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We thank all discussants for their insightful comments on our paper. The com-
ments include some suggestions on possible extensions and some potential issues
and concerns in our current work. We respond to the comments as follows.

Bo Han and Xiaoguang Wang raised the issue of the efficiency of the pro-
posed nonparametric estimator and suggested potential gains when the incidence
or the latency part is replaced with a parametric model, particularly based on
the goodness-of-fit tests proposed by Müller and van Keilegom (2019) and Geng
et al. (2023). We agree that parametric methods may be more efficient than non-
parametric methods when the parametric requirements are met. The parametric
methods should be considered if the parametric assumptions can be verified, and
the recent progress in the goodness-of-fit tests in the mixture cure model is useful
to provide support for using more efficient parametric methods.

They also suggested future work of developing alternative methods to estimate
the weights in the EM algorithm by plugging nonparametric estimates of the cure
probability in the incidence part and the survival function in the latency part. We
like to point out that, in the proposed work, the weights are estimated as a function
of the nonparametric estimates of the survival function in the latency part and the
cure probability in the incidence part. The advantage of the proposed method is
that the nonparametric estimate of the cure probability will not change between
the EM algorithm, and only the nonparametric survival function estimate in the
latency part needs to be updated. Alternative methods to estimate the weights
are possible. For example, Li et al. (2020) showed a way to estimate the cure
probability in the incidence part by using a support vector machine method, which
is more flexible than a typical parametric method for the incidence part. The idea
may be generalized to a fully nonparametric approach to update the weights.

Further work is indeed needed on the asymptotic properties of the proposed
nonparametric estimator. Although the bootstrap method can be used in practice
to assess the significance of the results, the lack of the asymptotic distribution
for the proposed estimator may hinder the development of potentially simple test
procedures.

Address(es) of author(s) should be given
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Ricardo Cao suggested a neat way to present the mixture cure model with
shared covariates in the latency and incidence parts and then showed how to use
the marginals to remove unwanted covariates in the estimates from the estimate
of the overall survival function. We also used the idea of marginals in the paper,
such as at the beginning of Section 2 to motivate the cure rate estimator and
in Equation (12) to motivate the alternative estimator. We thank Ricardo for
providing the useful additions to fully explore this idea and we agree that it will be
interesting to investigate the differences between the proposed estimator NPSXZ
in the paper and the estimates that are completely determined by marginals.
Simplicity is gained at the cost of computing Beran’s estimator ŜB(t|z,x) on
the entire set of covariates. When the number of covariates x or z is medium or
large, the curse of dimensionality makes the computation of Beran’s estimator a
real challenge. One caveat we have (it is mentioned in the paper too) is that the
ideas of marginals should work if x and z are independent. César Sánchez-Sellero
and Wenceslao González-Manteiga also question the consistency of the estimates
from the method of using marginals in their comments when x and z are not
independent. How the performance of the estimators depends on independence
between x and z remains unclear.

We primarily focus on iid observations {(t̃i, δi,xi, zi), i = 1, . . . , n} in this
work. We thank Ricardo Cao for noticing that the iid setting is not clearly stated.
The asymptotic properties of the proposed estimators strongly rely on those of
Beran’s estimator. So far the only available asymptotic theory for Beran’s estima-
tor with independent observations is confined to univariate covariates. Liang et al.
(2012) studied the strong and weak convergence for Beran’s estimator with multi-
variate covariates for a left-truncated and right-censored data where the lifetime
observations are assumed to form a stationary α-mixing sequence. The results of
Liang et al. (2012) particularized in the independent setting and without left trun-
cation have been key to proving the asymptotic properties in Section 4. Specifically,
both the convergence in Theorem 2 and, consequently, the asymptotic normal dis-
tribution for the convergence in distribution in Section 4, are strongly based on
Equations (18) and (19) of the paper:
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where p and q are the dimensions of x and z, respectively, and l is the order of the
multivariate kernel, K(·), as stated in conditions (A1) and (A1’). For the NPSXZ

estimator Ŝu,h (t|x) to converge almost surely to Su (t|x) as n goes to infinity as
stated in Theorem 2, the asymptotic bias, which is represented by hl

1 and hl
2 in

the order of the negligible terms, must be killed, as Ricardo Cao pointed out. In

other words, hl
2/[(log n)

1/2 (nhp
2)

−1/2)] = O(1) and hl
1/[(log n)

1/2 (nhq
1)

−1/2)] =

O(1). This is obtained when (log n)−1nhp+2l
2 = O(1) and (log n)−1nhq+2l

1 = O(1),
respectively. In the particular case of univariate covariates X and Z (p = q = 1),
if a usual kernel of second order (l = 2) is considered, these latter assumptions for
the bandwidths are fulfilled if nh5

1 → 0 and nh5
2 → 0 when n → ∞, as Ricardo Cao

mentioned. The assumptions (log n)−1nhp+2l
2 = O(1) and (log n)−1nhq+2l

1 = O(1)
are needed but not included in Theorem 2 of the paper, we are very grateful to
Ricardo Cao for pointing this out.
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The conditions needed for Theorem 2 are the same assumptions as in Liang
et al. (2012). Let us denote W a general d-dimensional vector of covariates with
density function fW (w), define DW =

{
w ∈ Rd|fW (w) > 0

}
, and let IW be a

compact set of Rd included in DW. Theorem 2 holds for x ∈ IX,e and z ∈ IZ,e,
with IW,e = {w ± e,w ∈ IW} mentioned in assumptions (A2)-(A4), where e =
(e1, . . . ed) for small ei > 0. The meaning of small seems not decisive as long as

infw∈Iw,e fW (w) ≥ δ0 > 0. The normality of Ŝu,h (t|x) is outlined for x ∈ DX and
z ∈ DZ such that assumptions (A2’)-(A4’) are fulfilled in the neighborhoods U (x)
and U (z). Finally, it is important to mention that the bandwidth h1i denotes
the smoothing parameter used in the EM algorithm to estimate π(zi), for i =
1, . . . , n, and h2i is the bandwidth for the estimation of Su(t|xi). The subscript
i emphasizes the local nature of the bandwidths in the sense that a different
pair of bandwidths (h1i, h2i) is needed to compute the aforementioned functions
conditioned on x = xi and z = zi using all the observations {(t̃j , δj ,xj , zj), j =
1, . . . , n}. Notwithstanding the foregoing, these bandwidths depend on n in the
usual way and must fulfill the general conditions for a bandwidth h, given by
h → 0 and (log n)−1 nhp → 0 if h is used to estimate π(z), or (log n)−1 nhq → 0
if h is used to estimate Su(t|x).

Ricardo Cao was concerned about how the time-dependent covariates were
handled in the real data analysis and suggested that using the baseline values
of the covariates instead of their average values over the follow-up period as the
time-independent variables will be more useful for prediction. Philippe Lambert
also raised this concern as well. We think this is a good suggestion and we re-
vised the analysis accordingly. The new results are presented in Figure 1 in this
rejoinder. The estimates of the cure rate as functions of baseline retail deposits
(COREDEP) and the baseline number of total loans (LOANS) are very similar to
the ones as functions of the averaged-over-time values (see Figure 4 in the paper).
However, the results for the return on assets (ROA) deserve some comments. Large
values of ROA are usually associated with stronger and safer banks. The difference
in the estimated density functions between the baseline values of ROA (blue color
in Figure 1) and the averaged values of ROA (grey color in Figure 1) indicates
that ROA values have decreased during the follow-up period, possibly during the
banking crisis of 2008. The estimated probability of bankruptcy does not seem to
depend on the baseline values of ROA, and the effect of ROA on the probabil-
ity of bankruptcy is not significant at a significance level of 5% (pCvM=0.0695,
pKS=0.0775).

We agree that double-index instead of single-index may be the right term
for an extension of the two-parts mixture cure model to deal with the curse of
dimensionality issue when the number of covariates is large, and it is what we
meant in this context. In the paper, we did not discuss in detail how to decide
whether model (1) or model (7) should be considered in practice. This can be
determined on a priori grounds or empirical grounds, the latter requires statistical
tests such as the covariate significance tests. Determining what statistical model to
use based on statistical tests is, however, not deemed a good practice in statistical
analysis, and thus it should be used with caution.

César Sánchez-Sellero and Wenceslao González-Manteiga speculate that the
nonparametric cure rate estimate based on the estimated nonparametric survival
function evaluated at the largest uncensored time may not perform as well as a
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Fig. 1 Nonparametric estimation of the probability of immunity to bankruptcy (solid black
line) as a function of the baseline values of COREDEP (left), LOANS (center), and ROA
(right). The 95% confidence intervals (dashed black lines) are computed using the percentile
bootstrap method. The blue (grey) line represents the Parzen–Rosenblatt density estimations
of the baseline covariates (mean values of the covariates), using Sheather and Jones’ plug-in
bandwidth.

parametric model such as the logistic model because the nonparametric survival
function estimate tends to be unstable due to heavy censoring at the right tail of
the distribution. We agree that both the Kaplan-Meier survival function estimate
and Beran’s generalized Kaplan-Meier survival estimate can be unstable at the
right tail if censoring is heavy at the right tail, and indeed the survival data that
are suitable for cure models usually have heavy censoring at the right tail. How-
ever, there is a subtle difference in the heavy censoring for the data that are not
suitable for cure models and the data that are suitable for cure models. Applying
cure models to survival data requires that the data come from a study with a
sufficient follow-up, which guarantees that there are uncensored times observed in
the right tail of the survival function of the survival time of uncured subjects and
that the cure probability is identifiable. Because of this, the nonparametric and
semiparametric cure models often assume that the survival function of uncured
subjects is zero for any time greater than or equal to the largest uncensored time,
which means that subjects with censored times greater than the largest uncen-
sored time are treated as cured and the censoring times do not contribute to the
estimation of the survival function of uncured subjects. Thus when considering
estimating the survival function of uncured subjects using the proposed nonpara-
metric method and the existing semiparametric method, the effective censoring
rate in data that contribute to the estimation is much smaller than the observed
censoring rate. This can be seen in the estimator given in (9) in the paper. The
weight wj in the denominator is very small for a censored time closer to the largest
uncensored time and it is 0 for the censoring times larger than the largest uncen-
sored time. Therefore, wj essentially reduces or removes a substantial number of
the censored times in the estimation and it reduces the effective censoring rate.
This explains why the nonparametric cure rate estimate, whether it is based on
the Kaplan-Meier survival function estimate suggested by Maller and Zhou (1992)
or based on Beran’s generalized Kaplan-Meier survival estimate suggested in Xu
and Peng (2014) and López-Cheda et al. (2017), tends to work well as long as
sufficient follow-up is guaranteed.

Nevertheless, censoring does have a larger impact on the survival function of
uncured subjects even though it may be at a less degree than in the situation



Nonparametric estimation in cure models 5

without cured subjects. César Sánchez-Sellero and Wenceslao González-Manteiga
suggested a possible way to further reduce the bias and the variance of the sur-
vival estimation by considering the work of Stute (1994) and Stute (1996). They
also suggested quantile methods in the estimation as an alternative way to the
weighting method to lower the impact of the tail estimation on the mean square
error. The quantile methods for cure models have been considered in the work of
Wu and Yin (2013), Wu and Yin (2017a), and Wu and Yin (2017b). The existing
methods usually assume a parametric logistic model for the incidence part and a
semiparametric quantile regression model for the latency part. However, there is
no reason to believe that the cure rate is always logistic, not even monotone in z.
Exploring a nonparametric method for assessing covariate impact on the quantiles
of the survival distribution of uncured subjects based on the current work with
the nonparametric method for the incidence part is certainly a very interesting
idea and will be examined in future work.

Philippe Lambert raised a few practical issues in our numerical studies. We
agree that larger sample sizes could be considered in the simulation study and
better results can be expected for the nonparametric methods. Nonetheless, due
to the consistency of compared methods, differences among them tend to fade away
with large sample sizes. A simulation study with very small samples can be viewed
as a stress test to determine their efficiency under this not-unusual situation.

Regarding the results of the simulation study for Setting 2, we understand the
concern. The latency function Su(t|x) is symmetric in x, since (x, z) are generated
independently hence it is reasonable to expect MISE(x) inherit the symmetry, and
Figure 1 (middle row) shows similar values for MISE(x) for opposite values of x.
We think that should be the case if X ∈ U(−10, 10). However, covariate x was
generated as a uniform in (−10, 20). When using kernel methods near the edges of
the support, kernel estimates often overspill the boundaries and are consequently
biased. This boundary effect might be only noticeable in the estimation of Su(t|x)
for negative values of x especially close to -10, but not for the corresponding
positive values close to 10, as the upper limit of the support of X is not 10 but 20
and this boundary effect does not appear anymore. This results in different local
bandwidths for opposite values of x, and consequently different MISE(x) values.

We also agree with Philippe Lambert that, in Setting 3, all methods have
similar performance for large sample sizes (n = 200), with a slightly worse behavior
of the NPSXX estimator, especially for small values of x. For smaller sample sizes,
the differences become slightly more apparent; the best performance of NPSXZ,
NPSXZ2, and PVK estimators is quite comparable, the first two being preferable
for n = 50 especially for large values of x.

The key differences between RMISE and MISE are their interpretation and
their behavior on large differences. A benefit of using RMISE is that the metric it
produces is in terms of the unit being predicted. MISE squares the error, leading to
a result more difficult to interpret, and large errors being punished or highlighted.
The choice of the metric is dependent upon each use. Comparing estimating meth-
ods using either RMISE or MISE makes no difference in terms of ranking their
efficiencies, and MISE is often the go-to metric for estimators of the survival func-
tion. Providing only MISE results hinders understanding the trade-off between
bias and variance of the estimators, not allowing to attribute the hypothetical bad
behavior of the estimators to large bias, large variance, or both. MISE does enable
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a fair sound comparison of the five estimation methods in all the settings and all
sample sizes for all the covariate values from a graphical viewpoint.

Regarding the comment about the effects of the covariates on the incidence
and latency parts studied individually, we agree that it would be more suitable
to study them jointly in the same model. However, when applying the method to
multiple covariates, we faced the challenges of computing kernel-based estimation
methods, such as Beran’s estimator, and the curse of dimensionality. We also used
single covariates in the latency and cure rate parts to avoid the risk of possible
dependence between covariates in x and z. Besides, although the NPSXX estimator
can deal with more than one covariate, for its computation we used the npcure

package in R that can only work with unidimensional covariates.
Bankruptcy is fortunately a rare event for a bank. Phillipe Lambert wonders

whether banks not bankrupt within the 2006 - 2017 period are insusceptible to
bankruptcy or not. Indeed, a much longer follow-up would be desirable to con-
sider a bank as ‘cured’ from bankruptcy, and a different term, such as ‘long-term
survivors’, would be more appropriate than ‘cured’ to describe the banks. We also
agree that systemic banks may have a distinct behavior from non-systemic banks
in terms of bankruptcy. Systemic banks are classified as Systemically Important
Financial Institution (SIFI). A set of stricter requirements would apply to SIFI
banks, and they tend to be supported by governments and central banks when
their financial viability is compromised since they are ‘too big to fail’. Includ-
ing an indicator of SIFI banks in the model could yield different and interesting
conclusions.

Philippe Lambert also pointed out the importance of including the comput-
ing time required to produce the different estimators, considering the bandwidth
selection part. The proposed method is computationally intensive and the imple-
mentation time deserves some comments. Besides the sample size, the computa-
tional time also depends on the number of bootstrap resamples, B, and the length
of the grids of bandwidths from which the optimal bandwidths for the cure rate
and the latency are obtained. Using an AMD Ryzen 9 5950X 16-Core Processor,
3.40 GHz, 128 GB RAM, in the real data analysis of n = 500 commercial banks,
the computational time to obtain the proposed NPSXZ latency estimator with
B = 100 bootstrap resamples and a grid of 10 bandwidths is 2.38 hours. If the
search grid is increased to 50 (100) bandwidths, then the computational time in-
creases to 5.84 (9.96) hours. For B = 200 bootstrap resamples and a grid of 10
(50, 100) bandwidths, the computational time is around 4.01 (10.55, 17.90) hours,
respectively.

Providing confidence regions and pointwise confidence intervals for estimates
is of great interest to moving into an inferential framework. However, obtaining
confidence regions and intervals based on asymptotic results requires estimating
unknown functions in the expressions of the asymptotic normal distribution. In
addition, the normal approximation does not usually work well in practice, the
convergence is usually too slow to get good results for finite samples. A bootstrap
procedure is usually considered instead to approximate confidence regions and
intervals.

Time-dependent covariates are currently not considered in this work. Including
time-dependent covariates in survival analysis is always a challenging task and it
is currently only possible in a handful of models. There are a few recent works on
including time-dependent covariates in cure models (Dirick et al., 2019; Lambert
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and Bremhorst, 2019; Dong et al., 2022). The data analysis in this work clearly
shows the importance and significance of extending the existing work in the fu-
ture to allow time-dependent continuous covariates in nonparametric mixture cure
models.

As pointed out by Philippe Lambert that this work only focuses on the mix-
ture cure model. We did not consider the promotion time cure model. The mixture
cure model arises naturally in the context of a mixed population of cured and un-
cured subjects and it provides a simple framework with few assumptions needed
for the proposed nonparametric method. The promotion time cure model involves
latent dynamics that are not easy to interpret in practice. It also involves the
proportional hazards assumption, which does not meet our goal to have a non-
parametric estimation method that does not make any unnecessary assumptions
beyond assuming the presence of cured subjects.
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López-Cheda A, Cao R, Jácome MA, Van Keilegom I (2017) Nonparametric in-
cidence estimation and bootstrap bandwidth selection in mixture cure models.
Computational Statistics & Data Analysis 105:144–165

Maller RA, Zhou S (1992) Estimating the proportion of immunes in a censored
sample. Biometrika 79(4):731–739

Müller UU, van Keilegom I (2019) Goodness-of-fit tests for the cure rate in a
mixture cure model. Biometrika 106(1):211–227

Stute W (1994) Improved estimation under random censorship. Communications
in Statistics-Theory and Methods 23(9):2671–2682

Stute W (1996) Distributional convergence under random censorship when covari-
ables are present. Scandinavian Journal of Statistics 23(4):461–471

Wu Y, Yin G (2013) Cure rate quantile regression for censored data with a survival
fraction. Journal of the American Statistical Association 108:1517 – 1531

Wu Y, Yin G (2017a) Cure rate quantile regression accommodating both finite
and infinite survival times. Canadian Journal of Statistics 45(1):29–43
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