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Abstract. Much research has been published about trajectory manage-
ment on the ground or at the sea, but compression or indexing of flight
trajectories have usually been less explored. However, air traffic manage-
ment is a challenge because airspace is becoming more and more con-
gested, and large flight data collections must be preserved and exploited
for varied purposes. This paper proposes 3DGraCT, a new method for
representing these flight trajectories. It extends the GraCT compact data
structure to cope with a third dimension (altitude), while retaining its
space/time complexities. 3DGraCT improves space requirements of tra-
ditional spatio-temporal data structures by two orders of magnitude,
being competitive for the considered types of queries, even leading the
comparison for a particular one.

1 Introduction

Geopositioned data is ubiquitously and continuously generated to describe dif-
ferent types of trajectories; e.g. routes of professional transportation vehicles or
our daily running paths. Obviously, large and varied trajectory datasets are be-
ing consolidated, and they are exploited for different and innovative purposes.
Disregarding their final application, managing trajectory datasets poses many
challenges that have attracted much research efforts.

A prominent domain that demands efficient trajectory management is Air
Traffic Management (ATM). ATM systems analyze very large flight-related data-
sets to make decisions to improve air traffic performance, reducing costs, or mak-
ing safer and environmentally friendly airspaces. Currently, ATM services are
evolving to support and leverage “next generation” technologies like Automatic
Dependent Surveillance-Broadcast (ADS-B). ADS-B is a surveillance technology
in which aircrafts determine flight parameters (latitude, longitude, altitude, etc)
via navigation systems, and broadcast them to ground stations, that then de-
liver this data to ADS-B providers; e.g. the OpenSky Network [16], that is the
provider of the ADS-B datasets used in our experiments.

* This work was funded in part by EU H2020 MSCA RISE BIRDS: 690941; MINECO-AEI/FEDER-
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ADS-B has been progressively adopted by many aircraft manufacturers, and
more ground stations have been deployed around the world. It has increased
ADS-B coverage, and also the size of ADS-B datasets, whose storage and query-
ing has become more difficult. Storage issues were first addressed using colum-
nar compression [20, 22]. Although their numbers are moderately successful, the
resulting representations can not be efficiently queried. More recently, a com-
pressed index for ADS-B (called ADS-BI) has been proposed [21]. It performs
block partitioning and stores descriptive metadata about the block to enable
some types of queries. Block contents are then encoded by columns using uni-
versal compression (e.g. gzip or p7zip), reporting competitive numbers. Although
ADS-BI resolves some type of queries by time or 2D-position, it does not support
altitude-based searches, which is highly desirable for ATM systems; for instance,
when a controller looks for aircrafts flying at certain flight level in a given region.

Therefore, our main objective is to propose a data structure that allows 3D
trajectories to be effectively compressed, and searches to be performed by time
and/or any of the three positional dimensions. It is not a new problem [7], and
some researches have been previously published about 2D (latitude, longitude),
and 3D (including altitude) trajectory management. Data structures like 3DR-
tree [19], HR-tree [13], the MVR-tree [17], or PIST [2] have been successfully
used for many years, but currently show scalability issues when they are used to
manage larger trajectory datasets. The Douglas-Peucker algorithm [8] has been
used to make trajectories more compact; other examples are dead reckoning [18],
TrajStore [6] and Trajic [15].

Our approach, called 3DGraCT, proposes a new compact data structure that
stores and indexes 3D trajectories in compressed space. 3DGraCT enhances
GraCT [14] to manage altitude information, and also to enable query resolu-
tion by this dimension. Our experiments, using different-size ADS-B datasets,
show that 3DGraCT improves space requirements of traditional spatiotemporal
data structures by two orders of magnitude, and competes with them in query
performance, leading the comparison for queries asking for large time intervals.

2 Background

k%-tree. The k2-tree [5] is conceptually an unbalanced k2-ary tree constructed
from a binary matrix by recursively subdividing the matrix into k? submatrices
of the same size, if k = 2, it is a space/time efficient version of a region quadtree.
First, the original matrix is divided into k2 submatrices of size n?/k?, being nxn
the size of the matrix. Each of these submatrices generates a child of the root
node whose value is 1, if there is at least one 1 in the cells of that submatrix, and 0
otherwise. The subdivision continues recursively for each child with value 1 until
a submatrix full of Os is found or the cells of the original matrix (i.e., submatrices
of size 1 x 1) ar reached. Figure 1 shows an example of this subdivision (left)
and the resulting conceptual k2-ary tree (right up) for k = 2.

The k2-tree is stored using two bitmaps T and L (see Figure 1). T stores
all the bits of the k2-tree, except those in the last level, following a level-wise
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Fig. 1. Example of a binary matrix (left), the k*-tree conceptual representation (top
right), and the compact representation (bottom right), where k& = 2.
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Fig. 2. Example of Re-Pair compression.

traversal: first the k2 binary values of the children of the root node, then the
values of the second level, and so on. L stores the last level of the tree.

k3-tree. The k2-tree can be generalized to deal with a three-dimensional binary
cube, instead of a two-dimensional binary matrix. It can be trivially done by ex-
tending the space partitioning, while maintaining the representation techniques
used for k%-trees. Thus, each 1 in the binary cube of the k3-tree [1] represents
a tuple (x,y, z), where (z,y) are the coordinates in the 2D space, and z is the
altitude. It is possible to obtain efficiently the value of a cell, a cube, or slices of
the cube, by just performing rank and select operations [10] over T and L.

Re-Pair. Re-Pair [12] compresses a sequence by recursively substituting pairs
of symbols by a new one. Given a sequence of integers I (called terminals) the
compression process is as follows: (1) it obtains the most frequent pair of integers
ab in I; (2) it adds rule W — ab to dictionary R, where W is a new symbol not
present in I (called a non-terminal); (3) every occurrence of ab in I is replaced
by W, and (4) it repeats steps 1-3 until all pairs in I appear only once (see
Figure 2). The resulting sequence after compressing I is called C.

GraCT. GraCT [4] is a compact data structure to represent and query trajec-
tories of moving objects in a free space of two dimensions. It requires that all
objects declare their positions at regular time instants (e.g. each minute), but
interpolation is used when an object does not inform its position in a given in-
stant. GraCT uses a raster model to represent the space; i.e. it is divided into
cells (squares) of a fixed size, and it is assumed that objects fit in one of these



cells. The size of the cells and the time elapsed between consecutive instants are
parameters that can be adapted to particular cases.

To store absolute positions of all objects, every d time instants, GraCT uses
a data structure based on the k2-tree, which is called snapshot. The distance,
d, between snapshots is another parameter of GraCT. Between two consecutive
snapshots, the trajectory of each moving object is represented as a log, which is
an array of relative movements with respect to the previous time instant.

3 3DGraCT

3DGraCT proposes an extension of GraCT to three dimensions, so the space is
divided into cells (small cubes) of fixed length, that form a bigger cube.

Snapshots. Each d time instants, there is a snapshot Si, where k is the time
instant represented by the snapshot. These snapshots are organized as k3-trees.
A leaf of the k®-tree set to 1 (i.e., a 1 in the bitmap L) means that one or
more aircrafts® are placed in the corresponding cell, but the snapshot needs to
determine which objects are located in that cell. Following the order of 1s in
L, an array of object identifiers (aircrafts) holds that information. This array is
denoted as perm, since it is a permutation [11]. An additional bitmap, called @,
is aligned with perm. It marks with O that the aligned object identifier in perm
is the last object in the corresponding cell, and 1 means that more objects are
located in that cell.

Figure 3 shows an example of snapshot.? The two matrices models the first
two slices of an 8 x 8 x 8 cube representing the 3D space. Each slice contains the
horizontal positions of all aircrafts flying at a given altitude. Each matrix shows
object identifiers at certain positions, and the corresponding k>-tree encodes this
information by assuming that no objects are contained in the remaining slices.
Each non-empty position in matrix corresponds to a bit set to 1 in L. The object
identifiers corresponding to the first 1 in L (which is at position 3 of L) are stored
starting at position 1 of perm. @ is then accessed to count the number of objects
that are located in this cell: a sequential search is performed from @Q[1] until the
first 0 (located at Q[2]). Thus, there are two objects in the inspected cell. The
corresponding object identifiers are retrieved from perm[1]/=8 and perm/2/=6.
Now, in position 3 of perm starts the object identifiers corresponding to the
second 1 in L, and so on.

These structures allow 3DGraCT to address two types of queries:

— Find the objects in a box of the 3D space. The k3-tree is traversed from the
root to the leaves to obtain positions ni, ns,...nn,, in L, that corresponds to
positions marked with 1 in the queried box. For each n;, we count the number
of 1s in the array of leaves L until the position n;; it obtains the number of

3 From now on, we will refer to them simply as objects or moving objects.
4 Note that only shaded structures are used to encode the snapshot, the other ones
are used for illustration purposes.
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Fig. 3. The position of objects in the 3D space (top left), the conceptual k*-tree (top
right), and the snapshot (bottom).

non-empty leaves up to the n;‘fh leaf, = ranki(L,n;). Then, the position of
the (x — 1)th 0 in @ is obtained, which indicates the last bit of the previous
leaf (with objects), and by adding 1, we get the first position in perm with
the objects of the leaf corresponding to n;, p = selecto(Q,x — 1) + 1. From
p, object identifiers aligned with 1s in @ are retrieved, until a 0 is reached
(it marks the last object identifier located in a leaf).

— Find the position in the 3D space of a given object. The desired object identi-
fier is first searched in perm. Our permutation is enhanced with shortcuts to
avoid sequential searches. Assuming the object identifier is located at posi-
tion k, the following step looks for its corresponding position in L. We calcu-
late the number of leaves before the object at perm/fk]: y = ranky(Q,k —1).
Then we find in L the position of the (y + 1)** 1, that is, select;(L,y + 1).
This value is used to traverse the k3-tree upwards in order to obtain the cell
position in the 3D space, and thus the horizontal position and altitude of
the object.

Log of relative movements. The use of a snapshot for encoding each time
instant would consume too much space, instead, between snapshots, 3DGraCT
stores for each aircraft the relative movements with respect to the last known
position. A relative movement consists of 3 values, (x, y, z), which are the number
of cells of difference between the new position and the last known position, in
each dimension. Probably, (z,y, z) will be numbers with a small magnitude, as
the differences between consecutive time instants cannot be very big. Instead of
using 32 bits for each value, we fit the three values into a 32-bit integer using 12
bits for the & and y values and 8 bits for the z component. In Figure 4(a), we



can see a relative movement of 1 cell up on the y-coordinate, 3 cells to the right
on the x-coordinate and 2 cells down on the z-coordinate. Below, observe that
those values are encoding using Zig-Zag encoding (-1 — 1,1 —2,—-2 = 3,...),
and then they are packed in a 32-bit integer.

Obviously, this works well as long as the assumption that there are small
differences between two consecutive positions is maintained. However, there may
be periods of time without information about the positions of the aircraft (for
example, the aircraft is in an area without reception stations). In those cases,
the 32-bit integer comprising (z,y, z) would not be enough. Observe that, to
save space, our method does not explicitly store the time instant of a recorded
position, it can be derived from its position inside the log. Therefore, 3DGraCT
requires a method to manage that disappearances/appearances.

Between two consecutive snapshots S and Siy4, each object is represented
by a log, Lk x+a(id;), where id; is the identifier of the object. It is a sequence of
codewords of the following types: (1) an integer encoding a relative movement;
(2) Disappearance (D) codeword, which means that we have no information
about the position object id; from one time instant of Ly x1q(id;) until its end;
(3) Absolute appearance (AA), which means that we have no information about
the position of id; from the beginning of Ly r1q(id;) until a time instant cov-
ered by Ly x+4(id;), where that information appears; (4) Relative disappearance,
which means that the information about the position of id; disappears in a time
instant of L x4a(id;), but reappears in a time instant of the same portion of
the log.

In order to maintain the synchronization of the sequences of values in
Ly k+a(id;), the appearances and disappearances require the storage of their
corresponding time instant. In addition, they also require the storage of the
absolute position of the appearance/disappearance. The relative disappearances
imply the storage of the number of time instants they lasted and the relative
movement with respect to the last known position.

In Figure 4(b), it is shown an example. The relative movements are depicted
with the three relative displacements (z,,y)°. The array D stores the duration
of a relative disappearance and the exact time instant of absolute appearances
and disappearances. For example, in £y 4(1), there is a relative disappearance
that lasts two instants, and in £ 4(7), the object appears at time instant 3. In
addition, array P stores the relative movements of relative disappearances and
the absolute position of absolute appearances or disappearances. For example,
in Lo4(1), the (1,4,1) tuple in Py 4(1) means that the object reappeared 1
cell upwards in the z-coordinate, 4 cells to the right in the x-coordinate, and 1
cell upwards in the y-coordinate. In Ly 4(7), the object appears in the absolute
position (0,5,2) (see Pp4(7)). In the figure, the values are aligned to their
corresponding time instants, but this is only for illustration purposes, thanks
to the array D, for one object, all the logs are stored as a sequence. D and P are
compressed with DACs [3], a compressor for sequences of integers that provides

5 (2, x,y) notation indicated that these three values are packed in a 32-bit integer.
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Fig. 4. The encoding of relative movements (left) and logs of objects (right).

direct access to any position without the need of decompressing the previous
numbers.

Compressing the log. Logs represent an important saving in space with
respect to snapshots, but it is possible to obtain additional compression taking
advantage the following fact: aircrafts spend most of the time following the
same course at a constant speed. This situation will be represented in the logs
as sequences of repetitive numbers, that is, the same relative displacements
with respect to the previous time instant. These series of similar numbers are
compressed very efficiently using a grammar compressor, such as Re-Pair.

To improve the query processing, the Re-Pair rules in 3DGraCT are enriched
with additional information. Each rule in R has the following information:
s — a,b,#t,x,y,z, M BB, where: (1) s, a and b are the components of a normal
rule of Re-Pair, (2) #t is the number of instants covered by the rule, (3) (z, z,y)
are the relative coordinates of the final position of the object after the application
of the rule (that is, the displacement considering (0,0,0) the initial position
before the application of the rule) and, (4) M BB is the Minimum Bounding
Box enclosing the movements of the rule. MBB is represented by six coordinates
(21,21,y1, 22,22, y2), which are the points at the ends of a diagonal of the box.

For example, in Figure 4, in £ 4(4), the two (1,1,1) consecutive relative
movements produce a rule, W — (1,1,1),(1,1,1),2,(2,2,2),(0,0,0,2,2,2), and
then Ly 4(4) = W, D. Thanks to the additional information, the non-terminal
symbols of the logs do not need to be decompressed in many cases. For example,
if we wish to know the position of object 4 at ¢5, we obtain its absolute position in
the snapshot Sy (Figure 3), which is (0,4,0), and then the first symbol of Lg 4(4)
(W) is applied. Since W covers 2 time instants, its application to the position
at tg produces the position of the object at the queried time instant. For this,
the relative displacement (2,2, 2) is added to the original position, obtaining the
position (2, 6,2).



4 Querying

Obtain the position of an object. To obtain the position of an object at
a given time instant ¢, first, the algorithm retrieves the position of the object
in the closest snapshot to t,. If the snapshot does not represent ¢,, then the
algorithm follows the movements through the log until it reaches ¢, as it was
explained in the previous section, using the relative coordinates included in the
rules when possible. When the nearest snapshot is located before t,, the process
follows a forward traversal of the log, otherwise, the process performs a backward
traversal.

Obtain the trajectory of an object. Given an interval of time [t t.] and an
object, this query obtains all the positions of the object between ts and t.. First,
the query obtains the position of the object at t; using the algorithm explained
for the previous query, and then it applies the movements of the log until it
reaches the position at t.. Since the additional information of the rules does not
contain the detailed positions of the trajectory, the algorithm has to decompress
every non-terminal value of the log containing a ¢; € [ts, te].

Time slice query. Let r = [21,y1, 21] X [T2, Y2, 22] be a rectangular cuboid (or
box) and t, a time instant, this query returns all objects within r at ¢,. Let
(S35 8y, 2) be the maximum speed vector of any object in our dataset, that is,
the maximum speed in each of the three axes of the space achieved by any object
in the dataset. We denote E,(t,%,), the expanded region of r from tj to t4, as
the area that contains any object active at t; capable of being located within r
at t,. Hence, E,(tx,tq) is r extended in the three dimensions; in the x-axis to
the coordinates [x1 — sz - (t4 — ti), T2 + Sy - (tg — tx)], and repeat the same for
the y-axis and z-axis. Assuming that the closest snapshot is Sy and that t;, < ¢,
the algorithm obtains the candidate objects C inside E,(ty,tq) at t. If t = ¢4,
the algorithm returns C. Otherwise, it tracks the movements in Ly, 44 for each
object in C until it reaches t,. During this process, after obtaining the position
of an object ¢; at t;, we can discard ¢; if it is outside E,.(t;,t,). The position at
ty can be given by a terminal or a non-terminal value. In the first case, we apply
the movement and check if the object is within r. In the second case, the object
is part of the solution when the MBB of the additional information of the rule
defining the non-terminal value is completely contained in 7, and the object can
be pruned if its MBB does not intersect r. However, when the MBB intersects r
(but it is not completely contained), the algorithm has to decompress the non-
terminal symbol using the Re-Pair rule to obtain the exact position of the object
at t4. If the closest snapshot to ¢, is after it, then the algorithm performs the
same process backwards.

Time interval query. Given a box r and an interval of time [ts, t.], this query
obtains all objects within r at any ¢; € [ts,t.]. This query could be solved in a
similar way to the previous one. However, to avoid large expanded regions, that
lead to track too many candidate objects, the query interval [ts,t.] is divided
into as many queries as portions of log overlaps. Then, each one of these portions



[t.,t.] can be solved in a similar way to time-slice. First, the algorithm obtains
the candidates from the closest snapshot, using the expanded region with respect
to t.; then it applies the movements of the log. During the processing of the log
of a candidate object c;, the algorithm has to take into account that when the
traversal reaches a symbol s,, that after its application obtains the position
(@i, i, zi) at a time instant ¢; € [t,,te]: (1) ¢; is part of the solution if (x;, y;, )
is within r; (2) if (2, s, #;) is not within E,.(¢;,t.), then ¢; can be discarded of
the processing of the current portion; (3) if (x;,y;,2;) is outside r but within
E,(t;,t.), then ¢; continues as a candidate that needs to be tracked. If s, is
a non-terminal symbol that produces a position at t; > ¢, and covers the time
interval [t,,%;], where ¢, < t.: (1) if the MBB of s,, is fully within r, then ¢; is
part of the solution (2) if the MBB of s,,, does not intersect 7, then ¢; is discarded
in the processing of the current portion. (3) if the MBB of s, intersects r, the
algorithm has to decompress s, to check if s,, involves any ¢; € [t,,t.] whose
position is within 7.

5 Experimental Evaluation

Our experiments analyze space/time tradeoffs of 3DGraCT using real-world
ADS-B data. We also evaluate the use of interpolation to fill in large periods
of missing data during the trajectory. For comparison purposes, we propose a
baseline including the MVR-tree [17], but we do not include ADS-BI [21] because
it does not provide altitude-based queries, and its inner index stores some string
dimensions which are not covered by 3DGraCT.

Both 3DGraCT and the MVR-tree are coded in C++4. 3DGraCT uses some
structures from SDSL [9] and MVR-tree is obtained from the spatialindex library
(libspatialindex.github.io). All experiments were run on an Intel® Core™
i7-3820 CPU@3.60GHz (4 cores), 10MB of cache and 64GB of RAM, over
Ubuntu 12.04.5 LTS (kernel 3.2.0-115, 64 bits), using gcc 4.6.4 with -09 flag.

Dataset details. We use four real ADS-B datasets including descriptive data
of flights between different airports of Europe (see details in Appendix A). Each
dataset covers a different period of time, namely one day, one week, two weeks,
and one month. Positions are discretized into a cube where the cell size is 5
kilometers in x-axis, 5 kilometers in y-axis, and 100 meters in z-axis. Since
aircraft positions can contain incorrect information and they can be emitted
at different time rates, we discard incorrect positions and normalize timestamps
to obtain regular instants every 15 seconds.

Gate-to-gate trajectories are difficult to reconstruct from ADS-B data be-
cause some broadcasted positions are lost, mainly due to lack of coverage. Al-
though we use disappearance and reappearance codewords to represent these
situations, we consider relevant to understand how they affect to 3DGraCT
tradeoffs. We use the original datasets to generate a new ones, where aircraft
positions are interpolated when no information is available during, at least, 15
minutes. As consequence, we have eight datasets: four real-world datasets (1D,
1W, 2W, 1M) and four interpolated datasets (1D-I, 1 W-I, 2W-I, 1M-I). Table



Dataset 1D 1D-1 1w 1W-1 2W 2W-I 1M 1M-1
Time 1 day 1 day 1 week 1 week 2 weeks |2 weeks |1 month |1 month
Objects 1082 1082 1764 1764 2003 2003 2263 2263
Interpolated|No Yes No Yes No Yes No Yes
Binary 7.31M 7.68M 55.32M  [58.27M 115.57M [122.03M [261.01M |275.35M
p7zip 1.71M 1.86M 12.58M  [13.09M [26.03M  [27.18M  [57.45M [60.14M
(ratio) 23.41% 24.19% 22.73% 22.47% 22.53% 22.27% 22.01% 21.84%

Table 1. Dataset details.

1 shows the details of each dataset. Note that the fourth and fifth rows give,
respectively, dataset sizes of binary and p7zip-compressed representations.

Compression ratio. We define compression ratio as the ratio between the
binary size and the compressed size. The last row of Table 1 gives compression
ratios reported by p7zip for all datasets, while Figure 5(a) illustrates 3DGraCT
numbers for one day and one month datasets, using different periods of snapshot
(120, 240, 360 and 720 time instants). p7zip report stable ratios around 22-
24%, but 3DGraCT effectiveness is clearly influenced by the distance between
snapshots, because snapshot encoding requires more space than log compression.
Thus, the more-distanced the snapshots are, the better the results are. In our
experiments, 3DGraCT reports its best ratios using a separation of 720 time
instants between snapshots, outperforming p7zip in all datasets. For instance,
3DGraCT reports 22.29% for 1D and p7zip 23.41%. This gap increases for larger
datasets: 3DGraCT only needs 14.73% of the original 1M size, while pT7zip
demands 22.01%. Thus, 3DGraCT is more effective than a powerful compressor
like p7zip, while retaining search capabilities.

This comparison also applies for interpolated datasets. Note that, in this case,
3DGraCT reports slightly better results, meaning that missing information adds
an small overhead (=~ 2%) to our structure.

Query times. Query times are averaged over the following settings: (1) Object
t: 20,000 queries that obtain the position of an object at a given time instant,
(2) Trajectory: 10,000 queries obtaining trajectories that cover 2,000 time
instants, (3) Time Slice S: 1,000 time slice queries involving a small region
(20 x 20 x 20), (4) Time Slice L: 1,000 time slice queries specifying large regions
(160 x 160 x 160), (5) Time Interval S: 1,000 time interval queries involving
small regions and intervals of 50 time instants, (6) Time Interval L: 1,000 time
interval queries specifying large regions and intervals of 400 time instants. Query
times for 3D-GraCT over real-world (3D-GraCT) and interpolated (3D-GraCT-
I) datasets are distinguished in the following figures.

Figure 5(b) shows that query times of Object t increase with distance between
snapshots because larger log portions must be processed. On the contrary,
Figure 5(c) shows that Trajectory queries are slowler for less distanced snapshots
because more snapshots must be checked.

In region queries, Time Slice and Time Interval, the number of candidates
depends on the period between snapshots. Time Slice is slower as the distance
between snapshot gets larger (see Figures 5(d) and 5(e)), because the extended
region grows and the number of candidates that are tracked is also larger. Figures



30%
28%
26%
24%
22%
20%
18%
16%
14%
12%

10

Compression rati

0.025

~ 0.020

0.015

0.010

0.005

0.000

4.0
35
3.0
25
2.0
15
1.0
0.5
0.0

Response time (ms)

20.0

15.0

Response time (ms)

0.0

120 240

360

Period of snapshot

(a) Compression ratio

Dataset 1 Day

Dataset 1 Month

vy

Cioupios

0.012

0.010

0.008

0.006

0.004

0.002

0.000

Dataset 1 Day

Dataset 1 Month

3DGraCT-| &'
3DGraCT =

120 240 360 720
Period of snapshot

120 240
Period of snapshot

(b) Object ¢t

Dataset 1 Day

Dataset 1 Month

3DGraCT-l @ T 40 M 3pgmeTi & T
3DGraCT & 3.5+ 3DGraCT = 1
g L MVR-tree =
3.0 4
25t 9
20 £

120
Period of snapshot

720

120 360 720
Period of snapshot

(c) Trajectory

Dataset 1 Day

Dataset 1 Month

Response time (ms)

120 240
Period of snapshot

o2

2

5

S

120 240
Period of snapshot

(d) Time Slice Small

Dataset 1 Day

Dataset 1 Month

y T T T T T T 5.0 ™ T T T T T T
3DGraCT-l @ 3DGraCT-l @
- 3DGraCT = - 3DGraCT = i
MVR-tree = _. 40} MVR-tree m E:g ]
b L Y 5
g 30
i i 3
L | £ 20t
Q
@
L L ko3
T 10t
[ [ i X
‘ . 0.0 1 G
120 240 360 720 120 240 360 720 120 240 360 720 120 240 360 720
Period of snapshot Period of snapshot Period of snapshot Period of snapshot
(e) Time Slice Large (f) Time Interval Small
Dataset 1 Day Dataset 1 Month 40 i i i i i i
3DGraCT-Interval-S —=—
3DGraCT-l & 35 | 3DGraCT-Interval-L —e—
3DGraCT & MVR-Interval-S
MVR-tree m 30 MVR-Interval-L
2 25+
g
L L 5 20t
i 15t
[ ) [ 10
] 5|
d

120 240 360 720

Period of snapshot

120 360
Period of snapshot

(¢) Time Interval Large

0
0 100 200 300 400 500 600 700 800 900 1000
Length of interval

(h) Growing time interval

Fig. 5. Compression ratio and query times (ms).



5(f) and 5(g) show that Time Interval queries behave similar to Time Slice ones,
except in the right part of Figure 5(g). In this case, the expanded region covers
the whole space for each period of snapshot, so the number of candidates between
different settings remains constant. Thus, traversing the log demands the same
computation, but less snapshots are checked for larger periods.

Finally, it is worth noting that the effect of interpolation is not very relevant
to 3DGraCT performance. It is only a slight improvement for region queries and
large datasets. Thus, we conclude that the interpolation of missing positions
avoids the cost of managing appearances and reappearances, improves Re-Pair
effectiveness, and allows logs to be processed faster. For this reason, querying
real-world datasets are 3%-10% slower.

Comparison with MVR-tree. 3DGraCT and MVR-tree are compared over
the real-world datasets of our setup: 1D, 1W, 2W and 1M. It is worth noting
that MVR-Tree space requirements are 250-300 times larger than 3DGraCT one,
but we tune MVR-Tree to run on main-memory.

Our analysis show that MVR-tree is only efficient for Time Slice, Time
Interval, and knn queries. Although MVR-tree can obtain the position of an
object at a given time instant, or can follow the trajectory of the object in a
given interval, these are expensive queries.

MVR-tree can be enhanced with an auxiliary 3DR-tree [17], but the resulting
structure would consume even more space. Thus, we only analyze queries where
MVR-tree is efficient.

Figures 5(d) and 5(e) show that MVR-tree outperforms 3DGraCT in Time
Slice queries. However, our structure is better in Time Interval queries for large
intervals (Figure 5(g)). We study the turning point where the 3DGraCT starts to
improve the MVR-tree, by increasing the time interval length. Figure 5(h) shows
this comparison for the 1M dataset, and a period of snapshot of 720. 3DGraCT
outperforms MVR-tree for time intervals over 550 and 200 time instants in small
and large regions, respectively.

6 Conclusions

This paper introduces 3DGraCT, a new data structure capable of compressing
and querying 3D trajectories with no prior decompression. 3DGraCT extends
an existing 2D compact data structure (GraCT) to support a third dimension,
enabling object positions to be enhanced with descriptive altitude data. Our
improvements to GraCT are more than just improving object descriptions
because 3DGraCT also enables for resolving altitude-based queries.

3DGraCT has been evaluated using real-world trajectories reconstructed
from ADS-B descriptions. 3DGraCT reports better compression ratios than uni-
versal compressors like p7zip (3DGraCT uses up to 50% less space), while re-
taining search capabilities. Compared to traditional spatio-temporal solutions,
3DGraCT needs 2 orders of magnitude less space than MVR-tree, being com-
petitive in query performance. Finally, we also study the effect of missing sub-
trajectories, concluding that interpolation is effective in different cases.
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Appendix

The datasets used in our experimenation have been obtained from the OpenSky
Network®. We have chosen ADS-B messages broadcasted by aircrafts of 30
different airlines and describe flights between 30 European airports:

Airlines (ICAO code): AEA, AEE, AFR, AUA, AZA, BAW, BEE, BEL, BER,
DLH, EIN, EWG, EZS, EZY, FDX, FIN, GWI, IBE, IBK, IBS, KLM, LOT,
NAX, NLY, RYR, SAS, SHT, SWR, TAP, and VLG.

Airports (ICAO code): EBBR, EDDF, EDDK, EDDL, EDDM, EDDT, EFHK, EGCC,
EGKK, EGLL, EGPH, EGSS, EHAM, EIDW, EKCH, ENGM, EPWA, ESSA, LEBL,
LEMD, LEPA, LFPG, LFPO, LGAV, LIMC, LIRF, LOWW, LPPT, LSGG, and LSZH.

ADS-B messages were captured from 2017-01-02 to 2017-01-31, and sampled

as follows:

lday : 2017-01-02.

lweek: 2017-01-02 -- 2017-01-08.

2weeks: 2017-01-02 -- 2017-01-15.
lmonth: 2017-01-02 -- 2017-01-31.

S https://opensky-network.org/
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