
Numerical Assessment of Fan Blades Screen Effect on
Fan/OGV Interaction Tonal Noise
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Abstract

This work deals with sound generation and transmission in a fan stage. The

study is done on a subsonic Fan stage and interaction noise between the fan

wakes and the Outlet Guide Vanes (OGV) is considered. For this purpose,

the Linearized Euler Equations (LEE) are solved with a steady axisymmetric

flow. The acoustic sources are modelled by a scattering approach. Numerical

simulations are carried out in an unwrapped cylindrical layer using a high-order

finite volume solver. In order to explicitly take into account the moving fan

blades into the propagation medium, a high-resolution sliding mesh technique

is used. The simulation results, which highlight the screen effect of moving fan

blades on fan/OGV interaction tones, are consistent with analytical literature.

Keywords: Aeroacoustics, turbojet fan noise, Outlet Guide Vane,

turbomachines, Linearized Euler Equations, screen effect, fan, high order finite

volumes

1. Introduction

The increase in the turbojet bypass ratio has resulted in the relative emer-

gence of fan noise by comparison with other noise sources. On modern archi-
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tectures, Fan noise is practically predominant at all operating engine speeds.

Many aeroacoustic mechanisms are at the origin of Fan noise. Their occurrence5

and their intensity are strongly correlated with the system configuration and

the operating conditions. In particular in subsonic Fan stages, the interaction

noise generated by the fan wakes impingement on downstream Outlet Guide

Vanes (OGV) is predominant. This source of noise has been widely studied

using analytical, semi-analytical or more advanced numerical methods [1].10

The screen effect of fan blades rotation on acoustic waves generated by the

fan/OGV interaction remains difficult to take into account outside analytical

studies [2, 3, 4, 5, 6]. These works, which are theoretically useful to understand

acoustic transmission through the fan stage, suffer from consequent limitations

on the geometry representation and the flow intricacy. In most current nu-15

merical models, the screen effect is either neglected [7] or implicitly taken into

account [8, 9, 10].

In the case of hybrid approaches based on acoustic analogies, the calculations

are performed in two steps. In the first step, an unsteady CFD analysis is

conducted to obtain the acoustic sources. In the second step, the propagation20

of acoustic waves from these sources is either modeled by a Green’s function

[7] or calculated using a propagation operator [11]. As far as semi-analytical

methods are concerned, the use of a suitable analogy [12] certainly allows us to

take into account the effect of the rotating average flow (swirl). However, the

formalism using analytical Green’s functions, in their usual form, does not allow25

to include the fan blades screen effect.

The numerical resolution of a propagation operator allows to reproduce

sound propagation from sources through the fan. However, the use of a propaga-

tion operator with source terms involves the risk of counting some propagation

effects several times, due to the lack of an adapted theoretical basis which per-30

mits the clean separation of the mechanisms of generation and propagation in

the presence of swirling flow. Moreover, and beyond this consideration, the

question of the stability of the operator arises. Despite these drawbacks, ap-

proaches based on acoustic analogies have been used in [10] for instance. In
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their work, the effect of the fan is not explicitly taken into account. Instead,35

the authors integrate in the source term all the mechanisms of generation and

propagation inside the Fan-OGV stage.

An alternative to the approaches based on acoustic analogies is the direct

resolution of Navier-Stokes equations. For obvious reasons of calculation cost,

the “zonal” approach is considered in most cases. Simulations using Navier-40

Stokes equations are restricted to the Fan-OGV region, whereas the propagation

inside the terminations (inlet/outlet), is taken into account by a non-viscous

model. The connexions between the regions are done by using a mode-matching

technique [8, 9, 13]. Using high-fidelity simulation of coupled Fan/OGV system

[13], most of underlying physics is taken into account. In particular, it allows to45

capture both the screen effect of the fan on the acoustic waves and the feedback

of acoustic waves on the fan wakes generation [1].

High-fidelity direct computation of radiated noise is still expensive and hy-

pothesis on the flow can be done to make it more accessible [14]. Considering

only the sound generation, Fan/OGV interaction tones are often modelled with50

inviscid flows [15, 16, 17, 18, 19]. The calculations can be carried out with linear

equations when the hypothesis of small perturbations is verified [19, 20]. Of-

ten, a non-linear computation is performed to take into account the nonlinear

interactions due to the perturbations of large amplitudes [15, 16, 17, 18]. A

linearized viscous equation system has also been employed with no significant55

improvement in accuracy [21].

In this work we present a numerical strategy based on the linearized Eu-

ler equations (LEE) which explicitly takes into account the screen effect of the

fan blades on the fan/OGV interaction tones. In the context of linearized ap-

proaches, a steady state simulation is required to characterize the mean flow field60

[21]. Here, we propose to use a RANS calculation with a mixing plane interface

to characterize a theoretical average flow field which is supposed axisymmet-

ric. This simulation is also exploited to extract speed deficits downstream of

the fan. The obtained velocity profile feeds a Gaussian wake model which only

accounts for the coherent part of the wake. In this type of computation, the65
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vortical-mode scattering on the OGV vanes is usually calculated by convection

of the perturbation. Here, in order to simplify the numerical implementation,

the disturbance is imposed on the OGV by using a scattering approach based on

the frozen gust assumption. No simplifying hypothesis were formulated on the

geometry of the blades. The whole strategy of simulation is sketched in figure70

1.

Axisymmetric
mean flow modelling

RANS Calculation

Vortical mode

Acoustic mode

Periodic fan wakes
Modal analysis(Gaussian model)

Exact geometry

Isentropic LEE

Scattered approach

Figure 1: Sketch of the simulation strategy.

The calculations are carried out in an unwrapped cylindrical layer of a rep-

resentative fan stage for two subsonic operating points1. The two dimensional

approximation of the steady flow is done by assuming an equilibrium between

the pressure and the centrifugal forces along the cylindrical layer. The numerical75

simulation is done in the time domain by using a high-order finite volume solver

1The cylindrical layer is extracted at 80% of the fan leading edge radius. The study is

done with 41% and 61% of the fan nominal rotation speed where 61%Nm nominal rotation

speed corresponding to the “approach point”
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based on Moving Least Squares (MLS) approximations. The relative motion be-

tween the fan blades and the OGV blades is handled through a high-resolution

sliding mesh technique. A novel technique for considering periodic boundary

conditions in turbofan simulations is also proposed.80

The proposed approach aims to highlight some key mechanisms, often not

discussed in the literature. It concerns the transmission of modes through a

rotating blade cascade. An incident mode on a rotor experiences frequency and

modal scattering where scattered modes can be regenerated at other harmonics

of the blade-passing frequency (BPF) and orders shifted by a multiple of the85

blade number.

This paper is organized as follows. The modelling and the calculation pro-

cedure are presented in section II. The numerical method used to solve LEE in

presence of rotating bodies and complex geometries is then briefly described in

section III. The last section presents the numerical simulations and the assess-90

ment of screen effect.

2. Modelling and calculation procedure

2.1. Governing equations

In the propagation medium, the effect of viscosity is neglected and small

perturbations are assumed (|ρ′| � ρ̄, |p′| � p̄), so the linearized Euler equations95

(LEE) are used. The steady part of the flow is written as Ū = [ρ̄, ρ̄v̄, p̄]T and

the fluctuating part read as U = [ρ′, ρ̄v′, p′]T . The LEE equations written in

conservative variables form read :



∂ρ′

∂t
+∇∇∇ · (ρ̄v′ + ρ′v̄) = 0

∂(ρ̄v′)

∂t
+∇∇∇ · (ρ̄v̄ ⊗ v′ + p′III) + (∇∇∇⊗ v̄)

T · (ρ′v̄ + ρ̄v′) = 0

∂(p′)

∂t
+∇∇∇ · (p′v̄ + γv′) + (γ − 1) (p′∇∇∇ · v̄ − v′ · ∇∇∇(p̄)) = 0

(1)
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2.1.1. Two-dimensional assumption

The LEE system 1 is considered along a cylindrical layer of the fan-OGV100

stage. This two-dimensional analysis assumes that there is an equilibrium be-

tween the pressure and the centrifugal forces along the cylindrical layer. In

other words, this approach is only valid for cases with no radial shifts of the

meridional streamlines (for example configurations with constant hub and tip

radius at the design point [22]). In a real fan stage, the angle of the spinner105

makes invalid this approach for low values of the radius. However, when the

analysis is done for middle/high values of the radius of a conventional fan stage,

the two-dimensional assumption remains acceptable.

The configuration investigated here is an industrial demonstrator of a con-

ventional high bypass ratio fan OGV stage with a scale of 1 : 2. As shown in110

figure 2, the study is carried out on a cylindrical layer at 80% of the fan leading

edge radius for two subsonic reduced speeds: 41% and 61% of the nominal ro-

tation speed. Since the angle (φ) of the velocity of the steady flow is less than

5◦ all along the axial direction in both operational points, the error introduced

by the proposed approach is acceptable.115

Figure 2: Fan-OGV geometry (courtesy of MAESTRO project of Safran Aircraft Engines).The

cylindrical cut is made at 80% of the leading edge radius
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2.1.2. Steady Flow Modelling

First, an axisymmetric modelling of the mean flow is done by averaging the

flow in the azimuthal direction. Obviously, the two-dimensional assumption

leads to neglect the radial component of the flow and the mean flow modelling

reads :120

v̄ = v̄z(z) ez + v̄θ(z) eθ (2)

A uniform mean flow is considered in the axial direction all along the fan-

OGV stage :

v̄z(z) = Vz (3)

The azimuthal component of the mean flow is assumed to be uniform inside of

the fan region and equal to zero outside. A relatively weak gradient is applied to

the interfaces between the regions using an hyperbolic tangent function. Finally

the azimuthal component of the mean flow all along the fan-OGV stage is written

as :125

v̄θ(z) =
Vθ
2

(
tanh

(
z − za
ka

)
− tanh

(
z − zb
kb

))
(4)

where Vθ is the uniform swirl component and za, zb, ka, kb are the hyperbolic

tangent function parameters. The uniform swirl component of the mean flow

Vθ is modelled as a linear combination of a rigid body rotation and a free vortex

[22] as

Vθ = Ωfrc + Γ/rc (5)

where Ωf is the rotation speed of the fan, Γ the intensity of the free vortex and130

rc is the radius of the cylindrical layer.

The parameters Vz, Γ, za, zb, ka, kb are obtained from a RANS simulation

performed beforehand.
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2.2. Source modelling

The acoustic sources are modelled in two steps. First, the fan wakes are135

approximated by using a Gaussian model. Then, in order to avoid computing

the convection of the fan wakes, the scattering formulation of LEE equations is

used to model the interaction noise generated by the fan wakes impingement on

downstream OGV.

2.2.1. Wake Modelling140

We use a wake model initially proposed as part of an analytic methodology

[23]. This model is based on the hypothesis that wakes are convected, incom-

pressible and pressure-free. Furthermore, the incident speed deficit is modeled

using a Gaussian distribution. The validity of this Gaussian modelling has been

shown experimentally [24]. The wake of a fan blade k is defined as follows145

u′v,k = u0(z) exp

{
−ξ
(
rcθ + ∆θ(z)

b(z)

)2
}
eeeβ (6)

with ξ = ln 2. u0(z) and b(z) are the maximum deficit in the center of the wake

and the half-width, respectively. Both of them are functions of axial position.

∆θ(z) = z/ tanβ is the azimuthal phase shift due to swirl.

The vorticity field generated by the set of fan blades is expressed as an infinite

sum of the elementary profile in which the azimuthal periodicity is introduced.150

Θ = 2π/B :

u′v =

+∞∑
k=−∞

u′v,k(θ + kΘ, z) (7)

The source model defined above must be fed by the functions describing the

half-width of the wake b(z) and the maximum deficit in the center of the wake

V0(z). In the set of calculations, we will consider a function b(z) as constant.

The maximum deficit is modelled by a second Gaussian function centred on the155

leading edge of the OGV.

u0(z) = u0 exp

{
−ξ′

(
z − d
b′

)2
}

(8)
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with ξ′ = ln(2) and b′ = 0.05. The distance between the leading edge of the

stator blades and the half chord line of the rotor blades is given by d. The wake

model and associated parameters are shown in figure 3.

Wake

rcΩf

β

2π/B

d

∆θ(z)

ez

eθ

er

eβ

c/2

c/2

Figure 3: Fan-wakes modelling (cylindrical cut in the reference frame (z, θ)).

2.2.2. Scattering formulation160

The scattering formulation of LEE allows solving a problem of sound gen-

eration by a gust-airfoil interaction without computing the convection of the

gust. A major advantage of this formulation is that the treatment of boundary

conditions is facilitated.

The scattering formulation consists in rewriting the field of fluctuating ve-165

locities by separating the wakes velocity, denoted by u′v, from the velocity field

scattered by the OGV, denoted by u′a, as

v′ = u′v + u′a (9)

By assuming that the wakes disturbances are solenoidal and convected with

the mean flow (frozen gust assumption), this approach allows solving the system
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of equations 1 by considering only the scattered field [25], as follows170



∂ρ′

∂t
+∇∇∇ · (ρ̄u′a + ρ′v̄) = 0

∂(ρ̄u′a)

∂t
+∇∇∇ · (ρ̄v̄ ⊗ u′a + p′III) + (∇∇∇⊗ v̄)

T · (ρ′v̄ + ρ̄u′a) = 0

∂(p′)

∂t
+∇∇∇ · (p′v̄ + γu′a) + (γ − 1) (p′∇∇∇ · v̄ − u′a · ∇∇∇(p̄)) = 0

(10)

Using this system of equations, the scattered acoustic wave now originates

from the boundary condition on the OGV. Note that the frozen gust assumption

is valid only if the turbulence velocities are weak and the convected distance is

not much greater than a blade chord, which is the case in the present study2.

By assuming that only velocity fluctuations normal to the OGV boundary175

are likely to interact with the OGV, the noise scattered on OGV from fan wakes

disturbances can be computed. For this purpose we must consider that the total

velocity on a point located on the OGV is given by v = v̄ + u′v + u′a. Since

the normal component of the total velocity is zero (v · n = 0) at the OGV

boundaries and assuming that v̄ · n = 0 we obtain:180

u′a · n = −u′v · n (11)

where n is a unit vector along the local normal of OGV boundaries and the

wake velocity (u′v) is given by the model introduced in the previous paragraph.

Finally, the problem is to solve the system of equations 10 with the boundary

condition on the surface of OGV prescribed by equation 11. It is important to185

note that this approach is exact only when a gust-plate interaction is considered.

The computation of noise radiated from a flat plate subjected to a normal

incidence gust is proposed in the Appendix 5 as a validation test case for this

approach.

2In the present case, the turbulence is only a few per cent of the mean flow speed. Also,

fan wakes are extracted from a RANS simulation at the mixing plane location which is located

about one fan blade chord away from the OGV leading edge.
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3. Numerical method190

3.1. General framework

3.1.1. Finite volume discretization in ALE formulation

The finite volume formulation for LEEs in conservative form reads :∫
A

∂U

∂t
+ H(U) dA = −

∮
Γ

FFF(U) · n dΓ (12)

where FFF(U) is the flux matrix and the vector H(U) contains the refraction

terms. FFF(U) · n is the normal flux crossing the inter-cell boundary, A, Γ and

n are respectively the area, the contour and the normal to the control surface.195

In order to account for the relative motion of the rotor with respect to the

stator, the sliding mesh technique is used. This technique requires the use of an

Arbitrary Lagrangian-Eulerian (ALE) formulation. The equations are written

in a reference frame which moves with the grid. The flux matrix FFF(U) and the

vector H(U) in ALE formulation read200

FFF(U) =


ρ̄v′ + ρ′(v̄ − v̄g)

ρ̄(v̄ − v̄g)⊗ v′ + p′III

p′(v̄ − v̄g) + γp̄v′

, H(U) =


0

(∇∇∇⊗ v̄)
T · (ρ′v̄ + ρ̄v′)

(γ − 1) (p′∇∇∇ · v̄ − v′ · ∇∇∇(p̄))


where v̄ and v̄g are, respectively, the mean flow velocity and the grid velocity

at cell interface boundary. Note that the grid velocity v̄g is subtracted from

the mean flow velocity v̄ in the flux matrix, whereas the refraction vector H(U)

remains unchanged.205

3.1.2. Generalized Godunov-type scheme

The implementation of the finite volume method is done using a general-

ized Godunov-type scheme. This kind of scheme can be broken down into two

stages : the “projection” stage, which is exclusively of numerical nature and the

“evolution” stage which holds the physics.210

In the original Godunov’s scheme [26] the projection stage is ensured by

a piecewise constant approximation of the variables. Of course by doing a

piecewise constant approximation (cell averages), part of the knowledge of the
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original initial data is lost. Thus, the original Godunov’s method, which is only

first order accurate in space and time, introduces excessive numerical dissipa-215

tion. To address this problem, a high-order extension of Godunov-type finite

volume method is needed. The key ingredient in this type of scheme is the

piecewise polynomial approximation. Here, Moving Least Squares (MLS) [27]

approximations are used for the computation of a high order accurate piecewise

polynomial approximation. For the sake of brevity, this approximation is shown220

in Appendix 5.

The evolution step consists in resolving the Riemann problem at each inte-

gration points of inter-cell boundaries (Flux computation). The solution can be

computed exactly as long as the governing equations are linear. Thus, the flux

reads as follows225

F(U−,U+) · n =
1

2
(F(U−) + F(U+)) · n− 1

2

4∑
k=1

αk|λk|eeek (13)

where − and + refers respectively to the “left” and “right” Riemann states of

the inter-cell boundaries. eeek and λk are the eigenvector and the eigenvalues of

the flux Jacobian [28] respectively. αk represent the wave strengths along the

eigenvector direction. In the special case of grid motion, the set of eigenvalues

becomes

λ1 = (v̄ − v̄g) · n + c̄, λ2 = (v̄ − v̄g) · n− c̄, λ3 = λ4 = (v̄ − v̄g) · n (14)

The wave strengths and the eigenvectors remain unchanged with respect to a

static mesh formulation.

3.1.3. Semi-discretized form and mass matrix inversion

The complete process of spatial discretization (flux quadrature, volumic term

discretization) is not described here for the sake of brevity. Readers can refer230

to [29] for more details. Let’s assume that the spatial discretization leads to the

following system :

M ·
(
∂UUU

∂t
−HHH(UUU)

)
=RRR(UUU) (15)
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where UUU = [U1, ...,UN ]T ,HHH = [H(U1), ...,H(UN )]T ,RRR(UUU) = [R(U1), ...,R(UN )]T

is the residual matrix and M is the mass matrix. System 15 is the semi-

discretized form of system 3.1.1.235

Using an explicit time integration scheme, it is required to compute the

inverse of the mass matrix to solve the system

∂UUU

∂t
= M−1RRR(UUU) +HHH(UUU) (16)

In general, a diagonal structure is recovered by enforcing reconstructions

that preserve the mean. But this technique induces a loss of accuracy of the

reconstructed variables, and it is not suitable for very high-order reconstructions240

[30]. This is why we prefer to be as accurate as possible even though this

procedure leads to solve a system with non-diagonal mass matrix, which is

more expensive in terms of computation time.

The inverse matrix can be computed by using a low-complexity approxima-

tion which consist in : (i) rewriting matrix M as the subtraction of the matrix245

of perturbation E from the identity matrix I and by (ii) using the Neumann

series [31] :

M−1 = (I−E)−1 =

pInv∑
k=0

Ek + ooo(pInv) (17)

The convergence criteria of this series expansion is verified as long as the

spectral radius of the matrix E is less than unity (ρ(E) = λmax(E) < 1).

3.1.4. Time integration250

Time integration is performed by using a low storage five-stages fourth-order

explicit Runge-Kutta scheme [32]. This scheme has a wider stability region than

a standard explicit fourth-order Runge-Kutta scheme which allows using larger

time steps.
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3.2. Boundary conditions255

3.2.1. Sliding mesh technique

In order to account for the relative motion between rotor and stator, here we

use the sliding mesh technique proposed in [33]. In this technique, a halo-cell (or

ghost-cell) is created as a mirror image of a given cell I. This is schematically

presented in figure 4. In order to solve the Riemann problem between the260

halo-cell and the cell I, it is required to compute the value of the variables

at the centroid of the halo-cell, so that the mean is preserved. In order to

do that, a MLS approximation is performed at the position of the halo cell.

MLS-shape functions are computed by using the stencil of the closest cell. This

technique induces an error of mass conservation, but numerical experiments265

have shown that this error is of the same order of magnitude as the error in

the variables when a fixed grid approach is used and the order of accuracy of

the numerical scheme is preserved [33]. This approach avoids the computation

of intersections used by most of the sliding mesh approaches, which introduces

additional complexity in the coding and a high computational cost.270

Interface

Active cell (I)

Half Stencil active cell

Half Stencil halo cell

Closest cell (K)

I

K

Halo cell (I ′)

I’

Figure 4: Halo-cell method for flux computation

We refer the interested reader to [33] for a complete description of the sliding

mesh technique used in this work.
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3.2.2. Natural periodic boundary conditions

Periodic boundary conditions are very useful in many situations where the

geometry of the simulated problem has a certain periodicity. When dealing with275

large stencils (which is the case of high-order MLS stencils), the implementation

of a periodic boundary condition is not straighforward [34]. When sliding meshes

and periodic boundaries are considered together, the implementation becomes

more complex. Here, we propose a simple workaround which consist in wrapping

up the plane domain to a cylinder. Thus, the periodic boundary condition280

is naturally ensured. Actually, there is no more periodic interface: the cells

connections are natural. This means that there is no special requirement on the

mesh for creating the linear interface. Wrapping rectangular plane domain into

a cylinder allows us to take into account periodic domain with a linear sliding

interface. The 3D cylinder and 2D unwrapped plane geometry are parametrized285

as


x = rc cos θ

y = rc sin θ

z︸ ︷︷ ︸
=⇒

X = rc θ [2π]

Y = z︸ ︷︷ ︸
3D cylinder geometry 2D unwrap plane geometry

(18)

This 3D cylinder surface geometry is easily created, meshed and exported.

All cells are discretized facets of the cylinder. All exported points are on the

surface of the cylinder with coordinates verifying the left part of (18). In order

to avoid adding discretization errors due to the curvature of the surface, the290

area of each cell is considered as the area of the cell on the cylinder surface (see

Figure 5). This area is computed using the {X,Y } variables. The positions

of the cell centroid, face centroid and integration points are also computed to

be on the cylinder surface. In order to compute the MLS shape functions it is

required to determine the distance dA→B , between two points A = XA, YA and295
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B = XB , YB . In the curved surface, this distance can be computed as

∆XA→B = rcsign(θB − θA) min {|θB − θA|, |θB − θA − 2π|} (19)

∆YA→B = zB − zA (20)

dA→B =
√

(∆XA→B)2 + (∆YA→B)2 (21)

x

y

z

X
Y

Figure 5: Close up to facet and real face on cylinder quadrature points ( ), element centroid

( ) and element nodes ( )

3.3. Numerical validation of the method

The purpose of this section is to test the accuracy of the numerical method.

In particular, the order of accuracy of the method is monitored on a cylindrical300

computational domain with a sliding interface.

3.3.1. Test case description

The problem concerns the propagation of a Gaussian pulse in a medium

at rest (without flow) through the reference domain D = x ∈ [−l/2, l/2] ×

y ∈ [−L/2, L/2]. In what follows, all variables are made non-dimensional by305

c̄(ambient sound speed) for the velocity scale, ρ̄ (ambient density) for the density

scale, ρ̄c̄2 for the pressure scale, ∆ for the length scale and ∆/c̄ for the time

scale. The Gaussian pulse is introduced in non-dimensional LEE (ρ̄ = 1, c̄ = 1,

p̄ = 1/γ ) by initializing the vector of conservative variables as following :

Ux,y,t=0 = εe
−

ln2

b

(
δx2 + δy2

)
[1, 0, 0, 1]

T
(22)
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where δx = x−x0, δy = y−y0 and (x0, y0) is the Gaussian impulsion location. b310

and ε are respectively the half-width and the amplitude of the Gaussian pattern.

As shown in figure 6, the reference domain has periodic boundaries condi-

tions at the borders x = ±l/2 and non-reflecting ones at the borders y = ±L/2.

The impulsion is set at its center (x0 = 0, y0 = 0). This means that when the

acoustic wave front reach the periodic boundaries a symmetric wave front enter315

the domain. The analytical solution of this test case is given by :

p
′

exact(x, y, t) =

+∞∑
i=−∞

p
′

gi(δx+ l × i, δy, t) (23)

with p
′

ig the analytical of a Gaussian impulsion alone :

p
′

gi(x, y, t) =
ε

2α

∫ ∞
0

exp(− ζ
2

4α
)cos(tζ)J0(ζr)ζdζ (24)

where J0 is the Bessel function of the first kind and order zero, r =
√
δx2 + δy2.

Please consult [35] for details and mathematical proof.

+ ++ ++

a) Periodic boundary

Non-reflective boundary

Wave /∈ D

Wave ∈ D

Ω

S” S’ S S’ S”

Figure 6: Test case illustration

The computational domain is obtained by wrapping the plane domain of320

reference Dr = x ∈ [−l/2, l/2] × y ∈ [−L/2, L/2] into the y-direction. The

resulting domain Dc = θ ∈ [−π, π]× y ∈ [−L/2, L/2] is a cylinder with a radius

17



of rc = l/2π. Note that the cylindrical domain has a circular sliding interface

located at y = 0. This way, the computational grid is decomposed into two

parts : a fixed grid for the inferior part (y < 0) and a sliding grid for the325

superior part (y > 0) which rotates around its center with a non-dimensional

rotational velocity ω. Since the rotation is not physical, the acoustic wave must

propagate through the sliding grid without any alteration. The computational

configuration is shown in figure 7

A cubic polynomial reconstruction (p = 3) is used with the purpose of330

reaching the 4th order of accuracy. The convergence study is performed on

unstructured grids and the comparison with analytical solution is done at time

tc = 30. The angular velocity of the sliding grid is set at ω = 0.05. The

time-step is set at ∆t = 4.0 · 10−1 for each computation.

a) b)

t=0 t=10 t=20 t=30

Figure 7: 2D cylindrical computation with non-conform sliding interface (ω = 0.05) : a)

wrapped domain (t=15), b) unwrapped domain (t=0, 10, 20, 30), sliding interface

location.

3.3.2. Test case results335

In order to quantify the numerical method accuracy, we define the local error

at the center of an element of the mesh (θi, yi) at time tc as

δp′i = p′num(rcθi, yi, tc)− p′exact(xi, yi, tc) (25)

The error norms L1, L2 and L∞ are defined as

L1 =
1

AD

N∑
i=1

Ai|δp′i| L2 =
1

AD

√√√√ N∑
i=1

(Aiδp′i)
2 L∞ = max(|δp′i|) (26)
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where AD and Ai are respectively the surface of the whole domain and the

surface of the element i. The point-by-point order of convergence α
(k+1)
∗ based

on the L∗-norm which is computed from mesh resolution (k) and (k-1) is defined

as :

L
(k)
∗ =

(
h(k)

h(k−1)

)−α(k)
∗

L
(k−1)
∗ (27)

where h(k) is the characteristic element size of mesh resolution (k) and is given

by h(k) =
√
AD/N (k). The convergence curves and values of the three error

norms are given in figure 8 and table 1. This study show both the validity of

the approach and the high order of accuracy of the method. Readers can refer

to [33, 29] for more detail studies of the FV-MLS method in presence of sliding340

interface.
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Figure 8: Accuracy curves for unstructured cylindrical grids with sliding interface. Test case

parameters : ω = 0.05, tc = 30, b = 3, ε = 1, l = 25, L = 50; FV-MLS parameters : p = 3,

nadd = 4, κ = 5, pi = 1, ∆t = 4.0 · 10−1.

k N h(k) L
(k)
2 α

(k)
2 L

(k)
1 α

(k)
1 L

(k)
∞ α

(k)
∞

1 676 2.72 1.87× 10−2 0 1.23× 10−2 0 7.26× 10−2 0

2 900 2.36 1.49× 10−2 1.59 9.84× 10−3 1.57 6.16× 10−2 1.15

3 2288 1.48 5.14× 10−3 2.28 3.10× 10−3 2.47 2.80× 10−2 1.69

4 4206 1.09 2.06× 10−3 3.00 1.17× 10−3 3.21 1.07× 10−2 3.16

5 8218 0.78 5.49× 10−4 3.95 3.04× 10−4 4.02 3.03× 10−3 3.76

Table 1: Accuracy values for unstructured cylindrical grids with sliding interface. Test case

parameters : ω = 0.05, tc = 30, b = 3, ε = 1, l = 25, L = 50; FV-MLS parameters : p = 3,

nadd = 4, κ = 5, pi = 1, ∆t = 4.0 · 10−1.
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4. Numerical simulations and analysis of results

4.1. Numerical setting

The calculations are done at 80% of the fan leading edge radius of a rep-

resentative fan stage designed by Safran Aircraft Engines. This fan stage345

has non-trivial common divisors between the number of fan blades (B = 24)

and the number of OGV blades (V = 30). The greatest common divisor is

gcd(B, V ) = 6. As a result, by introducing a periodicity condition in the com-

putational domain, a simulation can be conducted on a reduced sector of angle

θ = π/3. As shown schematically in figure 9, the resulting cylinder sector of an-350

gle α = π/3 and radius rc is wrapped into a full cylinder of radius r′c = 2π/α×rc.

This way a natural periodic condition appears. Note that the angular rotational

velocity of the Fan Ωf shall be replaced by Ω′f = rc/r
′
c × Ωf .

b

b
b

b

b

b

a) b)

rc
r′c

hh

α

Ωf Ω′f

E

D

Figure 9: Natural periodicity condition by wrapping the calculation domain ; Reduced com-

putational domain a) Before transformation (cylinder sector of angle α = π/3, radius rc,

height h and angular rotational velocity of the sliding part Ωf ), b) After transformation (full

cylinder of radius r′c = 2π/α × rc, height h and reduced angular velocity of rotation of the

sliding part Ω′f = rc/r′c × Ωf )

The sliding interface is located halfway between the fan and the OGV. The

transfer of information through the interface is ensured by the method of the355

ghost cell [33]. Sponge zones upstream and downstream are used to dissipate

some of the energy and thus avoid spurious reflections of the waves leaving the
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domain. In order not to compute the fan wakes convection into the simulation,

the computation is carried out with the scattering formulation. Thus, the wakes

speed deficits are applied directly to the skin of the OGV. Finally, reflective360

boundary conditions are used to model the action of fan blades on the acoustic

mode. A sketch of the computational domain and the setup of the problem is

shown in figure 10.

0

2πR/6

−0.50.3

rθ

z

Fluid flow

Interface

Radiation

Reflexion

Periodicity

Source

U
p
st

re
am

 b
u
ff

er
 z

o
n
e

D
o
w

n
st

re
am

 b
u
ff

er
 z

o
n
e

R
’ω

f’
 

Figure 10: Schematic view of the flow and boundary conditions.

The computational domain is divided into triangular element and a cell-

centered configuration is adopted. The cylindrical computational mesh used365

for the computation is shown in fig. 11. The FV-MLS method is used with

a cubic polynomial reconstruction (p = 3) in order to reach the 4th order of

accuracy. The number of elements of the computational mesh and the time

step used depend on the engine speed. Thus, for the 41%Nm regime we choose

N ∼ 13 · 103 elements and dt = 3.5 · 10−3ms, whereas we choose N ∼ 23 · 103
370

elements and dt = 1.8 · 10−3ms for the 61%Nm regime.
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Figure 11: View of the computational mesh used for the 61%Nm regime (N = 23 · 103).

In order to study separately the effect of the swirl effect and the screen effect,

the calculations were carried out on three configurations (see figure 12). In the

first configuration we consider the OGV alone with axial flow (“OGV-axial”).

In the second configuration, the OGV is considered alone with swirling flow375

(“OGV-swirl”). Finally, we consider the Fan-OGV with swirling flow (“FAN-

OGV-swirl”).
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Figure 12: The three different configurations selected for the study : a) OGV-axial , b)

OGV-swirl , c) FAN-OGV-swirl .

4.2. Time-domain results

In this part, the results are presented in the time domain. First, figure

13 presents a 360◦ visualization of the pressure field in the FAN-OGV-swirl380

configuration for the two regimes 41%Nm and 61%Nm . This representation

of the results is obtained by partially unwinding the computational grid so that

it matches the curvature of the cylindrical layer of radius rc. Then, the domain

360◦ is reconstructed by reproducing the periodic pattern as many times as nec-

essary (6) with the appropriate azimuth offset (π/3). Using this visualization,385

the acoustic screen effect appears important whatever the rotation regime.

a) b)

Figure 13: Domain reconstruction 360◦ (FAN-OGV-swirl configuration); visualization of the

pressure at time t = 10 ms for the two engine speeds: a) 41%Nm , b) 61%Nm . Cut radius

rc = 0.8 ·R.
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In order to analyze the pressure field, it is preferable to visualize the unrolled

surface. In the figure 14, the results are exposed for the 41%Nm regime by

displaying the half (angle sector 180◦) of the cylindrical surface.

OGV-axial OGV-swirl FAN-OGV-swirl

Figure 14: Results of acoustic pressure for 180◦ in the unwrapped cut for the 41%Nm regime.

From left to right: OGV-axial , OGV-swirl and FAN-OGV-swirl configurations. Cut radius

at rc = 0.8 ·R.

The OGV-axial configuration shows that some coherent wave fronts stand390

out. These wave fronts or azimuthal modes (m) can be numbered according to

their orientation 3 and number of pressure variation cycles (on 360◦ in the az-

imuthal direction) that compose them. By adopting this convention, one easily

finds on the OGV-axial configuration at 41%Nm regime the modes m = −6

and m = +18 propagating upstream of the OGV grid. At first sight, the pres-395

ence of the tangential flow seems to cut out the mode m = +18 on the one hand

(see figure 14-OGV-swirl -41%Nm ) and the addition of the fan (see figure 14-

FAN-OGV-swirl -41%Nm ) appears to disturb the wave fronts considerably.

3positive (+) if n ·uθ > 0 or negative (-) if n ·uθ < 0, with n the normal at the wavefront

and uθ the azimuth direction of reference
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Moreover, the checkerboard patterns shown in figure 14 illustrates clearly400

the interference between oblique waves of opposite rotation when unwrapped as

two-dimensional maps. For instance, the Fan-OGV-swirl configuration seems to

regenerate the mode m = +18 compared to the OGV-swirl configuration.

It can be seen from the figure 15, with the same color scale than figure 14,405

that the radiation structure for the 61%Nm regime is equivalent to that of the

41%Nm regime. The wave fronts are simply narrower and their inclination

larger. The swirl and screen effects detected for the 41%Nm regime also

appear in this configuration. Notice that the cut-off of the mode m= +18 does

not occur anymore.410

OGV-axial OGV-swirl FAN-OGV-swirl

Figure 15: Results of acoustic pressure for 180◦ in the unwrapped cut for the 61%Nm regime.

From left to right: OGV-axial , OGV-swirl and FAN-OGV-swirl configurations. Cut radius

at rc = 0.8 ·R.

In order to quantify the screen effect, the acoustic levels for the OGV-swirl

and FAN-OGV-swirl configurations were calculated for three distinct azimuthal

positions: a) upstream of the fan, b) between the fan and the OGV, c) down-

stream of the OGV.

Figure 15 also points out that at higher rotational velocity and corresponding415
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axial-flow speed, the same modes are farther beyond the cut-off limit because

their driving frequency increases, this is associated to shorter wavelength and

smaller wavefront angles with respect to the vane-cascade front.

The results are compiled in Figure 16. The average azimuthal acoustic level420

upstream of the fan is reduced by 1.6dB for the 41%Nm regime and by 4.3dB

for the 61%Nm regime. Notice that sound is clearly increased downstream at

61%Nm regime.

The observation is limited because the superposition of acoustic modes makes

it difficult to identify and quantify the physical mechanisms. A modal analysis425

is necessary in order to better analyse the evolution of the modal signature from

one configuration to another.

41%Nm 61%Nm

Figure 16: Comparison of acoustic sound pressure levels on three successive cross sections((a)

z=20 mm, (b) z=-10 mm, (c) z=-40 mm) and for each regime ; 41%Nm (left) and 61%Nm

(right). FAN-OGV-swirl OGV-swirl

4.3. Frequency-domain results

As it has been observed on the pressure field p(x, θ, t), the response is not

only periodic in time, but also periodic in the azimuthal direction. For a given430

axial position, the acoustic pressure, computed at Nt instants samples a time
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interval T = k/BPF and Nθ angular positions, sampling a spatial interval

Θ = 2π. Thus, the acoustic pressure can be decomposed using a Fourier series

in space and time. This transform provides a representation of the solution as a

function of the harmonic (n) and the azimuth modes (m) for each axial position435

(x) :

Pmn (x) =
2

NθNt

Nθ−1∑
l=0

Nt−1∑
j=0

plj(x) exp

(
−i2πnj

Nt

)
exp

(
−i2πml

Nθ

)
(28)

where plj(x) and Pmn(x) are the contractions of p(x, θl, tj) and P (x,m, n).

Moreover, n = 0, ..., Nt/2 and −Nθ/2 < m < Nθ/2. Finally, the Fourier se-

ries in space and time allows to know the amplitude of each elementary wave,

defined by its harmonic n and its azimuth mode m, according to the axial po-440

sition x. The results of the modal analysis as a function of the axial position z

for each regime and each configuration are presented in figure 17.

The tonal interaction noise resulting from the interaction mechanism be-

tween a rotor and a stator (both homogeneous) is modelled analytically by

Tyler-Sofrin’s rule [36]. This rule, verified experimentally, predicts the modal445

structure of the radiated noise. According to it, the excited azimuthal modes

are :

m = nB − lV (29)

where B and V are respectively the number of fan blades and the number of

OGV blades, n is the harmonic of the blade passing frequency (BPF) tone and

l ∈ Z is an arbitrary integer. This result can be interpreted as a phenomenon450

of interference between the phase-shifted pressure fields coming from each OGV

blade.

As shown in figure 17, the computed modal signature respects the Tyler-

Sofrin’s rule (hot colors correspond to dominant modes). Considering the OGV-

axial configuration, we find in particular the dominant mode m = −6 which455

propagates at the blade passing frequency (n = 1) that have been previously
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Figure 17: Modal analysis along the z-axis for the blade passing frequency (n = 1) and the

first two harmonics(n = 2, 3): a) 41% Nm regime, b) 61% Nm regime.

identified on the time-domain results. The screen effect on this mode is even

more important than the effect of swirl. Indeed, we note for both rotation

regimes a very clear decrease in amplitude around the fan (configuration FAN-

OGV-swirl ). Whatever the configuration considered, the interaction mode460

m = +24, which is generated at the blades passing frequency (n = 1) is cut-off.

Cut-on modes of higher harmonics (m = −12, m = +18, m = −18, m = +12)

are all affected by swirl on the one hand and by the screen effect on the other

hand:

- The mode m = −12 (n = 2) behaves independently of the regime and465

very similarly to the mode m = −6 (n = 1).

- The mode m = +18 (n = 2) is cut-off by the swirl for the 41%Nm regime

while remaining cut-on in presence of swirl for the 61%Nm regime. This

mode is then, independently of the regime, fed by the fan.
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- The mode m = −18 (n = 3) is not affected by the swirl and a reflection470

mechanism on the fan is visible for the 41%Nm regime. Considering the

61%Nm regime, the mode m = −18 is fed by the swirl.

- The mode m = +12 (n = 3) has a very low intensity for the first two

configurations. The amplitude of the mode increases as the fan passes for

41%Nm regime while remaining stable for the 61%Nm regime.475

4.3.1. Cut-off condition and swirl

The azimuthal interaction modes are generated at the harmonic of the blade

passing angular frequency nBΩf with a speed of rotation nBΩf/m. The cut-

off condition can be expressed as a function of the relative Mach number of the

spinning mode Mr
m [37, 38] which is defined as :480

Mr
m =

√
M2
z + (Mθ +Mm)

2
< 1 (30)

where Mz = Vz/c̄ is the axial Mach number, Mθ = Vθ/c̄ is the maximum

azimuthal Mach number and Mm = nBΩfrc/mc̄ is the absolute Mach number

of the spinning mode. The mode is cut-off if the relative Mach number of mode

Mr
m is subsonic 4 (Mr

m < 1) [37, 38].

The figure 18-a) shows the classical mode-frequency diagram for the OGV-485

axial - 41%Nm configuration. The branches of the ”V-shape” (which are based

on the cut-off relation 30) point the limits of the cut-off zone (outside the ”V”).

For example, the interaction mode m = +24 (n = 1) which is outside the ”V”

is cut-off. Note that in pure axial flow (Mθ = 0) the branches of the ”V-shape”

are symmetric.490

In accordance with the cut-off relation 30, a mode close to a branch turns

from cut-on to cut-off or vice versa because of the swirl, depending on its either

co-rotating or contra-rotating spinning phase. This is the case of the mode

m = +18. As shown in figure 18-b), in the presence of swirl the ”V-shape”

4Note that the converse of this assertion is not true: A supersonic relative Mach number

is a necessary but not a sufficient condition allowing a mode to be cut-on.
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rotates counter-clockwise around its apex and the mode m = +18 turns from495

cut-on to cut-off. This way, the present numerical results in both OGV-axial

and OGV-swirl are consistent with the cut-off relation 30. Note that the relative

Mach number of spinning modes increase for the 61%Nm regime and the mode

m = +18 remains cut-on in the presence of swirl.
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Figure 18: Distribution of acoustic energy on mode-harmonic diagram (m,n) at the axial

location z = 0mm and 41%Nm regime for configuration : a)OGV-axial , b)OGV-swirl . The

expected position of Taylor and Sofrin’s modes are spotted by a circle on the diagram. The

“V-shape” cut-off limit is represented by red lines. Colour scale is arbitrary in this illustration.

4.3.2. Fan blades screen effect500

The computed modal signature highlight two distinct mechanisms : a fre-

quency and modal scattering and a reflection mechanism. The frequency and

modal scattering of the rotor is known to obey to a simple relationship. The

incident azimuthal modes nB − lV which are generated at the harmonic of the

blade passing angular frequency nBΩf are regenerated in scattered azimuthal505

modes (n+ 1)B − lV at associated angular frequencies (n+ 1)BΩf . A detailed

analysis has been published in a report by Hanson [39].

As shown in figure 19, the scattering rule makes the mode m = +18 indeed

expected at 2BPF(n = 2) from the mode m = −6 at BPF(n = 1) in both

configurations. It should be noted that at 41%Nm regime the mode m = +18510

(which is cut-off in the presence of swirl) turns cut-off to cut-on in the fan region

because of the swirl reduction. Considering the fundamental frequency (n = 1)

and the first harmonic(n = 2), Figure 17 actually evidences behaviour expected

from basic mode/frequency scattering.

30



Following the scattering mode/frequency scattering rule, the mode m = +12515

is also expected at 3BPF (n = 3) from the mode m = −12 at 2BPF (n = 2).

This is the case for the 41%Nm regime but not for the 61%Nm regime. This

difference between the two configurations is not well understood. It may be due

to a limited time resolution for the 61%Nm regime that does not capture well

the higher frequencies.520

Secondly, we identify a reflection mechanism of less magnitude for the modes

m = −18 and m = −12. Figure 20 illustrates this mechanism for both regimes.
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Figure 19: Frequency and modal scattering of the mode m = −6(n = 1) into the mode

m = +18(n = 2) for the 41%Nm regime. FAN-OGV-swirl OGV-swirl
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Figure 20: Reflection mechanism for modes m = −18 at 41%Nm regime (top) and m = −12

at 61%Nm regime. FAN-OGV-swirl OGV-swirl
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5. Conclusion

In this paper, a numerical strategy to investigate the fan’s screen effect

on fan/OGV interaction tones was proposed. This strategy is based on the525

resolution of the two-dimensional linearized Euler equations in presence of ax-

isymmetric swirling mean flow. To assess the source mechanism a scattering

approach based on a fan wake model was employed.

Time-domain simulations were carried out on an unwrapped cylindrical layer

using a high-order finite volume method based on Moving Least Squares approx-530

imations. The relative motion between the fan blades and the OGV blades was

modelled using a high resolution sliding mesh technique.

The numerical results showed that the acoustic signature is clearly impacted

by the presence of the fan in the computational domain. The modal analysis

highlighted for the blade passing frequency (BPF) and the first harmonic the535

existence of key mechanisms : Tyler and Sofrin’s modes experiences frequency

and modal scattering where scattered modes are regenerated at other harmonics

of the blade-passing frequency (BPF) and azimuthal orders shifted by a multiple

of the fan blade number.

The obtained two-dimensional results are in accordance with analytical lit-540

erature and they should not be fundamentally questioned when going to three-

dimensional computations (only quantitatively modified). In spite of that, three-

dimensional calculations are needed to reinforce the conclusions of this study.

These calculations will also make it possible to analyse the behaviour of ra-

dial modes through the fan stage, which are a first concern in designing UHBR545

turbofans.

Appendix A: Radiation from a flat plate subjected to a normal inci-

dence gust

Let us consider the interaction between a x-direction flat plate airfoil of

length l and a normal sinusoidal gust convected with the mean flow v̄ = (ū, 0).550
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The flow velocity in the x-direction is given by ū = M× c̄ and the gust is defined

as follows :

v(x) = εcos(kxx− ωt) (31)

where ε is the gust amplitude, kx is the wave number in the x-direction. The

frequency of the gust is directly related to the wave-number in the x-direction

through Taylor’s hypothesis, as ω = ū× kx.555

Let us now write the LEE in conservative variables form in this specific case

(uniform mean flow in the x-direction) :

S(U) =



dρ′

dt
+ ρ̄∇∇∇ · v′ = 0

dρ̄v′

dt
+ ∇∇∇(p′) = 0

dp′

dt
+ γp̄∇∇∇ · v′ = 0

(32)

where U = [ρ′, ρ̄v′, p′]T is the vector of conservative variables and
d

dt
=

∂

∂t
+

ū
∂

∂x
is the convective derivative.

Starting from these equations, the field of fluctuating velocities is rewritten560

by separating the incident gust velocity, denoted by u′v = (0, v(x)), from the

velocity field scattered by the plate , noted as u′a = (u′, v′). Thus, we write :

v′ = u′v + u′a (33)

Since the gust is solenoidal and convected by the mean flow as a “frozen”

pattern, it is possible to write the two following equations :

∇∇∇ · u′v = 0 (34)

du′v
dt

= 0 (35)
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By substituting the decomposition of the field of fluctuating velocities 33565

into the LEE system 32 and by using identities 34 and 35, we obtain :

S(Ua) =



dρ′

dt
+ ρ̄∇∇∇ · u′a = 0

dρ̄u′a
dt

+ ∇∇∇(p′) = 0

dp′

dt
+ γp̄∇∇∇ · u′a = 0

(36)

Identifying S(U) and S(Ua) means that the scattered field is only considered

in the system of equations S and its originates from the boundary condition on

the flat plate airfoil [25]. It is in this sense that this method is called “scattering

formulation”.570

To compute the noise scattered on the flat plate from gust disturbances, one

has to look at the expression of total velocity :

v = v̄ + ui + us = (ū+ u′, v′ + v(x)) (37)

By exploiting the nullity of the normal component of the total velocity on

the wall (v · n = 0), the boundary condition to apply follows as

v′ = −v(x) (38)

This validation case is carried out considering a length of the plate l equal575

to 1m. The Mach number of the mean flow is 0.5 while the relative amplitude

of the gust ε is set to 0.02. In order to address a non-compact plate case

(λgust = 2π/kx ' l) the axial wave number kx is set to 6m−1. To reach the

steady-state more quickly the incident gust is introduced gradually using the

factor (1− et/τ ).580

The computational domain is reduced to a half disk using the symmetry

along the x-direction. It is divided in two parts : the physical zone Ωu =

[0, π]×[0, r1] and the sponge zone Ωs = [0, π]×[r1, r2] which is added to dissipate

the energy of acoustic waves before waves fronts reach the boundary. The total

number of element is noted N .585
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We introduce the characteristic element size h to give a local measure of the

mesh refinement. The characteristic element size on the plate is defined as hp =

Np/l with Np the number of element along the plate, whereas the characteristic

element size on a half-circle at constant radius ri is defined as hri = Nri/πri

with Nri the number of element along the half-circle. The simulation parameters590

and the computational domain are shown in figure 21.

x

y

r2

r1

Figure 21: Computational domain : r1 = 5l, r2 = 7l. Numerical parameters : ∆t = 2.0e −
5s,CFL = 0.68,N = 18700, Physical zone (Ωu) : hp ' 0.01, hr1 ' 0.13 χ = 1.05, Sponge zone

(Ωs) : hr1 ' 0.13, hr2 ' 0.324 χ = 1.1. gust’s parameters : ε = 0.02, M = 0.5, kx = 6m−1,

l = 1m.

The numerical implementation of the scattering formulation is validated in

comparison with Amiet’s model which is based on the same assumptions. The

directivity pattern of this interaction is computed by using the RMS pressure

along the radius rRMS = 4l = 4m. As shown in figure 22, it is in good agreement595

with Amiet’s directivity. In particular, the side lobe which is caused by the non

compactness of the plate, is captured by the numerical scheme.
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30 °
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90 °

120 °

150 °

180 °
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Figure 22: Directivity diagram : RMS pressure over 50 periods compared to Amiet’s solution

(from [16]).
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Appendix B: Moving Least Squares approximations

The Moving Least Squares approximation is a very usual technique in the

meshless community. It is very well suited for the approximation of scattered600

data. For the sake of brevity, this numerical scheme will be summarized here,

and we refer the reader to [40, 41, 42, 30] for further details. The main fea-

ture is that the MLS functions are used to construct a high order continuous

representation of the solution U(x) and then its space derivatives. The general

representation of U(x) is a continuous function Û(x) of the form605

Û(x) =
∑
J∈Sx

NJ(x)UJ (39)

where Sx is the neighborhood or stencil of the approximation point, J is the

identifier of the cells inside the stencil, UJ is the centroid variable of the J-cell

and NJ(x) is the MLS-shape function which weighs the J-cell.

To compute the MLS shape functions we define an nmin-dimensional ba-

sis, which in this case is defined as pT (x) = (1, x, y, z, x2, y2, z2, xy, ...) ∈ Rnmin .610

Shape functions are computed on the J-cell by using a weighted least-squares

fitting procedure centered at the point x. In this work, the stencil of the

J-cell is comprised by nt neighbors, including the J-cell itself. Thus, ∀ J,

card(Sx) = nt. The minimum number of points in the stencil corresponds to

the dimension of the polynomial basis used in the interpolation. It is given615

by nmin = (pMLS + 1)(pMLS + 2)/2(in 2D) where pMLS is the polynomial order

of the approximation. Here we use a cubic reconstruction polynomial for the

computations. If nt = nmin, the FV-MLS scheme becomes unstable. To solve

this problem, we introduce an additional number of points nadd = 10 such as

nt = nmin + nadd which depends on both the reconstruction order and skewness620

of the grid. Details can be found in [40, 41, 42, 30].

Thus, the nt MLS-shape funtions associated with the J-cell, in equation 39

are defined as [40]

NT (x) = pT (x)C−1(x)P(x)W(x) (40)
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where P = [pT (xj)]j , is a nmin × nt matrix where the basis functions are eval-

uated at each point of the stencil, and C(x) is the nmin × nmin moment matrix

given by

C(x) = P(x)W(x)PT (x). (41)

The nt-diagonal matrix W(x) is built by evaluation of a kernel function

(W ) at the point x. This function weight the values of each centroid inside the625

stencil. In this work an exponential kernel function [41] is used. It reads as

W (x, x2, κx) =
e−( sc )

2

− e−( dmc )
2

1− e−( dmc )
2 (42)

with s =
∣∣xj − x2

∣∣, dm = max
(∣∣xj − x2

∣∣), with j = 1, . . . , nx∗ , c = dm
2κ , x is

the position of every cell centroid of the stencil and κ is a shape parameter.

The dispersion and dissipation properties of the FV-MLS method are strongly

related to the choice of the shape parameter κ [41] of the exponential kernel. A630

value of κ = 5 is used here.

The derivatives of the function can also be computed by using the derivatives

of the MLS-shape functions

∇∇∇Û(x) =
∑
J∈Sx

∇∇∇NJ(x)UJ (43)
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