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1 Introduction

Continuous time models have been proved to be very successful in economic theory (see e.g. Yu (2014)).
Continuous time diffusion processes have been commonly and successfully used in economics and finance
to model stochastic dynamics of financial securities following the paper by Black and Scholes (1973) which
established the foundation of option pricing theory. An important family of diffusion processes is the general
linear drift process proposed by Chan, Karolyi, Longstaff and Sanders (1992, CKLS from now onwards) where
the diffusion function can accommodate a wide range of patterns of volatility. In this model, the diffusion
function follows a form where a constant elasticity of variance (CEV) parameter p plays a crucial role (Bu
et al (2011) have shown its usefulness, for example, to encompass a number of existing models that have
closed-form likelihood functions). Important members of this family of models are the Vasicek (1977) model
with p = 0; the CIR model (Cox et al (1985)) with p = 0.5; the Brennan and Schwartz (1980) model with
p =1, and the CIR- VR model (Cox et al. (1980) and Ahn and Gao (1999)) with p = 1.5.

It is well known in the literature via simulation studies (see e.g. Ball and Torous (1996) and Yu and
Phillips (2001)) that the estimation of the drift parameters in the CKLS model yields biased estimators
especially for the mean reversion parameter both in finite discrete samples and in large in-fill samples.
Currently there are five papers in relation to this issue: (1) Tang and Chen (2009) derived analytical
expressions for approximating the bias and variance of pseudo maximum likelihood estimators (PMLES)
using Nowman “s (1997) method that can be used to improve the estimation of the CKLS model. But their
expressions are only valid for p = 0 and 0.5 and the performance of their bias formula is unsatisfactory in
the near unit root situations (this corresponds to the slow mean reversion case which is empirically realistic
for financial time series). (2) Yu (2012) adds an extra term to the bias approximations of Tang and Chen
(2009) and this helps to improve the performance of the bias expressions when the speed of mean reversion
is slow. But only the case where p = 0 is analyzed and only the bias of the estimator of the mean reversion
parameter is given. (3) Iglesias (2014) shows that the expressions provided by Tang and Chen (2009) and
Yu (2012) are not only useful for bias correction purposes in estimating continuous time models but also for
testing using a t-statistic in the near unit root situation. Again, only the model where p = 0 is analyzed.
And finally, (4) Bao et al (2015) give a bias approximation for the mean reversion estimator in continuous-
time Lévy processes while more recently, (5) Bao et al (2017) focus on the case of p = 0 while deriving the

exact distribution of the MLE. However, in practice, models with p different from 0 and 0.5 are needed; and



Ball and Torous (1996, 1999), Ahn and Gao (1999) and Czellar, Karloyi and Rochetti (2007) in particular
show that this is the case.

In this paper, we plan to extend the results of the previous five papers in several directions: (1) we find
explicit closed form solutions for the pseudo maximum likelihood estimators (PMLEs) in a general CKLS
model for p > 0 and we also provide the asymptotic theory. (2) We derive analytical bias expressions that
can be used when estimating a general CKLS (1992) model and we show the usefulness of the PMLEs versus
alternative estimation methods such as the jackknife of Phillips and Yu (2005) and finally (3), we specialize
our results for p = 0 and 0.5 to compare them with those of Tang and Chen (2009).

The plan of the paper is as follows. Section 2 presents the model that is the object of our study, the
closed form solutions of the PMLEs and the asymptotic theory. Section 3 refers to the bias expansions
for the PMLEs. Section 4 provides simulation results to show the usefulness of the bias corrected PMLESs.

Finally, Section 5 concludes. A supporting information file contains the proofs of our main results.

2 Model, estimators and asymptotic theory

Following CKLS (1992), we analyze the stochastic process of CEV with mean-reverting drift
dry = Kk (u — x¢) dt + oz} d By, (1)

where By is a standard Brownian motion, o is a volatility coefficient, x is the mean reversion parameter
and p represents the long term mean. Parameter p > 0 shows the degree to which the standard deviation
ozy depends on z; (i.e. the elasticity of volatility with respect to x;). Examples already well known in
the literature are p = 0 (Vasicek (1977)), p = 0.5 (Cox, Ingersoll and Ross (1985)), p = 1 (Brennan and
Schwartz (1980)), and p = 1.5 (CIR VR model, Cox et al. (1980) and Ahn and Gao (1999), known as the
inverse square-root model). We assume that x > 0. See for example Hurn, Jeismand and Lindsay (2007) for
a review of different estimation methods, and note that for cases different from p = 0 and 0.5, the behaviour
of Nowman ’s estimator has not yet been considered in the literature.

Let zg, xs, ..., Tns be discrete observations from the process (1) while ¢ is the sampling interval, n is the
sample size and we define nd = 7. In order to estimate (1), we use the discrete form. Nowman (1997), using
Bergstrom “s (1984) approximation, discretized the diffusion function computing the following approximate
discrete time series model

T =e "1 1+ p (1 — e*‘s"‘> + &4, (2)
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where the e; are assumed normal, uncorrelated, with conditional mean E(e¢|z:—1) = 0 and conditional

variance

Var (g¢|zi—1) = 0.50%k 71 (1 - 6726'{> 2. (3)

From (3), it is clear that if the time series can take negative values, we need p to be a general non-

negative integer. If we denote 6 = (k,u,02), the PMLEs are given by maximizing the conditional pseudo

log-likelihood LogL (0) = -1 57 | <ln Var (e¢|lx—1) + L) , where

Var(et|zi—1)

PROPOSITION 1. Assuming €; to be Gaussian in (2) and either (a) x; is a non-negative series and p > 0

or (b) z; is unrestricted and p is a general non-negative integer, the PMLEs ®, fi and 6> are given as

R=—0"1log <B1> = BQ, 52 = %, where we condition on the starting value and
M1
(1—2p) -2 2 (1— 2 )
Bl _ Dot THTy 1pZt1 R 133t33t1p2t1 ’ (4)

DANEC SRS DA (S ol 1(x§112”>))

> (1-2p) n
L X (11(%;1)12’61121 ) B=n Y (BB (1-B)) w Y. ©

If in Proposition 1 we set p = 0, and p = 0.5, we obtain the special cases given in Tang and Chen (2009,
pages 66-67, equations (2.5) and (2.13)). Note that for p = 0.5 we are in the case of the time series not
taking negative values. Moreover, moments of & may not exist at all since Bl may be negative, and this is

a characteristic of Nowman ‘s estimator. Also, from Proposition 1 we have the following two Remarks

Remark 1 In Proposition 1, we need p to be known although obviously it would be more general if we could
find an estimator for p. We have tried that, but the closed-form expressions we obtained for Nowman s

method become intractable.

Remark 2 [t is important to note that from Proposition 1 and (3), if we want to estimate the CKLS model
with our PMLFEs and to use them with a series that may take positive and negative values, we need p to be

_ . . . d —2p .
a non-negative integer, since we need x;, * to exist.

We generalize now the asymptotic theory of Nowman’s estimator in Tang and Chen (2009) in the

following



L as n — oo while § (the sampling interval) is fived, and

THEOREM 1. For a stationary CKLS process
assuming either (a) z; is a series taking only non-negative values and p > 0 or (b) x; is unrestricted and
p is a general non-negative integer, let 6 = (7,70, 32, and 6 = (k,p, 02 — B(0,6)), where B (6,6) is the

inconsistency term related to 0% and let E(g¢|ri—1) = 0. Then /n <5—5> LR N(0,9Q) where Q = At

Z E 6 2 262 —25/§E ( (1—=p) *P)z
_ _ e z, P —px;’
; — _18%LogL(6)\ _ = = - (e 266 4 21be 2"”“571) ( t—1 t—1 )
U/Zth A = E( n 9000 - B D O ) a'nd A - 2[{2(6_2"671)2 + 0.211—1(1,6726/@) )
C 0 F
sk 1-2 -
B = 2nde”" E(”Cg—l p)_“’”t—21p>. T — e 1. D= 2“(65”*1)]3 1\, F_ 1
- 02(14—6_5”) ! B 02(1—6—25”) © 2ko%) - 02(65"4-1) Effl ’ - 20"

Also for p=10, B(0,) =0.

There are many alternative estimators such as the Ait-Sahalia (1999, 2008) approximate likelihood
method, simulation based methods (see for example Beskos et al (2009)) and many more that we may use
to estimate the parameters in (1). However, the main advantage of Nowman s (1997) method lies in its
analytical tractability which justifies its use as an estimator that is studied and used in many papers such as
in Tang and Chen (2009). Moreover, we show in Section 4 that Nowman “s method can be useful in practice
and why it makes sense to analyze its asymptotic and finite sample properties. Tang and Chen (2009)
propose the use of the bootstrap method and Bianchi and Cleur (1996) use indirect inference. But both the

indirect inference and bootstrap methods are computationally expensive versus Nowman “s method.

3 Expansions for the bias parameter estimators in the CKLS model

We proceed now to extend the results of Tang and Chen (2009, Theorems 3.1.1 and 3.1.3, pages 68-69) by
deriving analytical bias expressions that can be used in practice when estimating a general CKLS (1992)

model. Following Tang and Chen (2009, proof of Theorem 3.1.3) we first note that from (2), then

B (alei) = e ™% + p (1= e79%) with 8y = 3] ~ ] (6)
1-2 -2 -2 1-2 2-2
Let t1; = xixz(f P _ e, to; = xiff — g, t3; = a:,-a:l-ff — g, tag = 331('71 P _ gy and ts; = xz(fl P _ s, where

_ _ _ _ —2 1-2
from (6), puy = e % pus + pu (1 — %) pg, pig = € pg+ pu (1 — e %) pig, pig = E (f%f) e =FE (1‘§_1 p)>

'See Conley, Hansen, Luttmer and Scheinkman (1997) for details of primitive conditions under which the CEV process is

stationary and ergodic. Broze et al (1995) also provided conditions for second-order stationarity and ergodicity.



n n

and py = F <$§2__12P)> . Also define t, = n~! Ztm- which is Op(n%l) and let t, = n~t Zta(i,l) = tq +
i=1 i=1

n=t (tao = tan) = ta+ Op (n71), for a = 1,..,5. In addition let 1, = puypiy — prafiy, pg = frshia — 3.

In what follows, Theorem 2 shows the consistency and bias approximations when estimating &, j« and o2 in
model (2). Recalling that & = —5 ' log ([3 1) , our approach to analysing the bias of % is to first find a suitable
expansion for 3 1,which subsumes the expansion used by Tang and Chen (2009), and then find an appropriate
expansion for the transform. We first find that £ — kK = —ﬁ <Bl - 61> + Tlﬁf <Bl — ﬁ1>2 + O (n™?) from

which we obtain the following

THEOREM 2. For a stationary CKLS process, as n — oo while § is fized and assuming either (a) x; is
a series taking only non-negative values and p > 0 or (b) x4 is unrestricted and p is a general non-negative

integer, and E(ei|xi—1) = 0, the bias of the estimator K is given by

,u% _ 4/~Lu:ul2l) 'UCLT'(t4)

2
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for e = 1 and where all variances and covariances are of order n™'. Also E (i — p) = O (n_2) for p=0,

+

and assuming either (a) x; is a series taking only positive values and p > 0 or (b) p is a general positive

mteger
= -2
Fy o ie
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(L—em0) > o7
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d
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The approximate discrete time series model used here given in (2) has the same form as the AR(1) model

which has been much studied in the time series literature. In fact, rewriting the equation in (2) in the form



xr = Bai—1 + pu(l — B) + &, the well-known paper by Kendall (1954) derived the O(T1) bias for the slope
coefficient to be —(#) which is one of the best known approximations in the time series literature. The
derivation assumed that the model was stationary and that the disturbances were NID (0,02). In the case
we study here the disturbances are again assumed to be normally and independently distributed but with a
variance that depends on x¢_; i.e, (3) for a given value of p > 0. It is assumed that the sampling interval
0 is positive and fixed so that the above model, termed the discretized model, can be estimated directly
and analysed as in the time series case; for example, asymptotic expansions for estimation errors can be
employed along the lines of the original Kendall (1954) paper as is done here although the derivations of

bias approximations are far more complicated.

4 Simulation results: Evidence of the usefulness of bias corrected PMLE

When estimating the parameters of the model, CKLS (1992) relied on the Generalized Method of Moments
(GMM, see Hansen (1982)). Kladivko (2008) shows the importance of choosing a suitable variance-covariance
matrix estimator of moment functions when applying GMM to the CKLS model. We also computed the
GMM procedure of Kladivko (2008) in our simulations but we do not show the results because the empirical
size distortions in the test procedure were very large (the test was extremely liberal). Another possibility
could be to improve the GMM procedure, but it would be more computationally involved than PML and
it is not the objective of this paper. Besides, when using our bias corrected PMLEs, we avoid specifying a
variance-covariance matrix estimator of moment functions as in the GMM procedure.

Tang and Chen (2009, Tables 1, 2 and 3) already showed the usefulness of the bias corrected PMLEs
from the estimation point of view in relation to bias and root mean squared error criteria when p = 0 and
p = 0.5, so in the simulation section of this paper we focus on the testing side. Iglesias (2014) showed that
for the case of p = 0, the bias expressions of Tang and Chen (2009) and Yu (2012) are useful also for testing
purposes. In what follows, we show that our closed form solutions in Proposition 1 of the PMLEs and their
bias corrected expressions of our Theorem 2, when estimating a CKLS model for a more general p, are very
useful from the testing point of view when compared to alternative methods such as the Jackknife of Phillips
and Yu (2005).

We consider the setting of two models as the data generating process in all simulations in Tang and

Chen (2009): (1) CIR Model 2, where x = 0.223, u = 0.09 and 02 = 0.008, T = 10 and § = 1/12 and



(2) CIR Model 3, where x = 0.148, ;1 = 0.09 and ¢ = 0.005, T = 10 and § = 1/12. In CIR Model 3
the autoregressive coefficient of the discrete time model is 0.99 and the two models, as in Tang and Chen
(2009), are designed to check the performance of the parameter estimation in the near unit root case. We
draw 10000 simulations, and we construct a standard two-sided t-test for the null hypothesis Hy : kK = k¢ at
5% significance level® for different values of k9. We show the simulation results for p = 0.5 and p = 1°.

When p = 0.5, and if 2k > 02, K > 0, > 0 and 02 > 0 holds, the CIR model is well-defined and it
has a steady-state (marginal) distribution. The marginal density is gamma distributed (see Feller (1951)).
Note also that a chi-squared random variable with d degrees of freedom (x3) is equal in distribution to the
gamma distribution Y (d/2,1/2) (which is the unconditional distribution of the CIR process). Therefore
we set 1 = xo and we simulate the initial condition from a Gamma distribution Y (d/2,1/2) with d = 3 in
order not to violate the condition which ensures stationarity of the CIR model (see Feller (1951)).

In Figures 1-4, we show the results of the empirical power of the t-test using our explicit expressions
in Proposition 1 (named POWER), the bias corrected PMLEs given in Theorem 2 (named POWERBC)
and using the Jackknife of Phillips and Yu (2005) (named POWERJACKK). When using the Jackknife of
Phillips and Yu (2005) and following their suggestion, we construct 4 consecutive non-overlapping blocks
of observations. When using our bias corrected estimator from our Theorem 2, we have used a parametric
bootstrap by drawing 1000 bootstrap resamples to approximate the variances/covariances. Our results from
Figure 1 for CIR Model 2 show that the three methods are very conservative and have an empirical size
of 0 under the null hypothesis. This suggests that the asymptotic theory of all these tests works poorly
in finite samples in view of the null rejection rate being much lower than the nominal rate; and therefore
alternative methods should be investigated in further research mainly to improve on the size results. The
main advantage of our proposal comes when analysing the empirical power: the use of our bias corrected
PMLEs improves versus using the Jackknife or the PMLEs without bias correcting. The same results hold
in Figure 2 for CIR Model 3. Figures 3 and 4 provide the same simulation results as in Figures 1 and 2 but
now when p = 1, and the power gains from using the bias corrected method increase in relation to Figures

1-2. Therefore out of the three methods, we recommend that bias corrected PMLEs be used in practice.

2 All the simulation results have been obtained in MATLAB.
*Broze et al (1995) showed conditions for stationarity when p < 1.



Figures 1-4: Empirical size and power, Hy : k = kg, for different values of k.

1.0

0.8

—— POWER
77777 POWERBC

—— POWER
77777 POWERBC

0.4 4 ——— POWERJACKK 0.4 4 ——— POWERJACKK
0.2 4 0.2
S
0.0 T —— T T T T 0.0 T = T T T T T
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
KAPPA_0 KAPPA_O
Figure 1: p = 0.5 CIR Model 2. Figure 2: p = 0.5 CIR Model 3.
1.0 1.0
0.8 0.8
0.6 0.6
— POWER —— POWER
,,,,, POWERBC ----- POWERBC
0.4 ——— POWERJACKK 0.4 4 ——— POWERJACKK
0.24 0.24
0.0 T T T T T T T 0.0 T T T T T T T
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 00 04 0.8 1.2 16 20 24 238 3.2
KAPPA_O KAPPA_O
Figure 3: p =1 Model 2. Figure 4: p =1 Model 3.

5 Conclusions

We have extended the results in Tang and Chen (2009), Yu (2012) and Bao et al (2015) in two directions.
First we find explicit closed form solutions of the PMLEs for the general CKLS (1992) model characterized
by a general non-negative integer parameter p. Our assumption of having a non-negative integer parameter
p is very simple, and it allows the nesting of popular models in the literature such as the Vasicek (1977)
model with p = 0; the CIR model (Cox et al (1985)) with p = 0.5 due to the x? nature of the time series in
this case; the Brennan and Schwartz (1980) model with p = 1; but if we impose positivity of the time series,
our theory works for any p > 0. We also provide the asymptotic theory for those PMLEs. Second we obtain
bias expansions for the parameter estimators when used in a general CKLS (1992) model, while again only
the cases with p = 0 and p = 0.5 were analyzed in the literature so far. We show inter alia that the bias
of the long term mean parameter estimator is O (n_l) for any positive p value, contradicting the results of
Tang and Chen (2009) where it was claimed to be O (n*2) for p = 0.5. Finally, we show in simulations the
usefulness of our results. Wang, Phillips and Yu (2011) point out that one can often get a lower bias using

a cruder approximation than Nowman s, such as the Euler approximation, as the biases resulting from the



discretisation and the estimation often partially cancel one another, so this may be a subject for further

research.
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Supplement to: “Further Results on Pseudo-Maximum Likelihood
Estimation and Testing in the Constant Elasticity of Variance
Continuous Time Model”.

In this file, we collect first Proposition 1 and the corresponding proof (Appendix A), Theorem 1 and
Corollary 1 with the corresponding proofs (Appendix B) and Theorem 2 with the proof (Appendix C), where

dry = Kk (u — x¢) dt + oz} dBy. (1)
Moreover
ok —0k
Ti=e :ct,1+,u<1—e >+€t, (2)
and
Var (g¢|zi—1) = 0.50%k 71 (1 - 6726'{> 2. (3)

After that, we proceed to provide four other types of results:

1. first, we show more details on the proof of Theorem 1, Corollary 1 and an extra Corollary 2 when

p=0and § — 0 (see Appendix D).

2. second, in order to make the analysis clearer, we show how the PMLEs can be interpreted as IV

estimators. This help us to study the order of the bias expansions in a more transparent way (See

Appendix E).

3. third, we provide the corresponding proofs for the bias expressions using the IV approach (see Appendix

F).

4. fourth, we show simulation evidence of the order of the bias expressions (see Appendix G).

1 APPENDIX A

1.1 Explicit closed form solutions of the PMLEs

Note that equation (2) with E(e¢|z;—1) = 0 is a valid representation of any diffusion model with linear drift

(see Ait-Sahalia (1996)) given in (1). Thus equation (2) can be used for consistent estimation of the drift



parameters. On the other hand, the conditional variance given in equation (3) is not generally correct. But
this will only affect the efficiency of the resulting PMLEs and under weak regularity conditions, the PMLEs
of the drift parameters will still be consistent and asymptotically normally distributed. We will show this
in our Theorem 1. If we denote 6 = (k, 1, 0%);, the PMLEs are given by maximizing the conditional pseudo

log-likelihood LogL (0) = —3% (Z?l InVar (exi—1) + L) , where we obtain

Var(et|zi—1)

PROPOSITION 1. Assuming e; to be Gaussian in (2) and either (a) x¢ is a non-negative series and p > 0

or (b) z; is unrestricted and p is a general non-negative integer, the PMLEs ®, fi and 6> are given as

R=—0"1log <B1> = BQ, 62 = %, where we condition on the starting value and
M1
(1-2p) 1 2
B . D1 TeT Zt LT = Doy BT 1275 1z ) A
1 — ) ( )

DI (2 2p Zt 1T 72/) <Zt 1 <$§1 12p)>>
~ >t (xtxt 1 Elxtl 2p)> ,\

- S S e T R R RO-R) o
M1 t=1 tl t=1

If in Proposition 1 we set p = 0, and p = 0.5, we obtain the special cases given in Tang and Chen (2009,
pages 66-67, equations (2.5) and (2.13)). Note that for p = 0.5 we are in the case of the time series not
taking negative values. Proposition 1 also allows one to obtain the PMLEs in other popular models such
as for p = 1 (Brennan and Schwartz (1980)). Note that moments of & may not exist at all since 3; may be
negative, and this is a characteristic of Nowman “s estimator. Also, from Proposition 1 we have the following

two Remarks

Remark 1 In Proposition 1, we need p to be known although obuviously it would be more general if we could
find an estimator for p. We have tried that, but the closed-form expressions we obtained for Nowman s

method become non-tractable.

Remark 2 [t is important to note that from Proposition 1 and (3), if we want to estimate the CKLS model
with our PMLFEs and to use them with a series that may take positive and negative values, we need p to be a
non-negative integer, since we need x, % to exist. For example, when p = 1/4, we have x, T2 = =z, 2 which

does not exist if x; is negative.



1.2 PROOF of Proposition 1

Under the conditions of Proposition 1, the conditional loglikelihood function from (2)-(3) is

—k Y P
LogL (0) = —% Z (ln <0 502k (1 - e_%*’”) x?p1> + (e — e w1 —p (1 - 62 ) ) '

0.502k~1 (1 — e=20%) 2,

t=1
Setting
8L0gL _o 8LogL ~ 0 and OLogL 0
COR ’ 8,u 052

we obtain for &

t=1
o 1- 2p —2p —2p 1-2p)
o E Tty E (xtxt—1> E Ty L1
t=1 t=1 t=1

and taking logarithms

- 2 —2 1 2
> 1$t$t 1 _Z?:1 <$t$t—f> (Z?:l xt—f) D T ’)

R = —6llog 5 -
P 2 2p (Z?:l (wgl 12,; )) (Z? 155’;2{))
- > 1xtxt11 ’) te1 Ty 1 — D Ty 1 {21 ® (1 2p) - 5
— s t= =—51log ().
* D1 @ 2 2p 11T 1 N (Zt 1( - 2p)))2 Og( 1>

Also for i we obtain

. 1-2p)
S (e — ey ) e X i (xt% 7 — By ) 3
—— —5 — — 2.
>y (1 —¢ 65) T, 7 (1 - 51) Dbl Ty 1

fi =

Finally

n_o9n —0R ~ —RY)) 2
O _1 2K (xt—e xt_l—,u(l—e ))
" Z 1—6*2%) 2P

2K

= (1 ﬁ) _li(l‘t Brai— 1—52(1—51)>2$;21p-
—P1

t=1




2 APPENDIX B

2.1 Asymptotic theory

Continuous time models have been proved to be very successful in economic theory (see e.g. Merton (1990)).
We generalize now the asymptotic theory of Nowman “s estimator given in Tang and Chen (2009) for p =0

and 0.5. We show the following Theorem!

THEOREM 1. For a stationary CKLS process®, as n — oo while & (the sampling interval) is fized, and
assuming either (a) z¢ is a series taking only non-negative values and p > 0 or (b) x: is unrestricted and
p 18 a general non-negative integer, let 0= (k, 71, 6%), and 0= (k,p, 02 — B(0,6)), where B(0,0) is the
inconsistency term related to 0% and let E(gi|lzy_1) = 0. Then /n <5—5> <, N(0,9) where Q = A~!

O e ()
. o 10%LogL(6)\ __ - = — (e 4 2k8e2r0 b % .
i A =B (_E s ) B B D0 » and A = 252(6*2"“5—1)2 + o2k~ 1(1—e20r) ;
C 0 E
E _ 2:@6@*6”E<x£1,712p)—uz;2f> .
- 02(1—1—6*5“) ’
— Se—20K 1 . %% (66'{ . 1) 1 B ]
C = 0_2(1_6—25/1) _250_2; = P (65”+1)E x2p ; E:T‘A' Also fOTPZO;B(Q,(;):O.
t—1

Note that we leave Theorem 1 in terms of expectations since we provide the theory for a general p
and therefore the expectations of x; will be different depending on the p value we select. In the following

Corollary 1, we apply Theorem 1 for the specific case of p = 0.

COROLLARY 1. For a stationary Vasicek (1977) process, as n — oo while § is fized and for p= 0, let

0 = (&, i, 32, and 0 = (k, p, 02, then /i <§— 0) 4, N(0,91) where

572 (6256 _ 1) 0 _02(1_62H26+2K5)
KO
02(1+e“5)
Ql = 0 25(€§H—1) 0
02(1762"5%»2/15) 0 0‘4(2.‘1252(1+62n5)+4.‘£6(1762K6)+64K67262n5+1)
o K62 52K2 (62“571)

! As noted in our Remark 2, we may replace the restriction that p has to be a non-negative integer with assumptions on the

parameters to ensure that x; has positive support. This can be done both in Theorems 1 and 2.
?See Conley, Hansen, Luttmer and Scheinkman (1997) for details of primitive conditions under which the CEV process is

stationary and ergodic. Broze et al (1995) also provided conditions for second-order stationarity and ergodicity.



Remark 3 Tang and Chen (2009, Theorem 3.1.2) analyzed also the case of p = 0 and they obtained
a diagonal variance-covariance matrix with the same main diagonal components as in our 3 matriz in
Corollary 1, except that the third component is replaced by o*(k8) 2 (e”“s - e_’“s) (1— (21"“_566—:22;5)) When we
specialize our Corollary 1 for 6 — 0 (high frequency case), we obtain the same result as in Theorem 3.2.2

of Tang and Chen (2009).

2.2 PROOF of Theorem 1

Let 8; = e By = pand B3 = 02 (2k) ! (1 —6*25“) and 8 = (B4, B9, 53) be the 1-1 mapping from
0 = (k,p,02). Then for p = 0, Bg is consistent but for any positive p, 33 is inconsistent, and it can be
shown that E (53) = B3+ B(0,0) + O (n~') where B(6,6) is the inconsistency term related to B (see
for example Ait-Sahalia (1996, equation (2.4)) which shows that equation (2) with E(e¢|zi—1) = 0 is a
valid representation of any diffusion model with linear drift. Thus equation (2) can be used for consistent
estimation of the drift parameters but not for the diffusion parameter). For p =0, B (6,9) = 0 as shown in

Tang and Chen (2009). Let 8 = (84, 8y, 83 + B (0,4)). Then,

= _ 0K - __—8r\)2
LogL () = —% Z (111 (07502,(1 (1 B 6*25”> w?&) n (2 — ez —p (1 — e %)) ) |
n

0,502k~ 1 (1 — e20r) 22

dLogL (6) ((25)_1 I (ze — e PPapg — p (1= e7™)) de " (w41 — M))
- (1
=1

Ok ¢ — e720r) 0.502227 | k=1 (1 — e20K)
- i 20 2% (2 —e ey —p(1—e )" (e a —p(1-e ™))’
t=1 a%fﬁlkrl (1 — e=20%)? U2$?f1 (1 — e—20r) ’

OLogL (0) Zn: ((z¢ — e %z 1) — p (1- 6_5“)) (1- 6_5”)
o 0,502k~1 (1 — e—20K) x?fl

OLogL (0) 1 - (z¢—e a1 —p(1- 6*5“))2
020,551 (1 — e=20r) 22| .

)

t=1

Oc? 202
=1

LogL (0) can be regarded as LogL (/3) after re-parametrization. Following the proof of Tang and Chen

(2009, Theorem 3.1.4), we apply first a Taylor series expansion to the pseudo-likelihood score equations for

B = (B1, Ba. Bs)



0 OLogL (B) N OLogL (E) . <B - B) 82LogL <B>

op op pop
Later, we apply a central limit theorem for mixing sequences (Bosq (1998)), and by Slutsky “s Theorem

and transforming back to 0 as a function of the asymptotically normal vector, we obtain that

F(5-9) - | OLeat (9) (82LogL (5))1

00 0006
~ N\ -1

B L@LogL (9) 1 0?LogL <9) N .

— vn e n 0000 @A
where .

B 19%LogL (0)\ ~
h=FE (‘E 9006 )

with

9*LogL (0) i ( 1 (1 — e 2r) 262208 4 2526_45“)
K2 —\ 2w (1 — e~ 20%)>
i (1 — 6*25”) [6*5” ((56*5”%_1 — ,uéef‘;“) + (mt —e g 1 —p (1 — 6*5“)) 56*5”‘]
0.5 (z-1 — p) L6 Lo2a2 k=1 (1 — e=208)?
. zn: e~ (2 — ey — pu (1 — e %)) (s (1 - e~2r) 4 25672%]
= 0.5 (41 — pu) 5*1021‘?51%_1 (1 — e—20%)?
" Qe 20k (a:t —e 0y, 4 — 7 (1 - 6_5“)) (56_5“%,1 - ,uée_‘s"‘) — 2520k (a:t —e 0y, — I (1 - 6_5“))2
(26) ' o222 k1 (1 — e—20%)2
"2 (g — e~y g — (1 — 675/{))2 B e~2%) 4 456725%;]
= (26) ! o2 kL (1 — em2%)
"2 (:L‘t —e %r 1 —p (1 - 6_5”)) (56‘6”””53,5,1 — ,u5e_5“) N " 95e 20k (xt —e %y 1 —p (1 — 6_5"))2

2 - 2 YY)
o2z’ (1 — e=20%) o2z,” | (1 — e=20K)

t=1

)

t=1 t=1



0?LogL (9) _ i — (1 — 6*5”)2

op? = 0,502k71 (1 — e=20) 22’
9%LogL () L Z (20— e %Rmyq —p(1— 6*5“))2
dot ot = — e~208) g2 ’

9?LogL (0) L (xt —e %y 1 —p (1 — 6_5K)) (1 — 6_5“)
Oudo? 0,504k 1 (1 — e=20k) 2|
(mt —e 0y, 4 — I (1 — 6_5“)) (56_5“%_1 — ,uée_‘s"))
020,527 k1 (1 — e~20%)
(2 — e %y —p(1— 676/&))2 (71266 2% — =2 (1 — ¢~ 20%)] )

02x§£1H—2 (1 — e—20%)?

)

Flosl ) _ Zn: e e (1- 6_65))56_6H + (1 - 6_55) (Se %%z — Spe o)
aluali t=1 07 502$?ﬁ1/€71 (1 — 6726/{)
pyo e (1)) (1o ) [ 20 -2 (1 e )
t=1 0, 502 k2 (1 - 6*25'6) ’

2
We need to show that A = F (—%%) is positive definite. We commence by showing each of the

components of A as a function of p > 0 and we obtain

W1

A

C

) A B C
1 0°LogL (0) - —
A = E _—_ =
( 0 0000 B-D 01
C 0 FE
ith
2 26k (1=p)  _—p 2 5k _ _
(6—2;«5 1 9kGe—2r0 _ 1)2 20" E ((aft 1 Mxt-l) ) _ 2k6e ORE <:L’§1 12”) — px t21p>
= 2 + 2, -1 25 ; B=-— - ’
2K2 (e=2r0 — 1) 02k~ (1 — e720%) o2 (1 + e %)
—20K ok _
_ % L o p 21 ) 5 1
02 (1 —e2%)  2ko?’ o2 (et +1) 22, 204

Hence, A will be positive definite if for any non-zero column vector z with entries a,b and ¢, ZAz > 0.



In our case we may write

ZAz = a®>A + 2abC + 2acC + b°D + *F

2
o e (o) —pah) 200 (a0 — ) ab (eon ) 20y

e E -
o2k~1 [ (1—e2%) (1 +e%") (1+e%%) " (e +1) |
(6*2"5 + 2kde 2RO 1)2 a? (6725“ + 2Kkde~ 20k 1) ac n 2
22 (e~2m0 — 1)? o2 (e 260 — 1)k 204
. - 2
sy [( )y
T o (e 1) (e +1) (e +1)
2
1 (672'{6 + 2:‘{(5672'{6 _ 1) a c >0
‘|‘2 K (6—2;{6 _ 1) o o2 )
since
2
0% (0" — pai ) 20 (2l —pa ) ab  (oon 1) o2
. - ,
ENCEnCEE) N S
r 1— —5\? 1-2 -2 K
_ (66'i + 1) E o%a? (xg—lp) B qut_p1> 20 <$§_1 = ’uxt_{)> (66 _ 1) o + (6611 — 1)233;2{152
R (55 + 1)2 (edr + 1)2 (e9% + 1)2
i 1-p) _ —p o\
I G I N G ) B G E
= @ @ @+ 1)

Therefore, we are able to show that Az > 0 (as a sum of squares -therefore non-negative-, and that is zero

only if a = b = ¢ = 0, that is when z is the zero vector). Then we conclude that A is positive definite.

Finally, A='=Q. R

2.3 PROOF of Corollary 1 when p =10

Now, for p =10

—2K —2K 2 -
el 1 9?LogL (0)\ _ (e +2nde 2 - 1) N 26220k 0, 5071
n  Ok? 22 (e=280 — 1) o2k~1 (1 — e=20K)
(6_2“5 + 2Kde 2RO 1)2 + 2K262 20K (1 — 6_25”“)

2k2 (1 — e=210)?




since

T —e %y, g — I (1 — 676'%) = &,

—oK (Ti—1 — ) + €4,

T—p = e
E(@ —p) = "B (w1 —pu)+E(e),
(0 —p)® = (6_5“ (Tt—1 — ) + 5t>2 :
<1 — 6_26“> E (z; — ;L)2 = 0,50%k1 (1 - 6_25"> — E (x4 — ,u)2 = 0,502k 1,
from (2). Also
E (JM) — 29k (e(M _ 1) <€5H n 1>*17

n  Ou?
Moreover
B (_1 0?LogL (9)> 1
n  dot 204
and ) 5
1 0°LogL 2K0e™ "
<_E 8,u8?< ) R (1+ 6*5”)E (-1 = p1) =0
since E (zy — p) = € °"E (z4—1 — p) + E (g¢) from (2); E (z) = e %xo+ p (1 —e %) and E (v — p) =

e %%y — pe % = 0 where we assume the initial condition g = . Also

E( 1 82LogL> B Se 20k 1

n 0kdo? ) o2(1—e k) 2ko?
Finally
19*LogL — B (ﬂft —e %y —p (1 - 6_5“)) (1 — 6_5“) =0
n Oudo? | 0,500k 1 (1 — e 20%) =
Finding now the inverse of
(672N6+2K/6672N6_1)2_;'_2”2526725&(1_6726&) 0 Se—20K B 1
2‘%2(1_672&5)2 o2 (1—e %)  2ro?
0 2&(66'171) 0
02<65”+1)
567261% _ 1 O L
02(176—2%) 2K02 254
we obtain €3
—2 [ 2§ 02(1762"5+2n6)
Sy o )
o?(14e”
h = 0 2/{(66“71) 0
02(1—62”6-&-2%5) 0 04(2,%252(1—&—62“5)—#4&6(1—62“5)+e4“5—262“5+1)
o K62

2 (25 1)



3 APPENDIX C

3.1 Theorem 2

Following Tang and Chen (2009, proof of Theorem 3.1.3) we first note that from (2), the following holds

B (ayfes) = €700 + (1= ) with 35 = 85— il. ©)
’ - 1-2 9 9
Let t1; = mzxz(l_l P _ Wy, toi = X, 1 — g, t3; = xzf{) — g, ta; = a;§_1 P _ f1g and ts; = xz(—l o) 115, where
from (13)
1-2 1— B B

us = E (xt:c{f{’) _E (x;EfE (;pt|xt71)> e (1 - 6755> N

n
po =FE (xt 1) py =FE (x§1:12p)> and pus = F (332%2 12P)> . Also define t, =n~! Zt‘” which is Op(n_Tl) and
i=1

n
let t; =n~! Zta(i—l) =to+n" (tao — tan) = tat+O0p (n_l) ,fora =1,..,5. In addition let p,, = pqpto—pi3tta,
i=1
[ig = [ista — 13-
In what follows, Theorem 2 shows the consistency and bias approximations when estimating k, 1 and
o2 in model (2)3. Recalling that & = —0~ 1 log (B1> , our approach to analysing the bias of ¥ is to first find
a suitable expansion for Bl,which subsumes the expansion used by Tang and Chen (2009), and then find an

~ ~ 2
appropriate expansion for the transform. We first find that & — x = —ﬁ <51 - 51> + ﬁ (51 - Bl> +

@) (n*2) from which we obtain the following

THEOREM 2. For a stationary CKLS process, as n — oo while ¢ is fized and assuming either (a) ¢ is
a series taking only non-negative values and p > 0 or (b) ¢ is unrestricted and p is a general non-negative

integer, and E(ei|zi—1) = 0, the bias of the estimator & is given by

. pavar(t) (tattg = psttn)” o, var(ty) 3 A3 var(ts)
E(h—kK) = —=——=—5+ + —— + (2304 + — [y —
( )= 20e—2r0, 2 (11145 26_“#?[ L 5)5 _msug (2usht4 Gy— Hoy, 1y )56_H5M?I
mvar(ts) ( o p3var(ts) (1o fabs Mo i usuuHCov(tltz)
20e=20p2  C2pZemr0 py’ demrop2 fg e g opd T pgde e

3Tang and Chen (2009) are able to obtain the bias expressions in terms of gamma and hypergeometric functions since when
p = 0.5, for any j > i, cxjlz; ~ x2 (\) where v = drpuo 2, X = cxie” D" and ¢ = 4ko 2 (1 — e_(i_j)"‘s) . In our case, we
will have to leave the bias expression in more general terms (since we cannot rely on chi-square distributional assumptions,

something that only holds for p = 0.5).
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 pgpgCou(tats) (ptpiy + Mlus)COU(hM) (ﬂ_% M3 )COU(tlts)
56—2,%6”?[ 24T —ké M?l(se—mé U ﬂge—lﬁé 5e—méud
sy 1 oy ]u400v(t2t3) N [4u5u4uu C 2pipg t paps pa (Bl ]Cov(tm)
g € g pd deT oy 13 Hq e gy de ouy
(ke | 2shalty | iy (Mﬁus, _ 1ty Cov(iats) (1+2_ui+ i ) Coultsta)
Ha M 1g eyl pg e o, g prge™™0 demRopy
[ 1 | Cov(tsts)iapiy foks o (g + ) futty | Holsply  Cov(tats) -
( 2 gms __) Je—Ko +(_ +2 2 - + 2 —n:;) Je—Ko +O(7’L 1)'
Ha€ Hd € " Hq Hd Hq Kat € " Hq

for €% £ 1 and where all variances and covariances are of order n=. Also E (i — p) = O (n‘2) for p=0,
and assuming either (a) x; is a series taking only positive values and p > 0 or (b) p is a general positive

integer

-2 = -2
> i1 mt—f)ft ) + E( Fy i, mt—fft
—2p

o(n™t
(I —em) 3 o ] (L—e )37, xt_—Qf) o)

E(i—p) = E(

= by + pots — pigts — fgt _
with T = 122 T F2tl = Pstd M43—%(u5t2+u2t5)+0p(n 172y,

Hq d

Clearly the above is a somewhat cumbersome expression which cannot readily be simplified. However
for a given value for p, all the individual terms could, in principle, be replaced by consistent estimates and
an estimated bias will be obtained. For the case considered by Tang and Chen (2009), when p = %, we

consider the following remark.

Remark 4 In the Appendiz we show that if in Theorem 2 we set p = 0.5, we obtain the special case given
in Tang and Chen (2009, Theorem 3.1.3) for the bias of k. However, for p = 0.5, Tang and Chen (2009,
Theorems 3.1.8), obtain that the bias of 1i is of order n~2, while our results in Theorem 2 contradict the
result of Tang and Chen (2009) in respect of the bias of i since we show that the bias is of order n~! when
p> 0.

3.2 PROOF of Theorem 2

We proceed now to expand % and fi. First we start analyzing k, and its main component Bl.
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3.2.1 BIAS EXPANSION OF &

Consistency of 31 We start with the expansion of Bl given by

n (1-2 1 2
Bl_Zt 1$t$t 1p D iy Tyl = Dy Ty 1275 1L )
= 2

Syt ztl 20— (S (+157)

_ Hafty — pgpis + pta + gty + oty — pgts — pugts — taty
fistie — J13 + fista + fiols + tats — 2pugts — tats

to + [ot1 — Hata — Lyls tot1 — tats
- R L R T G I L T (T
Ha Ha Nd Ha 127
Hoy 2,2 2,2 2,2
o (H5t5 + pspiotats — 2uspgtats + popistats + psts — 24 piotats — 2puistats — 2pgpiotats + 4pgty)
d

1
— p(umt% + i potats — 2 pratats + popistits + patits — 2piopigtita — papstats — pigpiotats
d

+ 2pgpu4ts — pgpiststs — papiotsts + 2uGtsts) + Ry, (7)

where j1, = iy — fiafly, Hg = Hsile — p3 and % = 31, which is shown below. Also with ¢ fixed R, is
Op (nfl) and we have used the notation given in Section 3 of the main paper.
Before proceeding to obtain the asymptotic bias of Bl, we check that (7) is the same expansion as the

one used by Tang and Chen (2009, page 76, expression (A.1)) for the case of p = 0.5. For p = 0.5 we have

t1, = — 1, t2i = X — Mo, t3i = LT, 1 — 3, tai=1—py =0, since pg =1

and lsi = ®i—1— s, with M1 = Ms,

and then specializing equation (7) for p = 0.5

> - o + pot1 — 13 - taty -
By = M1t — H3 + Hq Ha _ HiHg M32 (igto + pigts) + _ HiHg M32 tots
Papg — 1 pape —1 (H1pp — 1) ko =1 (pypy — 1)
[iyfly = [
+ 2 (R85 4 ppiatats + papistats + p513)
(H1pg — 1)
1
— ——————5 (i3 + papatats + poptats + p3tits — pytats — potsts) + Ra,  (8)

(12 — 1)
and (8) reduces to (A.1) in Tang and Chen (2009, page 76) when setting t5 = t;. We can use also (7) to

check the consistency of Bl by showing that g, = ZJ; as follows

Py g — g (€705 p (1= 7)) iy — (e g+ (1= e7) pg) g

T Hsha = H
_ st (L= eT) pagry — et = (L= e  papty e pspty — e g 5
B sty — 1 N Hshta = 1] - o

12



This indicates that Bl is a consistent estimator of 3; for any non-negative even integer 2p (generalizing the

result of Tang and Chen (2009, page 76 for p = 0.5).

Bias expansion of Bl Now we proceed to analyze the bias Bl of the case of non-negative even integer p
by using a general expansion using (7). In the expansion of K, we will show that we need to consider two
terms: E(B, — 3,) and E(B, — 8;)2. We shall first consider E(3; — ;) to order n~tand since E(t;) = 0,
1=1,2,3,4,5 we find that when taking expectations we need only consider terms which involve a product
of the ¢;. We shall also use Z—Z = [, (due to the consistency of 31 noted previously). Rearranging (7), we

find that

(31 -B1) = tala + fipht = Hala — Hals - M—; (st + piots) + (“—éfu% - %NlNB)t%
Kq My Hq g
+(3 “fgi - Q‘ng“‘)ti + e+ (- N2N5ﬂi§)tlt2
+2u2u4%3t1t4 - Mi?lu%tlts» + M%M%t:atz - (4u5u4z—§ - 2#1#4%3 - Mi?lua%)tzm
+(2Z—§u5uz - M%muz - Z_%)t2t5 - (ﬂid + 27/%2)753754 + Mi?lu4uzt3t5

W 1
—(2/7?(#4#2 + [1fig) — ?Msﬂz)tﬂS + Ry
d d

Finally taking expectations, noting that E(t;) =0, i =1,2,3,4,5 yields

: 0 1 [y | A 2usp u
E(By —B1) = (—Zu? — =g pz)var(tz) + (= +—= - 32 Hvar(ts) + (—éfu%)var(%)
Hd Hq Hq Hq Hq Hq
1 1 1 1 1
+ (— — pops—5)Cou(tita) + 2papg—; Cov(tits) — —p3Cov(tits) + —5 paprsCov(tats)
Hq Hy Hy Hy Hq
oy 1 oy 1 o,
— (Apsta=—g — 2u1 g —5 — —zpapis)Cov(tats) + (23 pspy — —5p1p — —5)Cov(tats)
5 4}@ 1 4/1«(21 :U’(21 3H5 Mg 5H2 ,L% Ni
2u2 1 1 1 o _
+ (—_24 — —)Cou(tsts) + —5 papaCov(tsts) + (—papy — 25 (tapta + papi))Cov(tats) +o(n™")  (9)
Hq Hq Hq Hq Ky

We move now to the expansion of E(3; — 8,)2. From (7) we can show that

> Pila + pot1 — pigta — pyly  p -
Br—p == 2 o : . —M—S(u5t2+u2t5)+op(n 2. (10)
d

13



Then

7 pita + pots — pigta — fiat3 e
(Br -8y = (PR By g (B (st 4 pits))?
Ha Hq
to 4+ fot1 — fats — st _
—2( PR (O (it + pots) + opln )
d

1 I 2 2u
= — (u1t2 + pots — pats — fgts)’+ <M—;> (pats + M5t2)2——3u

(pats + pst2) (pate + pots — pgts — pigts) =
Hq d Hq

—5 (1713 + 2411 protaty — 241 pybats — 2p pratats + p5ty — 2papigtits —

4o pigtats + p3ts
T
u 1
+ 2ugpgtsts + pit3) + (Mu) (135 + p3t3 + 2ustapiats) — 2/75(#1#575% + pq potals + popustite
d d
2 2
[ mo [
+ patits — pgpstats — popigtats — patapnts — poputsts) = —5t7 + [M—é + <ﬂ—;) —2 §u1u5]t
d d d
12
13 o 204 p Iz 1
+ —;L 3+ 3754 + (—2) patd + (52 1 2 -2 —5 lspin)tity — —5 (2pgpty)t1ts — 2—M2M3t1t4
Hq 1 Heq 3 Hq Hq
o 1 7 2310 p
— 250 3t ts + (—5 (=201 0) + 25 1y ) bats — (S5 — 25 ) sz )tats
d Hq Md /~‘d d

+ [(%)2%5#2 2—u1uz]t2t5 + M—2u3u4t3t4 + 2 M4M2t3t5 + 2 uzugt4t5 +op(nH).
d d

Hence E(Bl — 1), to order ™1, is given by

2

EB, - B1)* = M2var(t1)+ 14 (g —

d Hq

5 13 13 [,
psi,) var(t2) + —pvar(ts) + Svar(ts) + p3 (=% )?var (ts)
Hq Ha p

1 1
5 ) Cov(tits) — —5 (2ugpq)Cov(tats) — 2pop3— Cov(tits)
d d Hq Hq
1
—2u3y By 5Cov(tits) — 2py puy(—5 — M—g)OOU(tth) - 2;@,(“—; — N5§“)Cov(t2t4)
p Haq  Hq Hq Hq

1 YCou(tats) + 2pusfiy 20011(253754) + 2,u4;z2—3C’ov(t3t5) + 2,u2,u3—3C'ov(t4t5) (11)
Ky ,ud Ky Ky My

It is now possible to find an approximation for the bias of & to o(n™1).

2
4 2M2(/~L5/~Lu MuMl

Expansion of ¥ Finally, in order to transform Bl back to ® for a fixed §, we first carry out a Taylor

expansion up to the second order term

R = —6llog (Bl> —— [log (B1) + Bil (ﬁ 51) 2/31 (51 - 51)1 +0, (HJ)
T 5 () Wlﬁ% (Br-5) 0 7).

14



and therefore from the asymptotic bias of Bl and its second moment it is seen that

E(E_H):—%&E(Bl—ﬁl) 2551 (51 51)2*‘0(”72)’

~ ~ 2

where F (51 - 51) is given at (9) and E <ﬁl - ﬁ1> is given at (11). Note that (61 ﬁl> is Op (n *1/2)
~ 2

and (51 — 61> is O (nil) . Therefore we conclude that the bias of % is of order n~!, for any non-negative

integer p and also of order -1 and it is given by

LB, - 1) + —5 BBy — B1)? + o(nY) (12)

E(k—k) = 5/31 2551

—1 [(Mu 2

1 P | ARG 2030
= 15— —g s )var (t2)+ (=5 -
8B, Mi o2t 2

1 1
y 4 H yoar(ta)+ (55 3)var (t5)+(— —papis — ) Cov(tats)
Hq Hq Ha g Hd Hq

1 1 1, 11
+ 2#2#4—2000(t1t4) — —13C0u(tits) + —gpapsCov(tats) — (duspa—5 — 2p1pu—5 — —zpais)Cov(tats)
My Ky 2] Ky 4 Mg

Lo 1 2u7 1 1
+ (2= psp f fh 2)Cou(tats) + (——5 — —)Couv(tsts) + —5 paproCov(tsts)
pg e g u?l 12 g p2 e
1 1 145 1 13 143
(=3 oty =25 (papia-taa 12)) Cov(tats) 45— [Fvar () + = (g = psjr)” var (t2)+=5var (ts)+ S var(ta)
Hq Hq 1ug Hq Hq Hq
1 1
+ 135 Pvar(ts) + 2py(5% — “5§“>oov<t1tz> — =5 2pa1a)Cov(trts) — 2 13— Cou(tta)
Hq Hq d Hq Hq

1 2
- 2;1%%001}(751155) — 2;&1,u4(? - %)Cov(tgtg) - 2#3(% - M;#“)Cov(tgm) + 2;12(”“'55 - Mg“)Cov(tgtg,)
d

d d d 2 Hq Hq
1
+ 24ttt —5 Cov(tata) + 2puapin s Cou(tsts) + 2uzu3M—§COU(t4t5)]
Hq Hq Hq
_ pjvar(t) (s (attg = psta)” fhy 3 var(tz) pivar(ts) N N 4Muui)var(t4)
2033143 28 113 Sy 20832 2ﬁ g B
( [\ pavar(ts) 1 Hels My sy Couv(tits)  papsCoul(tits)
20361 pa’ PG fg  Bipg pG T 1adB 08712
(Qpiosiy + ulug)COU(tlu) s pathy Cov(tits)
— (2 Ha _
B M3551 Kq 51/@1 08114
ps  pn, L py . paCou(tats) | Apspiapy 201 + p3ls B3 1 Psthy, Cov(tats)
— =+ (== 2 + 2 - - 2
B ta 1 0B11tq Ky ta B ke By 0B11q
2 2 Cov(tat 202 Cov(tst
T S T Y S (tats) L1y 2 Matt (tats)
Ba M g Br g pg " 0Bing Ba  HaP1" O0B1kg
fy 1 Cou(tsts)pyps PaHs o (Hally + Hafig) by, Hafiathy ) Covtats) 1
Mdﬁl Hq Bittg Hq Hg Mdﬁl Bitta
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3.2.2 BIAS EXPANSION OF &

From Proposition 1, we know that = BQ. We first focus on the consistency of 4.

Consistency of i To prove that BQ is a consistent estimator of y for any non-negative integer p and

where
E (xj]a) = e %%z + (1 - e*%“) with 6;; = 85 — . (13)
1-2 - - 1-2 2-2
Let ty; = xz‘xz(, O, tai = v — o, i = miw ] — g, tai = 331(-,1 ?) — iy and t5; = xz(,l ?) — s, where
from (13)

1 = E (a:izz(i%)) - B (xlg:?p)E(g;tm_l)) - B (xgl:lzp) (676/{%—1 b (1 B e*‘s’“)))
— kR (ngl?p)) + 1 (1 _ 67(5'{) B ($§£E2P)> — 676/1#5 tou (1 . 6765) e,
4 = E (:zt:zgff) - F (x;E{’E (mt|xt,1)) B (:U;Ef <6—5%t71 L (1 B B_M)))
() 1) () e (1)
= -1
Mo = FE (;[;;21p> s Mg = FE (:L‘gl__12p)> and Uy = E (l‘§2__12p)> . Also define t, = n—1 Ztai which is Op(nT) and
n =1
let te = n—l Zta(i—l) = ta—|-n_1 (tao — tan) = ta+0p (n_l) , fora = 1’ . 5. In addition let [y = fq oo — 3 has

i=1
g = sty — 3. Then we notice that using the relevant expectations given above

2 5 (1-2
—~ Z?:l (xtxt—lp - ,31$§_1 p)) N g — 6_6HN4
By = = - :>P11m52:1f55
(1—51> Z?:lxt—lp (1= e iy
(e (e ) — ey p (L= )y
(1 —e%) iy (1 —e79%) py

where we find that 32 is a consistent estimator of p for any non-negative integer p and also when p = 0.5.

Bias expansion of ;i From (2), we can commence from

= Prai—1+p(l—B1) + e (14)
since the estimator of 5; will depend on f3,, we start from

ot — Brae—1 = (1 - B1)By + e

16



i.e.
Ty — B1T1

1-p4

and multiply by xtff and sum over n to yield

B2+1—ﬁ1

—2
Dot TT, 1 — 61> 1xt 1 — 3 Zz Zt 1T 15t
1—p, 2L 1- B,

and solving for 3, yields

1-2p —2p
D1 TATy 1 — By 1551; 1 D1 Ty 16t

B =
IR S (1-B) S o

From (15), we deduce that
1-2
7 D iy Ty T DLy

ﬁ —
2 (1—By) >0 a7

If 5, is known then

sk D TT 1 - B> 1$t 1

n —2p
3= — 8,4+ D i1 Ty 1Et
2 — 2

(1-81) > 72p N (L= B1) 2ty 7 1

Sioiz e
(=B iy o] )
Now consider the estimator for By when (3, is unknown so that [, is replaced by [,

so that is the estimation error when estimating (4 if 5; is known.

- 1-2
> Zt 1 Ty 1 Bth lxt 1 Zt 1 Ty 1 /81215 133t 1 — (B —51)2?1331: 1p

By =

~

where (3, — ;) is Op(T%). Then

82 _ Zt 1 Ty 1 Bth 15132 12p (A 51)2? 155% 12p
<1—51>zt B (%))

(1= B) Sy o (L= By a2 — (B — B) Sy o)

_ Thama g - B Y wi f”(l_(m—ﬁl)),l_( )Zt LT (1_<Bl—51>
1= B) Y o (1= 51) (1= B1) i o (1=51)
o D1 T 2151‘/ (31—51) (51—51) 2
= Gty e 1““ a=p) Ca-gy) T
_( —B) D 1$t 1 <1+ (BL—B41) T

(1_61)Zt 1% 1 (1-759)

17
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Then

5 _ Dot 1“715_2{)515 Dot 1“715_2{)515 (BL—B1) (B1—B1) s
R (e Ny . TN s L (e I (e
_( —B1) Do 195% 12p (51—51)
(1-51)> _2p a+ (1= p1) )
_ PR xt—21105t (31 — 1) (31 —B1) 2 D1 xt_Q{)Et (31 —531)
= Uoayne ey TCase) ) T ey e -5 )
(B B) Y w f”__@l— B Sy @i fp
(1= B) X o f (1= B2 o
+op(n 1)-
And therefore <BQ — 62> can be decomposed in six terms
~ —~ 2
N BoE (51 - 51) BoE (51 - 51) S ey
E _ _ E t=1-"t—1 16
(7~ 72) Y R N L RN S S 1o
LGRS D Y b o P R i
(1=B1) 2y o7 (1=B1) X w (L=B1)2 >0 27
+o(n71),
where since
Y Swr S E(w)a (e — Bw))a,F
Z xf2p = Z xf2p = Z .’I}72'D + Z x72p
_ N 2P L N2 L
= szjlf—té; + > (me— zzi(j;r; z))xtﬂ _ gi—;p n > (@i i(_itp—z»xtz = By +0,(n72),
t—i

the first term in (16) can be cancelled up to the desired order with the fifth term, and the second term can
be cancelled up to the desired order with the sixth term, leaving only the third and the fourth terms. Then

the bias of 32 when [, is known, is the determining factor since

P 1$;2f€t )+E(<Bl—5 )Z?:IJ:;Qfet
(1-51)> ;2P 1-B)S, « 7

E (BQ - 52) = E( )+o (n_l) : (17)

—2p
Recall that E(%) is the bias in estimating (55 when (; is known. The natural way to
1 t=1T¢—1
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expand this is to set E(} ;4 a:t_ff) = nu* and

-2
2o Tp1 Gt _ Dbl Te 15t<1 O nﬂ*),l
(1-54) Zt 1$;2p (1= By)np* nu*
_ Do Ty 16 1_(2?1% T —np ) (Zt 1 1_”M*)2_ )
(1= Bqy)nu* n,u* nu*
-2
_ D1 T 1t Zt 1% 1 nu*)+0 ()
(1= By)np* nu* P ’
and so the bias to order n~! is obtained by taking the expectation. In effect we need to find
(Et 124 15t Dot Ty 1))
(1=Bynp*  np*
—2p —2p —2p
x5 e + a7 ey ea+..+x, e _
= B o e T I 0 Y P ¥ )
(1= B1)n? (1)
Note that ¢; is correlated with x, 20 and later values Ty +2f ,..., but not with earlier values. Hence the

above expectation requires the evaluation of the terms

E <x0‘2’)51(:p;2f’ bay gt :c,ﬁf;)) +E (:c;%z(xfp Fot gﬁf;))

+E (x;2p53(x52p+...+x )) + . +E( Shena(x ‘2‘{)>.

The dependence between &; and x,_ _Ezp , 1 =1,2,3,... decreases rapidly as is found in stationary AR(1)
models (see Kendall (1954)), so that each of these (n — 1) terms is O(1) and their sum is O(n). To see this,
note that in the above there are only (n — 1) distinct terms of interest since, for example, E(:rfp 6i+1$;+210 )
is the same for ¢ = 0,1,..,n — 2, while E($;2p€i+1x;_32p) is the same for ¢ =0, 1,..,n — 3,and so on. Hence to
evaluate the above we shall need to find (n — 1) times E(wa2p€1x1_2p), (n —2) times E(z, p€1$2 %), (n —3)
times E(xg e125°"),..., and finally, E(zy ez, ).

To find a suitable approximation to the expectations we have proceeded by first finding a Taylor series

expansion for x; % fori=1,..n — 1 about E(x;) = u, as follows

—2 1 o (i — p)?
z, P = W—QW 2wy — )+ 2p(2p + D 2117
—2p—3 (z; — M)3 —2p—3
—2p(2p+1)(2p + D)p a3 o(p )
1 (zi — p) 1 (zi —p)? 1 (2 —p)® 1
= —|1—-2p—=+2p(2 1)—————2p(2 1)(2 1 _— .
MQ,J[ r— p(2p + )u2 T3 p(2p+1)(2p + ) 133 +0(u2p+3)
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Then it is possible to find an approximation, for example, to E(x, 2 Elxl_Qp ),by first replacing 331_2’]
with the associated Taylor expansion and initially taking expectations conditional on xy before obtaining
the unconditional expectation noting that the ; are assumed normal, uncorrelated, with conditional mean
E(e¢|z—1) = 0 and conditional variance Var (g¢|zi—1) = 0.502k 71 (1 — e~2F) xt 1

The resulting analysis is complex but it is found that the bias in estimating 5 when [ is known, given

Db Ty 2{) ct :
by E((].B)—I_QP) is well approxmlated by
Gt t=1"t—-1

i1 x;2f5t
ENEEERs
_1[2/)(5 e ’2"“5)) 20(2p +1)(2p + 2)3(30%k (1 — e~2:9))?
n (1 — ,)2u2r+3) 6(1 — B1)2uCe (1 — B3)
L2020+ )20+ 23E (w0 — )” (302n (1 - —M))]
6(1 — B)ur o) (1 - ) ’

showing then that the bias of the long term mean parameter estimator is O (nil). For the case p = %, the

above reduces to

Z?:l xt__115t ) — _l[(%a%ffl(l — 672”6)) N 3(;02,% (1 _ 672”6))2
O-p)Tiet” o A=p) (1= B — 52
BBYE (ws — p)? (30°k (1 = 67%5))]‘

29
(1 —By)us ( 53)

E(
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4 APPENDIX D. Proof of Theorem 1 and Corollaries 1 and 2.

4.1 Proof of Theorem 1

n

—5k 52
LogL (0) = —% Z (ln (0,502,(1 (1 _ e*26/{> 37?51) n (z1—e Mgy 1 — (1—e 5 )) ) |

2,.—1 -2 2p
P 0,502k=1 (1 — e=20R) 2,7

OLogL (9) _ zn: ((2%)_1 B ( Se—20k (:L‘t — e_5f€$t_1 — i (1 - 6_55)) e ok (xt—l i M))

oK =1 1 —e=20r) 0.50227° k=1 (1 — e=20K)
R o i e e U e)* (m—ea g —p(1—e )’
— 0295551“_1 (1— 6—2%)2 0233?51 (1 — e=20k) ’
OLogL (0) i ((xt - e*‘s’ﬂxt,l) — L (1 — 6*5“)) (1 — 6*5"‘)
o p 0,502Kk~1 (1 — e—20K) :L‘?fl ’
OLogL(0) 1 Xn: L (2 — e 1 — p (1- 6_5,1))2
002 202 — 020, 551 (1 — e—20r) 53?51 ’
0?LogL (9) B
OrK2 a
1 (1—6*25“)[—2526*25“]—56*25“[266*25“]
T 2k? T (176725m)2
[H_l (1 - 6_25“)] [6_5“ (56_5“xt_1 — uée“s*@) + (xt —e Oy 4 — 1 (1 — e“s"‘)) 56_5”]
_ (ajt _ e*élixt_l — L (1 _ 675/1)) 676/@ [—/4372 (1 _ 6726/{) + /171256726'{]

B 0_5($t71_u)*15*10-2x361 [5*2(1—6*25")2]

Y R (1 — e 2om2 ~20e7 % (2 — ey — i (1 7))
=1 +e 2082 (2 — e 0wy — pu (1 — e7%%)) (de 2% my—q — pde %)

_ [6—2&; (2 — ey — pu (1— 6—5/@))2}
{—/fz (1 - 6725“)2 +x712 (1 — 6*25”) 256*25“}

(26)7102xff1m*2(1—e*25“ 4
[1—672(;&] [2(%—67‘5"@_1—u(l—e*‘s'*)) (56"5’%%_1—u(se’a”)]—(a:t—e"s"xt_l—u(l—e"s’“)f [2(5672(;&]

U%U?fl (1—6*25”)2

_l’_
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0?LogL (9) _ i — (1 — 6*5”)2

oy 0,502k (1 — e~20r) 277
0%LogL (0) no i 2 (wt L I (1 — 6*5“))2
oot 204 ot o6K—1 (1 — e~ 20m) x| ’
9?LogL (0) B i — (xt —e %y 1 —p (1 — 6_6K)) (1 — 6_5“)
8#80’2 prt 0, 504Kk—1 (1 _ 6726'{) x?fl ’
[/@_1 (1 - 6_25K)] 2 (l‘t —e %y 1 —p (1 - 6_5“)) (56_5":1:15,1 — uée“s”)
P LogL (6 ~ (o= ey — (1= 7)) [ 280720 72 (1 )]
85802 T2 Z o202 K2 (1 — e 20%)? ’
-1 (1 - 6_2‘5“) [(xt —e %y 1 —p (1 — 6_5"‘))56_5“ + (1 — 6_5") (56_5“xt_1 — (5,ue_‘5“)]
32L09L n +(zy — e g 1 —p (1 — 6*5“)) (1 — 6*5“) [/f1256*25“ — k2 (1 — 6*25“)]
 Oudk ; 0,502 k=2 (1 — e—20r)?

We start to show each of the components as a function of p

1 0?LogL (0 e=260 4 9p5e=20 _ 1)? 20220 2
E <__ 892 : )> = ( — 2 ) Ry 5y & <<$§1— g — ! 1) )
n K 2K2 (e72K0 — 1) o2k (1 —e2r)

E <—%%ﬂf(@> — o2 (66” - 1) (65“ + 1)_1 E (%p) .

Ty g
p( 1PLogL®)\ _ (1 1Y\ _ L
n Folend N 204 o) 2047
1 0?LogL (0) 2Kde 0k (1-2p) —2p
E(‘zm) = e (T e ).

g <_l 0%LogL (9)) B (xt —e My —p (1 - 675”)) (1 — 675'{)) —0

n  Oudo? 0,504k~1 (1 — e~20r) 22

due to the assumption that E(e¢|x;—1) = 0.

E _182L0gL(6’) B Se—20m 1
n  OkOo? C02(1— e 2r)  2k02"
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So we get that, as a function of p

, A B C
1 0°LogL (0) - —
A=FE|-——""27) =
< n 9000 B D 0 1
C 0 FE
with
2 2526726’{E (II)(I_p) — QT P )2 2Kk8 —5;{E (1 2p) —2p
T _ (e72R0 + 2K0e2r0 — 1) t—1 =) ) =_ kde ( — pr, 1)
N 22 (6—255 _ 1)2 o2k—1 (1 — 6—25/-@) ’ - o2 (1 + 6_5,€) )
_ —20K _ 2 0k __ 1 .
5 _ e L 5. k(e )E 1 ;E:i.
oZ(1— e 2r) 2402 o (e + 1) \ 22, 554

2
We can show that A = F (—%8%—%@@) > 0 is positive definite since for any non-zero column vector z with

entries a,b and ¢, we have zZAz > 0.1

4.2 PROOF of Corollary 1 when p =0

Now, we check for p =0

g 19°LogL(0)Y _ (7250 4 2586280 — 1) 4 25262720 (1 — ¢=20%)
n Ok? B 2K2 (1 — e—28)?

since for p =0

xp—e Py —p <1 B 676H> -
Tr—p = 6_5"'i (l'tfl - N) + &t
E(x—p) = e ME(xt 1= p) + Ee),
2 —65 2
(xg —p)” = < (@1 — p )+€t>
— 2k (z—1 — ) + 279 (xpm1 — p) e+ 51‘,27

E(we—p)? = e 2FF(z1— p)? +2eE (xe-1 — p)er) + B (€7),

(1 - 6725"{) E(z;—p)? = 0,507} (1 - 6725/{) — B (zy — p)* = 0,502k 71,

from (2). Also

E (—%782L;Z§ (9)> =0 %2 (65” - 1) (66"i + 1>_1 ;
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Moreover

and

2
> _ 10°LogL (0) _0
n  Oudk

since E (z; — p) = € FE (241 — p) + E (&) from (2); E(z;) = e %o+ p (1 —e %) and E (z; — p)

e 9% xy — pe~% = 0 since we assume that the initial condition zg = . Also
z 10%LogL (0)\ Se 20k 1
n  Okdo? C02(1 — e 2r) 202’
Finally

10%LogL (0)\
E <_EW> =0

Finding now the inverse of

(672;«5_;'_2”5672%6_1)2_;'_2”2526726/@(1_6726m) O 56_25’§ 1
2/{2(17672”6)2 02(1—6*25”) " 2k0?
0 25(65“—1) 0
02<65”+1)
56—26m _ 1 0 L
0’2(1—6725") 2K02 204

we obtain ()

—2 / 9%k§ 02(1762"5+2n6)
) (e ko 1) ( 0 . - E—
o2(14e"
Ql = 0 2/{(66“71) 0
0'2(1—62N6+2K5) 0 04(2,%252(1—&—62“5)—#4&6(1—62“5)+e4“5—262“5+1)
o K62 52,‘-;2(62’“5—1)

4.3 STATEMENT AND PROOF of Corollary 2

COROLLARY 2. For a stationary Vasicek (1977) process, as n — o0, 6 — 0,7 = nd — oo, for some k > 2,

T8% — 0o and for p= 0, let 0= (R, 1L, 82)’, and 0 = (k, 1, 02, then
R, s <§ - 5) N N(0,Q2) where

R, s = diag <\/T, VT, \/ﬁ> , Qo = diag {2%, o?Kk72, 204} .
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Proof of Corollary 2. For p = 0 and when § — 0, applying I’Hopital ‘s rule, néd = T, and pre-

multiplying by ¢ (justifying the lower convergence rate because otherwise the term will explode)

1 9%LogL (0)\ "
B <__L2()> — o,
T Ok whend—0
Also, applying 'Hopital “s rule and pre-multiplying by ¢

25 KO 1
0% (™ +1) — 2.2,
2k (e — 1)
whend—0

Moreover, applying ’Hopital ‘s rule three times, we find that we do not need to premultiply by  the last

term of the diagonal

ot (2/{252 (1 + 62’“5) + 4kKd (1 - 62’“5) + 0 _ 9p260 4 1) 9
= 20",
52%2 (6255 o 1) whend—0

and all the off-diagonal terms are zero since for a fixed d, the only one that was different from zero in

Corollary 1, when § — 0

( o? (1 — 260 4 2&5)) 0
_ : —0.
0 whend—0

5 APPENDIX E. Expansions for the bias parameter estimators in the
general CKLS model when n — oo and ¢ is fixed. PMLEs interpreted

as Instrumental Variable (IV) estimators

5.1 The estimator of 3,
5.1.1 For p=0
From (2), we can commence from
zp = Pz +p(l—By) + e (18)

Then the regression of x; on x;_; yields the Vasicek (1977) estimator of 3,

Yopy (—1 — Tp—1) &
Sy (@ — Fe1)?

B . S oy TeT—1 — NTT—1 _
L= — —
> e 35%—1 -n (9'315—1)2
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where >} | (z¢/n) = T; is an unbiased estimator for p. Then B, is biased as would be expected since the

numerator is correlated with the denominator and the bias is of order n~!. In fact, the expression (2.6)

in Tang and Chen (2009, page 67) indicates that this is true. The estimator can be interpreted as an IV

estimator where the instrumental variable is (z;—1 — T¢—1) . Remember the results from Proposition 1 (see

(4) for p=0).

5.1.2 For p=0.5

The Cox, Ingersoll and Ross (1985) (CIR) estimator is also an IV estimator with instrumental variable

<:1:;11 x,_ 1) To see this, write (18) as

n n

Z (xt 17 Ty 1> Blzwt 1(% 17 Ty 1)"‘#(1—51)2(35;11 $t11)+2($—1 —a

— t=1 t=1

where, since ) ;" (x; L—a; 11> =0,

n

T (xt 17 T 1) b1 Z$t 1 (gﬁt 1 xtjl) +Z(x;jl_x;jl> €t

1 t=1

NE

t

from which

oyl el oy (ot —wi) e
5, = Dol T, — NTT,_ Do (T —w ) e
L= -
n ~1 —1 n -1 —1
D=1 i1 <xt 17 T 1) D=1 Te1 <$t 17 T 1)
and -
n -1 = .—1 n n -1 n -1
Dby Ty T NTL oy Dy T Dy Ty MY Ty

31:

i

—\ —1
D1 T (a?t__ll - a:t__11> Doy T Dy Ty — P
which is the result in (4) for p = 0.5. Note that
T
i1 (mtfl - $t71> &t

——— )
n —1 —1
t=1Lt—1 (xt—l - xt—l)

B1zﬁl+

and also that

((1- ft—lwt__11) - B(1- ft—lxt_—ll))
E(l — 21, )

(1 z12,Yy) = B — o1z, )1+
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Then

-1 —1 —1 [ -
i1 (xt 17 T 1> &t Z?:1 <$t—1 - xt—l) &t (Tp—12,Y)) — E(Zp—17,Y))

— = —7 1 ]
n(l —z_1z;Y) nB(l — &1z, Y) E(l—zq7,)
— — — —_— —_—
Zt 1 (l’t 1 xt—1> ¢ i ((@t_la:t__ll) — E(j:t_la:;_ll)) N ((ft_lxt__ll) — E(g_ct_lmt__ll)) )2 o]
nB(l —z_12;Y) E(l—zqx,Y) E(l— g2, )
The first of these terms is
-1 /1
>im1 <$t71 - xtfl) o Sr e o ol 1 Et
nE(1 — &1z, Y) nB(l -7z Y) nE(1—z_12Y)
where the leading term has expectation zero and can be ignored. The first bias term is
E xrf_—ll die1Et _ Zt 1% 1 p1 Et 1EQ xt_—ll Dte1€t)
- [ e ] - [ T ] . I
nE(l —Zi12, ) nE(l — Zi_12,) n nE(l —Zi_1z, )
B l[E(sl(xgl +art vyt 4t N E(ea(wgt + oyt + oyt + o+ ah)
n nE(l — 712 Y) nE(1 —z_12;Y)
E(en(zyt + a7t + 3t 4 e, 42!
T (en(zg 1 2 n 1)]

nB(1 —Z_j2;Y)

7} T, 1 but is uncorrelated with x~.,7 = 1,2, ... Hence we need to

where ¢, is correlated with xj i1 Ty

JZ’

evaluate n — 1 terms as follows

pE e T i et 1 [E<el<wf1 tay ety Bl bt ly) Bz ]
nB(l — T2, Y) n nB(l -z 1z, Y) nB(1 — T2, Y) nkE(1l — J:t(lzzz)tll)

19

The correlations between ¢; and future values x,_ Jrlj, j = 1,2,..., will quickly diminish so that all the

expectations in (19) are O(1) and their sum will be O(n). Finally we may conclude that the leading bias

term
1 n —1 n
Eln D ote1 L1 D pe1 Et

nB(l — T2, Y)

]

is O(n™1).

The above analysis has much in common with the corresponding result for the least squares estimator of
the slope coefficient in stationary AR(1) model where the bias is well known to be of order n=! (see Kendall
(1954)). Therefore we conclude that the bias of 3, is of O (n~!). This result agrees with the bias of B,

given in expression (A.12) in Tang and Chen (2009, page 77).
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5.2 The estimator of j,
5.2.1 For p=0

In the Vasicek (1977) case, we commence again from (18). Simple rearrangement yields

Z?:l (xt — let—l) — B Zt 16t (20)
n(l—p1) n(l—py)
If 3, is known then

- iy (20 — Broi—1)
/8 — t=1 21
=T Ay 2y

yields and unbiased estimator since
o 21 €

— B, + = 22
62 /82 n (1 — 61) ( )

and F (3 ;. e¢) = 0. However, if 8, is not known, we can replace it with Bl which is biased to order n™" so

that now the PMLE for 3, is
~ Zt 1 (xt 133t 1)

Ba =
n(1-h)
It is now straightforward to show that this estimator is unbiased to order n~! supporting Theorem 3.1.1 in

Tang and Chen (2009, page 68).

(23)

5.2.2 For p=0.5

For the CIR process multiply (18) by 33;11 so that

n n n n n n
thx;jl =B th—lx;jl + B2 (1= B1) 233;11 + thilﬁt =npy + B2 (1 —B1) thill + thillgt
t=1 t=1 t=1 t=1 t=1 t=1

and
Sy mer ) — nﬁl - Yo T e
=B, __
(1—By) >y oy (1—8) X oY

If 3, is known then
Dy Ty — ”51 o

(L=81) > 7 1
o . Z?lx;115t
e (i) = (ot )
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which is O ( ) and so 52 has a bias of order n~! since numerator and denominator are correlated. However

since (37 is unknown it can be replaced with a PML estimate Bl and then an operational estimator is

—1 P
5 Z? 1 LtLy ”51

e (1—51> PRE . 1

Since the estimator has a bias of O (nil) when [, is known, it will have a bias at least as large when f; is

replaced by Bl. However Tang and Chen (2009, Theorem 3.1.3) state that E <B2 — 62> =0 (n_z) and our

analysis indicates that this is not correct. More specifically, write

B = G Mt?:tlleil - (1—51(51 _le) Pl <<Bll—_ﬁﬁll>> * <il—_§11>22 o
R A A
~ 2 ~ n _
) ﬂffi;ﬁ:) N
Gon)  Gen)

1=B)n Y oy (1-B) n 10 oy
Then

~ ~ 2
. @2 —52> _ 52E(1(€1B—1)51) . 52E(1(€1ﬁ—1)§1> L
> T E (Bl - )Z? 1'77t_11‘°5t
(1—51)12t 1156} 1)+E( (1—51) Do Ty 1 )
(Bi-5) (i)
_E((l—ﬁﬁ Ztlxtl)_E((l_ ) Tty m 1)+O( 1)'

which contains several terms of order n~!. Therefore our analysis indicates that the result in Tang and Chen

+B(

(2009, Theorem 3.1.3), where it is stated that E (BQ — 52> =0 (n*Q) , is incorrect for p = 0.5.
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6 APPENDIX F. Proofs of the results of the IV approach

6.1 Bias expansion of Br Using an IV approach

Now we proceed to analyze the bias Bl of the case of non-negative integer p by using an IV approach to

show things in a very clear way. Commencing from (18)

zt = Brzi—1 + p (1 — B1) + &t (24)

since the estimator of 5; will depend on f3,, we start from

— frai—1 = (1 = B1)By + &

i.e.
Tt —51331&—1 &t
PR S A — B + —
1-p5 2T 1-8

and multiply by xt P and sum over n to yield

—2p
Zt 1 Ty 1 Bth 1xt 1 —3 Zx Zt 1T 1€t
= P2 t—

1—5 1—p;
and solve for (5 to yield
1-2 n —2
By — D1 TATy 1 — B 19% i B Do T Ct (25)
(L= B1) 2 Ty 1 (L= B1) 2oty 1

from (5). Now write

1-2p —2p
Dt Ty i — B g _Z? 1118t

2 72
Zt:l xtff Zt 17X p
(1-2p)

Now use z,_ ;™" as an IV variable and sum over n, so that

Ty — P11 = &t

1-2
mel 2p) e Zx2 20) _ Xn:xl 2p[zt 1 Ty 1 — B>t T 1p]
t 1 t t]. Z 1‘72p
t=1"t—

t=1

Zt 153 +

0 72p xt Tet xt 1 Pey
t=1T —

and then

pay 1"13255'31‘,1 12p Dot Ty 1 — Db T 1 Zt 1z 1 2'0)
S S (S )

+Z?—15'3172p Db Ty 15t D1 ® th 1% 1 2'0) Et
IS ERD DT (zt 12”)

pr =
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Finally

—2 1 2
Do 1$t$t 1 p)Zt 1T - — Dty Ty 1 Zt 1T ’)

31 2
(2 29 72p (1-2p)
Zt 1% t 1T Zt 1xt 1

ie.
12)
Ztltl t133t15t Ztlxtlztl pt

2
(2—2p) 2 (1-2p)
Ztl pZtl p (Ztlxtlp)

where numerator and denominator are correlated so that the bias should be O (n_l) for any non-negative

31:51

(26)

integer p .

6.2 Bias expansion of ji. Using an IV approach

For p = 0, from (23), it is straightforward to show that this estimator is unbiased to order n~! supporting
Theorem 3.1.1 in Tang and Chen (2009, page 68). We proceed now to expand BQ for any p being a positive

integer and also when p = 0.5

~ Zt 1 <$t$t 1 Bl - 2p ) Z:L:l (xtl';?ioo - Bl (1 2p ) (1 - 51)
/82 - _ = —2p —2p )
(1 —51> >t xt—f E (Z? 1$;2{)> [1 + DS 5 (ZEZ Lo 1)]

E( t=1T¢— f)

Sryw P —B(r 2 ) . —1/2
h = sO . Henc
whnere E(Z? L7 21p) 1 D (TL ) ence

5 (1-2p) =\ 1 —20y] 1
T (e Bl (1-B) 1 Bl E s
t=1"t—1
52 = r " 2,
( t=1Tt— 1)
where we may find an asymptotic expansion. Notice that E (Z?Zl ;20 ) = npy (so <Z?:1 ;2P ) /n is

-1 ~
an unbiased estimator for u,) and <1 - 51> =1-8)" (1 - ((61 - 51) /(11— Bl))_1> , which can be
easily expanded noting that (Bl — /31) is O, (n‘1/2) .
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Therefore for g, # 1

i (ri el (180 (1= (B 1) /(0 - ) [ Do)

Bz =
YD)
_ g Zt 1 (ﬁtxt 1 6155(1 2,;) - S x;_Qf — Ny -
! Ny nfbo
~ i1 <$tm;2{)_51$§1 12p)) S —np -
-1 t=1 %41 2
+(1=8)7 (B 81) /(1= By) o = ]
~ i 1<xt$t 1 — By L 2p)> S —np o
-1 t=1%1 2
+(1=8)7 ((Bu—81) /(1= By o [1+ o ] ,

and then to order n~! we have for 5; # 1

(17 P _92 _9 2
| 2t (mtxt 1A ) 14 P . (Z?—l 71 _”M2>

By = (1-py)7"

Tofhg T Tipho
(1—2p)
> 1<$t$t 1 51 p)
Tl

Zt 1 (xt:ct 1 ﬁlw(l 2p>

L)

+(1=8)7 (B 81) /(1= BY)

n —2p
_1T —MNn
14 Zt_l t—1 M2]

Ny

+(1=8)7 (Bi=81) /(1= B
where (Bl — /31> is O (n_1/2) and <B1 - 61>2is Op (n71).

7 APPENDIX G

7.1 Evidence of the order of the bias expressions

In relation to the order of the biases, our Theorem 2 indicates that the result in Tang and Chen (2009,

Theorem 3.1.3), where it is stated that E (& — p) = O (n™2), is incorrect for p = 0.5. We can check the

simulation results in Tang and Chen (2009) to see if their simulations shed any light on the biases of the long

term mean parameter estimator . Examining the simulation results for the CIR model (p = 0.5) which

appear on page 73 (Table 1) in the a column, simulated biases are given for sample sizes n = 120, 300, 500

and 2000. Also approximations to the bias are given in parenthesis which are described as being predicted

from the theoretical expansions. If the bias is of order n~!, then doubling the sample size would be expected
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to yield a ratio of the new bias to the original of 0.5 whereas if the bias is of order n~2, the corresponding
bias ratio is 0.25. When the sample size is increased from 120 to 300 the corresponding ratios are 0.4 and

0.16 and if the sample size increases from 500 to 2000 the ratios are 0.25 and 0.063 respectively. We shall

1 2

use these ratios to check whether the results favour a suggested bias of order n™" as opposed to order n™=.
Examining the results presented for CIR Model 1 in Tang and Chen (2009), it is seen that when the
sample increases from 120 to 300 the bias ratio based of predicted biases is 0.395 whereas the ratio for a

bias of order n~1

is very close at 0.4. The ratio for the simulated biases however, does not show any pattern
since the bias is shown as hardly changing when n is increased from 120 to 300. A clearer picture emerges
when the sample size increases from 500 to 2000 so that the bias ratio for a bias of order n~! is 0.25. The
ratio of simulated biases is 0.33 while the ratio of the predicted biases is 0.547. On the other hand if the
bias is of order n~2, the suggested bias ratio is 0.063; hence a bias of order n~! is supported.

Turning to the results for CIR Model 2 in Tang and Chen (2009), the evidence for a bias of order n~! is
even stronger. Increasing the sample size form 120 to 300 the simulated bias ratio is 0.745 and the predicted

bias ratio is 0.412 while for a bias of order n~!

a ratio of 0.4 is anticipated. This is not especially close to
the simulated bias ratio but if the bias is of order n~2 the anticipated ratio is 0.16. Finally if the sample size
is increased from 500 to 2000, suggesting a bias ratio of 0.25 for a bias of order n!, it is seen that the ratio
of simulated biases is 0.249 while the ratio of predicted biases is 0.244. Hence a very close correspondence
indeed. For a bias of order n™2 the suggested bias ratio is 0.063. Hence these results clearly indicate that

the bias is of order n 1.
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