliar se desplace entre ellos ellos o que los servicios
sólo pueden tener un servicio anterior) y restricciones relacionadas con los objetivos (penalización
causada por no respetar la ventana preferida de los servicios, duración del descanso no remunerado
o bien considerar las horas extra de las auxiliares).

Además, se muestra un ejemplo que detalla el funcionamiento del problema, mostrando cómo
los valores de la función objetivo pueden cambiar según la planificación. El capítulo concluye
con la explicación de los tres posibles enfoques propuestos para abordar el problema: priorizar el
bienestar sobre el coste, priorizar el coste sobre el bienestar y una alternativa biobjetivo.

La formulación matemática del HCSP descrita en este capítulo se incluye en
Méndez-Fernández et al. (2023a) (aceptado para publicación) y en el artículo en desarrollo
Méndez-Fernández et al. (2023c). Este modelo también describe la versión biobjetivo del
problema, por lo que también aparecerá en Méndez-Fernández et al. (2023b).

Capítulo 3:
El Capítulo 3 presenta una descripción exhaustiva de la metaheurística utilizada para resolver el
problema, el algoritmo Adaptive Large Neighborhood Search (ALNS), que se basa en el principio
de destrucción y reparación.

En primer lugar, se presenta el esquema general del ALNS. El algoritmo consiste en eliminar
servicios de los horarios de las auxiliares, de acuerdo con un operador de eliminación;
posteriormente, se utiliza un operador de inserción para volver a colocar los servicios en las rutas.
La planificación reparada se utiliza entonces para actualizar la solución actual, teniendo en
cuenta un criterio de aceptación. Los operadores de eliminación e inserción se eligen al azar en
función de sus probabilidades, que aumentan cuando los operadores resultan en una mejora de la
solución. Este proceso de destrucción y reparación se repite hasta que se cumple un cierto criterio
de parada. Tras describir el funcionamiento del ALNS, se describen los operadores de eliminación
e inserción, proporcionando su pseudocódigo y ejemplos para facilitar su comprensión.

Es importante destacar que los operadores modifican las rutas pero, para obtener soluciones
completas y poder evaluar la función objetivo, es necesario establecer los horarios de los servicios.
Es decir, al reparar la solución con los operadores de inserción, se debe fijar la hora a la que
comenzará cada servicio de las rutas. Para ello, dada una ruta, se proponen tres métodos diferentes:

217

• Resolver el problema de planificación de horarios mediante programación por restricciones.

• Dos aproximaciones heurísticas: una para obtener horarios en el caso de que se priorice el
bienestar de los usuarios sobre el coste, y otra que obtenga los horarios pero priorizando el
coste sobre el bienestar.

Para finalizar el capítulo, se presenta el enfoque de programación por restricciones utilizado para
obtener los horarios de los servicios, describiendo la función objetivo a optimizar y las restricciones
que debe cumplir el horario.

El algoritmo ALNS presentado en este capítulo se incluye en Méndez-Fernández et al.
(2023a) y también aparecerá en el artículo en desarrollo Méndez-Fernández et al. (2023c). El
método metaheurístico también se utilizará en Méndez-Fernández et al. (2023b) para resolver la
versión biobjetivo del HCSP.

Capítulo 4:
En el Capítulo 4 se describe el algoritmo heurístico diseñado para obtener el horario de una ruta
con el fin de priorizar el bienestar de los usuarios sobre el coste de la planificación. El método
solamente trabaja con una ruta, por lo que el bienestar se corresponde con la penalización de las
ventanas de tiempo preferidas (ya que la afinidad está fijada) y el coste es el tiempo de trabajo de
la auxiliar (las horas extras sólo se pueden calcular de forma semanal).

En primer lugar, se presenta una descripción básica del algoritmo. El método puede dividirse
en tres fases. En la primera se obtienen las horas de inicio más tempranas y más tardías de los
servicios, así como los bloques de servicios que tienen ventanas de tiempo preferidas conflictivas
(i.e. aquellas ventanas que se intersecan). El segundo paso consiste en obtener el horario de la ruta
que tiene la menor penalización por ventana de tiempo preferida. Por último, en el tercer paso
se actualiza el horario para reducir su coste sin empeorar el bienestar. El funcionamiento de cada
uno de los tres pasos se ilustra con un ejemplo basado en una ruta con 6 servicios. Finalmente,
se introducen algunas funciones auxiliares en el Apéndice 4.A para facilitar la comprensión del
algoritmo.

El algoritmo de planificación heurística propuesto en este capítulo aparece en
Méndez-Fernández et al. (2023a). También será útil para el HCSP biobjetivo incluido en el
trabajo en desarrollo Méndez-Fernández et al. (2023b).

Capítulo 5:
En el Capítulo 5 se presenta el algoritmo heurístico diseñado para obtener el horario de una ruta
con el fin de priorizar el coste del horario sobre el bienestar de los usuarios. Al igual que en el
capítulo anterior, el método sólo trabaja con una ruta, por lo que el bienestar coincide con la
penalización por ventanas de tiempo preferidas y el coste es el tiempo de trabajo de la auxiliar
para ese horario.

El capítulo se centra en los principales elementos del algoritmo, mientras que las funciones
complementarias se pueden encontrar en el Apéndice 5.A. El algoritmo comienza calculando las
horas de inicio más tempranas y más tardías de los servicios. Seguidamente, se obtienen los horarios
que presentan un coste mínimo. Tras ello, estos horarios se actualizan para mejorar la penalización
de ventana de tiempo preferida sin empeorar su coste, eligiendo el horario con mejor penalización.
A lo largo de todo el capítulo se utiliza un ejemplo para ilustrar el funcionamiento del algoritmo.

El algoritmo heurístico de planificación presentado en este capítulo dará lugar a
Méndez-Fernández et al. (2023c), que está actualmente en desarrollo. También aparecerá en
Méndez-Fernández et al. (2023b).

218

Capítulo 6:
El Capítulo 6 está relacionado con la versión biobjetivo del HCSP, es decir, el problema que
considera ambos objetivos simultáneamente. La solución de un problema de este tipo se denomina
frontera de Pareto y es un conjunto compuesto por soluciones no dominadas (i.e. soluciones que no
pueden mejorarse sin empeorar, al menos, uno de los objetivos). Dicha frontera de Pareto puede
obtenerse de forma exacta empleando, por ejemplo, el método clásico conocido como Epsilon
Constraint.

La primera parte del capítulo se centra en el método AUGMECON2, una versión mejorada
del método Epsilon Constraint que se utilizará para abordar el HCSP biobjetivo. Dicho método
consiste en, dado un conjunto de puntos que dividen el rango de uno de los objetivos, resolver
iterativamente una versión del HCSP que fija dicho objetivo al valor dado por los puntos
considerados.

La segunda del capítulo parte describe un algoritmo metaheurístico desarrollado a medida
para obtener aproximaciones de la frontera de Pareto. El algoritmo se basa en las metodologías
presentadas en los capítulos 3, 4 y 5. Por lo tanto, el enfoque principal del capítulo son las nuevas
funcionalidades desarrolladas para resolver el problema biobjetivo, utilizando un ejemplo para
ilustrarlas. El algoritmo biobjetivo puede dividirse en tres pasos. En el primero se inicializa el
conjunto de soluciones no dominadas. En el segundo paso se obtienen soluciones compuestas por
diferentes rutas. Por último, en el tercer paso se obtienen las soluciones no dominadas. Para
concluir el capítulo, en el Apéndice 6.A se muestra información adicional que completa la
descripción del algoritmo.

Los contenidos descritos en este capítulo se resumen en el artículo en desarrollo relacionado
con el HCSP biobjetivo, Méndez-Fernández et al. (2023b).

Capítulo 7:
El Capítulo 7 presenta el estudio computacional llevado a cabo para evaluar los métodos de
resolución descritos en los capítulos anteriores. Para ello, en los experimentos numéricos se
utilizan dos tipos de conjuntos de datos diferentes: las instancias de Solomon y los datos reales
proporcionados por la empresa.

El primer paso para evaluar los enfoques jerárquicos es utilizar un solver del estado del arte
(Gurobi) para resolver directamente la formulación MILP del problema, utilizando para ello las
instancias de Solomon. El objetivo de estas pruebas es tener las soluciones exactas y ver el tamaño
de instancia para el cual el método exacto ya no es capaz de encontrar soluciones (o no garantiza
optimalidad global). Tras ello, se analizan los resultados obtenidos con diferentes configuraciones
del ALNS (combinadas con los algoritmos heurísticos de planificación de horarios descritos en los
capítulos 4 y 5), con el fin de evaluar el algoritmo metaheurístico y obtener la mejor configuración
de parámetros.

Posteriormente, se utiliza el ALNS para resolver instancias reales y se comparan las soluciones
obtenidas con los horarios utilizados por la empresa. En el caso del enfoque jerárquico que prioriza
el bienestar de los usuarios sobre el coste de la programación, también se evalúa el rendimiento del
algoritmo ALNS combinado con la programación con restricciones.

Los resultados relativos al enfoque jerárquico que prioriza el bienestar sobre el coste se incluyen
en Méndez-Fernández et al. (2023a) y los del enfoque jerárquico que prioriza el coste sobre el
bienestar se recogen en el artículo Méndez-Fernández et al. (2023c).

En cuanto al problema biobjetivo, este se estudia en primer lugar resolviendo las instancias de
Solomon con el método AUGMECON2, para analizar los tiempos computacionales que necesita
este método exacto. A continuación, se evalúa el comportamiento del algoritmo metaheurístico
biobjetivo estudiando los diferentes parámetros que intervienen en su configuración. Para ello, se
comparan las soluciones del algoritmo con las dadas por el método AUGMECON2. Finalmente,

219

se presenta la frontera de Pareto de ciertas instancias de Solomon y para una instancia real.
Los resultados de la versión biobjetivo del HCSP se resumirán en el documento de trabajo

Méndez-Fernández et al. (2023b).

220

Bibliography

Ait Haddadene, S. R., Labadie, N., & Prodhon, C. 2019. Bicriteria Vehicle Routing Problem with
Preferences and Timing Constraints in Home Health Care Services. Algorithms, 12(8).

Akjiratikarl, C., Yenradee, P., & Drake, P. R. 2007. PSO-based algorithm for home care worker
scheduling in the UK. Computers & Industrial Engineering, 53(4), 559–583.

Alves, F., Costa, L., Rocha, A. M. A. C., Pereira, A. I., & Leitao, P. 2019. A multi-objective
approach to the optimization of home care visits scheduling.

Bachouch, R. B., Guinet, A., & Hajri-Gabouj, S. 2011. A Decision-Making Tool for Home Health
Care Nurses’ Planning. Supply Chain Forum: An International Journal, 12(1), 14–20.

Bard, J. F., Shao, Y., & Jarrah, A. I. 2014. A sequential GRASP for the therapist routing and
scheduling problem. Journal of Scheduling, 17(2), 109–133.

Belhor, M., El-Amraoui, A., Jemai, A., & Delmotte, F. 2023. Multi-objective evolutionary approach
based on K-means clustering for home health care routing and scheduling problem. Expert
Systems with Applications, 213, 119035.

Bertels, S., & Fahle, T. 2006. A hybrid setup for a hybrid scenario: Combining heuristics for the
home health care problem. Computers & Operations Research, 33(10), 2866–2890. Part Special
Issue: Constraint Programming.

Bourdais, S., Galinier, P., & Pesant, G. 2003. hibiscus: A Constraint Programming Application
to Staff Scheduling in Health Care. Principles and Practice of Constraint Programming – CP
2003, 153–167.

Braekers, K., Hartl, R. F., Parragh, S. N., & Tricoire, F. 2016. A bi-objective home care scheduling
problem: Analyzing the trade-off between costs and client inconvenience. European Journal of
Operational Research, 248(2), 428–443.

Cappanera, P., & Scutellà, M. G. 2015. Joint Assignment, Scheduling, and Routing Models to
Home Care Optimization: A Pattern-Based Approach. Transportation Science, 49(4), 830–852.

Cappanera, P., Scutellà, M. G., Nervi, F., & Galli, L. 2018. Demand uncertainty in robust Home
Care optimization. Omega, 80, 95–110.

Carello, G., & Lanzarone, E. 2014. A cardinality-constrained robust model for the assignment
problem in Home Care services. European Journal of Operational Research, 236(2), 748–762.

Carello, G., Lanzarone, E., & Mattia, S. 2018. Trade-off between stakeholders’ goals in the home
care nurse-to-patient assignment problem. Operations Research for Health Care, 16, 29–40.

221

Chaieb, M., & Ben Sassi, D. 2021. Measuring and evaluating the Home Health Care Scheduling
Problem with Simultaneous Pick-up and Delivery with Time Window using a Tabu Search
metaheuristic solution. Applied Soft Computing, 113, 107957.

Chaieb, M., Jemai, J., & Mellouli, K. 2020. A decomposition - construction approach for solving
the home health care scheduling problem. Health Care Management Science, 23(2), 264–286.

Chan, W. T., & Hu, H. 2002. Constraint Programming Approach to Precast Production Scheduling.
Journal of Construction Engineering and Management, 128(6), 513–521.

Cissé, M., Yalçındağ, S., Kergosien, Y., Şahin, E., Lenté, C., & Matta, A. 2017. OR problems
related to Home Health Care: A review of relevant routing and scheduling problems. Operations
Research for Health Care, 13-14, 1–22.

Deb, K., Chaudhuri, S., & Miettinen, K. 2006. Towards Estimating Nadir Objective Vector
Using Evolutionary Approaches. Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation, 643–650.

Decerle, J., Grunder, O., Hassani, A. H. E., & Barakat, O. 2018a. Impact of the workload definition
on the multi-objective home health care problem. IFAC-PapersOnLine, 51(11), 346–351.

Decerle, J., Grunder, O., El Hassani, A. H., & Barakat, O. 2021. A matheuristic-based approach
for the multi-depot home health care assignment, routing and scheduling problem. RAIRO-Oper.
Res., 55, S1013–S1036.

Decerle, J., Grunder, O., Hajjam El Hassani, A., & Barakat, O. 2018b. A memetic algorithm for
a home health care routing and scheduling problem. Operations Research for Health Care, 16,
59–71.

Decerle, J., Grunder, O., Hajjam El Hassani, A., & Barakat, O. 2019a. A hybrid memetic-
ant colony optimization algorithm for the home health care problem with time window,
synchronization and working time balancing. Swarm and Evolutionary Computation, 46, 171–
183.

Decerle, J., Grunder, O., Hajjam El Hassani, A., & Barakat, O. 2019b. A memetic algorithm
for multi-objective optimization of the home health care problem. Swarm and Evolutionary
Computation, 44, 712–727.

Dhingra, S. L., Wang, L., Ma, W., Wang, L., Ren, Y., & Yu, C. 2021. Enabling In-Depot
Automated Routing and Recharging Scheduling for Automated Electric Bus Transit Systems.
Journal of Advanced Transportation, 2021, 1–15.

Di Mascolo, M., Martinez, C., & Espinouse, M. L. 2021. Routing and scheduling in Home Health
Care: A literature survey and bibliometric analysis. Computers & Industrial Engineering, 158,
107255.

Dimitsas, A., Gogos, C., Valouxis, C., Tzallas, A., & Alefragis, P. 2022. A Pragmatic Approach
for Solving the Sports Scheduling Problem. In Proc. 13th Int. Conf. Pract. Theory Autom.
Timetabling, 3, 195–207.

Durillo, J. J., & Nebro, A. J. 2011. jMetal: A Java framework for multi-objective optimization.
Advances in Engineering Software, 42(10), 760–771.

Efthymiou, N., & Yorke-Smith, N. 2023. Predicting the Optimal Period for Cyclic Hoist Scheduling
Problems. Integration of Constraint Programming, Artificial Intelligence, and Operations
Research, 238–253.

222

Erdem, M., & Bulkan, S. 2017. A two-stage solution approach for the large-scale home healthcare
routing and scheduling problem. South African Journal of Industrial Engineering, 28(12), 133
– 149.

Euchi, J., Zidi, S., & Laouamer, L. 2020. A Hybrid Approach to Solve the Vehicle Routing Problem
with Time Windows and Synchronized Visits In-Home Health Care. Arabian Journal for Science
and Engineering, 45(12), 10637–10652.

Euchi, J., Masmoudi, M., & Siarry, P. 2022. Home health care routing and scheduling problems:
A literature review. 4OR, 20(3), 351–389.

Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., & Tavakkoli-Moghaddam, R. 2018. A bi-objective
green home health care routing problem. Journal of Cleaner Production, 200, 423–443.

Fathollahi-Fard, A. M., Govindan, K., Hajiaghaei-Keshteli, M., & Ahmadi, A. 2019. A green home
health care supply chain: New modified simulated annealing algorithms. Journal of Cleaner
Production, 240, 118200.

Fathollahi-Fard, A. M., Ahmadi, A., Goodarzian, F., & Cheikhrouhou, N. 2020. A bi-objective
home healthcare routing and scheduling problem considering patients’ satisfaction in a fuzzy
environment. Applied Soft Computing, 93, 106385.

Fazel Zarandi, M. H., Sadat Asl, A. A., Sotudian, S., & Castillo, O. 2020. A state of the art review
of intelligent scheduling. Artificial Intelligence Review, 53(1), 501–593.

Fikar, C., & Hirsch, P. 2017. Home health care routing and scheduling: A review. Computers &
Operations Research, 77, 86–95.

Focacci, F., Lodi, A., & Milano, M. 2002. Mathematical Programming Techniques in Constraint
Programming: A Short Overview. Journal of Heuristics, 8(1), 7–17.

Frifita, S., & Masmoudi, M. 2020. VNS methods for home care routing and scheduling problem
with temporal dependencies, and multiple structures and specialties. International Transactions
in Operational Research, 27(1), 291–313.

Garaix, T., Gondran, M., Lacomme, P., Mura, E., & Tchernev, N. 2018. Workforce Scheduling
Linear Programming Formulation. IFAC-PapersOnLine, 51(06), 264–269.

Grenouilleau, F., Legrain, A., Lahrichi, N., & Rousseau, L.-M. 2019. A set partitioning heuristic
for the home health care routing and scheduling problem. European Journal of Operational
Research, 275(1), 295–303.

Grenouilleau, F., Lahrichi, N., & Rousseau, L.-M. 2020. New decomposition methods for home
care scheduling with predefined visits. Computers & Operations Research, 115, 104855.

Gurobi Optimization, LLC. 2021. Gurobi Optimizer Reference Manual.

Habibnejad-Ledari, H., Rabbani, M., & Ghorbani-Kutenaie, N. 2019. Solving a multi-objective
model toward home care staff planning considering cross-training and staff preferences by NSGA-
II and NRGA. Scientia Iranica, 26(5), 2919–2935.

Haddadene, S. A., Labadie, N., & Prodhon, C. 2016. NSGAII enhanced with a local search
for the vehicle routing problem with time windows and synchronization constraints. IFAC-
PapersOnLine, 49(12), 1198–1203.

223

Haimes, Y., Lasdon, L., & Wismer, D. 1971. On a bicriterion formation of the problems of
integrated system identification and system optimization. IEEE Transactions on Systems, Man,
and Cybernetics, 296–297.

Ham, A. M. 2018. Integrated scheduling of m-truck, m-drone, and m-depot constrained by time-
window, drop-pickup, and m-visit using constraint programming. Transportation Research Part
C: Emerging Technologies, 91, 1–14.

Kandakoglu, A., Sauré, A., Michalowski, W., Aquino, M., Graham, J., & McCormick, B. 2020. A
decision support system for home dialysis visit scheduling and nurse routing. Decision Support
Systems, 130, 113224.

Kergosien, Y., Lenté, C., & Billaut, J. C. 2009. Home health care problem: An extended multiple
Traveling Salesman Problem. 4th Multidisciplinary International Conference on Scheduling:
Theory and Applications, 85–92.

Khodabandeh, P., Kayvanfar, V., Rafiee, M., & Werner, F. 2021. A Bi-Objective Home Health
Care Routing and Scheduling Model with Considering Nurse Downgrading Costs. International
Journal of Environmental Research and Public Health, 18(3).

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. 1983. Optimization by Simulated Annealing.
Science, 220(4598), 671–680.

Lahrichi, N., Lanzarone, E., & Yalçındağ, S. 2022. A First Route Second Assign decomposition to
enforce continuity of care in home health care. Expert Systems with Applications, 193, 116442.

Lenstra, J. K., & Kan, A. H. G. R. 1981. Complexity of vehicle routing and scheduling problems.
Networks, 11(2), 221–227.

Li, Y., Ye, C., Wang, H., Wang, F., & Xu, X. 2022. A discrete multi-objective grey wolf optimizer
for the home health care routing and scheduling problem with priorities and uncertainty.
Computers & Industrial Engineering, 169, 108256.

Lin, C. C., Hung, L. P., Liu, W. Y., & Tsai, M. C. 2018. Jointly rostering, routing, and rerostering
for home health care services: A harmony search approach with genetic, saturation, inheritance,
and immigrant schemes. Computers & Industrial Engineering, 115, 151–166.

Liu, M., Yang, D., Su, Q., & Xu, L. 2018. Bi-objective approaches for home healthcare medical
team planning and scheduling problem. Computational and Applied Mathematics, 37(4), 4443–
4474.

Liu, R., Yuan, B., & Jiang, Z. 2017. Mathematical model and exact algorithm for the home care
worker scheduling and routing problem with lunch break requirements. International Journal of
Production Research, 55(2), 558–575.

Liu, W., Dridi, M., Fei, H., & El Hassani, A. H. 2021a. Hybrid metaheuristics for solving a home
health care routing and scheduling problem with time windows, synchronized visits and lunch
breaks. Expert Systems with Applications, 183, 115307.

Liu, W., Dridi, M., Fei, H., & El Hassani, A. H. 2021b. Solving a multi-period home health
care routing and scheduling problem using an efficient matheuristic. Computers & Industrial
Engineering, 162, 107721.

Luna, F., Cervantes, A., Isasi, P., & Valenzuela-Valdés, J. F. 2018. Grid-enabled evolution
strategies for large-scale home care crew scheduling. Cluster Computing, 21(2), 1261–1273.

224

Ma, X., Fu, Y., Gao, K., Sadollah, A., & Wang, K. 2022. Integration routing and scheduling for
multiple home health care centers using a multi-objective cooperation evolutionary algorithm
with stochastic simulation. Swarm and Evolutionary Computation, 75, 101175.

Malagodi, L., Lanzarone, E., & Matta, A. 2021. Home care vehicle routing problem with chargeable
overtime and strict and soft preference matching. Health Care Management Science, 24(1), 140–
159.

Manavizadeh, N., Farrokhi-Asl, H., & Beiraghdar, P. 2020. Using a metaheuristic algorithm for
solving a home health care routing and scheduling problem. Journal of Project Management,
5(1), 27–40.

Mankowska, D. S., Meisel, F., & Bierwirth, C. 2014. The home health care routing and scheduling
problem with interdependent services. Health Care Management Science, 17(1), 15–30.

Martin, E., Cervantes, A., Saez, Y., & Isasi, P. 2020. IACS-HCSP: Improved ant colony
optimization for large-scale home care scheduling problems. Expert Systems with Applications,
142, 112994.

Mavrotas, G., & Florios, K. 2013. An Improved Version of the Augmented ϵ-Constraint Method
(AUGMECON2) for Finding the Exact Pareto Set in Multi-Objective Integer Programming
Problems. Appl. Math. Comput., 219(18), 9652–9669.

Maya Duque, P. A., Castro, M., Sörensen, K., & Goos, P. 2015. Home care service planning. The
case of Landelijke Thuiszorg. European Journal of Operational Research, 243(1), 292–301.

Milburn, A. B., & Spicer, J. 2013. Multi-objective home health nurse routing with remote
monitoring devices. International Journal of Planning and Scheduling, 1(4), 242–263.

Montemanni, R., & Dell’Amico, M. 2023. Solving the Parallel Drone Scheduling Traveling Salesman
Problem via Constraint Programming. Algorithms, 16(1).

Mosquera, F., Smet, P., & Vanden Berghe, G. 2019. Flexible home care scheduling. Omega, 83,
80–95.

Moussavi, S., Mahdjoub, M., & Grunder, O. 2019. A matheuristic approach to the integration
of worker assignment and vehicle routing problems: Application to home healthcare scheduling.
Expert Systems with Applications, 125, 317–332.

Méndez-Fernández, I., Lorenzo-Freire, S., García-Jurado, I., Costa, J., & Carpente, L. 2020.
A heuristic approach to the task planning problem in a home care business. Health Care
Management Science, 23(4), 556–570.

Méndez-Fernández, I., Lorenzo-Freire, S., & González-Rueda, A. M. 2023a. An Adaptive Large
Neighbourhood Search algorithm for a real-world Home Care Scheduling Problem with time
windows and dynamic breaks. Computers & Operations Research.

Méndez-Fernández, I., Lorenzo-Freire, S., & González-Rueda, A. M. 2023b. A biobjective routing
and scheduling problem in a home care business. Working paper.

Méndez-Fernández, I., Lorenzo-Freire, S., & González-Rueda, A. M. 2023c. A metaheuristic for
solving Home Care Scheduling Problems from scratch. Working paper.

Nasir, J. A., & Kuo, Y. H. 2020. A decision support framework for home health care transportation
with simultaneous multi-vehicle routing and staff scheduling synchronization. Decision Support
Systems, 138, 113361.

225

Nickel, S., Schröder, M., & Steeg, J. 2012. Mid-term and short-term planning support for home
health care services. European Journal of Operational Research, 219(3), 574–587.

Oladzad-Abbasabady, N., & Tavakkoli-Moghaddam, R. 2022. Dynamic routing-scheduling problem
for home health care considering caregiver-patient compatibility. Computers & Operations
Research, 148, 106000.

Perron, L., & Furnon, V. 2022. OR-Tools.

Pisinger, D., & Ropke, S. 2007. A general heuristic for vehicle routing problems. Computers &
Operations Research, 34(8), 2403–2435.

Rest, K. D., & Hirsch, P. 2016. Daily scheduling of home health care services using time-dependent
public transport. Flexible Services and Manufacturing Journal, 28(3), 495–525.

Riazi, S., Wigström, O., Bengtsson, K., & Lennartson, B. 2019. A Column Generation-Based
Gossip Algorithm for Home Healthcare Routing and Scheduling Problems. IEEE Transactions
on Automation Science and Engineering, 16(1), 127–137.

Ropke, S., & Pisinger, D. 2006. An Adaptive Large Neighborhood Search Heuristic for the Pickup
and Delivery Problem with Time Windows. Transportation Science, 40(4), 455–472.

Rossi, F., van Beek, P., & Walsh, T. (eds). 2006. Handbook of Constraint Programming.
Foundations of Artificial Intelligence, vol. 2. Elsevier.

Schweitzer, F., Bitsch, G., & Louw, L. 2023. Choosing Solution Strategies for Scheduling
Automated Guided Vehicles in Production Using Machine Learning. Applied Sciences, 13(2).

Solomon, M. M. 1987. Algorithms for the Vehicle Routing and Scheduling Problems with Time
Window Constraints. Operations Research, 35(2), 254–265.

Taieb, S. H., Loukil, T., & Mhamedi, A. E. 2019. Home (Health)-Care Routing and
Scheduling Problem. 2019 International Colloquium on Logistics and Supply Chain Management
(LOGISTIQUA), 1–6.

Teichteil-Königsbuch, F., Povéda, G., de Garibay Barba, G. G., Luchterhand, T., & Thiébaux, S.
2023. Fast and Robust Resource-Constrained Scheduling with Graph Neural Networks.

Trautsamwieser, A., & Hirsch, P. 2011. Optimization of daily scheduling for home health care
services. Journal of Applied Operational Research, 3(3), 124–136.

Trilling, L., Guinet, A., & Magny, D. L. 2006. Nurse scheduling using integer linear programming
and constraint programming. IFAC Proceedings Volumes, 39(3), 671–676.

Van Rossum, G., & Drake, F. L. 2009. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace.

Vieira, B., de Armas, J., & Ramalhinho, H. 2022. Optimizing an integrated home care problem:
A heuristic-based decision-support system. Engineering Applications of Artificial Intelligence,
114, 105062.

Wang, H., He, Y., Li, Y., & Wang, F. 2020. Study on the Home Health Caregiver Scheduling
Problem under a Resource Sharing Mode considering Differences in Working Time and Customer
Satisfaction. Discrete Dynamics in Nature and Society, 2020.

Weil, G., Heus, K., Francois, P., & Poujade, M. 1995. Constraint programming for nurse scheduling.
IEEE Engineering in Medicine and Biology Magazine, 14(4), 417–422.

226

Xiang, T., Li, Y., & Szeto, W. Y. 2023. The daily routing and scheduling problem of home health
care: based on costs and participants’ preference satisfaction. International Transactions in
Operational Research, 30(1), 39–69.

Yang, M., Ni, Y., & Yang, L. 2021. A multi-objective consistent home healthcare routing and
scheduling problem in an uncertain environment. Computers & Industrial Engineering, 160,
107560.

Zhan, Y., & Wan, G. 2018. Vehicle routing and appointment scheduling with team assignment for
home services. Computers & Operations Research, 100, 1–11.

227

	List of Figures
	List of Tables
	List of Algorithms
	List of most used abbreviations
	Introduction
	Original problem proposal by Mayores
	Resolution method: a Simulated Annealing algorithm
	Phase 1: initialization
	Phase 2: service scheduling
	Phase 3: the optimization

	The implementation
	Example: solving incidents

	Mathematical formulation
	The mixed integer programming model
	Parameters
	Decision variables
	Objective function
	Constraints
	Summary of the MILP model

	Illustrative example of the problem
	Resolution approaches

	The metaheuristic algorithm
	Adaptive Large Neighborhood Search method
	Initial solution
	Removal Operators
	Random removal
	Related removal
	Cost removal
	1-route removal
	2-route removal

	Insertion Operators
	Basic greedy
	Random greedy
	Different caregiver basic greedy
	Different caregiver random greedy

	Obtaining the schedule of a route
	Constraint programming

	Appendix Auxiliary functions
	Check if a route is feasible
	Earliest and latest starting times

	Hierarchical approach: welfare over cost
	Algorithm to schedule a route prioritizing welfare over cost
	Obtain information of the route: getInfo
	Obtain a schedule with best penalization value: getSchedulePenalization
	Reduce the cost of the schedule: getScheduleCost

	Appendix Auxiliary functions
	Obtain blocks: getBlocksSTW
	Schedule the block: getScheduleBlock
	Delay the block: delayBlock
	Get blocks of consecutive services: getBlocksConsecutiveServices
	Get earliest and latest starting times of the block: getBlocksEarliestLatestStart

	Hierarchical approach: cost over welfare
	Algorithm to schedule a route prioritizing cost over welfare
	Get earliest and latest times: getEarliestLatest
	Get schedules with best cost value: getBestCostSchedules
	Improve the soft time window penalization: getBestStwSchedules

	Appendix Auxiliary functions
	Obtain sets of services: getSetsOfServices
	Obtain the schedule with best penalization value: getStwSchedule
	Schedule that minimizes all breaks: firstSchedule
	Schedule that makes one break as big as possible: secondSchedule
	Update the list of schedules: updateBestSchedulesCost
	Separate the route into two blocks: getBreakBlocks
	Get earliest and latest start for the block: getBlockTw
	Move the schedule of the block: moveBlock
	Modify the schedule of some services of the block: moveServices
	Combine the schedule of the blocks: getCombinedSchedules

	The biobjective problem
	Epsilon Constraint method
	AUGMECON2 method

	Biobjective metaheuristic algorithm
	Initialise the sets: initialiseSets
	Generate solutions composed by different routes: getDifferentSolutions
	Generate non dominated solutions: getNonDominatedSet

	Appendix Auxiliary functions
	Adaptive Large Neighborhood Search: ALNS
	Update the non dominated solutions: updateNonDominatedSet
	Filter the set of solutions: filterSet
	Update the schedule of a solution: schedule
	Update the set of solutions: updateSetsOfSolutions
	Get earliest and latest starting times: getEarliestLatest
	Obtain the maximum time the service can be delayed or advanced according to soft time windows: getTimeStw
	Get services affected by the delay time: getAffectedServicesDelay
	Delay time so the penalization does not increase: updateDelay
	Get services affected by the advance time: getAffectedServicesAdvance
	Obtain advance time so the penalization does not increase: updateAdvance
	Obtain the maximum time the service can be delayed or advanced according to the cost: getTimeCost
	Delay the service a random amount of time: randomDelay
	Advance the service a random amount of time: randomAdvance

	Computational results
	Data
	Solomon instances
	Real Data

	Hierarchical approach: welfare-cost
	Gurobi results
	ALNS_WC results
	Constraint programming results
	Real data results

	Hierarchical approach: cost-welfare
	Gurobi results
	ALNS_CW results
	Constraint programming results
	Real data results

	Comparison of the two hierarchical solutions in the real case study
	Trade-off between soft time window penalization and cost

	Biobjective algorithm
	AUGMECON2 method
	Performance indicators
	BIALNS method
	Real instances

	Conclusions
	Resumen en castellano

