
A Convolutional Network for Sleep Stages
Classification

Isaac Fernández-Varela∗, Elena Hernández-Pereira∗, Diego Alvarez-Estevez† and Vicente Moret-Bonillo∗
∗CITIC

Universidade da Coruña
A Coruña, España

(isaac.fvarela, elena.hernandez, vicente.moret)@udc.es
†Sleep Center & Clinical Neurophysiology

Haaglanden Medisch Centrum
The Hague, The Netherlands

diego.alvarez@udc.es

Abstract—Sleep stages classification is a crucial task in the
context of sleep studies. It involves the simultaneous analysis of
multiple signals recorded during sleep. However, it is complex
and tedious, and even the trained expert can spend several hours
scoring a single night recording. Multiple automatic methods
have tried to solve these problems in the past, most of them
by classifying a feature vector that is engineered for a specific
dataset. In this work, we avoid this bias using a deep learning
model that learns relevant features without human intervention.
Particularly, we propose an ensemble of 5 convolutional networks
that achieves a kappa index of 0.83 when classifying a dataset
of 500 sleep recordings.

Index Terms—convolutional network, sleep stages, classifica-
tion

I. INTRODUCTION

Sleep disorders affect a major part of the population. As
an example, 20% of the Spanish adults suffer insomnia, and
between 12% and 15% daytime sleepiness [1, 2]. Good sleep
is essential for a healthy life, and the adverse consequences of
restless nights have been extensively reported [3]. To evaluate
the sleep function, and to help the diagnosis of sleep disorders,
it is important to know the sequence of sleep stages that the
patient goes through the night.

The most common technique to monitor the sleep function
is the polysomnogram (PSG), which involves recording of
the patient’s biosignals during sleep, including various pneu-
mological, electrophisiological, and contextual information.
This is an expensive test, uncomfortable for the patient, and
for which interpretation of the results is difficult due to the
complexity of the data involved. An usual way to summarize
the sleep information contained in the PSG is the derivation of
the hypnogram, an ordered representation of the sleep stages
evolution.

The current gold standard for the building the hypnogram is
the American Academy of Sleep Medicine (AASM) [4] guide
for the identification of sleep stages and of their associated
events (e.g. EEG arousals, limb movements, and cardiac or
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respiratory events). This guide identifies five sleep stages:
Awake (W), Rapid Eye Movements (REM), and 3 non-REM
phases (N1, N2, and N3). Correct identification of the sleep
stages and construction of the hypnogram is of fundamental
importance to achieve a good diagnosis, allowing the clinician
to focus efforts in the therapy. Such a task implies the analysis
of huge amounts of data and expert knowledge [5]. Moreover,
even following the guidelines, inter-expert agreement usually
remains below the 90%. For example, Stepnowsky et al. [6]
studied the agreement between two experts finding kappa
index values between 0.48 and 0.89. Similarly, Wang et al. [7]
found values between 0.72 and 0.85. Furthermore, agreement
is worse for some particular stages, usually being stage N1
the one with the highest disagreement.

All given, automatic methods for sleep stages classification
are needed. Most of these methods follow a two step approach.
First, feature extraction takes place, usually with features hand
tailored for a specific dataset. Then, feature vectors are built
to train a classifier and predict the sleep stages. While some
authors have used a single signal channel as reference (usually
the EEG), other approaches have extracted features using
several channels, building input vectors of various elements. At
this respect usually features from the electrooculogram (EOG)
or electromiogram (EMG) are added to those of the EEG, as
recommended by the AASM guidelines. Often features are
extracted either from to the time or from the frequency domain.

Among the methods following this 2-step approach we find:
Fraiwan et al. [8] use a random forest to classify features
both from the time-frequency domain and Renyi’s entropy;
Liang et al. [9] measure entropy with different scales obtaining
autoregresive features which classify using a linear discrimi-
nant; Hassan and Bhuiyan [10], apply wavelet transformations
for feature extraction and use a random forest technique for
the classification step. Sharma et al. [11], compare several
classifiers for iterative filters analysing a single EEG channel;
Koley and Dey [12], train a support vector machine (SVM)
with frequency, time and non-linear features extracted from a
single EEG channel; Lajnef et al. [13], base their approach on
multiple signals building a decision tree upon several SVMs;



Huang et al. [14], study power spectral density of 2 EEG
channels classifying frequency features with a modified SVM;
Finally, Günes et al. [15], also analyse power spectral density
while classifying with a nearest neighbours algorithm.

The approach consisting in solving the sleep staging classi-
fication problem using handcrafted feature extraction induces
biases due to the design of features based on one specific
database. Thus, the aforementioned solutions usually do not
generalize well, specially given the nature of PSG recordings,
where variability effects are introduced due to several factors,
including patient, hardware or scoring differences.

One alternative option to solve this problem is the use of
methods than learn directly from the raw data, therefore avoid-
ing the human bias. In this sense, deep learning represents
a natural approach, as it demonstrated improvements against
traditional methods in multiple general fields, including in
particular, the medical diagnosis [16, 17].

Some works have already explored solutions with different
deep learning models: Längkvist et al. [18], used deep belief
networks learning a probabilistic representation of preproce-
cessed signals from PSG inputs; Tsinalis et al. [19], still
followed the 2 step approach, but with convolutional networks
for classification. In other work, the same authors [20] relied
on a stack of sparse autoencoders; Supratak et al. [21], per-
formed classification from the raw signals with a bidirectional
recurrent neural network; Biswal et al. [22], compared a
recurrent network against different models, although all were
trained with features instead of the raw signal; Finally, Sors
et al. [23] also used a convolutional neural network using one
single EEG channel as reference.

In this work we use deep learning to classify sleep stages
with a convolutional neural network that learns the relevant
features for each stage. Following the AASM guidelines we
use multiple signals; namely, two EEG, one EMG, and two
(left and right) EOG channels. Moreover, signals are filtered
in the first place, to reduce noise and remove artifacts.

II. MATERIALS

Design and analysis of the presented model was carried out
using PSG recordings from real patients. These recordings
belong to the Sleep Heart Health Study (SHHS) [24], a
database offered by the Case Western University, originated
from a cohort study involving multiple centers directed by
the National Heart Lung and Blood Institute, with the goal
of determining the cardiovascular consequences of respiratory
related sleep disorders.

Each recording contains annotations for different events
performed by clinical experts following the procedures de-
scribed in [25]. All recordings were anonymized and blind
scored. The montage for the signals acquisition included two
EEG derivations (C4A2 and C4A1), left and right EOGs, chin
EMG, and modified lead-II electrocardiogram (ECG). EEG,
EOG, and EMG were sampled at 125 Hz whereas EOG were
sampled at 50 Hz. All signals were filtered during acquisition
with a high pass filter at 0.15 Hz.

From this database three different datasets were selected to
train, validate and test our model. Training dataset included
400 recordings, validation 100, and test 500. The length of
the training recordings is matched (limiting each to a total
of 7 randomly selected hours) to facilitate the coding and
the training of the algorithm. Finally, our training dataset
contained 288.000 30−s epoch samples, the validation dataset
119.121 and the test dataset 606.981. Recordings were selected
randomly, including those with high levels of noise or artifacts.

The distribution for the different classes, both for the
complete dataset as for each individual recording is shown
in Table I. This table shows how unbalanced the datasets
are, being W the most represented class (about 38% of the
samples), although with a similar proportion to N2 (around
36%). On the contrary, class N1 is only represented in 3% of
the classes It is also interesting to notice how some recordings
do not contain samples for some of the classes, and how
much the distribution differs between the recordings. For
example, in the test dataset, whereas a particular recording
contains a 7.10% of samples for class N2, another goes up
to a 83.43%. Moreover, these are the two important problems
when trying to develop an automatic sleep staging classifier: 1)
the class unbalance and 2) the differences between individual
recordings.

III. METHODS

A. Signal filtering

Signals are preprocessed to reduce noise and remove com-
mon artifacts. Both operations are typically applied in previous
works before feature extraction.

The first of the two filters used to reduce noise is a
Notch filter centered at 60 Hz to remove mains interference.
This filter is applied to those signals with a sampling rate
higher than 60 Hz: EEG and EMG. The second one removes
DC component and frequencies not related with muscular
movements from the EMG, applying a high pass at 15 Hz.

Regarding artifacts, most of then happen during particular
short time periods, making it difficult even their detection.
However, ECG artifacts, caused by the heart beat interference,
are common and constant through the whole signals. We can
remove this kind of artifact with an adaptive filter. To do
so, we first obtained the beat series following a standard
QRS detection algorithm [26]. Then, we studied the signal
quality to asses which intervals could be safely included in the
construction of the adaptive filter. Finally, during the intervals
with enough signal quality, we applied and updated the filter
template to remove the artifacts. More information about this
process can be found in Fernández-Varela et al. [27].

B. Convolutional network

Sleep stages classification is usually carried out with 30 s
windows called epochs. Analyzing several features from each
epoch, clinicians score the corresponding sleep stage.

A convolutional neural network [28] is a feedforward
network solving the limitations of the multilayer perceptron
with a weight sharing architecture. Basically, it applies a



TABLE I
DISTRIBUTION OF THE DIFFERENT CLASSES IN THE TRAINING, VALIDATION, AND TEST DATASETS.

W N1 N2 N3 REM Total

Training dataset Total 187.513 17.283 172.451 44.454 62.168 483.869
Proportion 38,75 % 3,57 % 35,64 % 9,19 % 12,85 % 100 %
Min in single record 8,20 % 0,00 % 12,59 % 0,00 % 0,00 %
Max in single record 71,61 % 13,75 % 68,65 % 33,43 % 26,58 %

Validation dataset Total 43.742 3.963 43.510 12.900 15.006 119.121
Proportion 36,72 % 3,33 % 36,53 % 10,83 % 12,60 % 100 %
Min in single record 11,21 % 0,29 % 12,38 % 0,00 % 0,00 %
Max in single record 76,79 % 17,08 % 60,09 % 30,16 % 23,68 %

Test dataset Total 231.707 19.769 217.246 61.281 76.978 606.981
Proportion 37,77 % 3,26 % 35,96 % 10,25 % 12,75 % 100 %
Min in single dataset 7,75 % 0,00 % 7,10 % 0,00 % 0,00 %
Max in single dataset 76,53 % 16,93 % 83,43 % 43,82 % 31,11 %
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Fig. 1. Proposed convolutional neural network

convolution operation over the input, limiting the number of
parameters. Thus, it allows the construction of deeper networks
that are better at recognizing complex features. The proposed
network is represented in Figure 1.

The input to the convolutional network is the set of signals
(2 EEG channels, EMG, and both EOGs). Each input pattern
corresponds to a 30 s epoch window. As the signals are
sampled at different rates (aforementioned in Section II) we
upsampled those with sampling rates lower than 125 Hz.
We avoided downsampling to 50 Hz because it would mean
loosing high frequencies in the EEG that should contain
important information from a clinical perspective. Moreover,
we also discarded padding because the approach cannot be
easily generalized to other datasets with different sampling
rates. This way, each input to the network is a matrix with a
dimension of 3750×5. Each signal was normalized with mean
0 and deviation 1, using the mean and deviation obtained from
all the respective signals in the training dataset. When we tried
other normalizations with lower granularity, our training did
not converge. The convolutional block shown in Figure 1 is a
stack of four layers including a 1D convolution that preservers
the input dimension (with padding), a batch normalization
layer [29] to improve regularization, ReLu [30] activation, and
an average pool that reduces dimension by a factor of 2. By
using 1D convolution we avoided imposing a spatial structure
between our signals that is unknown a priori. This stack was
repeated n times, being n an hyperparamenter with a value
selected during experimentation. All layers were configured
with the same kernel size but the number of filters for layer
i is twice the number of filters for layer i − 1. The selection
value of n, the kernel size and the number of filters for the

first layers is explained in the following Section, together with
the remaining hyperparameters.

The output of the last convolutional block, after adjusting
dimensions with a global pooling and applying dropout, is
used as input for a dense layer with a softmax activation. This
layer returns the probability for each sleep stage given the
initial input. As usual, the final predicted class is set to the
output showing the highest probability.

To train the network we used Adam optimizer [31] and a
batch size of 64. This batch size was limited by our hardware.
The learning rate was configured whereas both betas are left
with the default values. Training ends using early stopping by
monitoring the validation loss with a patience of 10 epochs. To
limit the impact of class unbalance, we used weighted cross
entropy as the cost function, where weights were obtained
using the training dataset.

C. Hyperparameter optimization

A good selection of hyperparameters can mean the success
of a deep learning model. The difficulty when selecting the
best hyperparameters is not only to achieve the best perfor-
mance, but doing it while at the same time minimizing the
cost, either the economical or the computational cost.

In this work we relied on a Tree-structured Parzen Estimator
(TPE) that has shown better performance than other meth-
ods [32, 33]. TPE is a sequential models based optimization.
This kind of methods builds models sequentially to approx-
imate the performance of hyperparameters selection based
on historical results, and then chooses new hyperparameters
that are checked with the model. Particularly, TPE uses two
distributions P (x|y) and P (y) where x represents the hyper-
parameters and y the expected performance. The expected
improvement (EI) is optimized according to the following
equation:

EIy∗(x) =

∫ y∗

−∞
(y∗ − y)P (x|y)P (y)

P (x)

where y∗ is a quantil γ of the observed values y such as
p(y < y∗) = γ.



We used TPE to select the best values for the following
hyperparameters related with the convolutional network: the
number of convolutional blocks, kernel size for the 1D convo-
lutions, and the number of filters for the first convolutional
block. Moreover, there is also a relationship between the
number of blocks and the number of initial filters. Given our
hardware restrictions, we did not add blocks that would have
more than 1024 filters. We also used TPE to select the learning
rate. The distributions for the random values of each of these
hyperparameters are summarized in Table II.

TABLE II
DISTRIBUTIONS FOR THE HYPERPARAMETERS

Hyperparameter Distribution

Convolutional Blocks Uniform between 1 and 10
Kernel Size Uniform between 3 and 50
First Block Filters Choice between 8, 16, 32 o 64
Learning Rate Log-uniform between -10 and -1

To reduce the computational time for the hyperparameter
selection we used a subset from the training set in order
to train, validate, and test the different models. This subset
contained 250 recordings where 20 were used for validation
during training, and 50 to test each model. In total, we tried
50 different hyperparameter configurations, using the kappa
index obtained with the test set as the criterion to select the
best one.

D. Performance

The performance of the models was evaluated using the
following metrics:
• Precision, the fraction between true positives and the

predicted positives.
• Sensitivity, the fraction between true positives and the

samples belonging to that class.
• F1 score, harmonic mean between precision and sensi-

tivity.
• Kappa, agreement measure between two classifiers that

takes into account the chances of random agreement.
Perfect agreement gets a value of 1, and by chance a
value of 0.

IV. RESULTS

Before focusing on the results achieved with the final model,
performance of the different models evaluated during the
hyperparameters search is shown in Figure 2. Data in the
figure suggest a clear trend toward low learning rates to ensure
convergence.

To improve the results obtained by a single model we used
an ensemble. Thereby, several models classify the same input,
and the final decision is taken using the majority vote. In
this case, we selected the 5 best models obtained during the
hyperparameter selection. Values for the hyperparameters for
each of those models are shown in Table II.

Results obtained with the ensemble using the test set are
shown in Table IV. The best classification was achieved for

Fig. 2. Dispersion graph with the different configurations of hyperparameters.
Each point color represents the kappa index for the model with the values
for the hyperparameters represented in the axes. Diagonal represents the
distribution for the values tried for a particular hyperparameter.

class W, with values near to 0.95 for the precision, sensitivity
and F1 score; then, classes N2, N3, and REM showed similar
results, specially if we compare the F1 score, although sensi-
tivity for N3 was lower (thus, precision was higher). Lastly,
results regarding the the classification of class N1 were rather
low, not even achieving a F1 score of 0.3. However, N1 is
typically the most difficult class to predict, showing the highest
disagreement also among trained experts.

The confusion matrix obtained with the ensemble is shown
in Figure 3, where we can verify how most of the N1 samples
are misclassified, specially towards class N2. Also, although
in a smaller proportion, whenever there is a classification error
it tends to be misclassifying as N2.

V. DISCUSSION AND CONCLUSIONS

In this work we present an ensemble of convolutional net-
works for the classification of sleep stages. Sleep staging is a
time consuming task, nevertheless critical for a good diagnosis
of sleep disorders. Most of the automatic methods reported so
far are based on human engineered features, designed for a
particular dataset. Thus, it is difficult to find a method that
generalizes correctly to other datasets. To solve this problem
we propose the use of a convolutional network that self learns
the relevant features for the classification, avoiding human
biases.

An important aspect for the success or failure of convolu-
tional methods is the correct choice of the hyperparameters.
In this paper, we experimented with 4 hyperparameters, op-



TABLE III
HYPERPARAMETERS FOR THE 5 MODELS WITH THE BEST KAPPA INDEX

Parameter Model 1 Model 2 Model 3 Model 4 Model 5

Convolutional blocks 7 9 7 7 7
Kernel size 6 9 13 3 10
Initial filters 16 8 8 8 64
Learning rate 5, 99× 10−2 9, 00× 10−3 1, 45× 10−3 1, 91× 10−3 5, 49× 10−3

TABLE IV
PERFORMANCE MEASURES FOR THE CLASSIFICATION OF THE TEST
DATASET USING THE ENSEMBLE WITH THE 5 SELECTED MODELS.

Stage Precision Sensitivity F1 score

W 0,94 0,96 0,95
N1 0,39 0,21 0,27
N2 0,87 0,89 0,88
N3 0,92 0,77 0,84
REM 0,82 0,90 0,86

Average 0,78 0,75 0,76

Fig. 3. Confusion matrix for the classification of the test dataset using the
ensemble with the 5 selected models.

timizing their values with a tree-structured parzen estimator,
trying 50 different configurations.

Our ensemble, built from the best 5 hyperparameters con-
figurations, achieved an average precision, sensitivity, and F1
score of 0, 78, 0, 75 y 0, 76 respectively, with a kappa index
value of 0.83. Although globally our results are acceptable,
our solution has shown problems for the classification of class
N1. Also, in the event of misclassification, a trend has been
noticed towards class N2.

Comparison of our results against similar works is difficult
given the lack of standardization, both as with regard to the
chosen datasets, as well as in the procedures for the evaluation
process. In Table V we show results from previous works,
limiting to those that report values separately for each class.
As it can be seen, our kappa index is the highest, although it
is not the case for the F1 score. According to the F1 score,
and apart from class W, some works are able to achieve better
classification for the remaining classes. However, the values
that we obtained are competitive, excluding class N1, although

it is clear from all the results, that this is the most difficult
class. Taking as reference the only work showing results with
a similar dataset [23], our kappa index and F1 score for W
class are higher, with similar values for N2, N3, and REM but
lower for class N1.

Our results are promising and the chosen method should
be easily adaptable to other datasets, specially if we can train
the model for the different dataset. Moreover, training it with
more than one dataset should improve generalization, avoiding
biases for a single dataset.

To improve our result it is necessary to understand why and
how the network is classifying. Also, it would be interesting
to add memory to the model using recurrent networks, as the
classification of some inputs, following the clinical definition,
depends as well on the status of the neighbouring epochs.
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