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1 Introduction

Continuous time models have been proved to be very successful in economic theory (see e.g. Yu (2014)).

Continuous time diffusion processes have been commonly and successfully used in economics and finance

to model stochastic dynamics of financial securities following the paper by Black and Scholes (1973) which

established the foundation of option pricing theory. An important family of diffusion processes is the general

linear drift process proposed by Chan, Karolyi, Longstaff and Sanders (1992, CKLS from now onwards) where

the diffusion function can accommodate a wide range of patterns of volatility. In this model, the diffusion

function follows a form where a constant elasticity of variance (CEV) parameter  plays a crucial role (Bu

et al (2011) have shown its usefulness, for example, to encompass a number of existing models that have

closed-form likelihood functions). Important members of this family of models are the Vasicek (1977) model

with  = 0; the CIR model (Cox et al (1985)) with  = 05; the Brennan and Schwartz (1980) model with

 = 1, and the CIR- VR model (Cox et al. (1980) and Ahn and Gao (1999)) with  = 15.

It is well known in the literature via simulation studies (see e.g. Ball and Torous (1996) and Yu and

Phillips (2001)) that the estimation of the drift parameters in the CKLS model yields biased estimators

especially for the mean reversion parameter both in finite discrete samples and in large in-fill samples.

Currently there are five papers in relation to this issue: (1) Tang and Chen (2009) derived analytical

expressions for approximating the bias and variance of pseudo maximum likelihood estimators (PMLEs)

using Nowman´s (1997) method that can be used to improve the estimation of the CKLS model. But their

expressions are only valid for  = 0 and 05 and the performance of their bias formula is unsatisfactory in

the near unit root situations (this corresponds to the slow mean reversion case which is empirically realistic

for financial time series). (2) Yu (2012) adds an extra term to the bias approximations of Tang and Chen

(2009) and this helps to improve the performance of the bias expressions when the speed of mean reversion

is slow. But only the case where  = 0 is analyzed and only the bias of the estimator of the mean reversion

parameter is given. (3) Iglesias (2014) shows that the expressions provided by Tang and Chen (2009) and

Yu (2012) are not only useful for bias correction purposes in estimating continuous time models but also for

testing using a t-statistic in the near unit root situation. Again, only the model where  = 0 is analyzed.

And finally, (4) Bao et al (2015) give a bias approximation for the mean reversion estimator in continuous-

time Lévy processes while more recently, (5) Bao et al (2017) focus on the case of  = 0 while deriving the

exact distribution of the MLE. However, in practice, models with  different from 0 and 05 are needed; and
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Ball and Torous (1996, 1999), Ahn and Gao (1999) and Czellar, Karloyi and Rochetti (2007) in particular

show that this is the case.

In this paper, we plan to extend the results of the previous five papers in several directions: (1) we find

explicit closed form solutions for the pseudo maximum likelihood estimators (PMLEs) in a general CKLS

model for  ≥ 0 and we also provide the asymptotic theory. (2) We derive analytical bias expressions that

can be used when estimating a general CKLS (1992) model and we show the usefulness of the PMLEs versus

alternative estimation methods such as the jackknife of Phillips and Yu (2005) and finally (3), we specialize

our results for  = 0 and 05 to compare them with those of Tang and Chen (2009).

The plan of the paper is as follows. Section 2 presents the model that is the object of our study, the

closed form solutions of the PMLEs and the asymptotic theory. Section 3 refers to the bias expansions

for the PMLEs. Section 4 provides simulation results to show the usefulness of the bias corrected PMLEs.

Finally, Section 5 concludes. A supporting information file contains the proofs of our main results.

2 Model, estimators and asymptotic theory

Following CKLS (1992), we analyze the stochastic process of CEV with mean-reverting drift

 =  (− ) + 

  (1)

where  is a standard Brownian motion,  is a volatility coefficient,  is the mean reversion parameter

and  represents the long term mean. Parameter  ≥ 0 shows the degree to which the standard deviation



 depends on  (i.e. the elasticity of volatility with respect to ) Examples already well known in

the literature are  = 0 (Vasicek (1977)),  = 05 (Cox, Ingersoll and Ross (1985)),  = 1 (Brennan and

Schwartz (1980)), and  = 15 (CIR VR model, Cox et al. (1980) and Ahn and Gao (1999), known as the

inverse square-root model). We assume that   0 See for example Hurn, Jeismand and Lindsay (2007) for

a review of different estimation methods, and note that for cases different from  = 0 and 05, the behaviour

of Nowman´s estimator has not yet been considered in the literature.

Let 0    be discrete observations from the process (1) while  is the sampling interval,  is the

sample size and we define  =  . In order to estimate (1), we use the discrete form. Nowman (1997), using

Bergstrom´s (1984) approximation, discretized the diffusion function computing the following approximate

discrete time series model

 = −−1 + 
³
1− −

´
+  (2)
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where the  are assumed normal, uncorrelated, with conditional mean (|−1) = 0 and conditional

variance

  (|−1) = 052−1
³
1− −2

´

2
−1 (3)

From (3), it is clear that if the time series can take negative values, we need  to be a general non-

negative integer. If we denote  = (  2)́ the PMLEs are given by maximizing the conditional pseudo

log-likelihood  () = −1
2

P
=1

µ
ln  (|−1) + 2√

 (|−1)

¶
 where

Proposition 1. Assuming  to be Gaussian in (2) and either (a)  is a non-negative series and   0

or (b)  is unrestricted and  is a general non-negative integer  the PMLEs b b and b2 are given asb = −−1 log
³b1´  b = b2 b2 =

23
1−21  where we condition on the starting value and

b1 =

P
=1 

(1−2)
−1

P
=1 

−2
−1 −

P
=1 

−2
−1

P
=1 

(1−2)
−1P

=1 
(2−2)
−1

P
=1 

−2
−1 −

³P
=1

³

(1−2)
−1

´´2  (4)

b2 =

P
=1

³


−2
−1 − b1(1−2)−1

´
³
1− b1´P

=1 
−2
−1

 b3 = −1
X
=1

³
 − b1−1 − b2 ³1− b1´´2 −2−1  (5)

If in Proposition 1 we set  = 0 and  = 05 we obtain the special cases given in Tang and Chen (2009,

pages 66-67, equations (2.5) and (2.13)). Note that for  = 05 we are in the case of the time series not

taking negative values. Moreover, moments of b may not exist at all since b1 may be negative, and this is

a characteristic of Nowman´s estimator. Also, from Proposition 1 we have the following two Remarks

Remark 1 In Proposition 1, we need  to be known although obviously it would be more general if we could

find an estimator for  We have tried that, but the closed-form expressions we obtained for Nowman´s

method become intractable.

Remark 2 It is important to note that from Proposition 1 and (3), if we want to estimate the CKLS model

with our PMLEs and to use them with a series that may take positive and negative values, we need  to be

a non-negative integer, since we need 
−2
 to exist.

We generalize now the asymptotic theory of Nowman´s estimator in Tang and Chen (2009) in the

following
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Theorem 1. For a stationary CKLS process1, as  −→∞ while  (the sampling interval) is fixed, and

assuming either (a)  is a series taking only non-negative values and   0 or (b)  is unrestricted and

 is a general non-negative integer, let b = (̂ b b2)́ and e = (  2 −  ( ))́ where  ( ) is the

inconsistency term related to 2 and let (|−1) = 0 Then
√

³b − e´ −→ (0Ω) where Ω = Λ−1

with Λ = 
³
− 1


2()

́

´
=

⎛⎜⎜⎜⎝
  

  0

 0 

⎞⎟⎟⎟⎠  and  =
(−2+2−2−1)2

22(−2−1)2
+

22−2



(1−)
−1 −−−1

2
2−1(1−−2) ;

 = −2−


(1−2)
−1 −−2−1


2(1+−)

;  = −2
2(1−−2) −

1
22

;  =
2(−1)
2(+1)



µ
1


2
−1

¶
;  = 1

24


Also for  = 0  ( ) = 0

There are many alternative estimators such as the Aït-Sahalia (1999, 2008) approximate likelihood

method, simulation based methods (see for example Beskos et al (2009)) and many more that we may use

to estimate the parameters in (1). However, the main advantage of Nowman´s (1997) method lies in its

analytical tractability which justifies its use as an estimator that is studied and used in many papers such as

in Tang and Chen (2009). Moreover, we show in Section 4 that Nowman´s method can be useful in practice

and why it makes sense to analyze its asymptotic and finite sample properties. Tang and Chen (2009)

propose the use of the bootstrap method and Bianchi and Cleur (1996) use indirect inference. But both the

indirect inference and bootstrap methods are computationally expensive versus Nowman´s method.

3 Expansions for the bias parameter estimators in the CKLS model

We proceed now to extend the results of Tang and Chen (2009, Theorems 3.1.1 and 3.1.3, pages 68-69) by

deriving analytical bias expressions that can be used in practice when estimating a general CKLS (1992)

model. Following Tang and Chen (2009, proof of Theorem 3.1.3) we first note that from (2), then

 ( |) = − + 
³
1− −

´
with  =  | − |  (6)

Let 1 = 
(1−2)
−1 − 1 2 = 

−2
−1 − 2 3 = 

−2
−1 − 3 4 = 

(1−2)
−1 − 4 and 5 = 

(2−2)
−1 − 5 where

from (6), 1 = −5 + 
¡
1− −

¢
4 3 = −4 + 

¡
1− −

¢
2 2 = 

³

−2
−1

´
 4 = 

³

(1−2)
−1

´
1See Conley, Hansen, Luttmer and Scheinkman (1997) for details of primitive conditions under which the CEV process is

stationary and ergodic. Broze et al (1995) also provided conditions for second-order stationarity and ergodicity.

5



and 5 = 
³

(2−2)
−1

´
 Also define  = −1

X
=1

 which is (
−1
2 ) and let e = −1

X
=1

(−1) =  +

−1 (0 − ) =  +

¡
−1

¢
 for  = 1  5 In addition let  = 12 − 34,  = 52 − 24

In what follows, Theorem 2 shows the consistency and bias approximations when estimating   and 2 in

model (2). Recalling that b = −−1 log
³
̂1

´
 our approach to analysing the bias of b is to first find a suitable

expansion for ̂1which subsumes the expansion used by Tang and Chen (2009), and then find an appropriate

expansion for the transform. We first find that ̂−  = − 1
1

³b1 − 1

´
+ 1

221

³b1 − 1

´2
+

¡
−2

¢
from

which we obtain the following

Theorem 2. For a stationary CKLS process, as  −→∞ while  is fixed and assuming either (a)  is

a series taking only non-negative values and   0 or (b)  is unrestricted and  is a general non-negative

integer, and (|−1) = 0 the bias of the estimator ̂ is given by

(̂−) = 22(1)

2−22
+(15+

(1 − 5)
2

2−2
− 


25)
(2)

−2
+(234+

23
2−

− −
4

2
4


)
(4)

−2

+
24(3)

2−22
+ (

2
22

− −



)
22(5)

−2
− [1− 25


− 2

−
(
1

− 5

2
)]
(12)


−

− 24(13)

−22
− (224 +

13
−

)
(14)

2
− + (

22

− 22

2
− )

(15)

−

− [
5


+
1
−

(
1


− 

2
)]
4(23)

−
+ [

454
2

− 214 + 35


− 3
−

(
1

− 5

2
)]
(24)

−

+ [
12


+


− 252

2
+

2
−

(
25
3
− 1

2
)]
(25)

−
+ (1 +

224


+
34


− )
(34)

−

+ (


2
− −

1


)
(35)42

−
+ (−23


+ 2

(4 + 1)2
2

+
23
2

− )
(45)

−
+ (−1)

for − 6= 1 and where all variances and covariances are of order −1 Also  (b− ) = 
¡
−2

¢
for  = 0

and assuming either (a)  is a series taking only positive values and   0 or (b)  is a general positive

integer

 (b− ) = (

P
=1 

−2
−1 

(1− −)
P

=1 
−2
−1

) +(

P

=1 
−2
−1 

(1− −)
P

=1 
−2
−1

) + 
¡
−1

¢

with  =
12 + 21 − 34 − 43


− 


(52 + 25) + (

−12)

The approximate discrete time series model used here given in (2) has the same form as the (1) model

which has been much studied in the time series literature. In fact, rewriting the equation in (2) in the form
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 = −1 + (1− ) + , the well-known paper by Kendall (1954) derived the (−1) bias for the slope

coefficient to be −(1−3


) which is one of the best known approximations in the time series literature. The

derivation assumed that the model was stationary and that the disturbances were  (0 2) In the case

we study here the disturbances are again assumed to be normally and independently distributed but with a

variance that depends on −1  (3) for a given value of  > 0 It is assumed that the sampling interval

 is positive and fixed so that the above model, termed the discretized model, can be estimated directly

and analysed as in the time series case; for example, asymptotic expansions for estimation errors can be

employed along the lines of the original Kendall (1954) paper as is done here although the derivations of

bias approximations are far more complicated.

4 Simulation results: Evidence of the usefulness of bias corrected PMLE

When estimating the parameters of the model, CKLS (1992) relied on the Generalized Method of Moments

(GMM, see Hansen (1982)). Kladívko (2008) shows the importance of choosing a suitable variance-covariance

matrix estimator of moment functions when applying GMM to the CKLS model. We also computed the

GMM procedure of Kladívko (2008) in our simulations but we do not show the results because the empirical

size distortions in the test procedure were very large (the test was extremely liberal). Another possibility

could be to improve the GMM procedure, but it would be more computationally involved than PML and

it is not the objective of this paper. Besides, when using our bias corrected PMLEs, we avoid specifying a

variance-covariance matrix estimator of moment functions as in the GMM procedure.

Tang and Chen (2009, Tables 1, 2 and 3) already showed the usefulness of the bias corrected PMLEs

from the estimation point of view in relation to bias and root mean squared error criteria when  = 0 and

 = 05, so in the simulation section of this paper we focus on the testing side. Iglesias (2014) showed that

for the case of  = 0, the bias expressions of Tang and Chen (2009) and Yu (2012) are useful also for testing

purposes. In what follows, we show that our closed form solutions in Proposition 1 of the PMLEs and their

bias corrected expressions of our Theorem 2, when estimating a CKLS model for a more general  are very

useful from the testing point of view when compared to alternative methods such as the Jackknife of Phillips

and Yu (2005).

We consider the setting of two models as the data generating process in all simulations in Tang and

Chen (2009): (1) CIR Model 2, where  = 0223  = 009 and 2 = 0008  = 10 and  = 112 and
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(2) CIR Model 3, where  = 0148  = 009 and 2 = 0005  = 10 and  = 112. In CIR Model 3

the autoregressive coefficient of the discrete time model is 0.99 and the two models, as in Tang and Chen

(2009), are designed to check the performance of the parameter estimation in the near unit root case. We

draw 10000 simulations, and we construct a standard two-sided t-test for the null hypothesis 0 :  = 0 at

5% significance level2 for different values of 0. We show the simulation results for  = 05 and  = 13.

When  = 05 and if 2 ≥ 2,   0   0 and 2  0 holds, the CIR model is well-defined and it

has a steady-state (marginal) distribution. The marginal density is gamma distributed (see Feller (1951)).

Note also that a chi-squared random variable with  degrees of freedom (2) is equal in distribution to the

gamma distribution Υ (2 12) (which is the unconditional distribution of the CIR process). Therefore

we set  = 0 and we simulate the initial condition from a Gamma distribution Υ (2 12) with  = 3 in

order not to violate the condition which ensures stationarity of the CIR model (see Feller (1951)).

In Figures 1-4, we show the results of the empirical power of the t-test using our explicit expressions

in Proposition 1 (named POWER), the bias corrected PMLEs given in Theorem 2 (named POWERBC)

and using the Jackknife of Phillips and Yu (2005) (named POWERJACKK). When using the Jackknife of

Phillips and Yu (2005) and following their suggestion, we construct 4 consecutive non-overlapping blocks

of observations. When using our bias corrected estimator from our Theorem 2, we have used a parametric

bootstrap by drawing 1000 bootstrap resamples to approximate the variances/covariances. Our results from

Figure 1 for CIR Model 2 show that the three methods are very conservative and have an empirical size

of 0 under the null hypothesis. This suggests that the asymptotic theory of all these tests works poorly

in finite samples in view of the null rejection rate being much lower than the nominal rate; and therefore

alternative methods should be investigated in further research mainly to improve on the size results. The

main advantage of our proposal comes when analysing the empirical power: the use of our bias corrected

PMLEs improves versus using the Jackknife or the PMLEs without bias correcting. The same results hold

in Figure 2 for CIR Model 3. Figures 3 and 4 provide the same simulation results as in Figures 1 and 2 but

now when  = 1, and the power gains from using the bias corrected method increase in relation to Figures

1-2. Therefore out of the three methods, we recommend that bias corrected PMLEs be used in practice.

2All the simulation results have been obtained in MATLAB
3Broze et al (1995) showed conditions for stationarity when  ≤ 1
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Figures 1-4: Empirical size and power, 0 :  = 0 for different values of 0
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Figure 1:  = 05 CIR Model 2.
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Figure 2:  = 05 CIR Model 3.
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Figure 3:  = 1 Model 2.
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Figure 4:  = 1 Model 3.

5 Conclusions

We have extended the results in Tang and Chen (2009), Yu (2012) and Bao et al (2015) in two directions.

First we find explicit closed form solutions of the PMLEs for the general CKLS (1992) model characterized

by a general non-negative integer parameter . Our assumption of having a non-negative integer parameter

 is very simple, and it allows the nesting of popular models in the literature such as the Vasicek (1977)

model with  = 0; the CIR model (Cox et al (1985)) with  = 05 due to the 2 nature of the time series in

this case; the Brennan and Schwartz (1980) model with  = 1; but if we impose positivity of the time series,

our theory works for any  ≥ 0. We also provide the asymptotic theory for those PMLEs. Second we obtain

bias expansions for the parameter estimators when used in a general CKLS (1992) model, while again only

the cases with  = 0 and  = 05 were analyzed in the literature so far. We show inter alia that the bias

of the long term mean parameter estimator is 
¡
−1

¢
for any positive  value, contradicting the results of

Tang and Chen (2009) where it was claimed to be 
¡
−2

¢
for  = 05 Finally, we show in simulations the

usefulness of our results. Wang, Phillips and Yu (2011) point out that one can often get a lower bias using

a cruder approximation than Nowman´s, such as the Euler approximation, as the biases resulting from the
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discretisation and the estimation often partially cancel one another, so this may be a subject for further

research.

6 Supporting information

Additional Supporting Information may be found online in the supporting information tab for this article.

7 Data availability statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.
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Supplement to: “Further Results on Pseudo-Maximum Likelihood

Estimation and Testing in the Constant Elasticity of Variance

Continuous Time Model”.

In this file, we collect first Proposition 1 and the corresponding proof (Appendix A), Theorem 1 and

Corollary 1 with the corresponding proofs (Appendix B) and Theorem 2 with the proof (Appendix C), where

 =  (− ) + 

  (1)

Moreover

 = −−1 + 
³
1− −

´
+  (2)

and

  (|−1) = 052−1
³
1− −2

´

2
−1 (3)

After that, we proceed to provide four other types of results:

1. first, we show more details on the proof of Theorem 1, Corollary 1 and an extra Corollary 2 when

 = 0 and  → 0 (see Appendix D).

2. second, in order to make the analysis clearer, we show how the PMLEs can be interpreted as IV

estimators. This help us to study the order of the bias expansions in a more transparent way (See

Appendix E).

3. third, we provide the corresponding proofs for the bias expressions using the IV approach (see Appendix

F).

4. fourth, we show simulation evidence of the order of the bias expressions (see Appendix G).

1 APPENDIX A

1.1 Explicit closed form solutions of the PMLEs

Note that equation (2) with (|−1) = 0 is a valid representation of any diffusion model with linear drift

(see Aït-Sahalia (1996)) given in (1). Thus equation (2) can be used for consistent estimation of the drift
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parameters. On the other hand, the conditional variance given in equation (3) is not generally correct. But

this will only affect the efficiency of the resulting PMLEs and under weak regularity conditions, the PMLEs

of the drift parameters will still be consistent and asymptotically normally distributed. We will show this

in our Theorem 1. If we denote  = (  2)́ the PMLEs are given by maximizing the conditional pseudo

log-likelihood  () = −1
2

µP
=1 ln  (|−1) + 2√

 (|−1)

¶
 where we obtain

Proposition 1. Assuming  to be Gaussian in (2) and either (a)  is a non-negative series and   0

or (b)  is unrestricted and  is a general non-negative integer  the PMLEs b b and b2 are given asb = −−1 log
³b1´  b = b2 b2 = 23

1−21  where we condition on the starting value and

b1 =

P
=1 

(1−2)
−1

P
=1 

−2
−1 −

P
=1 

−2
−1

P
=1 

(1−2)
−1P

=1 
(2−2)
−1

P
=1 

−2
−1 −

³P
=1

³

(1−2)
−1

´´2  (4)

b2 =

P
=1

³


−2
−1 − b1(1−2)−1

´
³
1− b1´P

=1 
−2
−1

 b3 = −1
X
=1

³
 − b1−1 − b2 ³1− b1´´2 −2−1  (5)

If in Proposition 1 we set  = 0 and  = 05 we obtain the special cases given in Tang and Chen (2009,

pages 66-67, equations (2.5) and (2.13)). Note that for  = 05 we are in the case of the time series not

taking negative values. Proposition 1 also allows one to obtain the PMLEs in other popular models such

as for  = 1 (Brennan and Schwartz (1980)). Note that moments of b may not exist at all since b1 may be

negative, and this is a characteristic of Nowman´s estimator. Also, from Proposition 1 we have the following

two Remarks

Remark 1 In Proposition 1, we need  to be known although obviously it would be more general if we could

find an estimator for  We have tried that, but the closed-form expressions we obtained for Nowman´s

method become non-tractable.

Remark 2 It is important to note that from Proposition 1 and (3), if we want to estimate the CKLS model

with our PMLEs and to use them with a series that may take positive and negative values, we need  to be a

non-negative integer, since we need 
−2
 to exist. For example, when  = 14 we have 

−2
 = 

−12
 which

does not exist if  is negative.
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1.2 PROOF of Proposition 1

Under the conditions of Proposition 1, the conditional loglikelihood function from (2)-(3) is

 () = −1

2

X
=1

Ã
ln
³
052−1

³
1− −2

´

2
−1

´
+

¡
 − −−1 − 

¡
1− −

¢¢2
052−1 (1− −2)2−1

!


Setting



b = 0;


b = 0 and


b2 = 0

we obtain for b
−

⎛⎝ X
=1


(2−2)
−1 −

Ã
X
=1

³

(1−2)
−1

´!2Ã X
=1


−2
−1

!−1⎞⎠
=

X
=1


(1−2)
−1 −

X
=1

³


−2
−1

´Ã X
=1


−2
−1

!−1 X
=1


(1−2)
−1

and taking logarithms

b = −−1 log

⎛⎜⎝
P

=1 
(1−2)
−1 −P

=1

³


−2
−1

´³P
=1 

−2
−1

´−1P
=1 

(1−2)
−1P

=1 
(2−2)
−1 −

³P
=1

³

(1−2)
−1

´´2 ³P
=1 

−2
−1

´−1
⎞⎟⎠

= −−1 log

⎛⎜⎝P
=1 

(1−2)
−1

P
=1 

−2
−1 −

P
=1 

−2
−1

P
=1 

(1−2)
−1P

=1 
(2−2)
−1

P
=1 

−2
−1 −

³P
=1

³

(1−2)
−1

´´2
⎞⎟⎠ = −−1 log

³b1´ 
Also for b we obtain

b =

P
=1

¡
 − −−1¢−2−1P

=1

¡
1− −¢−2−1

=

P
=1

³


−2
−1 − b1(1−2)−1

´
³
1− b1´P

=1 
−2
−1

= b2
Finally

b2 = −1
X
=1

2b ¡ − −−1 − b ¡1− −¢¢2¡
1− −2¢2−1

=
2b³

1− b21´−1
X
=1

³
 − b1−1 − b2 ³1− b1´´2 −2−1 

¥
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2 APPENDIX B

2.1 Asymptotic theory

Continuous time models have been proved to be very successful in economic theory (see e.g. Merton (1990)).

We generalize now the asymptotic theory of Nowman´s estimator given in Tang and Chen (2009) for  = 0

and 05. We show the following Theorem1

Theorem 1. For a stationary CKLS process2, as  −→∞ while  (the sampling interval) is fixed, and

assuming either (a)  is a series taking only non-negative values and   0 or (b)  is unrestricted and

 is a general non-negative integer, let b = (̂ b b2)́ and e = (  2 −  ( ))́ where  ( ) is the

inconsistency term related to 2 and let (|−1) = 0 Then
√

³b − e´ −→ (0Ω) where Ω = Λ−1

with Λ = 
³
− 1


2()

́

´
=

⎛⎜⎜⎜⎝
  

  0

 0 

⎞⎟⎟⎟⎠  and  =
(−2+2−2−1)2

22(−2−1)2
+

22−2



(1−)
−1 −−−1

2
2−1(1−−2) ;

 = −2−


(1−2)
−1 −−2−1


2(1+−)

;

 =
−2

2 (1− −2)
− 1

22
;  =

2
¡
 − 1

¢
2 ( + 1)



Ã
1


2
−1

!
;  =

1

24
 Also for  = 0  ( ) = 0

Note that we leave Theorem 1 in terms of expectations since we provide the theory for a general 

and therefore the expectations of  will be different depending on the  value we select. In the following

Corollary 1, we apply Theorem 1 for the specific case of  = 0.

Corollary 1. For a stationary Vasicek (1977) process, as  −→ ∞ while  is fixed and for = 0 , letb = (̂ b b2)́ and  = (  2)́ then
√

³b − 

´
−→ (0Ω1) where

Ω1 =

⎛⎜⎜⎜⎜⎝
−2

¡
2 − 1

¢
0 −2(1−2+2)

2

0
2(1+)
2(−1) 0

−2(1−2+2)
2

0
4(222(1+2)+4(1−2)+4−22+1)

22(2−1)

⎞⎟⎟⎟⎟⎠ 

1As noted in our Remark 2, we may replace the restriction that  has to be a non-negative integer with assumptions on the

parameters to ensure that  has positive support. This can be done both in Theorems 1 and 2.
2See Conley, Hansen, Luttmer and Scheinkman (1997) for details of primitive conditions under which the CEV process is

stationary and ergodic. Broze et al (1995) also provided conditions for second-order stationarity and ergodicity.
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Remark 3 Tang and Chen (2009, Theorem 3.1.2) analyzed also the case of  = 0 and they obtained

a diagonal variance-covariance matrix with the same main diagonal components as in our Ω1 matrix in

Corollary 1, except that the third component is replaced by 4()−2
¡
 − −

¢
(1− 2−2

(1−−2)) When we

specialize our Corollary 1 for  → 0 (high frequency case), we obtain the same result as in Theorem 3.2.2

of Tang and Chen (2009).

2.2 PROOF of Theorem 1

Let 1 = − 2 =  and 3 = 2 (2)−1
¡
1− −2

¢
and  = (1 2 3)́ be the 1-1 mapping from

 = (  2)́. Then for  = 0 b3 is consistent but for any positive , b3 is inconsistent, and it can be

shown that 
³b3´ = 3 +  ( ) + 

¡
−1

¢
where  ( ) is the inconsistency term related to b3 (see

for example Aït-Sahalia (1996, equation (2.4)) which shows that equation (2) with (|−1) = 0 is a

valid representation of any diffusion model with linear drift. Thus equation (2) can be used for consistent

estimation of the drift parameters but not for the diffusion parameter) For  = 0,  ( ) = 0 as shown in

Tang and Chen (2009). Let e = (1 2 3 + ( ))́ Then,

 () = −1

2

X
=1

Ã
ln
³
0 52−1

³
1− −2

´

2
−1

´
+

¡
 − −−1 − 

¡
1− −

¢¢2
0 52−1 (1− −2)2−1

!


 ()


=

X
=1

Ã
(2)−1 − −2

(1− −2)
−
¡
 − −−1 − 

¡
1− −

¢¢
− (−1 − )

052
2
−1−1 (1− −2)

!

+

X
=1

Ã
2−2

¡
 − −−1 − 

¡
1− −

¢¢2
2

2
−1−1 (1− −2)2

−
¡
 − −−1 − 

¡
1− −

¢¢2
2

2
−1 (1− −2)

!


 ()


=

X
=1

(
¡
 − −−1)− 

¡
1− −

¢¢ ¡
1− −

¢
0 52−1 (1− −2)2−1



 ()

2
= − 1

22

X
=1

Ã
1−

¡
 − −−1 − 

¡
1− −

¢¢2
20 5−1 (1− −2)2−1

!


 () can be regarded as  () after re-parametrization. Following the proof of Tang and Chen

(2009, Theorem 3.1.4), we apply first a Taylor series expansion to the pseudo-likelihood score equations forb = (b1 b2 3)́
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0 =


³b´


≈


³e´


+
³b − e´ 2

³e´
́

Later, we apply a central limit theorem for mixing sequences (Bosq (1998)), and by Slutsky´s Theorem

and transforming back to b as a function of the asymptotically normal vector, we obtain that

√

³b − e´ = −√


³e´



⎛⎝2
³e´

́

⎞⎠−1

=

⎛⎝ 1√



³e´



⎞⎠⎛⎝− 1



2
³e´

́

⎞⎠−1 −→  (0Ω)

where

Ω = 

µ
− 1



2 ()

́

¶−1
with

2 ()

2
=

X
=1

Ã
− 1

22
+

¡
1− −2

¢
22−2 + 22−4

(1− −2)2

!

−
X
=1

¡
1− −2

¢ £
−

¡
−−1 − −

¢
+
¡
 − −−1 − 

¡
1− −

¢¢
−

¤
05 (−1 − )−1 −122−1−1 (1− −2)2

+

X
=1

−
¡
 − −−1 − 

¡
1− −

¢¢ £−−1 ¡1− −2
¢
+ 2−2

¤
05 (−1 − )−1 −122−1−1 (1− −2)2

+

X
=1

2−2
¡
 − −−1 − 

¡
1− −

¢¢ ¡
−−1 − −

¢− 2−2
¡
 − −−1 − 

¡
1− −

¢¢2
(2)−1 22−1−1 (1− −2)2

−
X
=1

−2
¡
 − −−1 − 

¡
1− −

¢¢2 £−−1 ¡1− −2
¢
+ 4−2

¤
(2)−1 22−1−1 (1− −2)3

−
X
=1

2
¡
 − −−1 − 

¡
1− −

¢¢ ¡
−−1 − −

¢
2

2
−1 (1− −2)

+

X
=1

2−2
¡
 − −−1 − 

¡
1− −

¢¢2
2

2
−1 (1− −2)2


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2 ()

2
=

X
=1

− ¡1− −
¢2

0 52−1 (1− −2)2−1


2 ()

4
=



24
−

X
=1

2
¡
 − −−1 − 

¡
1− −

¢¢2
6−1 (1− −2)2−1



2 ()

2
=

X
=1

− ¡ − −−1 − 
¡
1− −

¢¢ ¡
1− −

¢
0 54−1 (1− −2)2−1



2 ()

2
=

1

2

X
=1

Ã¡
 − −−1 − 

¡
1− −

¢¢ ¡
−−1 − −

¢
20 5

2
−1−1 (1− −2)

!

− 1

2

X
=1

Ã¡
 − −−1 − 

¡
1− −

¢¢2 £
−12−2 − −2

¡
1− −2

¢¤
2

2
−1−2 (1− −2)2

!


2 ()


=

X
=1

( − −−1 − 
¡
1− −

¢
)− +

¡
1− −

¢
(−−1 − −)

0 52
2
−1−1 (1− −2)

+

X
=1

( − −−1 − 
¡
1− −

¢
)
¡
1− −

¢ £
−12−2 − −2

¡
1− −2

¢¤
0 52

2
−1−2 (1− −2)2



We need to show that Λ = 
³
− 1


2()

́

´
is positive definite. We commence by showing each of the

components of Λ as a function of  ≥ 0 and we obtain

Λ = 

µ
− 1



2 ()

́

¶
=

⎛⎜⎜⎜⎝
  

  0

 0 

⎞⎟⎟⎟⎠ 

with

 =

¡
−2 + 2−2 − 1

¢2
22 (−2 − 1)

2
+

22−2
µ³


(1−)
−1 − 

−
−1

´2¶
2−1 (1− −2)

;  = −
2−

³

(1−2)
−1 − 

−2
−1

´
2 (1 + −)



 =
−2

2 (1− −2)
− 1

22
;  =

2
¡
 − 1

¢
2 ( + 1)



Ã
1


2
−1

!
;  =

1

24


Hence, Λ will be positive definite if for any non-zero column vector  with entries   and , ́Λ  0.
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In our case we may write

́Λ = 2+ 2 + 2 + 2 + 2

=
2

2−1
[

2−22
³

(1−)
−1 − 

−
−1

´2
(1− −) (1 + −)

−
2−

³

(1−2)
−1 − 

−2
−1

´


(1 + −)
+

¡
 − 1

¢

−2
−1 

2

( + 1)
]

+

¡
−2 + 2−2 − 1

¢2
2

22 (−2 − 1)
2

−
¡
−2 + 2−2 − 1

¢


2 (−2 − 1)
+

2

24

=
2
¡
 + 1

¢
2−1 ( − 1)



⎡⎢⎣
⎛⎝

³

(1−)
−1 − 

−
−1

´
( + 1)

−
¡
 − 1

¢

−
−1

( + 1)

⎞⎠2
⎤⎥⎦

+
1

2

Ã¡
−2 + 2−2 − 1

¢


 (−2 − 1)
− 

2

!2

 0

since

[
22

³

(1−)
−1 − 

−
−1

´2
( − 1) ( + 1)

−
2
³

(1−2)
−1 − 

−2
−1

´


( + 1)
+

¡
 − 1

¢

−2
−1 

2

( + 1)
]

=

¡
 + 1

¢
( − 1)



⎡⎢⎣22
³

(1−)
−1 − 

−
−1

´2
( + 1)

2
−

2
³

(1−2)
−1 − 

−2
−1

´ ¡
 − 1

¢


( + 1)
2

+

¡
 − 1

¢2

−2
−1 

2

( + 1)
2

⎤⎥⎦
=

¡
 + 1

¢
( − 1)



⎡⎢⎣
⎛⎝

³

(1−)
−1 − 

−
−1

´
( + 1)

−
¡
 − 1

¢

−
−1

( + 1)

⎞⎠2
⎤⎥⎦ 

Therefore, we are able to show that ́Λ  0 (as a sum of squares -therefore non-negative-, and that is zero

only if  =  =  = 0, that is when  is the zero vector). Then we conclude that Λ is positive definite.

Finally, Λ−1 = Ω ¥

2.3 PROOF of Corollary 1 when  = 0

Now, for  = 0



µ
− 1



2 ()

2

¶
=

¡
−2 + 2−2 − 1

¢2
22 (−2 − 1)

2
+

22−2

2−1 (1− −2)
0 52−1

=

¡
−2 + 2−2 − 1

¢2
+ 222−2

¡
1− −2

¢
22 (1− −2)2

8



since

 − −−1 − 
³
1− −

´
= 

 −  = − (−1 − ) + 

 ( − ) = − (−1 − ) + () 

( − )2 =
³
− (−1 − ) + 

´2
³

1− −2
´
 ( − )2 = 0 52−1

³
1− −2

´
=⇒  ( − )2 = 0 52−1

from (2). Also



µ
− 1



2 ()

2

¶
= −22

³
 − 1

´³
 + 1

´−1


Moreover



µ
− 1



2 ()

4

¶
=

1

24


and



µ
− 1



2



¶
= − 2−

2 (1 + −)
 (−1 − ) = 0

since  ( − ) = − (−1 − ) +  () from (2);  () = −0 + 
¡
1− −

¢
and  ( − ) =

−0 − − = 0 where we assume the initial condition 0 = . Also



µ
− 1



2

2

¶
=

−2

2 (1− −2)
− 1

22


Finally



µ
− 1



2

2

¶
= (

¡
 − −−1 − 

¡
1− −

¢¢ ¡
1− −

¢
0 54−1 (1− −2)

) = 0

Finding now the inverse of⎛⎜⎜⎜⎜⎜⎝
(−2+2−2−1)2+222−2(1−−2)

22(1−−2)2
0 −2

2(1−−2) −
1

22

0
2(−1)
2(+1)

0

−2
2(1−−2) −

1
22

0 1
24

⎞⎟⎟⎟⎟⎟⎠
we obtain Ω1

Ω1 =

⎛⎜⎜⎜⎜⎝
−2

¡
2 − 1

¢
0 −2(1−2+2)

2

0
2(1+)
2(−1) 0

−2(1−2+2)
2

0
4(222(1+2)+4(1−2)+4−22+1)

22(2−1)

⎞⎟⎟⎟⎟⎠ 

¥
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3 APPENDIX C

3.1 Theorem 2

Following Tang and Chen (2009, proof of Theorem 3.1.3) we first note that from (2), the following holds

 ( |) = − + 
³
1− −

´
with  =  | − |  (6)

Let 1 = 
(1−2)
−1 − 1 2 = 

−2
−1 − 2 3 = 

−2
−1 − 3 4 = 

(1−2)
−1 − 4 and 5 = 

(2−2)
−1 − 5 where

from (13)

1 = 
³


(1−2)
−1

´
= 

³

(1−2)
−1  (|−1)

´
= −5 + 

³
1− −

´
4

3 = 
³


−2
−1

´
= 

³

−2
−1 (|−1)

´
= −4 + 

³
1− −

´
2

2 = 
³

−2
−1

´
 4 = 

³

(1−2)
−1

´
and 5 = 

³

(2−2)
−1

´
 Also define  = −1

X
=1

 which is (
−1
2 ) and

let e = −1
X
=1

(−1) = +−1 (0 − ) = +

¡
−1

¢
 for  = 1  5 In addition let  = 12−34,

 = 52 − 24

In what follows, Theorem 2 shows the consistency and bias approximations when estimating   and

2 in model (2)3. Recalling that b = −−1 log
³
̂1

´
 our approach to analysing the bias of b is to first find

a suitable expansion for ̂1which subsumes the expansion used by Tang and Chen (2009), and then find an

appropriate expansion for the transform. We first find that ̂ −  = − 1
1

³b1 − 1

´
+ 1

221

³b1 − 1

´2
+


¡
−2

¢
from which we obtain the following

Theorem 2. For a stationary CKLS process, as  −→∞ while  is fixed and assuming either (a)  is

a series taking only non-negative values and   0 or (b)  is unrestricted and  is a general non-negative

integer, and (|−1) = 0 the bias of the estimator ̂ is given by

(̂−) = 22(1)

2−22
+(15+

(1 − 5)
2

2−2
− 


25)
(2)

−2
+(234+

23
2−

− −
4

2
4


)
(4)

−2

+
24(3)

2−22
+ (

2
22

− −



)
22(5)

−2
− [1− 25


− 2

−
(
1

− 5

2
)]
(12)


−

3Tang and Chen (2009) are able to obtain the bias expressions in terms of gamma and hypergeometric functions since when

 = 05 for any     | ∼ 2 () where  = 4−2,  = 
−(−) and  = 4−2


1− −(−)


 In our case, we

will have to leave the bias expression in more general terms (since we cannot rely on chi-square distributional assumptions,

something that only holds for  = 05).
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− 24(13)

−22
− (224 +

13
−

)
(14)

2
− + (

22

− 22

2
− )

(15)

−

− [
5


+
1
−

(
1


− 

2
)]
4(23)

−
+ [

454
2

− 214 + 35


− 3
−

(
1

− 5

2
)]
(24)

−

+ [
12


+


− 252

2
+

2
−

(
25
3
− 1

2
)]
(25)

−
+ (1 +

224


+
34


− )
(34)

−

+ (


2
− −

1


)
(35)42

−
+ (−23


+ 2

(4 + 1)2
2

+
23
2

− )
(45)

−
+ (−1)

for − 6= 1 and where all variances and covariances are of order −1 Also  (b− ) = 
¡
−2

¢
for  = 0

and assuming either (a)  is a series taking only positive values and   0 or (b)  is a general positive

integer

 (b− ) = (

P
=1 

−2
−1 

(1− −)
P

=1 
−2
−1

) +(

P

=1 
−2
−1 

(1− −)
P

=1 
−2
−1

) + 
¡
−1

¢

with  =
12 + 21 − 34 − 43


− 


(52 + 25) + (

−12)

Clearly the above is a somewhat cumbersome expression which cannot readily be simplified. However

for a given value for  all the individual terms could, in principle, be replaced by consistent estimates and

an estimated bias will be obtained. For the case considered by Tang and Chen (2009), when  = 1
2
 we

consider the following remark.

Remark 4 In the Appendix we show that if in Theorem 2 we set  = 05 we obtain the special case given

in Tang and Chen (2009, Theorem 3.1.3) for the bias of b. However, for  = 05, Tang and Chen (2009,

Theorems 3.1.3), obtain that the bias of b is of order −2 while our results in Theorem 2 contradict the

result of Tang and Chen (2009) in respect of the bias of b since we show that the bias is of order −1 when
  0

3.2 PROOF of Theorem 2

We proceed now to expand b and b First we start analyzing b and its main component b1
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3.2.1 BIAS EXPANSION OF b
Consistency of b1 We start with the expansion of b1 given by

b1 = P
=1 

(1−2)
−1

P
=1 

−2
−1 −

P
=1 

−2
−1

P
=1 

(1−2)
−1P

=1 
(2−2)
−1

P
=1 

−2
−1 −

³P
=1

³

(1−2)
−1

´´2
=

12 − 34 + 1e2 + 21 + e21 − 3e4 − 43 − e43
52 − 24 + 5e2 + 2e5 + e2e5 − 24e4 − e4e4

=



+
12 + 21 − 34 − 43


− 

2
(52 + 25) +

21 − 43


− 

2

¡
25 − 24

¢
+


3

¡
25

2
2 + 5225 − 25424 + 2525 + 22

2
5 − 21245 − 24524 − 24245 + 424

2
4

¢
− 1

2
(15

2
2 + 1225 − 21424 + 2512 + 2215 − 22414 − 3542 − 3245

+ 234
2
4 − 4532 − 4235 + 22434) + (7)

where  = 12 − 34,  = 52 − 24 and



= 1 which is shown below. Also with  fixed  is


¡
−1

¢
and we have used the notation given in Section 3 of the main paper.

Before proceeding to obtain the asymptotic bias of b1 we check that (7) is the same expansion as the

one used by Tang and Chen (2009, page 76, expression (A.1)) for the case of  = 05 For  = 05 we have

1 =  − 1 2 = −1−1 − 2 3 = 
−1
−1 − 3 4 = 1− 4 = 0 since 4 = 1

and 5 = −1 − 5 with 1 = 5

and then specializing equation (7) for  = 05

b1 = 12 − 3
12 − 1

+
12 + 21 − 3

12 − 1
− 12 − 3

(12 − 1)2
(12 + 25) +

21

12 − 1
− 12 − 3

(12 − 1)2
25

+
12 − 3

(12 − 1)3

¡
21

2
2 + 1225 + 2525 + 22

2
5

¢
− 1

(12 − 1)2
(21

2
2 + 1225 + 2112 + 2215 − 132 − 235) + (8)

and (8) reduces to (A.1) in Tang and Chen (2009, page 76) when setting 5 = 1 We can use also (7) to

check the consistency of b1 by showing that 1 =



as follows




=
12 − 34
52 − 24

=

¡
−5 + 

¡
1− −

¢
4
¢
2 −

¡
−4 + 

¡
1− −

¢
2
¢
4

52 − 24

=
−52 + 

¡
1− −

¢
42 − −24 − 

¡
1− −

¢
24

52 − 24
=

−52 − −24
52 − 24

= − = 1
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This indicates that b1 is a consistent estimator of 1 for any non-negative even integer 2 (generalizing the

result of Tang and Chen (2009, page 76 for  = 05).

Bias expansion of b1 Now we proceed to analyze the bias b1 of the case of non-negative even integer 

by using a general expansion using (7). In the expansion of b we will show that we need to consider two

terms: (b1 − 1) and (b1 − 1)
2 We shall first consider (b1 − 1) to order −1and since () = 0

 = 1 2 3 4 5 we find that when taking expectations we need only consider terms which involve a product

of the  We shall also use



= 1 (due to the consistency of ̂1 noted previously). Rearranging (7), we

find that

(̂1 − 1) =
12 + 21 − 34 − 43


− 

2
(52 + 25) + (


3

25 −
1

2
15)

2
2

+ (

2

+
4

2
4

3
− 234

2
)24 +


3

22
2
5 + (

1


− 25

1

2
)12

+224
1

2
14 − 1

2
2215 +

1

2
4532 − (454


3
− 214

1

2
− 1

2
35)24

+(2

3

52 −
1

2
12 −


2

)25 − (
1


+

224
2

)34 +
1

2
4235

−(2
3

(42 + 12)−
1

2
32)45 +

Finally taking expectations, noting that () = 0  = 1 2 3 4 5 yields

(̂1 − 1) = (

3

25 −
1

2
15)(2) + (


2

+
4

2
4

3
− 234

2
)(4) + (


3

22)(5)

+ (
1


− 25

1

2
)(12) + 224

1

2
(14)− 1

2
22(15) +

1

2
45(23)

− (454

3
− 214

1

2
− 1

2
35)(24) + (2


3

52 −
1

2
12 −


2

)(25)

+ (−224
2
− 1


)(34) +

1

2
42(35) + (

1

2
23 − 2


3

(42 + 12))(45) + (−1) (9)

We move now to the expansion of (b1 − 1)
2 From (7) we can show that

b1 − 1 =
12 + 21 − 34 − 43


− 

2
(52 + 25) + (

−12) (10)
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Then

(b1 − 1)
2 = (

12 + 21 − 34 − 43


)2 + (


2

(52 + 25))
2

−2(12 + 21 − 34 − 43


)(

2

(52 + 25)) + (
−1)

=
1

2
(12 + 21 − 34 − 43)

2+

µ

2

¶2

(25 + 52)
2−2

3
(25 + 52) (12 + 21 − 34 − 43) =

1

2
(21

2
2 + 21212 − 21324 − 21423 + 22

2
1 − 22314 − 22413 + 23

2
4

+ 23434 + 24
2
3) + (


2

)2(25
2
2 + 22

2
5 + 25225)− 2


3

(15
2
2 + 1225 + 2512

+ 2215 − 3524 − 2345 − 4312 − 2435) =
22
2

21 + [
21
2

+ (

2

)225 − 2

3

15]
2
2

+
24
2

23 +
23
2

24 + (

2

)222
2
5 + (

212
2

− 2

3

52)12 −
1

2
(224)13 − 2

1

2
2314

− 2

3

2215 + (
1

2
(−214) + 2


3

14)23 − (
231
2

− 2(

3

)53)24

+ [(

2

)2252 − 2

3

12]25 +
1

2
23434 + 2


3

4235 + 2

3

2345 + (
−1)

Hence (b1 − 1)
2 to order −1 is given by

(b1 − 1)
2 =

22
2

(1) +
1

4
(1 − 5)

2 (2) +
24
2

(3) +
23
2

(4) + 22(

2

)2(5)

+ 22(
1
2
− 5

3
)(12)− 1

2
(224)(13)− 223

1

2
(14)

− 222

3

(15)− 214(
1

2
− 

3
)(23)− 23(

1
2
− 5

3
)(24)

+ 22(
5

2


4
− 1

3
)(25) + 234

1

2
(34) + 242


3

(35) + 223

3

(45) (11)

It is now possible to find an approximation for the bias of ̂ to (−1).

Expansion of b Finally, in order to transform b1 back to b for a fixed  we first carry out a Taylor

expansion up to the second order term

b = −−1 log
³b1´ = −−1

∙
log (1) +

1

1

³b1 − 1

´
− 1

221

³b1 − 1

´2¸
+

¡
−2

¢
= − 1

1

³b1 − 1

´
+

1

221

³b1 − 1

´2
+

¡
−2

¢

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and therefore from the asymptotic bias of b1 and its second moment it is seen that

 (b− ) = − 1

1

³b1 − 1

´
+

1

221

³b1 − 1

´2
+

¡
−2

¢


where 
³b1 − 1

´
is given at (9) and 

³b1 − 1

´2
is given at (11). Note that

³b1 − 1

´
is 

¡
−12

¢
and

³b1 − 1

´2
is 

¡
−1

¢
 Therefore we conclude that the bias of b is of order −1, for any non-negative

integer  and also of order −1 and it is given by

(̂− ) =
−1
1

(̂1 − 1) +
1

221
(̂1 − 1)

2 + (−1) (12)

=
−1
1

[(

3

25−
1

2
15)(2)+ (


2

+
4

2
4

3
−234

2
)(4)+(


3

22)(5)+(
1


−25

1

2
)(12)

+ 224
1

2
(14)− 1

2
22(15) +

1

2
45(23)− (454


3
− 214

1

2
− 1

2
35)(24)

+ (2

3

52 −
1

2
12 −


2

)(25) + (−224
2
− 1


)(34) +

1

2
42(35)

+(
1

2
23−2


3

(42+12))(45)]+
1

221
[
22
2

(1)+
1

4
(1 − 5)

2 (2)+
24
2

(3)+
23
2

(4)

+ 22(

2

)2(5) + 22(
1
2
− 5

3
)(12)− 1

2
(224)(13)− 213

1

2
(14)

− 222

3

(15)− 214(
1

2
− 

3
)(23)− 23(

1
2
− 5

3
)(24) + 22(

25
4
− 1

3
)(25)

+ 234
1

2
(34) + 242


3

(35) + 223

3

(45)]

=
22(1)

221
2


+(15+
(1 − 5)

2

21
2


− 


25)
(2)

1
2


+
24(3)

221
2


+(234+
23
21
− −

4
2
4


)
(4)

1
2


+ (
2

221
− 


)
22(5)

1
2


− [1− 25

− 2

1
(
1

− 5

2
)]
(12)

1
− 24(13)

21
2


− (224 +
13
1

)
(14)

21
+ (

22

− 22

1
2


)
(15)

1

− [
5


+
1
1

(
1


− 

2
)]
4(23)

1
+ [

454
2

− 214 + 35


− 3
1

(
1

− 5

2
)]
(24)

1

+ [
12


+


− 252

2
+

2
1

(
5

2


3
− 1

2
)]
(25)

1
+ (1 +

224


+
34
1

)
(34)

1

+ (

21

− 1


)
(35)42

1
+ (−23


+ 2

(42 + 12)
2

+
23
21

)
(45)

1
+ (−1)
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3.2.2 BIAS EXPANSION OF b
From Proposition 1, we know that b = b2 We first focus on the consistency of b
Consistency of b To prove that b2 is a consistent estimator of  for any non-negative integer  and

where

 ( |) = − + 
³
1− −

´
with  =  | − |  (13)

Let 1 = 
(1−2)
−1 − 1 2 = 

−2
−1 − 2 3 = 

−2
−1 − 3 4 = 

(1−2)
−1 − 4 and 5 = 

(2−2)
−1 − 5 where

from (13)

1 = 
³


(1−2)
−1

´
= 

³

(1−2)
−1  (|−1)

´
= 

³

(1−2)
−1

³
−−1 + 

³
1− −

´´´
= −

³

(2−2)
−1

´
+ 

³
1− −

´

³

(1−2)
−1

´
= −5 + 

³
1− −

´
4

3 = 
³


−2
−1

´
= 

³

−2
−1 (|−1)

´
= 

³

−2
−1

³
−−1 + 

³
1− −

´´´
= −

³

(1−2)
−1

´
+ 

³
1− −

´

³

−2
−1

´
= −4 + 

³
1− −

´
2

2 = 
³

−2
−1

´
 4 = 

³

(1−2)
−1

´
and 5 = 

³

(2−2)
−1

´
 Also define  = −1

X
=1

 which is (
−1
2 ) and

let e = −1
X
=1

(−1) = +−1 (0 − ) = +

¡
−1

¢
 for  = 1  5 In addition let  = 12−34,

 = 52 − 24 Then we notice that using the relevant expectations given above

b2 =

P
=1

³


−2
−1 − b1(1−2)−1

´
³
1− b1´P

=1 
−2
−1

=⇒  lim b2 = 3 − −4
(1− −)2

=

¡
−4 + 

¡
1− −

¢
2
¢− −4

(1− −)2
=


¡
1− −

¢
2

(1− −)2
= 

where we find that b2 is a consistent estimator of  for any non-negative integer  and also when  = 05.

Bias expansion of b From (2), we can commence from

 = 1−1 +  (1− 1) +  (14)

since the estimator of 1 will depend on 2 we start from

 − 1−1 = (1− 1)2 + 
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i.e.

 − 1−1
1− 1

= 2 +


1− 1

and multiply by 
−2
−1 and sum over  to yieldP

=1 
−2
−1 − 1

P
=1 

1−2
−1

1− 1
= 2

X
=1


−2
−1 +

P
=1 

−2
−1 

1− 1

and solving for 2 yields

2 =

P
=1 

−2
−1 − 1

P
=1 

1−2
−1

(1− 1)
P

=1 
−2
−1

−
P

=1 
−2
−1 

(1− 1)
P

=1 
−2
−1

(15)

From (15), we deduce that

̂2 =

P
=1 

−2
−1 − ̂1

P
=1 

1−2
−1

(1− ̂1)
P

=1 
−2
−1

If 1 is known then

̂
∗
2 =

P
=1 

−2
−1 − 1

P
=1 

1−2
−1

(1− 1)
P

=1 
−2
−1

= 2 +

P
=1 

−2
−1 

(1− 1)
P

=1 
−2
−1

so that


=1 

−2
−1 

(1−1)


=1 
−2
−1

is the estimation error when estimating 2 if 1 is known.

Now consider the estimator for 2 when 1 is unknown so that 1 is replaced by ̂1

̂2 =

P
=1 

−2
−1 − ̂1

P
=1 

1−2
−1

(1− ̂1)
P

=1 
−2
−1

=

P
=1 

−2
−1 − 1

P
=1 

1−2
−1 − (̂1 − 1)

P
=1 

1−2
−1

(1− 1)
P

=1 
−2
−1 − (̂1 − 1)

P
=1 

−2
−1

where (̂1 − 1) is (
1
2 ) Then

̂2 =

P
=1 

−2
−1 − 1

P
=1 

1−2
−1 − (̂1 − 1)

P
=1 

1−2
−1

(1− 1)
P

=1 
−2
−1 (1− (̂1−1)

(1−1) ))

=

P
=1 

−2
−1 − 1

P
=1 

1−2
−1

1− 1)
P

=1 
−2
−1

(1− (̂1 − 1)

(1− 1)
)−1 − (̂1 − 1)

P
=1 

1−2
−1

(1− 1)
P

=1 
−2
−1

(1− (̂1 − 1)

(1− 1)
)−1

= (2 +

P
=1 

−2
−1 

1− 1)
P

=1 
−2
−1

)(1 +
(̂1 − 1)

(1− 1)
+ (

(̂1 − 1)

(1− 1)
)2 + )

−(̂1 − 1)
P

=1 
1−2
−1

(1− 1)
P

=1 
−2
−1

(1 +
(̂1 − 1)

(1− 1)
+ )
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Then

̂2 − 2 =

P
=1 

−2
−1 

(1− 1)
P

=1 
−2
−1

+ (2 +

P
=1 

−2
−1 

(1− 1)
P

=1 
−2
−1

) (
(̂1 − 1)

(1− 1)
+ (

(̂1 − 1)

(1− 1)
)2 +

−(̂1 − 1)
P

=1 
1−2
−1

(1− 1)
P

=1 
−2
−1

(1 +
(̂1 − 1)

(1− 1)
+ )

=

P
=1 

−2
−1 

(1− 1)
P

=1 
−2
−1

+ 2(
(̂1 − 1)

(1− 1)
+ (

(̂1 − 1)

(1− 1)
)2) +

P
=1 

−2
−1 

(1− 1)
P

=1 
−2
−1

(
(̂1 − 1)

(1− 1)
)

−(̂1 − 1)
P

=1 
1−2
−1

(1− 1)
P

=1 
−2
−1

−−(̂1 − 1)
2
P

=1 
1−2
−1

(1− 1)
2
P

=1 
−2
−1

+(
−1)

And therefore 
³b2 − 2

´
can be decomposed in six terms


³b2 − 2

´
=

2
³b1 − 1

´
(1− 1)

+
2

³b1 − 1

´2
(1− 1)

2
+(

P
=1 

−2
−1 

(1− 1)
P

=1 
−2
−1

) (16)

+(

³b1 − 1

´P
=1 

−2
−1 

(1− 1)
P

=1 
−2
−1

)−(
(̂1 − 1)

P
=1 

1−2
−1

(1− 1)
P

=1 
−2
−1

)−(
(̂1 − 1)

2
P

=1 
1−2
−1

(1− 1)
2
P

=1 
−2
−1

)

+
¡
−1

¢


where sinceP

1−2
−P

−2
−

=

P
−

−2
−P


−2
−

=

P
(−)

−2
−P


−2
−

+

P
(− −(−))

−2
−P


−2
−

=

P

−2
−P


−2
−

+

P
(− −(−))

−2
−P


−2
−

= 

P

−2
−P


−2
−

+

P
(− −(−))

−2
−P


−2
−

= 2 + 0(
− 1

2 )

the first term in (16) can be cancelled up to the desired order with the fifth term, and the second term can

be cancelled up to the desired order with the sixth term, leaving only the third and the fourth terms. Then

the bias of ̂2 when 1 is known, is the determining factor since


³b2 − 2

´
= (

P
=1 

−2
−1 

(1− 1)
P

=1 
−2
−1

) +(

³b1 − 1

´P
=1 

−2
−1 

(1− 1)
P

=1 
−2
−1

) + 
¡
−1

¢
 (17)

Recall that (


=1 

−2
−1 

(1−1)


=1 
−2
−1

) is the bias in estimating 2 when 1 is known. The natural way to
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expand this is to set (
P

=1 
−2
−1 ) = ∗ andP

=1 
−2
−1 

(1− 1)
P

=1 
−2
−1

=

P
=1 

−2
−1 

(1− 1)
∗ (1 +

P
=1 

−2
−1 − ∗

∗
)−1

=

P
=1 

−2
−1 

(1− 1)
∗ (1− (

P
=1 

−2
−1 − ∗

∗
) + (

P
=1 

−2
−1 − ∗

∗
)2 − )

=

P
=1 

−2
−1 

(1− 1)
∗ (1−

P
=1 

−2
−1 − ∗

∗
) + (

−1)

and so the bias to order −1 is obtained by taking the expectation. In effect we need to find

−(

P
=1 

−2
−1 

(1− 1)
∗

P
=1 

−2
−1 )

∗
)

= −[(

−2
0 1 + 

−2
1 2 + 

−2
2 3 + + 

−2
−1

(1− 1)
2 (∗)2

)(
−2
0 + 

−2
1 + 

−2
2 + + 

−2
−1)]

Note that  is correlated with 
−2
 and later values 

−2
+1   but not with earlier values. Hence the

above expectation requires the evaluation of the terms


³

−2
0 1(

−2
1 + 

−2
2 + + 

−2
−1)

´
+

³

−2
1 2(

−2
2 + + 

−2
−1)

´
+

³

−2
2 3(

−2
3 + + 

−2
−1)

´
+ +

³

−2
−2−1(

−2
−1)

´


The dependence between  and 
−2
+   = 1 2 3  decreases rapidly as is found in stationary (1)

models (see Kendall (1954)), so that each of these (− 1) terms is (1) and their sum is () To see this,

note that in the above there are only (− 1) distinct terms of interest since, for example, (
−2
 +1

−2
+1 )

is the same for  = 0 1  − 2 while (
−2
 +1

−2
+2 ) is the same for  = 0 1  − 3and so on. Hence to

evaluate the above we shall need to find (− 1) times (
−2
0 1

−2
1 ) (− 2) times (

−2
0 1

−2
2 ) (− 3)

times (
−2
0 1

−2
3 )..., and finally, (

−2
0 1

−2
−1)

To find a suitable approximation to the expectations we have proceeded by first finding a Taylor series

expansion for 
−2
 , for  = 1 − 1 about () =  as follows


−2
 =

1

2
− 2−2−1( − ) + 2(2+ 1)−2−2

( − )2

12

−2(2+ 1)(2+ 1)−2−3
( − )3

123
+ (−2−3)

=
1

2
[1− 2

( − )


+ 2(2+ 1)

1

2
( − )2

12
− 2(2+ 1)(2+ 1)

1

3
( − )3

123
+ (

1

2+3
)
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Then it is possible to find an approximation, for example, to (
−2
0 1

−2
1 )by first replacing 

−2
1

with the associated Taylor expansion and initially taking expectations conditional on 0 before obtaining

the unconditional expectation noting that the  are assumed normal, uncorrelated, with conditional mean

(|−1) = 0 and conditional variance   (|−1) = 052−1
¡
1− −2

¢

2
−1.

The resulting analysis is complex but it is found that the bias in estimating 2 when 1 is known, given

by (


=1 

−2
−1 

(1−1)


=1 
−2
−1

) is well approximated by

(

P
=1 

−2
−1 

(1− 1)
P

=1 
−2
−1

)

= − 1


[
2(1

2
2−1(1− −2))

(1− 1)
2(2+3)

+
2(2+ 1)(2+ 2)3(1

2
2−1(1− −2))2

6(1− 1)
2(2+4)(1− 31)

+
2(2+ 1)(2+ 2)321 ( − )2 (1

2
2−1(1− −2))

6(1− 1)
(2+5)(1− 31)

]

showing then that the bias of the long term mean parameter estimator is 
¡
−1

¢
. For the case  = 1

2
 the

above reduces to

(

P
=1 

−1
−1

(1− 1)
P

=1 
−1
−1

) = − 1


[
(1
2
2−1(1− −2))
(1− 1)

24
+

3(1
2
2−1(1− −2))2

(1− 31)(1− 1)
25

+
321 ( − )2 (1

2
2−1(1− −2))

(1− 1)
6(1− 31)

]

¥
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4 APPENDIX D. Proof of Theorem 1 and Corollaries 1 and 2.

4.1 Proof of Theorem 1

 () = −1

2

X
=1

Ã
ln
³
0 52−1

³
1− −2

´

2
−1

´
+

¡
 − −−1 − 

¡
1− −

¢¢2
0 52−1 (1− −2)2−1

!


 ()


=

X
=1

Ã
(2)−1 − −2

(1− −2)
−
¡
 − −−1 − 

¡
1− −

¢¢
− (−1 − )

052
2
−1−1 (1− −2)

!

+

X
=1

Ã
2−2

¡
 − −−1 − 

¡
1− −

¢¢2
2

2
−1−1 (1− −2)2

−
¡
 − −−1 − 

¡
1− −

¢¢2
2

2
−1 (1− −2)

!


 ()


=

X
=1

(
¡
 − −−1)− 

¡
1− −

¢¢ ¡
1− −

¢
0 52−1 (1− −2)2−1



 ()

2
= − 1

22

X
=1

Ã
1−

¡
 − −−1 − 

¡
1− −

¢¢2
20 5−1 (1− −2)2−1

!


2 ()

2
=

X
=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
22
− (1−−2)[−22−2]−−2[2−2]

(1−−2)2

−

£
−1

¡
1− −2

¢¤ £
−

¡
−−1 − −

¢
+
¡
 − −−1 − 

¡
1− −

¢¢
−

¤
− ¡ − −−1 − 

¡
1− −

¢¢
−

£−−2 ¡1− −2
¢
+ −12−2

¤
05(−1−)−1−122−1


−2(1−−2)2



+

−1
¡
1− −2

¢2 ⎡⎣ −2−2 ¡ − −−1 − 
¡
1− −

¢¢2
+−22

¡
 − −−1 − 

¡
1− −

¢¢ ¡
−−1 − −

¢
⎤⎦

−
h
−2

¡
 − −−1 − 

¡
1− −

¢¢2ih
−−2 ¡1− −2

¢2
+ −12

¡
1− −2

¢
2−2

i
(2)−122−1−2(1−−2)

4

− [1−−2][2(−−−1−(1−−))(−−1−−)]−(−−−1−(1−−))2[2−2]
2

2
−1(1−−2)

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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2 ()

2
=

X
=1

− ¡1− −
¢2

0 52−1 (1− −2)2−1


2 ()

4
=



24
−

X
=1

2
¡
 − −−1 − 

¡
1− −

¢¢2
6−1 (1− −2)2−1



2 ()

2
=

X
=1

− ¡ − −−1 − 
¡
1− −

¢¢ ¡
1− −

¢
0 54−1 (1− −2)2−1



2 ()

2
=

1

2

X
=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

£
−1

¡
1− −2

¢¤
2
¡
 − −−1 − 

¡
1− −

¢¢ ¡
−−1 − −

¢
−
³¡
 − −−1 − 

¡
1− −

¢¢2´ £
−12−2 − −2

¡
1− −2

¢¤
2

2
−1−2 (1− −2)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠


2 ()


=

X
=1

−1
¡
1− −2

¢ £
( − −−1 − 

¡
1− −

¢
)− +

¡
1− −

¢
(−−1 − −)

¤
+( − −−1 − 

¡
1− −

¢
)
¡
1− −

¢ £
−12−2 − −2

¡
1− −2

¢¤
0 52

2
−1−2 (1− −2)2



We start to show each of the components as a function of 



µ
− 1



2 ()

2

¶
=

¡
−2 + 2−2 − 1

¢2
22 (−2 − 1)

2
+

22−2

2−1 (1− −2)


µ³

(1−)
−1 − 

−
−1

´2¶




µ
− 1



2 ()

2

¶
= −22

³
 − 1

´³
 + 1

´−1


Ã
1


2
−1

!




µ
− 1



2 ()

4

¶
= −

µ
1

24
− 1

4

¶
=

1

24




µ
− 1



2 ()



¶
= − 2−

2 (1 + −)

³

(1−2)
−1 − 

−2
−1

´




µ
− 1



2 ()

2

¶
= (

¡
 − −−1 − 

¡
1− −

¢¢ ¡
1− −

¢
0 54−1 (1− −2)2−1

) = 0

due to the assumption that (|−1) = 0



µ
− 1



2 ()

2

¶
=

−2

2 (1− −2)
− 1

22

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So we get that, as a function of 

Λ = 

µ
− 1



2 ()

́

¶
=

⎛⎜⎜⎜⎝
  

  0

 0 

⎞⎟⎟⎟⎠ 

with

 =

¡
−2 + 2−2 − 1

¢2
22 (−2 − 1)

2
+

22−2
µ³


(1−)
−1 − 

−
−1

´2¶
2−1 (1− −2)

;  = −
2−

³

(1−2)
−1 − 

−2
−1

´
2 (1 + −)



 =
−2

2 (1− −2)
− 1

22
;  =

2
¡
 − 1

¢
2 ( + 1)



Ã
1


2
−1

!
;  =

1

24


We can show that Λ = 
³
− 1


2()

́

´
 0 is positive definite since for any non-zero column vector  with

entries   and  we have ́Λ  0¥

4.2 PROOF of Corollary 1 when  = 0

Now, we check for  = 0



µ
− 1



2 ()

2

¶
=

¡
−2 + 2−2 − 1

¢2
+ 222−2

¡
1− −2

¢
22 (1− −2)2

since for  = 0

 − −−1 − 
³
1− −

´
= 

 −  = − (−1 − ) + 

 ( − ) = − (−1 − ) + () 

( − )2 =
³
− (−1 − ) + 

´2
= −2 (−1 − )2 + 2− (−1 − )  + 2 

 ( − )2 = −2 (−1 − )2 + 2− ((−1 − ) ) +
¡
2
¢
³

1− −2
´
 ( − )2 = 0 52−1

³
1− −2

´
=⇒  ( − )2 = 0 52−1

from (2). Also



µ
− 1



2 ()

2
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³
 − 1
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Moreover



µ
− 1



2 ()

4

¶
=

1

24


and



µ
− 1



2 ()



¶
= 0

since  ( − ) = − (−1 − ) +  () from (2);  () = −0 + 
¡
1− −

¢
and  ( − ) =

−0 − − = 0 since we assume that the initial condition 0 = . Also



µ
− 1



2 ()

2

¶
=

−2
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

Finally



µ
− 1



2 ()

2

¶
= 0

Finding now the inverse of⎛⎜⎜⎜⎜⎜⎝
(−2+2−2−1)2+222−2(1−−2)

22(1−−2)2
0 −2

2(1−−2) −
1

22

0
2(−1)
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0

−2
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1
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0 1
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⎞⎟⎟⎟⎟⎟⎠
we obtain Ω1

Ω1 =

⎛⎜⎜⎜⎜⎝
−2

¡
2 − 1

¢
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2

0
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22(2−1)

⎞⎟⎟⎟⎟⎠ 

¥

4.3 STATEMENT AND PROOF of Corollary 2

Corollary 2. For a stationary Vasicek (1977) process, as  −→∞  → 0  =  →∞, for some   2

 
1
 →∞ and for = 0 , let b = (̂ b b2)́ and e = (  2)́ then



³b − e´ −→ (0Ω2) where

 = 
³√

 
√
 
√

´
Ω2 = 

©
2 2−2 24

ª

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Proof of Corollary 2. For  = 0 and when  → 0, applying l’Hôpital´s rule,  =  and pre-

multiplying by  (justifying the lower convergence rate because otherwise the term will explode)



µ
− 1



2 ()

2

¶−1
−→0

= 2

Also, applying l’Hôpital´s rule and pre-multiplying by Ã
2

¡
 + 1

¢
2 ( − 1)

!
−→0

= 2−2

Moreover, applying l’Hôpital´s rule three times, we find that we do not need to premultiply by  the last

term of the diagonal

Ã
4
¡
222

¡
1 + 2

¢
+ 4

¡
1− 2

¢
+ 4 − 22 + 1

¢
22 (2 − 1)

!
−→0

= 24

and all the off-diagonal terms are zero since for a fixed , the only one that was different from zero in

Corollary 1, when  → 0

Ã
−

2
¡
1− 2 + 2

¢
2

!
−→0

= 0

¥

5 APPENDIX E. Expansions for the bias parameter estimators in the

general CKLS model when →∞ and  is fixed. PMLEs interpreted

as Instrumental Variable (IV) estimators

5.1 The estimator of 1

5.1.1 For  = 0

From (2), we can commence from

 = 1−1 +  (1− 1) +  (18)

Then the regression of  on −1 yields the Vasicek (1977) estimator of 1

b1 =

P
=1 −1 − −1P
=1 

2
−1 −  (−1)2

= 1 +

P
=1 (−1 − −1) P
=1 (−1 − −1)2


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where
P

=1 () =  is an unbiased estimator for  Then b1 is biased as would be expected since the

numerator is correlated with the denominator and the bias is of order −1 In fact, the expression (2.6)

in Tang and Chen (2009, page 67) indicates that this is true. The estimator can be interpreted as an IV

estimator where the instrumental variable is (−1 − −1)  Remember the results from Proposition 1 (see

(4) for  = 0).

5.1.2 For  = 05

The Cox, Ingersoll and Ross (1985) (CIR) estimator is also an IV estimator with instrumental variable³
−1−1 − −1−1

´
 To see this, write (18) as

X
=1



³
−1−1 − −1−1

´
= 1

X
=1

−1
³
−1−1 − −1−1

´
+  (1− 1)

X
=1

³
−1−1 − −1−1

´
+

X
=1

³
−1−1 − −1−1

´


where, since
P

=1

³
−1−1 − −1−1

´
= 0

X
=1



³
−1−1 − −1−1

´
= 1

X
=1

−1
³
−1−1 − −1−1

´
+

X
=1

³
−1−1 − −1−1

´


from which

1 =

P
=1 

−1
−1 − 

−1
−1P

=1 −1
³
−1−1 − −1−1

´ − P
=1

³
−1−1 − −1−1

´
P

=1 −1
³
−1−1 − −1−1

´
and

̂1 =

P
=1 

−1
−1 − 

−1
−1P

=1 −1
³
−1−1 − −1−1

´ =

P
=1 

P
=1 

−1
−1 − 

P
=1 

−1
−1P

=1 −1
P

=1 
−1
−1 − 2



which is the result in (4) for  = 05 Note that

b1 = 1 +

P
=1

³
−1−1 − −1−1

´
P

=1 −1
³
−1−1 − −1−1

´ 
and also that

(1− ̄−1−1−1) = (1− ̄−1−1−1)[1 +
((1− ̄−1−1−1)−(1− ̄−1−1−1))

(1− ̄−1−1−1)
]

26



Then P
=1

³
−1−1 − −1−1

´


(1− ̄−1−1−1)
=

P
=1

³
−1−1 − −1−1

´


(1− ̄−1−1−1)
[1− ((̄−1−1−1)−(̄−1−1−1))

(1− ̄−1−1−1)
]−1

=

P
=1

³
−1−1 − −1−1

´


(1− ̄−1−1−1)
[1 +

((̄−1−1−1)−(̄−1−1−1))

(1− ̄−1−1−1)
+ (

((̄−1−1−1)−(̄−1−1−1))

(1− ̄−1−1−1)
)2 + ]

The first of these terms isP
=1

³
−1−1 − −1−1

´


(1− ̄−1−1−1)
=

P
=1 

−1
−1

(1− ̄−1−1−1)
− −1−1

P
=1 

(1− ̄−1−1−1)

where the leading term has expectation zero and can be ignored. The first bias term is

−[
−1−1

P
=1 

(1− ̄−1−1−1)
] = −[

1


P
=1 

−1
−1

P
=1 

(1− ̄−1−1−1)
] = − 1



(
P

=1 
−1
−1

P
=1 )

(1− ̄−1−1−1)

= − 1


[
(1(

−1
0 + −11 + −12 + + −1−1)

(1− ̄−1−1−1)
+

(2(
−1
0 + −11 + −12 + + −1−1)

(1− ̄−1−1−1)

++
((

−1
0 + −11 + −12 + + −1−1)

(1− ̄−1−1−1)
]

where  is correlated with −1  −1+1  
−1
−1 but is uncorrelated with −1−  = 1 2  Hence we need to

evaluate − 1 terms as follows

−[
1


P
=1 

−1
−1

P
=1 

(1− ̄−1−1−1)
] = − 1


[
(1(

−1
1 + −12 + + −1−1)

(1− ̄−1−1−1)
+
(2(

−1
2 + + −1−1)

(1− ̄−1−1−1)
++

(−1−1−1)

(1− ̄−1−1−1)
]

(19)

The correlations between  and future values −1+   = 1 2  will quickly diminish so that all the

expectations in (19) are (1) and their sum will be () Finally we may conclude that the leading bias

term

−[
1


P
=1 

−1
−1

P
=1 

(1− ̄−1−1−1)
]

is (−1)

The above analysis has much in common with the corresponding result for the least squares estimator of

the slope coefficient in stationary AR(1) model where the bias is well known to be of order −1 (see Kendall

(1954)). Therefore we conclude that the bias of ̂1 is of 
¡
−1

¢
 This result agrees with the bias of b1

given in expression (A.12) in Tang and Chen (2009, page 77).
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5.2 The estimator of 2

5.2.1 For  = 0

In the Vasicek (1977) case, we commence again from (18). Simple rearrangement yieldsP
=1 ( − 1−1)
 (1− 1)

= 2 +

P
=1 

 (1− 1)
(20)

If 1 is known then

̂
∗
2 =

P
=1 ( − 1−1)
 (1− 1)

(21)

yields and unbiased estimator since

̂
∗
2 = 2 +

P
=1 

 (1− 1)
(22)

and  (
P

=1 ) = 0 However, if 1 is not known, we can replace it with b1 which is biased to order −1 so

that now the PMLE for 2 is

b2 =
P

=1

³
 − b1−1´


³
1− ̂1

´ (23)

It is now straightforward to show that this estimator is unbiased to order −1 supporting Theorem 3.1.1 in

Tang and Chen (2009, page 68).

5.2.2 For  = 05

For the CIR process multiply (18) by −1−1 so that

X
=1


−1
−1 = 1

X
=1

−1−1−1 + 2 (1− 1)

X
=1

−1−1 +
X
=1

−1−1 = 1 + 2 (1− 1)

X
=1

−1−1 +
X
=1

−1−1

and P
=1 

−1
−1 − 1

(1− 1)
P

=1 
−1
−1

= 2 +

P
=1 

−1
−1

(1− 1)
P

=1 
−1
−1



If 1 is known then P
=1 

−1
−1 − 1

(1− 1)
P

=1 
−1
−1

= ̂
∗
2

In this case


³
̂
∗
2 − 2

´
= 

Ã P
=1 

−1
−1

(1− 1)
P

=1 
−1
−1

!
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which is 
¡
−1

¢
and so ̂

∗
2 has a bias of order 

−1 since numerator and denominator are correlated. However

since 1 is unknown it can be replaced with a PML estimate b1 and then an operational estimator is

b2 = P
=1 

−1
−1 − b1³

1− b1´P
=1 

−1
−1

Since the estimator has a bias of 
¡
−1

¢
when 1 is known, it will have a bias at least as large when 1 is

replaced by b1. However Tang and Chen (2009, Theorem 3.1.3) state that 
³b2 − 2

´
= 

¡
−2

¢
and our

analysis indicates that this is not correct. More specifically, write

b2 = (
−1

P
=1 

−1
−1 − 1

(1− 1)
−1P

=1 
−1
−1
−

³b1 − 1

´
(1− 1)

−1P
=1 

−1
−1

)(1 +

³b1 − 1

´
(1− 1)

+

³b1 − 1

´2
(1− 1)

2
+ )

= (2 +

P
=1 

−1
−1

(1− 1)
P

=1 
−1
−1
−

³b1 − 1

´
(1− 1)

−1P
=1 

−1
−1

)(1 +

³b1 − 1

´
(1− 1)

+

³b1 − 1

´2
(1− 1)

2
+ )

= 2 +
2

³b1 − 1

´
(1− 1)

+
2

³b1 − 1

´2
(1− 1)

2
+ +

P
=1 

−1
−1

(1− 1)
P

=1 
−1
−1

+

³b1 − 1

´P
=1 

−1
−1

(1− 1)
2P

=1 
−1
−1

−

³b1 − 1

´
(1− 1)

−1P
=1 

−1
−1
−

³b1 − 1

´2
(1− 1)

2 −1
P

=1 
−1
−1

+ 
¡
−1

¢


Then


³b2 − 2

´
=

2
³b1 − 1

´
(1− 1)

+
2

³b1 − 1

´2
(1− 1)

2
+ 

+(

P
=1 

−1
−1

(1− 1)
P

=1 
−1
−1

) +(

³b1 − 1

´P
=1 

−1
−1

(1− 1)
2P

=1 
−1
−1

)

−(

³b1 − 1

´
(1− 1)

−1P
=1 

−1
−1

)−(

³b1 − 1

´2
(1− 1)

2 −1
P

=1 
−1
−1

) + 
¡
−1

¢


which contains several terms of order −1 Therefore our analysis indicates that the result in Tang and Chen

(2009, Theorem 3.1.3), where it is stated that 
³b2 − 2

´
= 

¡
−2

¢
 is incorrect for  = 05
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6 APPENDIX F. Proofs of the results of the IV approach

6.1 Bias expansion of b1. Using an IV approach

Now we proceed to analyze the bias b1 of the case of non-negative integer  by using an IV approach to

show things in a very clear way. Commencing from (18)

 = 1−1 +  (1− 1) +  (24)

since the estimator of 1 will depend on 2 we start from

 − 1−1 = (1− 1)2 + 

i.e.

 − 1−1
1− 1

= 2 +


1− 1

and multiply by 
−2
−1 and sum over  to yieldP

=1 
−2
−1 − 1

P
=1 

1−2
−1

1− 1
= 2

X
=1


−2
−1 +

P
=1 

−2
−1 

1− 1

and solve for 2 to yield

2 =

P
=1 

−2
−1 − 1

P
=1 

1−2
−1

(1− 1)
P

=1 
−2
−1

−
P

=1 
−2
−1 

(1− 1)
P

=1 
−2
−1

(25)

from (5). Now write

 − 1−1 =

P
=1 

−2
−1 − 1

P
=1 

1−2
−1P

=1 
−2
−1

−
P

=1 
−2
−1 P

=1 
−2
−1

+ 

Now use 
(1−2)
−1 as an IV variable and sum over , so that

X
=1


(1−2)
−1 − 1

X
=1


(2−2)
−1 =

X
=1


1−2
−1 [

P
=1 

−2
−1 − 1

P
=1 

1−2
−1P

=1 
−2
−1

]

−
P

=1 
1−2
−1P

=1 
−2
−1

X
=1


−2
−1  +

X
=1


1−2
−1 

and then

1 =

P
=1 

(1−2)
−1

P
=1 

−2
−1 −

P
=1 

−2
−1

P
=1 

(1−2)
−1P

=1 
(2−2)
−1

P
=1 

−2
−1 −

³P
=1 

(1−2)
−1

´2
+

P
=1 

(1−2)
−1

P
=1 

−2
−1  −

P
=1 

−2
−1

P
=1 

(1−2)
−1 P

=1 
(2−2)
−1

P
=1 

−2
−1 −

³P
=1 

(1−2)
−1

´2
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Finally

̂1 =

P
=1 

(1−2)
−1

P
=1 

−2
−1 −

P
=1 

−2
−1

P
=1 

(1−2)
−1P

=1 
(2−2)
−1

P
=1 

−2
−1 −

³P
=1 

(1−2)
−1

´2
i.e. b1 = 1 −

P
=1 

1−2
−1

P
=1 

−2
−1  −

P
=1 

−2
−1

P
=1 

(1−2)
−1 P

=1 
(2−2)
−1

P
=1 

−2
−1 −

³P
=1 

(1−2)
−1

´2 (26)

where numerator and denominator are correlated so that the bias should be 
¡
−1

¢
for any non-negative

integer  

6.2 Bias expansion of b Using an IV approach

For  = 0 from (23), it is straightforward to show that this estimator is unbiased to order −1 supporting

Theorem 3.1.1 in Tang and Chen (2009, page 68). We proceed now to expand b2 for any  being a positive

integer and also when  = 05

b2 =

P
=1

³


−2
−1 − b1(1−2)−1

´
³
1− b1´P

=1 
−2
−1

=

P
=1

³


−2
−1 − b1(1−2)−1

´³
1− b1´−1


³P

=1 
−2
−1

´ ∙
1 +


=1 

−2
−1−(


=1 

−2
−1 )

(


=1 
−2
−1 )

¸ 

where


=1 

−2
−1−(


=1 

−2
−1 )

(


=1 
−2
−1 )

is 

¡
−12

¢
 Hence

b2 =

P
=1

³


−2
−1 − b1(1−2)−1

´³
1− b1´−1 ∙1 + 

=1 
−2
−1−(


=1 

−2
−1 )

(


=1 
−2
−1 )

¸−1

³P

=1 
−2
−1

´
where we may find an asymptotic expansion. Notice that 

³P
=1 

−2
−1

´
= 2 (so

³P
=1 

−2
−1

´
 is

an unbiased estimator for 2) and
³
1− b1´−1 = (1− 1)

−1
³
1− (

³b1 − 1

´
 (1− 1))

−1
´
 which can be

easily expanded noting that
³b1 − 1

´
is 

¡
−12

¢


31



Therefore for 1 6= 1

b2 =

P
=1

³


−2
−1 − 1

(1−2)
−1

´
(1− 1)

−1
³
1− (

³b1 − 1

´
 (1− 1))

−1
´ ∙

1 +


=1 

−2
−1−2
2

¸−1
2

= (1− 1)
−1

P
=1

³


−2
−1 − 1

(1−2)
−1

´
2

"
1 +

P
=1 

−2
−1 − 2

2

#−1

+(1− 1)
−1 (

³b1 − 1

´
 (1− 1))

P
=1

³


−2
−1 − 1

(1−2)
−1

´
2

"
1 +

P
=1 

−2
−1 − 2

2

#−1

+(1− 1)
−1 (

³b1 − 1

´
 (1− 1))

2

P
=1

³


−2
−1 − 1

(1−2)
−1

´
2

"
1 +

P
=1 

−2
−1 − 2

2

#−1


and then to order −1 we have for 1 6= 1

b2 = (1− 1)
−1

P
=1

³


−2
−1 − 1

(1−2)
−1

´
2

⎡⎣1 + P
=1 

−2
−1 − 2

2
+

ÃP
=1 

−2
−1 − 2

2

!2
⎤⎦

+(1− 1)
−1 (

³b1 − 1

´
 (1− 1))

P
=1

³


−2
−1 − 1

(1−2)
−1

´
2

"
1 +

P
=1 

−2
−1 − 2

2

#

+(1− 1)
−1 (

³b1 − 1

´
 (1− 1))

2

P
=1

³


−2
−1 − 1

(1−2)
−1

´
2

where
³b1 − 1

´
is 

¡
−12

¢
and

³b1 − 1

´2
is 

¡
−1

¢
.

7 APPENDIX G

7.1 Evidence of the order of the bias expressions

In relation to the order of the biases, our Theorem 2 indicates that the result in Tang and Chen (2009,

Theorem 3.1.3), where it is stated that  (b− ) = 
¡
−2

¢
 is incorrect for  = 05 We can check the

simulation results in Tang and Chen (2009) to see if their simulations shed any light on the biases of the long

term mean parameter estimator . Examining the simulation results for the CIR model ( = 05) which

appear on page 73 (Table 1) in the  column, simulated biases are given for sample sizes  = 120 300 500

and 2000. Also approximations to the bias are given in parenthesis which are described as being predicted

from the theoretical expansions. If the bias is of order −1 then doubling the sample size would be expected
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to yield a ratio of the new bias to the original of 0.5 whereas if the bias is of order −2 the corresponding

bias ratio is 0.25. When the sample size is increased from 120 to 300 the corresponding ratios are 0.4 and

0.16 and if the sample size increases from 500 to 2000 the ratios are 0.25 and 0.063 respectively. We shall

use these ratios to check whether the results favour a suggested bias of order −1 as opposed to order −2

Examining the results presented for CIR Model 1 in Tang and Chen (2009), it is seen that when the

sample increases from 120 to 300 the bias ratio based of predicted biases is 0.395 whereas the ratio for a

bias of order −1 is very close at 0.4. The ratio for the simulated biases however, does not show any pattern

since the bias is shown as hardly changing when  is increased from 120 to 300. A clearer picture emerges

when the sample size increases from 500 to 2000 so that the bias ratio for a bias of order −1 is 0.25. The

ratio of simulated biases is 0.33 while the ratio of the predicted biases is 0.547. On the other hand if the

bias is of order −2 the suggested bias ratio is 0.063; hence a bias of order −1 is supported.

Turning to the results for CIR Model 2 in Tang and Chen (2009), the evidence for a bias of order −1 is

even stronger. Increasing the sample size form 120 to 300 the simulated bias ratio is 0.745 and the predicted

bias ratio is 0.412 while for a bias of order −1 a ratio of 0.4 is anticipated. This is not especially close to

the simulated bias ratio but if the bias is of order −2 the anticipated ratio is 0.16. Finally if the sample size

is increased from 500 to 2000, suggesting a bias ratio of 0.25 for a bias of order −1 it is seen that the ratio

of simulated biases is 0.249 while the ratio of predicted biases is 0.244. Hence a very close correspondence

indeed. For a bias of order −2 the suggested bias ratio is 0.063. Hence these results clearly indicate that

the bias is of order −1
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