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Abstract  

Simulation of complex mechatronic systems like an automobile, involving mechanical 

components as well as actuators and active electronic control devices, can be accomplished by 

combining tools that deal with the simulation of the different subsystems. In this sense, it is 

often desirable to couple a multibody simulation software (for the mechanical simulation) 

with external numerical computing environments and block diagram simulators (for the mod-

elling and simulation of non-mechanical components). 

In this work, an in-house developed C++ MBS simulation software has been coupled with 

the commercial tools MATLAB and Simulink, and different coupling techniques have been 

identified, implemented and tested in order to assess their computational performance. Two 

categories of coupling techniques have been investigated: those in which only one tool per-

forms the integration (function evaluation) and those in which each tool uses its own integra-

tor (co-simulation). Furthermore, the efficiency of the described coupling methods has been 

compared to that of equivalent monolithic models, and indications are provided to implement 

them in other simulation environments. 

Results show that state-of-the-art coupling techniques can reduce simulation times in one 

or two orders of magnitude with respect to standard techniques. Finally, advices are provided 

to select the coupling method best suited to a particular application, as a function of its effi-

ciency and implementation effort. 
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1. Introduction 

Machines, in general, consist of several different subsystems such as mechanical compo-

nents and actuators as well as control systems. These subsystems represent engineering disci-

plines that are coupled together and the overall performance of the machine is defined by the 

operation of each individual subsystem as well as interactions of subsystems. For this reason, 

the traditional design procedure where mechanical components, actuators and control methods 

are considered separately is not able to produce optimum solutions. The multibody system 

(MBS) simulation approach meets the challenge and can be used in the design process of a 

machine that consists of different subsystems. It is noteworthy, however, that complex non-

mechanical components such as control loops and actuators often fall beyond the scope of 

traditional multibody codes.  

As the industry requirements increase, the demanded degree of realism in the simulation of 

multidisciplinary systems is continuously growing, so the engineer needs to take account of 

different phenomena simultaneously when simulating a system. When evaluating the behav-

iour of an automobile, for example, not only an accurate representation of its mechanical ele-

ments is needed, but also of the electronic control systems (like ABS or traction control), the 

hydraulic components or the thermodynamics of its engine. The realistic simulation of such 

multidisciplinary system, as required, for instance, by Human/Hardware in the Loop (HiL) 

devices, must handle each different subsystem in an efficient way. 

Several ways of dealing with multidisciplinary systems can be found in the literature, as 

mentioned by Valasek [1]. Two main approaches can be distinguished: communication be-

tween different simulation tools, and uniform modelling. Uniform or monolithic modelling is 
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based on representing all the subsystems of a multi-domain problem in the same language [2]. 

Specialized software and languages exist for this purpose, such as ACSL [3], VHDL-AMS [4], 

and Modelica [5], that manage simultaneously the equations of the entire system. Another 

way of performing uniform modelling is based on the use of general mathematical software 

for defining and solving the equations of the system. Recently, this task has been simplified 

by the development of specific-domain modules in block-diagram software, such as SimMe-

chanics and SimHydraulics for MATLAB/Simulink [6]. Coupling of tools, on the other hand, 

is based on the combination of specialized tools for modelling each sub-domain. These tools 

are interfaced during execution time in order to emulate the real interaction between physical 

subsystems. As stated by Kübler and Schiehlen [7], this is the optimal approach for the simu-

lation of multidisciplinary systems. It allows the selection of optimized settings for the simu-

lation of each subsystem, such as the integration time-step, the numeric solver and other 

particularized details. Furthermore, in many cases, these specialized tools have been devel-

oped during years by researchers, leading to robust and efficient software and wide collec-

tions of tested examples and toolboxes.  

Coupling strategies can be further categorized to two main approaches, depending on how 

the integration is performed. The name co-simulation is usually reserved for those cases in 

which each simulation tool incorporates its own integrator. In this work, when the integration 

is performed only in one tool that requests values from the others, the name function evalua-

tion will be used.  

Commercial multibody packages have been incorporating multi-physics capabilities during 

the last years and many of them, for example SIMPACK [8], offer a wide range of coupling 

possibilities to external software tools, as well as add-on modules with non-multibody func-
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tionality. When the multibody software has been developed by a non-commercial research 

group, as in the case of academia, and coupling capabilities need to be added to it, the pro-

grammer must often choose between several available implementation techniques. Currently, 

it is nontrivial to make this decision, as the research about the suitability of the different cou-

pling techniques for particular applications has been overlooked. In particular, there is a lack 

of information about the amount of effort the implementation of a coupling strategy takes and, 

more importantly, the efficiency of a specific technique when compared to other strategies 

applicable to the same problem. A study of the impact in performance of different co-

simulation time-steps and processor configurations, in a simulation involving SIMPACK and 

MATLAB has been carried out in [9] for the model of a truck. However, the evaluation of the 

computational efficiency of different coupling techniques, and a comparison with the perfor-

mance of equivalent monolithic models, when possible, has not been performed yet. To this 

end, test models must be selected and built up, and simulations performed in order to measure 

the overhead the coupling techniques give rise to.  

A closely related open field of research in the simulation of multidisciplinary systems is 

the use of multirate integration schemes, which improves the numerical efficiency during the 

simulation of interacting subsystems with very different time scales. Multirate algorithms 

have been developed ([10,11]), while, however, the implementation of these techniques in the 

communication between software packages, specially when block-diagram software is in-

volved, is still in progress. It is noteworthy that the numerical performance of multirate algo-

rithms dependents greatly of the co-simulation strategy selected for solving the problem. The 

understanding of the limitations imposed by block-diagram software packages, and the defini-

tion of a convenient interface between them and other simulation tools is the first step in the 

definition of a general scheme for multirate co-simulation. 
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In this work, coupling techniques with external simulation tools have been used for widen-

ing the capabilities of existing MBS software, through the addition of functionality with nu-

merical computation environments (such as MATLAB, Scilab [12], Octave [13], Mathematica 

[14] or MATRIXx [15]) and block diagram simulators (Simulink, Scicos [12] or SystemBuild 

[15]). To this end, coupling possibilities between the above-mentioned software and 

MATLAB/Simulink are examined in detail. MATLAB has been selected for this work be-

cause of its wide acceptance in the research community, derived from its versatility and easi-

ness of programming. A practical way of performing the coupling in real cases has been 

implemented for each technique. It is important to note that the coupling techniques intro-

duced in this study are not limited to a specific mathematical package, but they can also be 

applied to other similar tools, as similar communication capabilities are available in them. Fi-

nally, a generic co-simulation interface, which manages the communication between MBS 

software and Simulink block-diagram package, has been created and implemented. This inter-

face is intended to allow multirate co-simulation, with different synchronization methods, be-

tween simulation tools. 

This paper is organized as follows: Section 2 gives a general review of the existing tech-

niques for communicating a multibody package to external simulation tools. In Sections 3 and 

4, these techniques are implemented in an MBS software tool and a commercial package for 

numerical computations and block diagram simulation. Introduced computational strategies 

are utilized in the dynamic simulation of two example problems. Finally, the conclusions of 

the work are summarized in Section 5.  
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2. Coupling techniques 

The expansion of a multibody software tool via communication with external simulation 

packages can be performed in several ways, which can be categorized as data files exchange, 

function evaluation and co-simulation approaches.  

The most straightforward and easy to implement way of sharing data between two different 

simulation environments is the use of importing and exporting of data files. In most conven-

tional MBS applications, the computational cost of read/write operations is high, compared to 

the computational effort the numerical integration requires. There are exceptions to this rule, 

when any of the coupled software tools requires a very high computational effort to obtain its 

results (as it is the case of CFD packages); in these cases, the communication overhead due to 

the reading and writing of files can become less representative. However, in many MBS ap-

plications, for example in Human/Hardware-in-the-Loop (HiL) settings, the read and write 

operations on data files would slow down the execution of the code and therefore this tech-

nique should not be applied in repetitive calls during runtime. For this reason, files exchange 

approach should be reserved for pre- and post-processing operations, where computational 

efficiency is not a key factor. In the MBS simulation field, a large variety of tasks can be 

managed with files exchange approach adding to the multibody software the functionality of 

an external processing tool. The off-line realistic graphic representation of results and the pre-

processing of complex dynamical terms when these are remaining constant during simulation 

are examples of this approach. The software requirements for the use of this strategy are the 

existence of a common data format, understandable by the involved packages, and the availa-

bility of input-output routines for handling the data files in each program.  
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An alternative to data files exchange, more adequate for runtime, are function evaluations 

from one simulation tool to another. In this work, the name function evaluation is reserved for 

those communications in which only one of the software tools is actually performing a numer-

ic integration, while the other one returns values on request, from the states passed by the in-

tegrator tool. It must be noted that function evaluations cannot be classified as co-simulation, 

as the integration of the equations of the motion is performed by a single integrator; however, 

this technique can be used to expand the range of phenomena the original simulation code is 

able to deal with. This configuration can be achieved through code exporting (via joint com-

piling, together with the integrator tool, or pre-compiled as a library) or by direct communica-

tion between processes. Application fields of the function evaluation strategy would be 

complex force evaluations during runtime, table look-up and other processes in which numer-

ical integration is not present.  

 
Figure 1: Generic function evaluation configuration 

 

The implementation of this technique requires the development of an interface between the 

software tools to allow the main process to use the functionality of the auxiliary software and 

to receive the return data conveniently. Data formats in different tools are often incompatible, 
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so translation routines may be necessary for the correct transmission of information. A simpli-

fied depiction of this technique can be seen in Figure 1. The block representing the auxiliary 

software tool at the bottom of the figure can be a standalone process, if direct communication 

between processes is used, a library or even exported source code, that has been previously 

compiled together with the source code of the driver program. The availability of these meth-

ods is determined by the nature of the external tool, as it may or not allow communication to 

external processes (for example, via TCP/IP) or the access to inner functions in case of it is 

compiled as a library. 

Finally, a co-simulation approach in the strict sense can be developed, in which two simu-

lation tools, each of them with its own states and integrator, share data at defined synchroniza-

tion points [16]. Again, code export or direct communication between processes can be used 

to implement this configuration. In the case of a multibody simulation tool, state-space equa-

tions can be represented by 
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where xm are the states of the multibody system, um the inputs to the system and ym the system 

outputs. An analogue expression can be used for the external simulation tool  
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Nowadays, state-of-the-art commercial software performs co-simulation at constant time-

steps, with the same external integration time-steps in every subsystem, although research is 
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being carried to introduce multirate methods in co-simulation environments [17]. Even with 

constant and equal time-steps in each subsystem, the evaluation of the inputs for each subsys-

tem, given by Equation (3), at synchronization point ti can be performed in several ways. A 

frequent strategy is assuming that the inputs of each subsystem can be considered constant 

during each time-step [ ]1,i it t + , which leads to 

 
( ) ( ) ( )
( ) ( ) ( )

e e i m i

m m i e i

t t t
t t t





u u y
u u y

= =
= =

     (4) 

This approach, known as constant extrapolation, has been followed in this work, as the de-

tailed testing of different interpolation degrees and multirate techniques falls beyond the 

scope of this paper. Direct co-simulation, in which co-simulated states are exchanged once in 

each integration step, and then each subsystem proceeds its own integration independently, 

has been used.  

The use of co-simulation techniques can give rise to stability issues, which are out of the 

scope of this paper, as the way in which these issues must be dealt with depends on several 

factors (such as the inner algorithms of the numerical integrators used in each subsystem and 

the extrapolation techniques of the interface) that are not directly related to the nature of the 

coupling technique used to communicate the simulation tools.  

As it was the case in the function evaluation strategy, co-simulation can be implemented 

on the basis of intercommunication between processes, or through code export. Again, trans-

lation routines between data storage formats will likely be necessary. The synchronization of 

integrators and the exchange of data can be managed by a co-simulation interface, which can 

be implemented in one of the communicating software tools. A scheme of this composition is 

shown in Figure 2. 
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Figure 2: Generic co-simulation configuration 

 

2.1. Software environment 

In order to test the coupling techniques described in this Section, a coupled simulation en-

vironment composed of an in-house developed MBS simulation tool and the commercial nu-

merical package MATLAB, with its block diagram add-on Simulink [6]. Despite its wide 

acceptance among the multibody community, it is important to note that MATLAB/Simulink 

code has to be interpreted during runtime, which leads to a considerable increase in simulation 

time and inefficient execution. This fact rules out the software for demanding applications, for 

example real-time simulation. On the other hand, communication between MBS software and 

MATLAB/Simulink programs, representing control loops, actuators and other external com-

ponents, can provide an additional functionality that is missing in many multibody software 

packages.  

The MBS simulation software used in this research has been developed by the Laboratory 

of Mechanical Engineering of the University of A Coruña during the last four years, and fea-

tures optimized implementations of the formalisms used for the dynamic simulation of me-

chanical systems ([18], [19]). The test problems in this work are described using planar 
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natural coordinates; the equations of motion of the multibody system are expressed using the 

index-3 augmented Lagrangian formulation, as explained in [20], and the non-linear equations 

of motion are integrated using the trapezoidal rule. This combination has shown favourable 

performance and robustness features in previous works ([21], [22]). 

The techniques described in the following Sections can be applied to other software tools 

different from MATLAB/Simulink, for example Scilab/Scicos [12] or MA-

TRIXx/SystemBuild [15]. In general, communication between processes can often be 

achieved if the software supports the use of inter-process communication (IPC), like sockets. 

The use of external code can be performed through calls to dynamically linked libraries, with 

their corresponding import libraries and header files, if necessary. 

3. Function evaluation 

A runtime call to MATLAB functions from the multibody software would be desirable in 

order to evaluate complex force functions or to access look-up tables. Additionally, 

MATLAB can also be used as a test environment for the definition of new implementations 

for formulations or models. These could be written in MATLAB’s easy-to-use M language, 

and called from the multibody software as library functions in order to test their correctness 

before performing their final implementation in an efficient language such as C or FORTRAN. 

This would make possible the definition and testing of new models even for users without ex-

haustive programming skills.  

In this research, three implementation approaches for the function evaluation method have 

been tested: MATLAB Engine, MATLAB Compiler and a MEX API of functions. These ap-

proaches can be modelled in different math tools as they represent three strategies that could 
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be referred to as inter-process communication through an engine, pre-compilation of inter-

preted code, and direct call to C routines from the math simulation tool, respectively. Thus, 

the methods for implementing the function evaluation described in this Section can be applied 

to similar numerical software, different from the one that has been used in this work, making 

use of alternative communication facilities. For example, Scilab provides the intersci program, 

which allows calling C and FORTRAN routines from Scilab, and the calling routines defined 

in call_scilab.h, which make Scilab work as a calculus engine. Code pre-compilation is a 

common feature in some interpreted languages such as Java and Python. 

A dynamic simulation of a double-pendulum has been selected as test example for the 

above-mentioned implementation approaches: the multibody software carries out the numeri-

cal integration and MATLAB is used to evaluate the equations of motion at each time-step. 

This simple example has been chosen, as there is no practical increase of complexity derived 

from applying the function evaluation technique to more involved problems. 

 
Figure 3: Double pendulum 
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The double pendulum is shown in Figure 3. In this study, the mass (m) and radius (r) pa-

rameters have been set to 1 kg and 1 m. The code for the updating of the dynamic terms of the 

system, including the mass matrix M, the constraints vector Φ, the Jacobian matrix of the 

constraints vector Φq and the generalized forces vector Q, is written in .m files and it is ac-

cessed from the MBS simulation software through function evaluation methods. In this way, 

the integrators and formulations written in C++ can be applied to easy-to-code .m file models. 

A similar approach could be taken in order to test formulations written in MATLAB with al-

ready tested problems, avoiding the need for translating them to C++, and to invoke specific 

MATLAB functionality such as involved matrix operations or complex function evaluations.  

3.1. MATLAB Engine 

The MATLAB Engine library is a set of routines that allows calling MATLAB functionali-

ty directly from external C/C++ and FORTRAN programs. The Engine is a way of intercom-

municating running processes such that a MATLAB command window must be open, waiting 

for receiving the commands sent by the external program and executing them. As the Engine 

uses its own data structure, mxArray, to exchange information with the caller program, several 

translation functions have to be defined in order to manage the data type and to make it com-

patible with the data types used in the multibody program. Once this problem has been solved, 

MATLAB functions can be called from the C++ code of the multibody tool. It should be not-

ed that the Engine receives its commands as a string of characters which must be parsed, re-

sulting in the deceleration of the execution of the code. 

The function evaluation configuration through the Engine is represented in Figure 4. The 

MBS software acts as a master tool, integrating the positions of the double pendulum, while 
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the evaluation of dynamic terms is performed, through the Engine, by calls to the .m files that 

code the model.   

 
Figure 4: Function evaluation configuration with MATLAB Engine 

 

3.2. MATLAB Compiler 

Function evaluation has also been achieved through code export, with the use of MATLAB 

Compiler, transforming .m code files into dynamically linked libraries (.dll, .so). The libraries 

are then loaded by the multibody software during runtime, thus allowing the invocation of 

functions. As the Engine does, the Compiler uses its own storage data type, mwArray, and 

translation routines between the MBS code and the compiled MATLAB code must be written. 

The C/C++ library generated by the Compiler only contains wrappers for the MATLAB rou-

tines, and hence it still depends on MATLAB to carry out the computations on runtime.  

 
Figure 5: Function evaluation configuration with MATLAB Compiler 
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The use of the Compiler on the .m files removes the need for the use of the Engine, as 

shown in Figure 5, replacing the process communication with the export of the pre-compiled 

code. The evaluation of dynamic terms is directly called from the main application while the 

library that wraps the routines coded in .m files still needs to invoke additional MATLAB 

functions. 

3.3. MEX functions 

A third way of communicating both tools is the definition of an application programming 

interface (API), which allows calling from MATLAB the functions that are defined and im-

plemented in the multibody package. This way, the mathematical package acts as driver tool, 

starting the integration performed by the MBS software. The API consists of a series of MEX 

functions that manage the data types defined by MATLAB and make the convenient transla-

tion to those types the C++ program uses and vice versa.  

 
Figure 6: Function evaluation configuration with MEX API of functions 

 

Figure 6 shows the layout of the function evaluation through the use of a MEX function. 

Under this configuration, the interface routines are separated from the MBS software and 

compiled into a library that manages the communication between MATLAB and the MBS 
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software, compiled as a dynamic library. The MBS code calls the model .m files for the eval-

uation of the dynamic terms of the model through this MEX function and this one, in time, 

through MATLAB. 

3.4. Results 

Two simulations of 10 seconds have been performed using a penalty factor of α = 108 and 

constant integration time-steps of 10-3 s and 10-2 s, respectively. The MBS software is config-

ured to use LAPACK routines gtrf and gtrs as linear solver, which have been proved to be 

efficient for small-size problems ([18]) and allow an easy conversion of data from MATLAB 

storage format. 

Table 1: Elapsed times in a 10 s dynamic simulation of a double-pendulum 

Function evaluation method   Δt = 10-3 s Δt = 10-2 s 
Elapsed time (s) Ratio Elapsed time (s) Ratio 

Standalone MBS code 5.02·10-2 1 8.40·10-3 1 
MATLAB Engine 18.12 361.0 3.32 395.2 

MATLAB Compiler 5.56 110.8 1.07 127.4 
MEX API of functions 0.64 12.7 0.12 14.3 

Number of solver iterations 10,000 1,840 
 

The elapsed times in calculations, on an AMD Athlon 64 3000+, at 1.81 GHz with 1.00 

GB of RAM, are summarized in Table 1. As the input terms are the same in every implemen-

tation, output results (positions, velocities and accelerations during the motion) are identical 

for each time-step, independently of the method used for providing the dynamic terms. The 

ratios defined in the table refer to the elapsed time of the correspondent function evaluation 

implementation when compared to standalone C++ MBS code (without the use of MATLAB). 

The number of iterations is the number of times the iterative solution of the system, required 

by the implicit integrator used, has been performed. The evaluation of dynamic terms takes 
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place within the Newton-Raphson iteration loop. This, together with the fact that the use of 

function evaluation methods slows down the execution of the code, makes negligible the 

amount of computational time elapsed out of the iterative loop. In the standalone C++ imple-

mentation, however, the code out of the loop takes around 20% of the time, and this explains 

the variations that appear in the ratios when using different time-steps. 

As it was expected, the use of function evaluations in external simulation tools slows down 

the execution of the program. The MATLAB Engine approach is very easy to implement, but 

it also delivers very poor efficiency: it has been estimated that the parsing of a single empty 

function evaluation takes 0.25 ms. Therefore, the use of MATLAB Engine should be discour-

aged when function evaluations in the auxiliary tool are repetitive (for example, several times 

in each integration step).  

MATLAB Compiler is usually claimed to be the fastest coupling technique, since it re-

moves the need of parsing string instructions as function calls are performed directly on rou-

tines stored in dynamically linked libraries. Even so, the generated C code is still two orders 

of magnitude slower than standalone C++ MBS code. The overhead of the MATLAB Com-

piler approach comes from the need of converting data structures between the MBS software 

and MATLAB routines. This approach has an additional drawback: if the MATLAB code is 

modified, it must be compiled and linked again, and this process slows down the code devel-

opment. 

The implementation of the function evaluations as MEX API of functions, shown in Figure 

6, has yielded the best performance. This approach, nevertheless, requires a high development 

effort due to the need for building a MATLAB compliant C interface for each function in the 

multibody package. It is surprising that the implementation of the MBS code as a MEX API 
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leads to an almost 8 times faster execution time when compared to MATLAB Compiler. This 

may be related to the way in which MATLAB functionality is invoked from the compiled li-

brary in the latter case. Another advantage of the MEX API of functions is that the MATLAB 

code stays in .m files, and therefore it allows fast development iterations because it can be 

modified and tested again without going through a compilation and linking process (as in the 

case of the previous approach based on MATLAB Compiler). 

 

4. Co-simulation 

Under the co-simulation approach, the MBS simulation tool has been connected to 

MATLAB’s add-on Simulink, a block-diagram simulation tool. With this configuration, two 

integrators are coupled in the simulation process: the MBS integrator contained in the multi-

body software and the general purpose integrator in Simulink.  

 
Figure 7: L-loop fourbar linkage 

 

In order to test the co-simulation, a multi-physics model composed by an engine and a me-

chanical system is simulated. Each subsystem is modelled and integrated in a different envi-
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ronment. The engine model has been obtained from Simulink library of example models and 

is based on results published by [23]. It describes the thermodynamic simulation of a four-

cylinder spark ignition internal combustion engine. The multibody system moved by the en-

gine is a planar assembly of four-bar linkages with L loops, composed by thin rods of 1 m 

length with a uniformly distributed mass of 1 kg, moving under gravity effects. Initially, the 

system is in the position shown in Figure 7 and the velocity of the x-coordinate of point B0 is 

+30 m/s. This mechanism has been previously used as a benchmark problem for multibody 

system dynamics [24,25]. It has been selected for this work because it allows testing the effect 

of variations in the problem size without modifying the structure of the model, just by adding 

more loops to the mechanism.  

 
Figure 8: Simplified Simulink model for co-simulation, implemented with an S-function 

 

The engine provides a motor torque to the linkage through a gearbox, which is also mod-

elled in Simulink. A constant rotational damping is considered to act on the mechanism, of 

value 3.18 Ns/rad. Both damping and motor torque are assumed to be applied on the rotation-

al coordinate of point A0. The angular speed of the linkage is returned to the engine model as 

input value, together with the x and y positions of the first point of the linkage, for graphical 
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output. The throttle angle of the engine is guided through a pre-defined angle-law. The result-

ing Simulink model can be seen in Figure 8. The use of memory blocks is motivated by the 

need of avoiding algebraic loops. 

In this research, three implementation approaches for the co-simulation have been tested: 

network connection, Simulink as master and MBS software as master. These approaches can 

be used in other block diagram simulators, as the Simulink as master configuration is equiva-

lent as using the MBS code as a library, and the MBS as master configuration represents the 

opposite approach, where the block diagram model becomes the compiled component. 

4.1. Network connection 

Data interchange between two processes running simultaneously can be carried out using a 

TCP/IP network connection through standard sockets. To this end, the MBS software is modi-

fied in order to make it work as a server socket. Accordingly, a user-defined block (S-function) 

is added to the Simulink model to act as a client socket. In other similar block simulation 

packages, the role of the S-function block can be performed by an equivalent component, such 

as the UserCode block in SystemBuild [15] and the C or Fortran block in Scicos [26]. Thus, 

the interface is split into two parts, one in the block-diagram environment and one in the MBS 

software. Both parts of the interface are responsible for the translation of the storage formats 

and for the adequate interchange of information at each time-step, so they must be correctly 

coordinated. Moreover, the communication sequence between both subsystems has to be sep-

arately coded in each environment, adding an extra burden to the task of keeping the synchro-

nization of the integrators.  
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4.2. Simulink as master 

An alternative to network communication is the code export approach, in which the MBS 

code can be compiled as a dynamically linked library (.dll or .so) and directly called from an 

S-function block inside Simulink. In this case, the S-function includes all the code of the inter-

face between the MBS code and the Simulink model, and must manage the required exchange 

of data and format conversions between both environments. In this configuration, Simulink 

becomes the driver software, starting and ending the simulation and calling the MBS software 

through the interface block each time a return value is needed by the Simulink integrator.  

4.3. MBS software as master 

Another possibility, following the opposite approach to that used in the previous subsec-

tion, is using the MATLAB product Real-Time Workshop (RTW) [6] to translate the Sim-

ulink model into fast standalone C code, which can be called from the MBS code. In this case, 

the Simulink model is converted into a dynamically linked library (.dll) through the use of 

RTW functionality; this can be done with little modifications to the Simulink model used in 

the previous Subsection. With this configuration, the MBS code starts and manages the co-

simulation process, invoking the functions compiled in the .dll in each integration time-step in 

order to obtain the value of the torque the engine supplies to the linkage.  

This approach has a drawback when compared with the previous techniques: if the Sim-

ulink model is modified, it must be translated into C code and compiled again; this is a com-

plex and delicate procedure, which slows down the iterations in code development. 

In both cases (Simulink as master and MBS software as master) two integrators are acting 

simultaneously and, for this reason, a careful coordination between them is required. Simulink 
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behaviour is, in many aspects, beyond the control of the user, so the co-simulation interface 

has to be specifically defined to fit Simulink.  

 
Figure 9: Throttle angle (a) and rotational speed of the mechanism (b) for a 30 s simulation of a 1-loop 

linkage 

 

4.4. Results 

The simulation time in the previously described test example is 30 s. A penalty factor of α 

= 1010 and a constant integration time-step of 10-3 s have been used. Direct co-simulation with 

the same integration time-step size in both subsystems has been used. The values of the ex-

changed variables have been taken as constant from one time-step to the next one (constant 

interpolation). The MBS software is configured to use KLU [27]  routines for solving the lin-



Submitted to Multibody System Dynamics on December 18, 2009 
 

 23 

ear systems the simulation requires. The co-simulation coupling has been implemented with 

the three different approaches described above.  

Results of the simulation can be seen in Figure 9, for a 1-loop linkage. The angle-law of 

the engine throttle is pictured at the top of the figure. The rotational speed of the mechanism, 

depicted below, shows that the linkage follows the input given by the pedal angle, with the 

limitations imposed by its rotational inertia and damping. Results do not show significant var-

iations between the three tested coupling techniques. 

 
Figure 10: Elapsed times for a 30 s simulation of the L-loop linkage powered by the engine, with dif-

ferent simulation techniques 

 

The performance of the described techniques has been tested against a model of the whole 

system (engine and fourbar linkage) entirely built in Simulink. The fourbar linkage has been 

modelled with the SimMechanics library [6], a Simulink add-on for modelling and simulation 

of rigid multibody systems. In a second stage, the computational efficiency of this model has 

been further improved via the RTW package, translating the whole model into a standalone C 
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executable. Simulink ode1 integrator has been used in these simulations, since it is the fastest 

available integrator and it provides enough precision for the test problem. A comparison of 

the elapsed times for a 30 s simulation can be seen in Figure 10. The monolithic approaches 

are represented with dashed lines, as they are not properly co-simulation, and labelled as 

SimMechanics for the pure Simulink model, and SimMechanics + RTW for the model trans-

lated into C code via RTW. The co-simulation methods are designed as Simulink as master, 

for the implementation where Simulink calls MBS code compiled as a library; Network con-

nection, when the communication is performed via sockets between simultaneously running 

processes and MBS as master, when the MBS code calls Simulink routines from the .dll li-

brary compiled with RTW.  

Table 2: Elapsed times in a 30 s dynamic simulation of an L-loop fourbar linkage powered by the en-
gine. N stands for the number of variables of the mechanical system 

Co-Simulation method L = 5 (N = 13) L = 10 (N = 23) 
Elapsed time (s) Ratio Elapsed time (s) Ratio 

MBS software as master 0.58 1 0.90 1 
Simulink as master 2.37 4.1 2.62 2.9 
Network connection 5.15 8.9 5.67 6.3 

SimMechanics + RTW 11.17 19.3 24.97 27.7 
SimMechanics 17.11 29.5 38.88 43.2 

 

Results are summarized in Table 2, where the ratios of elapsed time with respect to the 

fastest method are also included. They show that the elapsed time for the Simulink model, as 

expected, grows fast when the number of variables of the problem increases. This is valid 

even in the case of using a very simple integrator as ode1. The use of RTW mitigates this 

problem and reduces the calculation time between a 30% and a 50%. However, the use of co-

simulation techniques leads to even lower computation times, as they permit taking advantage 

of the highly optimized routines of the MBS code, reducing thus the time needed for calculat-



Submitted to Multibody System Dynamics on December 18, 2009 
 

 25 

ing the mechanic subsystem of the problem. It can be seen that the Simulink as master imple-

mentation is somewhat faster than the Network connection method, as the overhead derived 

from socket communications is not present. The MBS as master yields the best results, as it 

was expected, because the intercommunication takes place, in this case, between an executa-

ble and a library both of them coded in an efficient language (C/C++).  

It should be noted, however, that the MBS as master implementation is significantly more 

complex than the Network connection or Simulink as master implementations, and it forces to 

follow a complex translation process every time the Simulink model is modified, as explained 

in Section 5.3. For these reasons, the Network connection or Simulink as master co-simulation 

approaches are better suited for developing and fine-tuning Simulink models, while the MBS 

as master co-simulation approach is appropriate for production code and real-time applica-

tions.  

Trends indicate that co-simulation will achieve greater differences with respect to models 

fully implemented in Simulink as the number of variables of the problem increases. In fact, 

real-time simulation (less than 30 s of computations) has been achieved with the described co-

simulation techniques for multibody models up to 300 variables. This upper limit would allow 

the efficient real-time simulation of many industrial, non-academic multidisciplinary systems. 

5. Conclusions 

In this study, several implementations methods for coupling MBS simulation software with 

block diagram simulators and numerical computing environments have been tested. The 

methods have been tested in a software environment where a C/C++ MBS code is coupled 

with MATLAB/Simulink, a quite common setup in the modelling and simulation of complex 
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mechatronic systems. The investigated coupling techniques have been divided in two catego-

ries: function evaluation and co-simulation. 

Regarding the implementation methods for function evaluation in MATLAB, the following 

conclusions can be established: 

• The MATLAB Engine approach is the easiest to implement but also the slowest one. The 

use of MATLAB Compiler reduces the simulation times to a 30% of the time consumed by 

MATLAB Engine, but at the cost of slowing down the code development iterations. Both 

approaches are two orders or magnitude slower than standalone MBS code. 

• The MEX API of functions is the fastest approach, being only one order of magnitude 

slower than standalone MBS code. The implementation effort is higher that in other meth-

ods, but not overwhelming, and therefore it is recommended as the best approach for func-

tion evaluation when simulation efficiency is needed. 

Regarding the implementation methods for co-simulation with Simulink, the following 

conclusions can be established: 

• Co-simulation methods are approximately one order of magnitude faster than simulations 

based on monolithic models developed in Simulink, even if tools like Real-Time Work-

shop are used. 

• The method labelled Simulink as master provides the best trade off between simulation ef-

ficiency and ease of implementation and code development, and therefore it is recom-

mended for developing and fine-tuning models for co-simulation setups. 
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• The method labelled MBS software as master is the fastest approach (several times faster 

than Simulink as master, depending on the relative complexity between the block diagram 

and the multibody models), but its implementation is more complex and requires the trans-

lation of Simulink models into C code, a step that slows down the development iterations. 

Therefore, this method is recommended for production code and real-time applications. 

The described coupling techniques can be also implemented which minor changes in other 

numerical computing environments and block diagram simulators different from 

MATLAB/Simulink, for example SystemBuild or Scilab/Scicos. However, the efficiency of 

the different tested methods highly depends on the internal data structures and algorithms of 

software, and therefore their relative efficiency would be different.  
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