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One of the most important groups of metabolic enzymes involved in the detoxification of a wide range of 
toxic compounds is the cytochrome P450 (CYP) superfamily. This superfamily is subdivided into a number 
of families and subfamilies, based on nucleotide sequence homology where genes within a family have a 
minimum of 40% sequence identity [1]. They catalyse a large number of chemical reactions with an almost 
unlimited number of biologically occurring and xenobiotic compounds and are preferentially expressed in 
liver, although some isozymes can be tissue-specific [2]. 

Among this group of enzymes the isozyme CYP1B1 deserves special attention. CYP1B1 gene is located in 
chromosome 2p22-p21 [3] and encodes a 543-amino acid protein. CYP1B1 promoter contains a xenobiotic 
response element (XRE: 5′-TNGCGTG-3′) and is regulated by aryl hydrocarbon receptor [1]. This receptor 
belongs to the helix-loop-helix transcription factors family and constitutes a cytosolic protein that, after 
binding to some of its ligands, translocates to the nucleus and dimerizes with a nuclear protein [4]. This 
dimer interacts with the XRE and allows the complex to regulate the gene transcription [5]. Unlike CYP1A1, 
other important gene of this family, the structure and function of CYP1B1 promoter is similar to the 
constitutively expressed genes [6], although it has been reported that its expression can also be induced by 
the binding of several substances as dioxins or polycyclic aromatic hydrocarbons to the aryl hydrocarbon 
receptor [7]. 
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Attending to the fact that many carcinogenic agents must be bioactivated by means of phase I oxidative 
metabolism and that the CYP family is the predominant source of this metabolic activity, its expression 
constitutes a determinant toxicological factor [8]. Specifically, it has been shown that the CYP1B1 enzyme 
induces the metabolic activation of a wide variety of carcinogens as arylamines, nitroaromatic compounds 
and polycyclic aromatic hydrocarbons [9]. Moreover, CYP1B1 catalyses both the formation of certain pro-
carcinogen polycyclic aromatic hydrocarbons dihydrodiols and their additional oxidation to dihydrodiol 
epoxides, the ultimate carcinogens [7], and is apparently more active than CYP1A1 [10]. So, as in most cases 
metabolites resulting from its action possess more toxic characteristics than the original compounds, this 
metabolic pathway constitutes an activation process, and potential quantitative differences will be of special 
relevance in the damage induced. In fact, CYP1B1 is over-expressed in many tumours, and McFadyen and 
Murray [11] identified this enzyme as the main CYP present in a wide range of human cancers of different 
histological types, being considered nowadays a neoplastic phenotype biomarker. 

Several polymorphisms were identified in CYP1B1 gene; four of them are single nucleotide polymorphisms 
and give rise to amino acidic substitutions. CYP1B1*3 allele comes from a C-to-G transversion at position 
1666 in exon 3 (codon 432) generating an amino acid change from Leu to Val (NCBI database number 
rs1056836). In general, variant CYP1B1 isozymes are more active (2.4- to 3.4-fold) than the wild types 
[9,12]. Specifically, Li et al. [13] described a three-fold higher 4-hydroxylase activity for the CYP1B1*3 
allele. On the other hand, Aklillu et al. [14] did not find differential activities between variants. Due to the 
fact that many works link the presence of the variant allele of this gene to the occurrence of a wide variety of 
cancers, the frequency of this polymorphism has been described in several studies in Caucasian populations 
(table 1), however, never in Spanish individuals. 

  

Table 1. Frequencies of CYP1B1*3 in different healthy Caucasian populations. 

Reference Numbers of participants Frequency 
Brüning et al. (1999) [15] 300 0.402 
Rylander-Rudqvist et al. (2003) [17] 434 0.444 
Sasaki et al. (2003) [18] 112 0.299 
Pesch et al. (2004) [19] 294 0.600 
Landi et al. (2005) [20] 121 0.396 

 

 

In this study, we have analysed the frequency of CYP1B1 codon 432 polymorphism in a population of 235 
healthy Spanish individuals (114 men and 121 women, mean age 29.99 ± 11.09 years, range 17–59). DNA 
was extracted from 300 µl of whole peripheral blood using Puregene™ DNA isolation kit (Gentra Systems, 
Minneapolis, MN, USA). The genomic DNA sequence of CYP1B1 referred to as accession number 
AY393988 (NCBI) was used as a reference sequence. C-to-G substitution in codon 432 was determined by 
means of the analysis of the melting curve after a real-time polymerase chain reaction (PCR) process using 
resonance energy transfer probes following Brüning et al. [15], with minor modifications. Briefly, the 
reaction mix consisted of 1 µM primers (5′-CAGCTTTGTGCCTGTCACTAT-3′ and 5′-
CTTAGAAAGTTCTTCGCCAATG-3′), 0.1 µM hybridization probes (5′-LCR-AACTTTGATCCAGCTCG 
TTCTTGGACAA-3′ and 5′-ATGACCCACTGAAGTGACCTAACCC-FL-3′), 30 ng of DNA and the 
recommended quantity of LightCycler® FastStart Reaction Mix (LightCycler® FastStart DNA 
MasterPLUS HybProbe, Roche, Germany). In every set of reactions, a negative control was included. Forty-
five rounds of amplification preceded by an initial 10 min. 95°C denaturation were undertaken in a 
LightCycler® according to the following reaction conditions: 3 sec. at 95°C, 10 sec. at 55°C and 25 sec. at 



 
 

72°C. Melting curves were achieved following a denaturation period of 3 sec. at 95°C at a temperature 
increase of 0.4°C/sec. from 45 to 80°C. PCR and melting procedure were detected online with the 
LightCycler® instrument. The melting curve analysis showed a single melting maximum [–(dF2/F1)/dT] of 
65°C for homozygous individuals C/C and 56°C for homozygotes G/G. In the case of heterozygous 
individuals C/G, the two melting maxima were present (fig. 1). 

 

 

Figure 1. LightCycler® assisted analysis of CYP1B1 codon 432 polymorphism: Homozygous C/C individual (solid 
line), homozygous G/G individual (dotted line) and heterozygous C/G individual (dashed line). (A) Melting curves 

(Fluorescence versus Temperature) and (B) melting peaks (–dFluorescence/dTemperature versus Temperature). 

 

Genotype and allele frequencies obtained in the Spanish population analysed can be seen in table 2. Variant 
allele frequency CYP1B1*3 was 0.432 and Hardy–Weinberg equilibrium was tested and confirmed, as the 
observed genotype frequency showed no deviation from Hardy–Weinberg equilibrium (H = 1.882, 
P = 0.170). This absence of significant deviation is a good indicator for the quality of the single nucleotide 
polymorphism genotyping method [16]. The frequency of this polymorphism has been previously described 
[15,17–20] (table 1), being results from most studies similar to our frequency. In addition, data from a recent 
meta-analysis reported a lower frequency for the variant allele (0.235) [21]. 



 
 

Table 2. Genotype and allele frequencies of CYP1B1 codon 432 in the Spanish population. 

  Total numbers of cases Frequency 
Genotype *1/*1 81 0.345 
 *1/*3 105 0.447 
 *3/*3 49 0.208 
Allele *1 267 0.568 
 *3 203 0.432 

 

 

The concrete processes that lead to the enzyme activity variation have not yet been studied in depth, but it 
has been reported that exon 3 (where the studied polymorphism is located) encodes the haem-binding 
domine, a region critical to the catalytic function of the gene [22]. 

Further studies are needed to confirm the importance of CYP1B1 genotyping in individuals exposed to 
xenobiotics that are metabolized and bioactivated by this enzyme, especially polycyclic aromatic 
hydrocarbons. Nevertheless, we think that such toxicogenetic testing might be helpful in the ascertaining of 
the factors contributing to the different individual responses to similar exposures. 
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