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Abstract When performing the numerical integration of multibody systems (MBS)
dynamics, it is possible to choose from a wide variety of methods and implemen-
tations. Selecting the most appropriate option for a particular application is not a
straightforward task; as a consequence, several benchmark examples have been for-
mulated by the MBS research community with the intent to assess the accuracy and
performance of different solution methods when applied to certain kinds of mechan-
ical problems. This paper introduces a variation of the slider-crank mechanism, al-
ready employed as a benchmark problem in the MBS literature, intended to evaluate
the performance of formulations that feature kinematic constraints. Three cases, fea-
turing singular configurations and external actions, were defined. The example is used
to illustrate some necessary elements in the definition of a benchmark problem and
in the process of comparing different solution methods, as well as difficulties that can
arise during this task. The use of the proposed example was demonstrated in the eval-
uation of the behaviour of different solution methods, which employed both fixed-
and variable-step integration formulas.
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1 Introduction

A considerable number of methods and algorithms for the simulation and analysis
of Multibody System (MBS) Dynamics have been proposed since the early devel-
opments in this area were first published [1, 16, 21, 22]. The performance of each
approach depends on the characteristics of the problems to which it is applied, and
so methods that are effective in the simulation of a certain type of mechanical sys-
tem may be inefficient when applied to mechanisms with a different topology or
subjected to other kinds of physical phenomena. Fully recursive methods [9], for in-
stance, may become ineffective in the solution of heavily constrained multibody sys-
tems; mechanisms that feature redundant constraints or singular configurations pose
a problem for solution algorithms that expect the Jacobian matrix of the constraints to
have a full row rank throughout the motion [11,17]. Moreover, implementation tech-
niques, third-party software libraries, e.g., for the linear algebra routines required by
most MBS codes, and the hardware platform used to execute the code, as well as
the interaction between them, have a critical impact on the time elapsed in compu-
tations [13, 24]. For these reasons, selecting an appropriate MBS formalism for its
application to a particular problem may prove challenging in some cases, particularly
when efficiency constraints are imposed as a requirement.

Benchmark problems represent a useful tool to evaluate the accuracy and effi-
ciency of MBS codes, as well as their ability to handle particular kinds of problems.
Ideally, benchmarks should be simple enough to enable their exact reproduction by
any researcher or team interested in using them. At the same time, they must be
nontrivial problems that provide interesting information about some aspect of the be-
haviour of the solution method [14]. In recent years, several initiatives have been put
forward by MBS researchers to propose meaningful test problems that can be gener-
ally accepted as benchmarks by the community. The IFToMM Library of Computa-
tional Benchmark Problems [15] is a well-known collection of such examples, which
includes test problems for forward- and inverse-dynamics, as well as linearization.
These examples illustrate the performance of MBS formulations and implementa-
tions when dealing with complex issues such as redundant constraints, singular con-
figurations, stiff problems, and contacts, to mention just a few. Another instance of
collection of benchmark problems can be found in [2], which puts forward a series
of cases for the validation of flexible multibody dynamics algorithms. Benchmark
problems for contact dynamics were introduced in [19]. In the case of MBS dynam-
ics, benchmarking is not limited to the algorithms for the integration of the equations
of motion, but has also been extended to applications in which the multibody part
is a necessary component, like estimators based on Kalman filters [20]. Benchmark
problems for particular applications of MBS dynamics can be found in the areas of
railway vehicles [5] and co-simulation [25].

The benchmark problem discussed in this paper, a variation of the well-known
slider-crank linkage, is geared towards the evaluation of the ability of MBS methods
to successfully perform the forward-dynamics simulation of mechanical systems with
singular configurations and dead centres. This can be challenging, in particular, when
the system dynamics is expressed in terms of a set of non-minimal generalized co-
ordinates, thus requiring the use of kinematic constraints to formulate the equations



A benchmark for MBS formulations with constraints 3

of motion [11]. Two versions of the linkage were defined, with and without singular
configurations, and both were subjected to the action of a force that varied over time,
to prevent a periodic system motion.

The paper puts forward a systematic approach for the formulation of benchmark
problems, including the definition of relevant metrics and criteria for the comparison
of different solution approaches. These are presented in Section 2, together with the
description of the mechanical model of the slider crank used here. The use of the
benchmark problem is demonstrated in Section 3 in the evaluation of different simu-
lation codes in which the system is defined using kinematic constraints. These were
solved using both fixed- and variable-step integration algorithms. Results showed that
the combination of singular configurations and externally applied forces with con-
stant frequency made the proposed example a challenging problem for most solution
methods. Section 4 summarizes the conclusions of the study.

2 Methods

There exist three components that should always be present in the definition of a
benchmark problem for MBS dynamics algorithms:

– A definition of the problem to be solved. This must include the specification of
the properties and initial state of the mechanical system, as well as information
about the manoeuvre to be simulated, such as duration in time and input forces
and torques.

– A reference solution which, for the purposes of benchmarking, can be considered
correct. This reference solution may be obtained from experimental results, an
analytical solution of the problem at hand, or upon the convergence of several
simulation processes.

– Appropriate error metrics and comparison criteria. These enable the assessment
of the solutions obtained with different simulation methods [12].

Moreover, other optional components can be added too, such as reference implemen-
tations of the simulation code or data structures to enable the efficient collection and
processing of simulation results.

In order to be useful, benchmark examples should be clearly defined problems
that are easy to replicate. They should also represent nontrivial scenarios, which are
meaningful or challenging in at least one respect. Ideally, they should also be rep-
resentative of a wider class of systems. For instance, a slider-crank that undergoes
singular configurations can be defined in a straightforward way with a reduced set
of kinematic and kinetic parameters. In spite of being a relatively simple mechani-
cal system, it poses a problem for simulation algorithms that cannot deal with rank-
deficient Jacobian matrices; even some solution methods that can handle them need
to be carefully adjusted to deliver correct results [11], as is the case of augmented
Lagrangian algorithms. Results obtained with this linkage can then be used to assess
the general ability of solution methods to carry out the simulation of systems with
singularities.

In some cases, it is possible to find an analytical solution for the motion of simple
mechanical systems. Generally, this is not the case. In benchmark problems that do
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not represent a physical system, for which experimental results are not available,
physical magnitudes can be used as indicators instead. For instance, the variation of
the mechanical energy can be used to quantify the accuracy of a given simulation
method if the benchmark problem represents a conservative system. These indicators
should be used with precaution, as a precise energy conservation does not necessarily
guarantee the correctness of the obtained results. Arriving at a reference solution
through the convergence of several simulation methods is advisable when analytical
and experimental solutions are not available.

Error metrics and criteria are also an important component of a benchmark prob-
lem. First, it is necessary to select the variables that will be selected to evaluate the
accuracy of a solution. These may include kinematic variables, such as positions, ve-
locities, and accelerations, or kinetic magnitudes like forces or energies. Usually n
variables of interest can be selected and will suffice to measure the precision of the
results. It is also necessary to specify at what points in time these variables will be
evaluated. When using fixed-step integrators this is relatively simple, as data can be
gathered regularly during the simulation. With variable-step simulators usually in-
terpolation methods have to be used. Second, a metric to quantify the deviation of
the results obtained with a particular method with respect to the reference solution is
necessary. The local error at time point ti for variable y j can be evaluated as

ε j(ti) = y j(ti)− yref
j (ti) (1)

where yref
j denotes the value that corresponds to the reference solution. Relative def-

initions of the error can be used too [12]. Absolute errors, however, show a better
behaviour when the variables of interest approach zero. The total error of a simula-
tion can be calculated as

εT =

√
1
n

n

∑
j=1

w j

m

m

∑
i=1

(ε j (ti))
2 (2)

where m is the total number of time points collected during the simulation and w j is a
weight factor that represents the contribution of variable j to the total error. Factor w j
can also be used to make errors dimensionless, so that variables with different units
can be added together in a single error indicator. Besides the total error in Eq. (2), it
is also possible to select other indicators, such as the maximum or minimum absolute
error for a single variable or group of variables.

The existence of a metric like the one in Eq. (2) makes it possible to establish a
validity criterion that determines whether a simulation is accurate enough or not. A
criterion like this is particularly important if the benchmark problem is to be used to
compare several solution approaches in terms of efficiency, because that comparison
should be carried out requesting the same accuracy level from every method.

Finally, comparison criteria can be defined to quantify the differences between
the different solution methods. The elapsed time in computations is a commonly used
criterion to rank algorithms and implementations, but other metrics, such as energy
balances and satisfaction of kinematic constraints can be used too [18].
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2.1 Problem description

The benchmark problem used in this paper is a variation of the well-known slider-
crank linkage, already included in the IFToMM benchmark library [15] and shown in
Fig. 1. This planar mechanical system is composed of two rods, links 1 and 2, with
uniformly distributed mass m1 and m2 and length L1 and L2, respectively. The slider,
link 3, has mass m3 and moves without friction along the x axis. The mechanism
moves under gravity effects with g = 9.81 m/s2 acting along the negative y axis. The
system has one degree of freedom; at time t = 0, rod 1 is at an angle θ1,0 with respect
to the x axis and the velocity of point Q is ẋQ,0. A horizontal external force f acts on
point Q during motion.

O

P

Q

x

y

θ1 f

g

1 2

3

Fig. 1 Slider-crank mechanism used as a benchmark problem.

In spite of its simplicity, the slider-crank linkage is a challenging problem for
MBS dynamics algorithms, due to the existence of singularities in the system mo-
tion, under certain conditions. A slider-crank with L1 = L2 will feature a singular
configuration when θ1 = ±π/2, i.e., when both rods are aligned on the y axis. This
configuration represents a bifurcation point, from which the linkage can continue
its motion either as a slider-crank mechanism or as a pendulum with point Q mo-
tionless at the location of point O, as shown in Fig. 2. In theory, switching between
these two branches of motion is only possible when the velocity of the slider is zero.
However, some MBS dynamics formulations with explicit modelling of the kine-
matic constraints may predict a change of branch also with a nonzero velocity. From
a mathematical point of view, the Jacobian matrix of the kinematic constraints sud-
denly loses rank at these points. Dynamics formulations unable to deal with rank-
deficient Jacobian matrices cannot carry out the simulation of such systems; more-
over, some methods which can handle this situation experience numerical difficulties
in the proximity of these points as well. This is usually caused by poor conditioning
of the algorithm leading matrices, and by the accumulation of constraint violations.
The resulting changes of branch introduce large impact forces in the simulation, and
instantaneous drops in the mechanical energy of the system [3, 11].

A different kind of numerical difficulty is present when both links, 1 and 2, re-
gardless of their relative lengths, are aligned on the horizontal x axis, i.e., θ1 = 0 or
θ1 = π . In this situation, a horizontal force exerted on point Q of the slider should not
have any effect on the system motion and will only increase the reaction force at point



6 Maurizio Ruggiu, Francisco González

a) b) c)

Fig. 2 From a singular configuration (a), a slider-crank linkage with L1 = L2 can either keep its slider-
crank motion (b) or continue as a single pendulum (c).

O. Poor matrix conditioning and the accumulation of position errors in the proximity
of this point may result into the motion of the mechanism towards a position with
either a positive or a negative angle θ1 (Fig. 3). It must be noted that, here, a change
of branch does not occur, as the system continues moving as a slider-crank linkage
regardless of the sign of θ1.

a)

b)

c)

f

f

f

Fig. 3 The application of a horizontal force f in configuration (a) should not cause the motion of the
linkage. A misalignment of the links in the predicted system position will move the mechanism towards
configurations (b) or (c).

To illustrate these difficulties, we consider now a model of the slider-crank link-
age in which the generalized coordinates q = [xP,yP,xQ]T are the x and y coordinates
of point P and the distance x from point Q to origin O. Because links 1 and 2 are rigid,
two kinematic constraints enforcing a constant distance between points O and P, and
P and Q have to be introduced to describe the motion correctly:

ΦΦΦ =

[
x2
P+ y2

P−L2
1

(xP− xQ)
2 + y2

P−L2
2

]
= 0 (3)

The velocity- and acceleration-level expressions of Eq. (3) are

Φ̇ΦΦ = ΦΦΦqq̇ = 0 , and Φ̈ΦΦ = ΦΦΦqq̈+ Φ̇ΦΦqq̇ = 0 (4)
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where ΦΦΦq is the Jacobian matrix of the constraints,

ΦΦΦq =

[
2xP 2yP 0

2(xP− xQ) 2yP 2(xQ− xP)

]
(5)

whose expression does not explicitly depend on the lengths of links 1 and 2.
For a slider-crank mechanism with L1 = L2 = L, when the system reaches a sin-

gular configuration, e.g., θ1 = π/2, the Jacobian matrix becomes

ΦΦΦq =

[
0 2L 0
0 2L 0

]
(6)

The Jacobian matrix loses rank instantaneously, and the constraints are compatible
with both a slider-crank and a simple-pendulum motion simultaneously. This gives
rise to the failure of multibody formulations that are unable to handle rank-deficient
Jacobian matrices, and may also cause numerical problems to others that can negoti-
ate this situation.

The extreme-point configuration shown in Fig. 3 takes place when θ1 = 0, and so
yP = 0. In this case the Jacobian matrix becomes

ΦΦΦq =

[
2xP 0 0

2(xP− xQ) 0 2(xQ− xP)

]
(7)

Together with the system dynamics equations, the acceleration-level constraint equa-
tion in (4) shows that, if the mechanism is at rest at θ1 = 0, and the only applied force
is a horizontal action f acting on point Q, the system accelerations are zero. However,
small perturbations in the system position will give rise to finite acceleration values.
During a forward-dynamics simulation, a lack of accuracy in the solution methods
might result in the prediction of an incorrect system motion at these extreme points.

The simulation cases selected for the present benchmark problem intend to test
the ability of MBS formulations to correctly handle problems with these difficulties.

2.1.1 Simulation cases

Three simulation cases are considered as shown in Table 1, which details the values
of the physical parameters of the system, its initial state, and the externally applied
actions.

Table 1 Simulation cases

Case L1 L2 m1 m2 m3 IG,1 IG,2 θ1,0 ẋQ,0 f

(m) (m) (kg) (kg) (kg) (kgm2) (kgm2) (rad) (m/s) (N)

1 1 1 1 1 0 1/12 1/12 π/4 -4 0

2 3 6 1.5 3 0.25 9/8 9 0 0 100sin(πt)

3 1 1 1 1 0 1/12 1/12 π/4 0 100sin(πt)
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Case 1 corresponds to the slider-crank benchmark problem in [15]. In this case,
rods 1 and 2 have the same length (L1 = L2) and this causes the linkage to pass
through a singular configuration when θ1 = ±π/2. The slider is massless and the
externally applied force f in this case is zero during motion.

In case 2, rods 1 and 2 have different lengths and so the linkage motion is not
affected by singular configurations. The externally applied force follows now a sinu-
soidal expression, f = 100sin(πt). The introduction of this force gives rise to numer-
ical difficulties in the solution of the problem. The system ceases to be conservative
and its motion is no longer periodic. Moreover, the extreme positions of the motion,
reached when both rods are aligned on the x axis and, thus, with the external force f ,
become challenging from the point of view of numerical simulation. There, depend-
ing on the value of the force f and the accuracy of the integration process, the motion
can continue following one of two possible branches, namely those that correspond
to θ̇1 > 0 and to θ̇1 < 0.

Case 3 uses the same physical parameters as case 1, but the externally applied
force f follows the sinusoidal expression from case 2. The resulting problem is sub-
jected to both singular configurations and numerical difficulties at the extreme points
of the motion.

2.1.2 Variables of interest and metrics

The mechanical system under study has one degree of freedom and a single variable
should be enough to keep track of its motion. However, in cases 1 and 3 singular
configurations exist and these give rise to the existence of two branches of motion.
For this reason, two variables will be monitored and used to evaluate the error in
Eq. (2): angle θ1 between link 1 and the x axis, and the x coordinate of point Q on the
slider.

The sampling interval for error evaluation was set to 10 ms; a total simulation
length of 10 s was used in all cases. The total errors associated with variables θ1 and
xQ were aggregated into a single error indicator using Eq. (2) with weights wθ =
1 rad−2 and wxQ = 1 m−2, intended to make the final metric dimensionless. Case 1 is
a conservative system, and so the total mechanical energy was used there as additional
metric.

When using variable step-size integrators, the variables of interest are usually not
evaluated exactly at the sampling points. This also happens when constant integration
steps are used, but they are not exact dividers of the sampling interval. In these cases,
data need to be interpolated; a linear polynomial interpolation has been used here to
determine the necessary values.

Two levels of accuracy have been established for the defined cases. In case 1,
a high-precision simulation corresponds to a maximum admissible total error εT =
2 ·10−4. This is roughly equivalent to the energy criterion set in the IFToMM bench-
mark, which accepted simulations with maximum energy errors below 0.001 J. The
admissibility threshold for low-precision simulation in this case was increased up to
εT = 2 · 10−3. The same values were used for case 2. Case 3 is more challenging
from a computational point of view, and its thresholds were relaxed. The selected
thresholds are shown in Table 2.
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Table 2 Maximum admissible errors for each simulation case

Case High-precision εT Low-precision εT

1 2 ·10−4 2 ·10−3

2 2 ·10−4 2 ·10−3

3 2 ·10−3 1 ·10−2

In general, the selection of the threshold depends on factors like the time scale of
the dynamics and the difficulty of the problem.

2.2 Solution methods

Several solution methods were used to carry out the forward-dynamics simulation of
the benchmark example. Their main characteristics are summarized on Table 3. Un-
less otherwise specified, MATLAB implementations were used to perform the simu-
lation.

Table 3 Summary of the methods employed to solve the slider-crank benchmark problem

Method Coordinates Constraints Integrator Step-size Accuracy Nature

AL 12 natural, 3D 12 redundant TR fixed O(2) implicit

ALi3p 12 natural, 3D 12 redundant TR fixed O(2) implicit

ALi3pvs 12 natural, 3D 12 redundant TR variable O(2) implicit

mAL 12 Cartesian, 2D 11 independent ode45 variable O(4) explicit

mNS 12 Cartesian, 2D 11 independent ode45 variable O(4) explicit

mAL-ode4 12 Cartesian, 2D 11 independent ode4 fixed O(4) explicit

mNS-ode4 12 Cartesian, 2D 11 independent ode4 fixed O(4) explicit

mAL-ode15s 12 Cartesian, 2D 11 independent ode15s variable variable implicit

The first method (AL) uses the index-1 augmented Lagrangian algorithm with
position and velocity projections presented in [4], integrated with the trapezoidal rule
(TR) in fixed-point iteration form. Method ALi3p stands for the index-3 augmented
Lagrangian algorithm with projections of velocities and accelerations [6, 7]. Algo-
rithm ALi3pvs is the variable-step version of ALi3p introduced in [8]. Different sets
of coordinates could be selected to model the mechanism with these formulations;
here we use three-dimensional natural coordinates [16], consisting in the the x, y, and
z coordinates of points P and Q and two unit vectors perpendicular to links 1 and
2 respectively. The computational model was built using a 3D multibody software
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library developed by the authors; kinematic constraints describing the rigid-body na-
ture of the links and the joints that connect them were subsequently added. The result-
ing model consists of 12 variables and 12 redundant kinematic constraints. Besides,
methods mAL (MATLAB augmented Lagrange) and mNS (MATLAB null-space)
were also assessed, in which MATLAB ode45 integration formula is used. The first
one uses a stabilized augmented Lagrangian algorithm, while the second adopts a
null-space formulation similar to the one in [23]. These methods describe the system
with reference point (Cartesian) coordinates, namely the x and y coordinates of the
centre of mass of each body (the ground is treated as another body in the assembly)
and its orientation angle with respect to the x axis, and impose on them 11 indepen-
dent constraint equations. In cases 1 and 3, the Jacobian matrix of these constraints
loses rank and, as expected, the mNS method was unable to successfully complete the
simulation. For the purpose of comparing fixed- and variable-step integrators, meth-
ods mAL and mNS were also combined with a fourth order, fixed-step Runge-Kutta
integration formula in its classical form, denoted in the text as ode4. The ode15s
integration formula, designed for stiff systems, was also used in the evaluation in
combination with the mAL formulation.

2.3 Reference solutions

Reference solutions for each case were obtained by convergence of the different
methods summarized in Section 2.2. Figures 4 – 6 show the slider displacement xQ
that corresponds to the reference solutions of cases 1 – 3. The way to refine the
results depended on the numerical integrator used by each method. For those that
used constant integration step-sizes, the step was reduced to increase the precision.
In the case of methods with variable-step integration, the tolerances were made more
stringent. The convergence towards a reference solution in all cases was additionally
verified integrating the system dynamics expressed as a single unconstrained degree-
of-freedom equation of motion with MATLAB’s ode15i method. This solution, upon
convergence, was used to provide the values of yref

j (ti) required by Eq. (1).
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−1

0
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Time (s)

x Q
[m

]

Fig. 4 Reference solution: displacement xQ of the slider in case 1.
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Fig. 5 Reference solution: displacement xQ of the slider in case 2.
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Fig. 6 Reference solution: displacement xQ of the slider in case 3.

Upon convergence, the differences in the monitored variables across the solutions
delivered by the methods remained below 3 ·10−5 m for xQ and 2.5 ·10−5 rad for θ1
in case 1, 7 · 10−4 m for xQ and 8 · 10−4 rad for θ1 in case 2, and 4 · 10−3 m for xQ
and 6 ·10−3 rad for θ1 in case 3, at every sampling point. Additionally, for case 1, the
error in the mechanical energy of the reference solution was lower than 10−6 J.

3 RESULTS

The benchmark scenarios defined in Section 2 were used to evaluate and compare
the performance of the simulation solutions in Table 3. The computations were per-
formed on an Intel Core i7-7700HQ at 2.80 GHz with 16 GB of RAM, running Win-
dows 64-bit and MATLAB R2020b. For the purposes of this study, and consider-
ing the particular characteristics of the simulation environment, besides the precision
thresholds in Table 2, a maximum admissible elapsed time in computations of 2000 s
was established for all simulations.
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In the case of the constant-step AL, ALi3p, mAL-ode4, and mNS-ode4 methods,
the integration step-size h was found to be the parameter that had the greatest impact
on the efficiency and accuracy of the simulation. For the trapezoidal rule in ALi3pvs,
this role corresponded to the maximum admissible increment of the variables be-
tween iterations in each step, ϕmax, selected as stopping criterion for the convergence
of the integration formula. In the case of the mAL and mNS methods, integrated with
ode45, the most critical factors were the absolute and relative tolerances of the in-
tegrator, ϕabs and ϕrel. This was also the case with ode15s. It is worth mentioning
that tuning the ALi3pvs method to each particular problem introduced an additional
complexity, as its performance depended as well on parameters like the maximum
number of iterations γ allowed during the Newton-Raphson iteration and the upper
and lower limits hmax and hmin for the integration step-size. Tuning these parameters
was not a straightforward process, because the impact of a given selection on the sim-
ulation performance is highly nonlinear. Moreover, because the algorithm adjusts the
step-size based on its previously used value, the initially used step-size h0 must also
be considered a parameter of the simulation. It is difficult to provide general recom-
mendations on the selection of the these parameters. In general, it seems advisable to
decrease the limit of admissible iterations per step γ and regulate the error of the sim-
ulation by tuning the convergence criterion ϕmax. When using ode45-methods, ϕabs
and ϕrel can be selected independently from each other introducing, also in this case,
an additional complexity in the tuning process. Regarding the mAL-ode15s method,
adjusting its parameters and tolerances was even more complicated, as its conver-
gence trends were not as clear as with ode45.

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

4

Time (s)

x Q
[m

]

Ref. AL AL pen. AL np

Fig. 7 Case 1: effect on displacement xQ of the slider of the parameter selection of augmented Lagrangian
formulations.

All the augmented Lagrangian formulations are, in principle, able to deal with
singular configurations, which is required by cases 1 and 3. Figure 7, however, con-
firms that the parameters of the augmented Lagrangian formulations also need to
be tuned appropriately to arrive at correct results. The penalty factor α required by
these methods has an admissible range of validity. For a constant step-size h = 1 ms,
107 ≤ α ≤ 1015 for the ALi3p method, and 1 ≤ α ≤ 106 for the AL formulation.
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Within this range, both methods correctly predict the system motion, delivering plot
‘AL’ in Fig. 7. An incorrect tuning of α leads to an invalid simulation, as is the case
of the ‘AL pen.’ plot, in which the penalty of the AL method was set to α = 107.
Moreover, it is noteworthy that, even though these formulations are able to handle
rank-deficient Jacobian matrices, branch changes can affect the predicted motion in
some cases, even when the system velocity is not zero. Plot ‘AL np’ in Fig. 7 corre-
sponds to the case in which position and velocity projections have been disabled in
the AL formulation; the resulting method is theoretically able to perform the simu-
lation of the system motion as a slider-crank, but it switches to a pendulum motion
around t = 0.45 s.

Table 4 Best results in the solution of case 1 (low precision)

Method Elapsed (s) εT Parameters

AL 2.70 1.60 ·10−3 h = 2.5 ms, α = 106

ALi3p 3.13 1.67 ·10−3 h = 3.5 ms, α = 1012

ALi3pvs 2.07 1.51 ·10−3 hmin = 0.5 ms, hmax = 4.5 ms, α = 1012, γ = 1, ϕmax = 10−5

mAL 2.90 1.95 ·10−3 α = 1010, ϕrel = 5 ·10−2, ϕabs = 10−1

mNS Failed

mAL-ode4 2.66 1.69 ·10−3 h = 2 ms, α = 1010

mNS-ode4 Failed

mAL-ode15s 9.96 1.06 ·10−3 α = 107, ϕrel = 1 ·10−7, ϕabs = 10−11

Table 5 Best results in the solution of case 1 (high precision)

Method Elapsed (s) εT Parameters

AL 6.99 1.38 ·10−4 h = 1 ms, α = 106

ALi3p 6.39 1.81 ·10−4 h = 1 ms, α = 1012

ALi3pvs 4.69 1.20 ·10−4 hmin = 0.5 ms, hmax = 3 ms, α = 1012, γ = 1, ϕmax = 5 ·10−7

mAL 3.45 1.35 ·10−4 α = 1010, ϕrel = 5 ·10−3, ϕabs = 2 ·10−2

mNS Failed

mAL-ode4 3.20 1.02 ·10−4 h = 1.75 ms, α = 1010

mNS-ode4 Failed

mAL-ode15s 20.17 1.05 ·10−4 α = 107, ϕrel = 1 ·10−8, ϕabs = 10−11

The benchmarking results obtained in the simulation of case 1 are shown in Ta-
bles 4 and 5, for the low and high precision thresholds specified in Table 2, respec-
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tively. Numerical experiments confirmed that methods mNS and mNS-ode4 were
unable to deal with the singular configurations of the mechanism, which resulted in
the failure of the simulation. The augmented Lagrangian methods, on the other hand,
completed the simulation successfully. The elapsed times reported correspond to the
average of five different simulation runs. For the low-precision case, all the success-
ful methods delivered comparable results in terms of efficiency. As expected, times
increased in the high-precision scenario, particularly for the methods that modelled
the system with natural coordinates and used the trapezoidal rule as integration rou-
tine. The use of a variable step-size in ALi3pvs resulted in an improvement of the
efficiency with respect to its fixed-step counterpart, especially in the high-precision
case.

0 1 2 3 4 5 6 7 8 9 10
2
3
4
5
6
7
8
9

10
11

Time (s)

x Q
[m

]

Ref. AL AL dt.

Fig. 8 Case 2: effect on displacement xQ of the slider of the parameter selection of augmented Lagrangian
methods.

Case 2 is not subjected to singular configurations, but its simulation is challeng-
ing for a different reason. Some methods, like the AL and ALi3p used in this study,
introduce numerical dissipation in the solution of the dynamics equations [10]. This
dissipation may slow down slightly the predicted motion of the system. The external,
time-dependent force f that acts on the slider is then applied to the mechanism at a
configuration that differs from that of the reference solution at each particular time.
In some cases, this eventually leads to the departure of the system motion from theo-
retically correct values, as shown in Fig. 8. The augmented Lagrangian formulations
deliver results that match the reference solution provided that small enough integra-
tion step-sizes are used (‘AL’), but might follow a different path otherwise, as can
be seen for plot ‘AL dt’, which corresponds to the AL formulation integrated with a
step-size h = 5 ms. This issue imposes an important limitation on the efficiency of
these formulations.

Tables 6 and 7 summarize the results obtained with the different methods in the
solution of case 2, for low and high precision, respectively. All the methods were able
to meet the low-precision threshold in the simulation of this case, although augmented
Lagrangian algorithms with projections required more time to complete the integra-
tion, as a consequence of the energy dissipation mentioned in the previous paragraph.
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Table 6 Best results in the solution of case 2 (low precision)

Method Elapsed (s) εT Parameters

AL 1345.03 1.79 ·10−3 h = 0.004 ms, α = 106

ALi3p 12.18 1.19 ·10−3 h = 0.5 ms, α = 1012

ALi3pvs 7.85 1.77 ·10−3 hmin = 0.1 ms, hmax = 2 ms, α = 1012, γ = 1, ϕmax = 10−7

mAL 3.44 1.93 ·10−3 α = 107, ϕrel = 10−3, ϕabs = 5 ·10−2

mNS 0.24 1.69 ·10−3 ϕrel = 10−5, ϕabs = 10−9

mAL-ode4 3.65 1.61 ·10−3 h = 1.5 ms, α = 107

mNS-ode4 0.58 1.64 ·10−3 h = 7.5 ms

mAL-ode15s 26.77 1.28 ·10−3 α = 107, ϕrel = 10−10, ϕabs = 10−7

Table 7 Best results in the solution of case 2 (high precision)

Method Elapsed (s) εT Parameters

AL Failed

ALi3p 53.28 6.61 ·10−5 h = 0.1 ms, α = 1012

ALi3pvs 15.87 1.09 ·10−4 hmin = 0.1 ms, hmax = 1 ms, α = 1012, γ = 1, ϕmax = 10−8

mAL 5.98 1.18 ·10−4 α = 107, ϕrel = 10−4, ϕabs = 10−5

mNS 0.31 1.97 ·10−4 ϕrel = 10−7, ϕabs = 10−6

mAL-ode4 7.07 1.07 ·10−4 h = 0.5 ms, α = 107

mNS-ode4 0.97 1.64 ·10−4 h = 4.5 ms

mAL-ode15s 34.32 2.06 ·10−4 α = 107, ϕrel = 10−11, ϕabs = 10−7

This effect was particularly noticeable for the AL algorithm, which required a step
size of h = 0.004 s to achieve correct results. The issue was still more critical in the
high-precision run, which the AL method was unable to complete below the 2000 s
limit.

Two interesting facts can be remarked. The first is that the null-space formula-
tions delivered the most efficient simulation execution. Case 2 does not feature sin-
gular configurations, and so these methods can be used to effectively solve the system
dynamics. The second is that the use of variable-step integrators resulted in signif-
icant time savings with respect to their fixed-step counterparts. The computational
improvement became more relevant as the precision required from the execution in-
creased. This was clear in the case of the ALi3p and ALi3pvs methods, but could
also be observed for mAL and mNS formulations. Figure 9 shows the times elapsed
by these methods in the solution of Case 2 for different precision levels, and con-
firms the computational advantage of variable-step integration for higher precision
requirements.
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Fig. 9 Elapsed time in the solution of case 2 as a function of the precision εT delivered by mAL and mNS
methods.

Table 8 Best results in the solution of case 3 (low precision)

Method Elapsed (s) εT Parameters

AL Failed

ALi3p 92.74 9.36 ·10−3 h = 0.1 ms, α = 1015

ALi3pvs 48.84 1.75 ·10−2 hmin = 0.05 ms, hmax = 0.1 ms, α = 1015, γ = 1, ϕmax = 10−8

mAL 5.83 6.33 ·10−3 α = 1010, ϕrel = 10−3, ϕabs = 10−5

mNS Failed

mAL-ode4 6.76 5.26 ·10−3 h = 0.8 ms, α = 1010

mNS-ode4 Failed

mAL-ode15s 11.04 4.82 ·10−3 α = 107, ϕrel = 10−7, ϕabs = 10−8

Finally, the simulation results that correspond to case 3 are summarized in Ta-
bles 8 and 9. The mNS formulations failed again in this case, due to the existence of
singular configurations. The AL algorithm was unable to meet the precision thresh-
olds in less than 2000 s. Regarding the ALi3p method, it required an increased value
of the penalty factor (α = 1015) to deliver correct results in the low-precision run.
The ALi3pvs delivered again a significant reduction of the elapsed time in compu-
tations by means of time-step adjustments, even though its step-size was set to be
always smaller than that of the fixed-step ALi3p. This is explained by a reduction in
the number of iterations required by the method to attain convergence at each inte-
gration step. Decreasing the step size with ALi3p, conversely, did not result in perfor-
mance improvements. The mAL and mAL-ode4 delivered the most efficient results.
Regarding the high-precision threshold, we did not find any parameter combination
by which ALi3p and ALi3pvs were able to meet the simulation requirements. It must
be pointed out that these formulations are known to suffer from numerical issues for
very small integration steps [6]. Moreover, tuning the parameters of these methods,
especially the variable-step ALi3pvs, is not straightforward, and it was not possible
to determine a standardized protocol to adjust them.
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Table 9 Best results in the solution of case 3 (high precision)

Method Elapsed (s) εT Parameters

AL Failed

ALi3p Failed

ALi3pvs Failed

mAL 12.88 1.42 ·10−3 α = 1010, ϕrel = 5 ·10−6, ϕabs = 10−5

mNS Failed

mAL-ode4 11.23 9.78 ·10−4 h = 0.5 ms, α = 1010

mNS-ode4 Failed

mAL-ode15s 26.30 1.53 ·10−3 α = 107, ϕrel = 10−8, ϕabs = 5 ·10−9

The presented simulation results confirm the ability of the proposed benchmark
problem to help discriminate between several solution methods for MBS dynamics
under different precision requirements and execution conditions. This can be useful
to assess the capabilities of newly proposed formalisms and software implementa-
tions in the simulation of mechanical systems with singular configurations and time-
dependent inputs.

4 Conclusions

In this work, a benchmark example for the evaluation of multibody dynamics formu-
lations with kinematic constraints has been introduced. The selected example consists
of three variations of a planar slider-crank linkage, with different physical parame-
ters and applied external forces. The combination of these forces with the existence
of singular configurations in the mechanism resulted in a challenging problem for the
majority of the tested solution methods. Indeed, the simulation software needs to be
able to accurately describe the system motion both in the proximity of the singulari-
ties and at the extreme points of the motion, which becomes more complicated when
an external force is acting on the mechanism.

The slider-crank linkage example also served to highlight relevant aspects of the
definition of benchmark problems, such as the necessity of an available reference so-
lution and suitable metrics to compare the performance of different solution methods.

The three proposed cases of this benchmark problem were used to assess the
ability of different formulations in combination with fixed- and variable-step integra-
tion methods for multibody system dynamics. Results showed that the performance
of each approach depends on the precision requirements and the characteristics of
the problem being solved and confirmed the usefulness of the proposed example for
benchmarking MBS dynamics solution methods.
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