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1

The standard survival model assumes that, if there is no censoring, at some point all individuals will experience the event
of interest. However, cure models have been developed because there are many situations in which this assumption is
not appropriate. In clinical settings, for example, it is very unlikely to have any recurrence of some tumors later than a
certain period after radiation treatment. Such examples can be found in many other disciplines: some people will never
get married, one-child mothers will never have a second child, some workers will never get a career shift, etc. In most
literature, subjects in which an event will never take place are referred to as cured subjects.
Themixture curemodel, originally proposed byBoag (1949), has receivedmuch attention in recent years. It assumes that

the population is a mixture of cured and susceptible individuals. Note that here a “cured” individual is defined as being
free of experiencing the event of interest, not necessarily cured in medical terms. The goal is to model the probability of
cure and the survival function of the uncured subjects, also called latency. There has been substantial work on themixture
cure model, mostly with a (semi)parametric approach (see Amico & Van Keilegom, 2018; Maller & Zhou, 1996; Patilea &
Van Keilegom, 2020, and references therein). Thesemodels are constructed under different (semi)parametric frameworks
for the proportion of long-term survivors and/or the latency. However, when the underlying functions cannot be well
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Abstract
We introduce a nonparametric estimator of the conditional survival function in the mixture cure 
model for right-censored data when cure status is partially known. The estimator is developed for the 
setting of a single continuous covariate but it can be extended to multiple covariates. It extends the 
estimator of Beran, which ignores cure status information. We obtain an almost sure representation, 
from which the strong consistency and asymptotic normality of the estimator are derived. Asymptotic 
expressions of the bias and variance demonstrate a reduc-
tion in the variance with respect to Beran’s estimator. A simulation study shows that, if the bandwidth 
parameter is suitably chosen, our estimator performs bet-ter than others for an ample range of covariate 
values. A bootstrap bandwidth selector is proposed. Finally, the proposed estimator is applied to a real 
dataset studying survival of sarcoma patients.
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approximated by the assumed (semi)parametric structures, applying thosemodels will lead to biased estimates. Therefore,
it is important to have completely nonparametric methods to model survival data with a cure fraction. Maller and Zhou
(1992) proposed a consistent nonparametric estimator of the cure rate but their method cannot handle covariates. Based
on the estimator of the conditional survival function in Beran (1981), Xu and Peng (2014), López-Cheda, Cao, et al. (2017),
López-Cheda, Jácome, et al. (2017), and López-Cheda et al. (2020) developed nonparametric methods for themixture cure
model in the presence of covariates.
Absence of an individual’s cure status (i.e., cured, uncured) is an important challenge for cure models. A subject who

experiences the event is known to be uncured. However, censoring prevents from observing whether a censored subject
would experience the event eventually. This hinders the classification of the censored observations as cured or uncured.
In this situation, it is customary to assume no additional information on the cure status of the censored individuals, thus,
to model the cure status as a latent variable. Nonetheless, there are situations in which some of the censored individuals
can be identified to be immune to the event of interest, that is, to be cured. For example, based on the result of a diagnosis
procedure, some patients could be assumed to be cured from a given disease. Also, for some types of cancer it is extremely
unlikely to have any recurrence later than a given fixed time after treatment, known as a cure threshold. Another example
of a situationwith individuals known to be cured is the analysis of hospital bed and intensive care unit (ICU) occupancy. In
this, it is important to estimate the distribution of time a patient will be in the hospital ward or ICU, specifically, modeling
the time a patient stays in the hospital ward until admitted to the ICU. In the language of cure models, all patients who
have died or have been discharged from the hospital bedwithout entering the ICU are censored and are known to be cured
from the ICU admission. This is of great interest to hospital management, particularly in outbreaks of epidemic diseases
such as the novel coronavirus disease.
Few authors have explored curemodels when the cure status is known for some censored observations. Laska andMeis-

ner (1992) and Betensky and Schoenfeld (2001) discussed nonparametric cure rate estimation with cure status available,
but neither of them considered the presence of covariates. Nieto-Baraja and Yin (2008) proposed a Bayesian semipara-
metric approach for estimating a survival function with a cure fraction in the presence of covariates. A semiparametric
approach based on a Cox proportional hazards cure model when cure information is partially known was studied by Wu
et al. (2014). Bernhardt (2016) proposed a flexible cure rate model with potentially known cure threshold and showed that
ignoring a known cure threshold may lead to biased estimates. Recently, Chen and Du (2018) developed a nonparametric
approach to modeling the covariate effects under the framework of promotion time. They considered a fixed cure thresh-
old, so that observations censored at times larger than that are assumed to correspond to cured subjects. Contrary to the
methodsmentioned, in this paper we develop a completely nonparametric mixture curemodel with covariates that can be
applied in general situations, in which the identification of the cured individuals does not depend on a fixed cured thresh-
old. Examples of situations in which a fixed cure threshold cannot be assumed were mentioned above: a study in which
a diagnostic procedure is used to discriminate between cured and uncured subjects, or a study of time to ICU admission
of hospital inpatients, in which discharge or death can occur before ICU admission. Therefore, we propose a generalized
product-limit estimator of the survival function that extends Beran’s estimator when cure status information is available.
From the proposed survival function estimator, further methods for the estimation of the cure rate and latency functions
can be derived, in the spirit of Xu and Peng (2014), López-Cheda, Cao, et al. (2017), López-Cheda, Jácome, et al. (2017),
and López-Cheda et al. (2020).
This paper is organized as follows. In Section 2, after specifying the model notations, new estimators of the conditional

cumulative hazard and survival functions are proposed, and some asymptotic results for them are given. For the choice
of the bandwidth we propose a bootstrap procedure in Section 3. In Section 4, we study the efficiency of the estimator of
the survival function with a simulation study in which our estimator is compared to Beran’s estimator, which ignores the
available cure status information, as well as to the semiparametric estimator proposed by Bernhardt (2016). In Section 5,
the estimator is applied to estimate the distribution of the time to death from sarcoma cancer of 233 patients from the
University Hospital of Santiago de Compostela, Spain. Section 6 contains a discussion and thoughts for future work.

2 MIXTURE CUREMODELWHEN CURE STATUS IS PARTIALLY KNOWN

2.1 Model notation

Let 𝑌 be the survival time, 𝐶 the random censoring time, and 𝐗 a vector of covariates. Assume that the survival time 𝑌 is
subject to random right censoring, so that instead of observing 𝑌, only 𝑇 = min(𝑌, 𝐶) and 𝛿 = 𝟏(𝑌 ≤ 𝐶) can be observed.
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The random variables 𝑌 and 𝐶 are assumed to be conditionally independent given 𝐗 = 𝐱. Let 𝐹(𝑡|𝐱) = 𝑃(𝑌 ≤ 𝑡|𝐗 = 𝐱)

denote the conditional distribution function of 𝑌 and 𝐺(𝑡|𝐱) = 𝑃(𝐶 ≤ 𝑡|𝐗 = 𝐱) denote the conditional distribution func-
tion of 𝐶. It is assumed that𝑋,𝑌, and 𝐶 are absolutely continuous.We set𝑌 = ∞ if the subject is cured. Let 𝜈 = 𝟏(𝑌 = ∞)

be an indicator of being cured. Note that 𝜈 is partially observed because 𝛿 = 1 implies 𝜈 = 0. In addition, when the
cure status is partially known, 𝜈 = 1 is also observed for some censored individuals. Suppose that 𝜉 indicates whether
the cure status is known (𝜉 = 1) or not (𝜉 = 0). Hence, the observations {(𝐗𝑖, 𝑇𝑖, 𝛿𝑖, 𝜉𝑖, 𝜉𝑖𝜈𝑖) ∶ 𝑖 = 1, … , 𝑛} can be classi-
fied into three groups: (a) the individual is observed to have experienced the event and therefore known to be uncured
(𝐗𝑖, 𝑇𝑖 = 𝑌𝑖, 𝛿𝑖 = 1, 𝜉𝑖 = 1, 𝜉𝑖𝜈𝑖 = 0); (b) the lifetime is censored and the cure status is unknown (𝐗𝑖, 𝑇𝑖 = 𝐶𝑖, 𝛿𝑖 = 0, 𝜉𝑖 =

0, 𝜉𝑖𝜈𝑖 = 0); and (c) the lifetime is censored and the individual is known to be cured (𝐗𝑖, 𝑇𝑖 = 𝐶𝑖, 𝛿𝑖 = 0, 𝜉𝑖 = 1, 𝜉𝑖𝜈𝑖 = 1).
The probability of cure is 1 − 𝑝(𝐱) = 𝑃(𝑌 = ∞|𝐗 = 𝐱), and the conditional survival function of the uncured individu-
als, also known as latency, is 𝑆0(𝑡|𝐱) = 𝑃(𝑌 > 𝑡 ∣ 𝑌 < ∞,𝐗 = 𝐱). The mixture cure model writes the survival function
𝑆(𝑡|𝐱) = 1 − 𝐹(𝑡|𝐱) = 𝑃(𝑌 > 𝑡|𝐗 = 𝐱) as

𝑆 (𝑡 ∣ 𝐱) = 1 − 𝑝(𝐱) + 𝑝(𝐱)𝑆0 (𝑡 ∣ 𝐱) . (1)

Assuming model (1), the cure rate and the latency can be written in terms of the survival function 𝑆(𝑡|𝐱) as follows:
1 − 𝑝(𝐱) = lim

𝑡→∞
𝑆(𝑡 ∣ 𝐱) > 0, 𝑆0(𝑡 ∣ 𝐱) =

𝑆(𝑡 ∣ 𝐱) − {1 − 𝑝(𝐱)}

𝑝(𝐱)
.

Therefore, the availability of a suitable estimator of 𝑆(𝑡|𝐱) would yield appropriate estimators of the cure probability
and the latency directly.
One key issue in curemodels is identifiability. This arises because of the lack of cure status information at the end of the

follow-up period, hence resulting in difficulties in distinguishingmodels with high incidence of susceptibles and long tails
of the latency distribution from low incidence of susceptibles and short tails of the latency distribution (Li et al., 2001).
Following the argumentation of Hanin and Huang (2014), who discussed in detail the identifiability of the mixture cure
model, model (1) is identifiable if the latency function is proper. Thus, we assume that lim𝑡→∞𝑆0(𝑡|𝐱) = 0 for all 𝐱. This
condition is similar to the zero-tail constraint in Taylor (1995), López-Cheda, Cao, et al. (2017), and other papers.

2.2 Proposed estimators

Without loss of generality, for simplicity we only consider a single continuous covariate 𝑋 with density function𝑚(𝑥). As
shown in the Appendix, an estimator of the conditional cumulative hazard function of 𝑌, Λ(𝑡|𝑥), when the cure status is
partially known is

Λ̂𝑐
ℎ
(𝑡 ∣ 𝑥) =

𝑛∑
𝑖=1

𝛿[𝑖]𝐵ℎ[𝑖] (𝑥) 𝟏
(
𝑇(𝑖) ≤ 𝑡

)
∑𝑛

𝑗=𝑖𝐵ℎ[𝑗] (𝑥) +
∑𝑖−1

𝑗=1𝐵ℎ[𝑗] (𝑥) 𝟏
(
𝜉[𝑗]𝜈[𝑗] = 1

) , (2)

where 𝑋[𝑖], 𝛿[𝑖], 𝜉[𝑖], and 𝜈[𝑖] are the concomitants of the ordered observed times 𝑇(1) ≤ ⋅ ⋅ ⋅ ≤ 𝑇(𝑛); 𝐵ℎ[𝑖](𝑥) are the
Nadaraya–Watson weights,

𝐵ℎ[𝑖] (𝑥) =
𝐾ℎ

(
𝑥 − 𝑋[𝑖]

)∑𝑛

𝑗=1
𝐾ℎ

(
𝑥 − 𝑋𝑗

) ;
and 𝐾ℎ(⋅) = 𝐾(⋅∕ℎ)∕ℎ is a kernel function 𝐾(⋅) rescaled with bandwidth ℎ. We work with Nadaraya–Watson kernel esti-
mates because it is the natural choice for random design regression.
The corresponding product-limit estimator of the conditional survival function 𝑆(𝑡|𝑥) when the cure status is partially

known, is

𝑆𝑐
ℎ
(𝑡 ∣ 𝑥) =

𝑛∏
𝑖=1

⎧⎪⎨⎪⎩1 −
𝛿[𝑖]𝐵ℎ[𝑖] (𝑥) 𝟏

(
𝑇(𝑖) ≤ 𝑡

)
∑𝑛

𝑗=𝑖
𝐵ℎ[𝑗] (𝑥) +

∑𝑖−1

𝑗=1
𝐵ℎ[𝑗] (𝑥) 𝟏

(
𝜉[𝑗]𝜈[𝑗] = 1

)⎫⎪⎬⎪⎭ . (3)
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An important feature of these estimators is that subjects who are known to be cured below time 𝑇(𝑖) remain in the risk set,
that is, they are counted in the denominator. In the following, we also refer to this estimator as 1 − 𝐹𝑐

ℎ
(𝑡|𝑥). A motivation

for estimators (2) and (3) is given in the Appendix.

Proposition 1. The proposed estimator 𝑆𝑐
ℎ
(𝑡|𝑥) has the following general properties.

1. When there are no censored observations known to be cured, that is, 𝜉𝑖𝜈𝑖 = 0 for 𝑖 = 1, … , 𝑛, 𝑆𝑐
ℎ
(𝑡|𝑥) reduces to Beran’s

estimator:

𝑆ℎ (𝑡 ∣ 𝑥) =

𝑛∏
𝑖=1

⎧⎪⎨⎪⎩1 −
𝛿[𝑖]𝐵ℎ[𝑖] (𝑥) 𝟏

(
𝑇(𝑖) ≤ 𝑡

)∑𝑛

𝑗=𝑖
𝐵ℎ[𝑗] (𝑥)

⎫⎪⎬⎪⎭ . (4)

2. In the specific case when some individuals are observed as cured when their survival time exceeds a known fixed cure
threshold, 𝑆𝑐

ℎ
(𝑡|𝑥) also reduces to Beran’s estimator in (4).

3. When there is no censoring, 𝑆𝑐
ℎ
(𝑡|𝑥) reduces to the kernel-type estimator of the conditional survival function (Nadaraya,

1964):

𝑆ℎ (𝑡 ∣ 𝑥) =

𝑛∑
𝑖=1

𝐵ℎ[𝑖] (𝑥) 𝟏
(
𝑇(𝑖) > 𝑡

)
.

4. In an unconditional setting, the proposed estimator is

𝑆𝑐
𝑛 (𝑡) =

𝑛∏
𝑖=1

⎧⎪⎨⎪⎩1 −
𝛿[𝑖]𝟏

(
𝑇(𝑖) ≤ 𝑡

)
𝑛 − 𝑖 + 1 +

∑𝑖−1

𝑗=1
𝟏
(
𝜉[𝑗]𝜈[𝑗] = 1

)⎫⎪⎬⎪⎭ .

In the particular case where an individual is known to be cured only if the observed time is greater than a known fixed
time, say 𝑑, 𝑆𝑐

𝑛(𝑡) reduces to the generalized maximum likelihood estimator in Laska and Meisner (1992).

The proof of these properties is outlined in the Appendix.

Proposition 2. The 1 − 𝐹𝑐
ℎ
(𝑡|𝑥) estimator in (3) is the nonparametric local maximum likelihood estimator of 1 − 𝐹(𝑡|𝑥).

The proof of Proposition 2 is given in the Appendix.

2.3 Asymptotic results

In this section, we investigate the asymptotic properties of Λ̂𝑐
ℎ
(𝑡|𝑥) and 𝑆𝑐

ℎ
(𝑡|𝑥). In order to prove our asymptotic results,

we consider the following (sub)distribution functions:

𝐻 (𝑡 ∣ 𝑥) = 𝑃 (𝑇 ≤ 𝑡 ∣ 𝑋 = 𝑥) ,

𝐻1(𝑡 ∣ 𝑥) = 𝑃 (𝑇 ≤ 𝑡, 𝛿 = 1 ∣ 𝑋 = 𝑥) ,

𝐻11(𝑡 ∣ 𝑥) = 𝑃 (𝑇 ≤ 𝑡, 𝜉 = 1, 𝜈 = 1 ∣ 𝑋 = 𝑥) ,

𝐽(𝑡 ∣ 𝑥) = 1 − 𝐻 (𝑡 ∣ 𝑥) + 𝐻11 (𝑡 ∣ 𝑥) ,

and Assumptions 1–8. Assumptions such as these have been commonly used in literature; see, for example, Iglesias-Pérez
and González-Manteiga (1999).
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Theorems 1 and 2 present the asymptotic representations of Λ̂𝑐
ℎ
(𝑡|𝑥) and 1 − 𝐹𝑐

ℎ
(𝑡|𝑥), respectively. Based on these results,

in Corollary 1 we show that Λ̂𝑐
ℎ
(𝑡|𝑥) and 1 − 𝐹𝑐

ℎ
(𝑡|𝑥) are strongly consistent estimators of Λ(𝑡|𝑥) and 1 − 𝐹(𝑡|𝑥), respec-

tively. The asymptotic normality of 1 − 𝐹𝑐
ℎ
(𝑡|𝑥) is proved in Theorem 3.

Theorem 1. Suppose that Assumptions 1–8 hold, and the bandwidth ℎ = (ℎ𝑛) satisfies ℎ → 0, log 𝑛∕(nh) → 0 and
𝑛ℎ5∕ log 𝑛 = 𝑂(1) as 𝑛 → ∞. Then, for 𝑥 ∈ 𝐼, 𝑡 ∈ [𝑎, 𝑏] we have

Λ̂𝑐
ℎ
(𝑡 ∣ 𝑥) − Λ (𝑡 ∣ 𝑥) =

𝑛∑
𝑖=1

𝐵̃hi (𝑥) 𝜁 (𝑇𝑖, 𝛿𝑖, 𝜉𝑖, 𝜈𝑖, 𝑡, 𝑥) + 𝑅𝑛1 (𝑡, 𝑥) ,

with

𝜁 (𝑇𝑖, 𝛿𝑖, 𝜉𝑖, 𝜈𝑖, 𝑡, 𝑥) =
𝟏 (𝑇𝑖 ≤ 𝑡, 𝛿𝑖 = 1)

𝐽(𝑇−
𝑖

∣ 𝑥)
− ∫

𝑡

0

{𝟏 (𝑇𝑖 ≥ 𝑣) + 𝟏 (𝑇𝑖 < 𝑣, 𝜉𝑖𝜈𝑖 = 1)}
𝑑𝐻1 (𝑣 ∣ 𝑥)

𝐽2 (𝑣− ∣ 𝑥)
, (5)

𝐵̃hi (𝑥) =
1

𝑚 (𝑥)

1

nh
𝐾

(
𝑥 − 𝑋𝑖

ℎ

)
, (6)

where 𝑅𝑛1(𝑡, 𝑥) satisfies

sup
𝑎≤𝑡≤𝑏,𝑥∈𝐼

∣ 𝑅𝑛1 (𝑡, 𝑥) ∣= 𝑂
{
(nh)−3∕4

(log 𝑛)
3∕4
}

almost surely.

Theorem 2. Suppose that Assumptions 1–8 hold, and the bandwidth ℎ = (ℎ𝑛) satisfies ℎ → 0, log 𝑛∕(nh) → 0 and
𝑛ℎ5∕ log 𝑛 = 𝑂(1) as 𝑛 → ∞. Then, for 𝑥 ∈ 𝐼, 𝑡 ∈ [𝑎, 𝑏] we have

𝐹𝑐
ℎ
(𝑡 ∣ 𝑥) − 𝐹 (𝑡 ∣ 𝑥) = {1 − 𝐹 (𝑡 ∣ 𝑥)}

𝑛∑
𝑖=1

𝐵̃hi (𝑥) 𝜁 (𝑇𝑖, 𝛿𝑖, 𝜉𝑖, 𝜈𝑖, 𝑡, 𝑥) + 𝑅𝑛2 (𝑡, 𝑥) ,

where 𝜁(𝑇𝑖, 𝛿𝑖, 𝜉𝑖, 𝜈𝑖, 𝑡, 𝑥) is defined in (5), 𝐵̃hi(𝑥) in (6) and 𝑅𝑛2(𝑡, 𝑥) satisfies

sup
𝑎≤𝑡≤𝑏,𝑥∈𝐼

∣ 𝑅𝑛2 (𝑡, 𝑥) ∣= 𝑂
{
(nh)−3∕4

(log 𝑛)
3∕4
}
almost surely. (7)

The sketch of the proofs of Theorems 1 and 2 is outlined in the Supporting Information. The detailed proofs follow that of
Theorem 2 of Iglesias-Pérez and González-Manteiga (1999) for Beran’s estimator. As an immediate consequence of these
theorems, the following corollary on the strong consistency of the estimators Λ̂𝑐

ℎ
(𝑡|𝑥) and 1 − 𝐹𝑐

ℎ
(𝑡|𝑥) is obtained.

Corollary 1. Suppose that Assumptions 1–8 hold, and the bandwidth ℎ = (ℎ𝑛) satisfies ℎ → 0, log 𝑛∕(nh) → 0 and
𝑛ℎ5∕ log 𝑛 = 𝑂(1) as 𝑛 → ∞. Then, for 𝑥 ∈ 𝐼, 𝑡 ∈ [𝑎, 𝑏], we have

sup
𝑎≤𝑡≤𝑏,𝑥∈𝐼

∣ Λ̂𝑐
ℎ
(𝑡 ∣ 𝑥) − Λ (𝑡 ∣ 𝑥) ∣= 𝑂

{
(nh)−1∕2

(log 𝑛)
1∕2
}

almost surely,

and

sup
𝑎≤𝑡≤𝑏,𝑥∈𝐼

∣ 𝐹𝑐
ℎ
(𝑡 ∣ 𝑥) − 𝐹 (𝑡 ∣ 𝑥) ∣= 𝑂

{
(nh)−1∕2

(log 𝑛)
1∕2
}

almost surely.

The proof of Corollary 1 is outlined in the Appendix.
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Proposition 3. Suppose that Assumptions 1–8 hold, and the bandwidth ℎ = (ℎ𝑛) satisfies ℎ → 0, log 𝑛∕(nh) → 0 and
𝑛ℎ5∕ log 𝑛 = 𝑂(1) as 𝑛 → ∞. Then, the bias and variance of 1 − 𝐹𝑐

ℎ
(𝑡|𝑥) are, respectively,

𝜇ℎ,𝑐(𝑡, 𝑥) = ℎ2𝐵𝑐(𝑡, 𝑥) + 𝑂
(
ℎ4
)
, 𝜎2

ℎ,𝑐
(𝑡, 𝑥) = (nh)−1

𝑠2𝑐 (𝑡, 𝑥) + 𝑂(𝑛−1ℎ), (8)

with

𝐵𝑐(𝑡, 𝑥) =
{1 − 𝐹 (𝑡 ∣ 𝑥)}{2Φ′

𝑐 (𝑥, 𝑡, 𝑥)𝑚
′ (𝑥) + Φ′′

𝑐 (𝑥, 𝑡, 𝑥)𝑚 (𝑥)}𝑑𝐾

2𝑚 (𝑥)
, (9)

𝑠2𝑐 (𝑡, 𝑥) =
{1 − 𝐹 (𝑡 ∣ 𝑥)}

2
Φ𝑐

1 (𝑥, 𝑡, 𝑥) 𝑐𝐾

𝑚 (𝑥)
, (10)

where 𝑑𝐾 = ∫ 𝑣2𝐾(𝑣)dv, 𝑐𝐾 = ∫ 𝐾2(𝑣)dv,

Φ𝑐 (𝑦, 𝑡, 𝑥) = E {𝜁 (𝑇, 𝛿, 𝜉, 𝜈, 𝑡, 𝑥) ∣ 𝑋 = 𝑦} , Φ𝑐
1 (𝑦, 𝑡, 𝑥) = E

{
𝜁2 (𝑇, 𝛿, 𝜉, 𝜈, 𝑡, 𝑥) ∣ 𝑋 = 𝑦

}
,

with 𝜁(𝑇, 𝛿, 𝜉, 𝜈, 𝑡, 𝑥) given in (5). Besides, Φ′
𝑐(𝑦, 𝑡, 𝑥) and Φ′′

𝑐 (𝑦, 𝑡, 𝑥) are the first and second derivatives of Φ𝑐(𝑦, 𝑡, 𝑥) with
respect to 𝑦.

The proof of Proposition 3 is outlined in the Appendix. The following theorem, whose proof is in the Appendix, establishes
the asymptotic normality of 1 − 𝐹𝑐

ℎ
(𝑡 ∣ 𝑥).

Theorem 3. Suppose that Assumptions 1–8 hold, then, for 𝑥 ∈ 𝐼 and 𝑡 ∈ [𝑎, 𝑏] it follows that

(i) if 𝑛ℎ5 → 0 and (log 𝑛)3∕(nh) → 0, then

(nh)1∕2
{
𝐹𝑐
ℎ
(𝑡 ∣ 𝑥) − 𝐹(𝑡 ∣ 𝑥)

}
→ 𝑁(0, 𝑠2𝑐 (𝑡, 𝑥)) in distribution;

(ii) if 𝑛ℎ5 → 𝐶5 > 0, then

(nh)1∕2
{
𝐹𝑐
ℎ
(𝑡 ∣ 𝑥) − 𝐹(𝑡 ∣ 𝑥)

}
→ 𝑁(𝐶5∕2𝐵𝑐(𝑡, 𝑥), 𝑠

2
𝑐 (𝑡, 𝑥)) in distribution,

with 𝐵𝑐(𝑡, 𝑥) given in (9), 𝑠2𝑐 (𝑡, 𝑥) in (10) and 𝐶 is constant.

2.4 Effect of ignoring the cure status

In this section, we make a theoretical comparison between the proposed estimator 1 − 𝐹𝑐
ℎ
(𝑡|𝑥) and Beran’s estimator.

The asymptotic properties of Beran’s estimator were obtained by Iglesias-Pérez and González-Manteiga (1999) and Van
Keilegom and Veraverbeke (1997), among others. More precisely, in order to understand the effect of ignoring the cure
status, the dominant terms of the bias and variance of Beran’s estimator are comparedwith those of the proposed estimator.
The asymptotic bias and variance of Beran’s estimator are, respectively,

𝜇ℎ(𝑡, 𝑥) = ℎ2𝐵(𝑡, 𝑥) + 𝑂
(
ℎ4
)
and 𝜎2

ℎ
(𝑡, 𝑥) = (nh)−1

𝑠2(𝑡, 𝑥) + 𝑂(𝑛−1ℎ), (11)

with

𝐵(𝑡, 𝑥) =
{1 − 𝐹 (𝑡 ∣ 𝑥)} {2Φ′ (𝑥, 𝑡, 𝑥)𝑚′ (𝑥) + Φ′′ (𝑥, 𝑡, 𝑥)𝑚 (𝑥)}𝑑𝐾

2𝑚 (𝑥)
(12)
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and

𝑠2(𝑡, 𝑥) =
{1 − 𝐹 (𝑡 ∣ 𝑥)}

2
Φ1 (𝑥, 𝑡, 𝑥) 𝑐𝐾

𝑚 (𝑥)
, (13)

where, see Lemmas 4 and 5 in López-Cheda, Jácome, et al. (2017),

Φ (𝑦, 𝑡, 𝑥) = ∫
𝑡

0

𝑑𝐻1 (𝑣 ∣ 𝑦)

1 − 𝐻 (𝑣− ∣ 𝑥)
− ∫

𝑡

0

1 − 𝐻 (𝑣− ∣ 𝑦)

{1 − 𝐻 (𝑣− ∣ 𝑥)}
2
𝑑𝐻1 (𝑣 ∣ 𝑥) ,

Φ1 (𝑥, 𝑡, 𝑥) = ∫
𝑡

0

𝑑𝐻1 (𝑣 ∣ 𝑥)

{1 − 𝐻 (𝑣− ∣ 𝑥)}
2
, (14)

andΦ′(𝑦, 𝑡, 𝑥) andΦ′′(𝑦, 𝑡, 𝑥) are the first and the second derivatives ofΦ(𝑦, 𝑡, 𝑥)with respect to 𝑦. Expressions (11)–(13) for
Beran’s estimator are equivalent to the bias and variance terms (8)–(10) for 𝑆𝑐

ℎ
(𝑡 ∣ 𝑥), replacing Φ𝑐(𝑥, 𝑡, 𝑥) and Φ𝑐

1(𝑥, 𝑡, 𝑥)

with Φ(𝑥, 𝑡, 𝑥) and Φ1(𝑥, 𝑡, 𝑥), respectively. From Lemmas 2 and 5 in the Supporting Information, we have

Φ𝑐(𝑦, 𝑡, 𝑥) =∫
𝑡

0

𝑑𝐻1 (𝑣 ∣ 𝑦)

1 − 𝐻 (𝑣− ∣ 𝑥) + 𝐻11 (𝑣− ∣ 𝑥)
− ∫

𝑡

0

1 − 𝐻 (𝑣− ∣ 𝑦) + 𝐻11 (𝑣− ∣ 𝑦)

{1 − 𝐻 (𝑣− ∣ 𝑥) + 𝐻11 (𝑣− ∣ 𝑥)}
2
𝑑𝐻1 (𝑣 ∣ 𝑥) ,

Φ𝑐
1 (𝑥, 𝑡, 𝑥) =∫

𝑡

0

𝑑𝐻1 (𝑣 ∣ 𝑥)

{1 − 𝐻 (𝑣− ∣ 𝑥) + 𝐻11(𝑣− ∣ 𝑥)}
2
.

As for the variance, when the cure status information is ignored then𝐻11(𝑡|𝑥) = 0 for all 𝑡 and 𝑥. Therefore,Φ𝑐
1(𝑥, 𝑡, 𝑥) ≤

Φ1(𝑥, 𝑡, 𝑥). Note that when the same bandwidth is used for both estimators, ignoring the cure status increases asymptoti-
cally the variance of the estimator.
Returning to the bias, by applying Lemma 3 in the Supporting Information, we have

Φ′
𝑐 (𝑥, 𝑡, 𝑥) = Φ′ (𝑥, 𝑡, 𝑥) = −

𝑆′ (𝑡− ∣ 𝑥)

𝑆 (𝑡− ∣ 𝑥)
,

where 𝑆′(𝑡|𝑥) is the derivative of 𝑆(𝑡|𝑥) with respect to 𝑥, meaning that the effect of knowing the cure status on the bias
is given by Φ′′

𝑐 (𝑥, 𝑡, 𝑥). From Lemma 4 in the Supporting Information,

Φ′′
𝑐 (𝑥, 𝑡, 𝑥) = 2∫

𝑡

0

𝐺′
𝑐 (𝑣

− ∣ 𝑥)

1 − 𝐺𝑐 (𝑣− ∣ 𝑥)

𝑑

ds

{
𝑆′ (𝑠 ∣ 𝑥)

𝑆 (𝑠 ∣ 𝑥)

}||||𝑠=𝑣−
dv −

𝑆′′ (𝑡− ∣ 𝑥)

𝑆 (𝑡− ∣ 𝑥)
, (15)

with

1 − 𝐺𝑐(𝑡 ∣ 𝑥) = 1 − 𝐺(𝑡 ∣ 𝑥) + 𝜋1(𝑡, 𝑥){1 − 𝑝(𝑥)}𝐺1(𝑡 ∣ 𝑥),

where

𝜋1 (𝑡, 𝑥) = 𝑃 (𝜉 = 1 ∣ 𝜈 = 1, 𝐶 ≤ 𝑡, 𝑋 = 𝑥) , 𝐺1 (𝑡 ∣ 𝑥) = 𝑃 (𝐶 ≤ 𝑡 ∣ 𝜈 = 1, 𝑋 = 𝑥) , (16)

and 𝑆′(𝑡|𝑥), 𝑆′′(𝑡|𝑥) and 𝐺′(𝑡 ∣ 𝑥) refer to the derivatives with respect to 𝑥. If the cure status is ignored, that is, 𝜋1(𝑥, 𝑡) = 0

for all 𝑡 and 𝑥, then (15) reduces to

Φ′′ (𝑥, 𝑡, 𝑥) = 2∫
𝑡

0

𝐺′ (𝑣− ∣ 𝑥)

1 − 𝐺 (𝑣− ∣ 𝑥)

𝑑

ds

{
𝑆′ (𝑠 ∣ 𝑥)

𝑆 (𝑠 ∣ 𝑥)

}||||𝑠=𝑣−
dv −

𝑆′′ (𝑡− ∣ 𝑥)

𝑆 (𝑡− ∣ 𝑥)
.
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In terms of bias, the advantage of knowing the cure status is not straightforward as it depends on the derivative with
respect to 𝑥 of the cure probability 1 − 𝑝(𝑥) and the functions 𝜋1(𝑡, 𝑥) and 𝐺1(𝑡, 𝑥) in (16). This implies that there is no
guarantee that there will be a gain in terms of bias for the proposed estimator with respect to Beran’s estimator.

3 BANDWIDTH SELECTION

Bootstrap procedures have been successfully used to address the issue of bandwidth selection in the context of themixture
cure model (López-Cheda, Cao, et al., 2017; López-Cheda, Jácome, et al., 2017). Next, we propose a bootstrap bandwidth
selector to choose the smoothing parameter ℎ of the proposed estimator 𝑆𝑐

ℎ
(𝑡|𝑥). The bootstrap bandwidth, ℎ∗

𝑥, is the
bandwidth minimizing the bootstrap version of the mean integrated squared error (MISE). This bootstrap MISE can be
approximated using Monte Carlo by

MISE∗
𝑥(ℎ) ≃

1

𝐵

𝐵∑
𝑏=1

∫
{
𝑆𝑐,∗𝑏
ℎ

(𝑣 ∣ 𝑥) − 𝑆𝑐
𝑔𝑥
(𝑣 ∣ 𝑥)

}2

𝜔(𝑣, 𝑥)dv, (17)

where 𝑆𝑐,∗𝑏
ℎ

(𝑡|𝑥) is the proposed estimator computed with the 𝑏th bootstrap resample and a bandwidth ℎ, and 𝑆𝑐
𝑔𝑥
(𝑡|𝑥) is

the same estimator computed with the original sample and with a pilot bandwidth 𝑔𝑥. Note that 𝜔(𝑣, 𝑥) is a nonnegative
weight function, intended to give lower weight in the right tail of the distribution. The algorithm to compute the bootstrap
bandwidth for a fixed covariate value 𝑥, is as follows:

Step 1. With the original sample and the pilot bandwidth 𝑔𝑥 , compute 𝑆𝑐
𝑔𝑥
(𝑡|𝑥).

Step 2. Choose a dense enough grid of 𝐿 bandwidths {ℎ1, … , ℎ𝐿}.

Step 3. Generate 𝐵 bootstrap resamples {(𝑋(𝑏)
𝑖

, 𝑇
∗(𝑏)
𝑖

, 𝛿
∗(𝑏)
𝑖

, 𝜉
∗(𝑏)
𝑖

, 𝜉
∗(𝑏)
𝑖

𝜈
∗(𝑏)
𝑖

) ∶ 𝑖 = 1, … , 𝑛}, for 𝑏 = 1,… , 𝐵.

Step 4. For the 𝑏th bootstrap resample and the bandwidths ℎ𝑙 , for 𝑙 = 1, … , 𝐿, compute 𝑆𝑐,∗𝑏
ℎ𝑙

(𝑡|𝑥).
Step 5. For ℎ𝑙, 𝑙 = 1, … , 𝐿, compute the Monte Carlo approximation of MISE∗

𝑥(ℎ𝑙) given by (17).

Step 6. The bootstrap bandwidth, ℎ∗
𝑥 , is the bandwidth of the grid {ℎ1, … , ℎ𝐿} that minimizes the approximation ofMISE

∗
𝑥(ℎ)

in (17).

The bootstrap resamples in Step 3 are generated as follows: fix 𝑥, for 𝑖 = 1, … , 𝑛, set 𝑋∗
𝑖
= 𝑋𝑖 and generate a 4-tuple

(𝑇∗
𝑖
, 𝛿∗

𝑖
, 𝜉∗

𝑖
, 𝜉∗

𝑖
𝜈∗
𝑖
) from the weighted empirical conditional distribution of {(𝑇1, 𝛿1, 𝜉1, 𝜉1𝜈1), … , (𝑇𝑛, 𝛿𝑛, 𝜉𝑛, 𝜉𝑛𝜈𝑛)}:

𝐹𝑔𝑥 (𝑡, 𝑑, 𝑤, 𝑧 ∣ 𝑥) =

𝑛∑
𝑖=1

𝐵𝑔𝑥𝑖(𝑥)𝟏 (𝑇𝑖 ≤ 𝑡, 𝛿𝑖 ≤ 𝑑, 𝜉𝑖 ≤ 𝑤, 𝜉𝑖𝜈𝑖 ≤ 𝑧) ,

where 𝐵𝑔𝑥𝑖(𝑥) are the Nadaraya–Watson weights with bandwidth 𝑔𝑥.
The pilot bandwidth 𝑔𝑥 should tend to 0 at a slower rate than ℎ∗

𝑥. This oversmoothing pilot bandwidth is required for the
bootstrap integrated squared bias and variance to be asymptotically efficient estimators of the integrated squared bias and
variance terms. For practical applications we recommend to use 𝑔𝑥 = 𝑐𝑥𝑛

−1∕9, as suggested by Li and Datta (2001), which
coincides with the optimal order obtained by Cao and González-Manteiga (1993) for the uncensored case. Simulation
results in the Supporting Information (see also López-Cheda, Cao, et al., 2017; López-Cheda, Jácome, et al., 2017) show
that the choice of the pilot bandwidth has a small effect on the selected bootstrap bandwidth. We propose to use the same
local pilot bandwidth as in López-Cheda, Cao, et al. (2017) and López-Cheda, Jácome, et al. (2017):

𝑔𝑥 =
𝑑+
𝑘
(𝑥) + 𝑑−

𝑘
(𝑥)

2
1001∕9𝑛−1∕9,
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where 𝑑+
𝑘
(𝑥) and 𝑑−

𝑘
(𝑥) are the distances from 𝑥 to the 𝑘th nearest neighbor on the right and left, and 𝑘 is a suitably chosen

integer depending on the sample size. If there are not at least 𝑘 neighbors on the right (or left), we use 𝑑+
𝑘
(𝑥) = 𝑑−

𝑘
(𝑥) (or

𝑑−
𝑘
(𝑥) = 𝑑+

𝑘
(𝑥)). Following López-Cheda, Cao, et al. (2017) and López-Cheda, Jácome, et al. (2017), we suggest setting

𝑘 = [𝑛∕4].

4 SIMULATION STUDY

We studied the practical performance of 𝑆𝑐
ℎ
(𝑡|𝑥) through a simulation study. We considered the conditional survival func-

tion 𝑆(𝑡|𝑥) = 1 − 𝑝(𝑥) + 𝑝(𝑥)𝑆0(𝑡|𝑥), where
𝑆0 (𝑡 ∣ 𝑥) =

⎧⎪⎨⎪⎩
exp (−𝛼 (𝑥) 𝑡) − exp (−𝛼 (𝑥) 4.605)

1 − exp (−𝛼 (𝑥) 4.605)
0 ≤ 𝑡 ≤ 4.605

𝑡 > 4.605
, 𝛼 (𝑥) = exp

(
𝑥 + 20

40

)
.

We simulated two scenarios given by the cure rates:

1 − 𝑝1(𝑥) = 1 −
exp (0.476 + 0.358𝑥)

1 + exp (0.476 + 0.358𝑥)
, 1 − 𝑝2(𝑥) = 0.5 −

1

16000
𝑥3.

The censoring variable 𝐶 was generated from an exponential distribution with mean 10∕3. The covariate 𝑋 was uni-
formly distributed on the interval [−20, 20]. The percentage of censoring was 54% and the average cure probability 0.467
in Scenario 1, whereas in Scenario 2, 61% of the observations were censored and the average cure probability was 0.5. In
both scenarios, the proportion of the identified cured individuals was 𝜋 = 0.2, 0.8 and 1. Data were generated so that the
censoring times 𝐶 and the lifetimes 𝑌 were independent conditionally on 𝑋. We generated 1000 datasets of sample sizes
𝑛 = 50, 100, and 200. This section contains the results for 𝜋 = 0.8 and 𝑛 = 100; the rest of the results can be found in the
Supporting Information.
Our first goal was to evaluate the performance of 𝑆𝑐

ℎ
(𝑡|𝑥) in terms of the MISE. It was approximated over a grid of

bandwidths equispaced in a logarithmic scale, from ℎ1 = 3 to ℎ100 = 20 in Scenario 1, and from ℎ1 = 4 to ℎ101 = 100 in
Scenario 2. For the weight function we chose 𝜔(𝑡, 𝑥) = 𝟏(𝑎𝑥 ≤ 𝑡 ≤ 𝑏𝑥) where 𝑎𝑥 = 0 and 𝑏𝑥 = 𝜏𝑥, the 90th percentile of
𝑆0(𝑡|𝑥). We compared 𝑆𝑐

ℎ
(𝑡|𝑥) computed in a grid of bandwidths with Beran’s estimator, 𝑆ℎ(𝑡|𝑥), computed with the opti-

mal bandwidth. The semiparametric estimator by Bernhardt (2016), which fits a logistic regression for the cure probability
and seminonparametric accelerated failure time model for the latency function, was also considered for comparison. The
semiparametric estimator is expected to performwell in Scenario 1.We chose the Epanechnikov kernel to compute 𝑆𝑐

ℎ
(𝑡|𝑥)

and 𝑆ℎ(𝑡|𝑥).
Figure 1 shows theMISE curves of the three estimators. In Scenario 1, as expected, the semiparametric estimator behaves

well. Nevertheless, both 𝑆𝑐
ℎ
(𝑡|𝑥) and 𝑆ℎ(𝑡|𝑥) are quite competitive for suitable values of the bandwidth, even beating the

semiparametric estimator for some values of𝑋 close to 0 and 20. In Scenario 2, both nonparametric estimators outperform
the semiparametric estimator. Taking into account the knowncure status gives either similar or better results than ignoring
it for most values of 𝑋, especially in Scenario 2 (see Figure 1). In Table 1, the performance of the estimators is compared
in terms of the integrated squared bias, integrated variance and MISE for the covariate values 𝑥 = −10, 0, and 10. In both
scenarios, at 𝑥 = −10, the proposed estimator has smaller integrated squared bias and variance than Beran’s estimator.
On the contrary, for 𝑥 = 10, the integrated squared bias and variance of Beran’s estimator is smaller compared to 𝑆𝑐

ℎ
(𝑡|𝑥)

estimator. As expected, the integrated squared bias and variance estimates for the semiparametric estimator are larger in
Scenario 2.
The performance of the bootstrap bandwidth selector was assessed using 𝐵 = 1000 resamples and an increased grid of

bandwidths from 1.5 to 100 for both scenarios. Figure 2 displays the quartiles of the selected bootstrap bandwidths together
with the optimal bandwidth. Corresponding contour plots in Figure 3 show the density of the bootstrap bandwidths and
the MISE of 𝑆𝑐

ℎ
(𝑡|𝑥) as a function of the bandwidth ℎ and the covariate value 𝑥. Figure 4 shows the MISE of 𝑆𝑐

ℎ
(𝑡|𝑥)

as a function of the bandwidth ℎ, for four values of the covariate. Figures 2 and 3 illustrate that the bootstrap bandwidth
approximates quitewell the optimal bandwidth.Note that in Figure 3 vertical contour lines indicate that, given𝑥, theMISE
of 𝑆𝑐

ℎ
(𝑡|𝑥) tends to be constant as a function of ℎ. Therefore, different bandwidths would yield approximately the same
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F IGURE 1 MISE of the proposed estimator 𝑆𝑐
ℎ
(𝑡|𝑥) for a selection of 25 bandwidths from the lowest (darkest gray line) to the highest

(lightest gray line) in Scenario 1 (left) and Scenario 2 (right). Also 𝑆ℎ(𝑡|𝑥) computed with the optimal bandwidth (solid black line), and of the
estimator by Bernhardt (2016) (dashed black line)

TABLE 1 Integrated squared bias (Ibias2), integrated variance (Ivar), and MISE of the proposed estimator, 𝑆𝑐
ℎ
(𝑡|𝑥), Beran’s estimator,

𝑆ℎ(𝑡|𝑥) (both computed with the optimal bandwidth), and the semiparametric estimator by Bernhardt (2016)
Proposed Beran Semiparametric

Ibias𝟐 Ivar MISE Ibias𝟐 Ivar MISE Ibias𝟐 Ivar MISE
Scenario 𝒙 𝒉 ×𝟏𝟎𝟑 ×𝟏𝟎𝟑 ×𝟏𝟎𝟑 𝒉 ×𝟏𝟎𝟑 ×𝟏𝟎𝟑 ×𝟏𝟎𝟑 ×𝟏𝟎𝟑 ×𝟏𝟎𝟑 ×𝟏𝟎𝟑

1 −10 6.582 0.119 1.022 1.141 6.334 0.163 1.177 1.340 0.002 0.299 0.301
0 20.000 0.371 1.834 2.205 20.000 0.119 1.927 2.046 0.035 5.274 5.310
10 12.152 0.375 2.902 3.277 12.387 0.355 2.885 3.240 0.372 2.337 2.709

2 −10 25.874 0.076 2.206 2.282 23.492 0.065 2.501 2.566 2.795 2.330 5.125
0 36.867 0.058 1.517 1.575 30.392 0.151 1.632 1.783 0.037 1.652 1.689
10 26.721 0.103 1.474 1.577 28.497 0.058 1.492 1.550 2.171 2.109 4.280

F IGURE 2 Median (solid black line) and first and third quartiles (dashed lines) of the bootstrap bandwidths for 𝑆𝑐
ℎ
(𝑡|𝑥) in Scenario 1 (left)

and Scenario 2 (right). The optimal bandwidth (solid gray line) is displayed as reference
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F IGURE 3 Contour plots of theMISE of 𝑆𝑐
ℎ
(𝑡|𝑥) as a function of the bandwidth ℎ and the covariate value 𝑥 in Scenario 1 (left) and Scenario

2 (right). For each value of covariate, the optimal bandwidth is marked with a cross. The density of the bootstrap bandwidths is shown in gray
scale

F IGURE 4 MISE of 𝑆𝑐
ℎ
(𝑡|𝑥) as a function of the bandwidth ℎ for four different values of the covariate 𝑥 = −10 (solid line), 𝑥 = 0 (dotted),

𝑥 = 5 (dot-dashed) and 𝑥 = 10 (long dash) in Scenario 1 (left) and Scenario 2 (right). For each value of the covariate, the optimal bandwidth
where the minimumMISE is reached is marked with a cross

MISE. In those cases, the bootstrap bandwidth being far from the optimal bandwidth does not imply a loss of efficiency.
Similar results are observed in Figure 4. For example, let us consider 𝑥 = 0 in Scenario 2, we see that the MISE initially
decreases as the bandwidth increases, although afterward it becomes constant.

5 APPLICATION TO REAL DATA

To illustrate the practical performance of 𝑆𝑐
ℎ
(𝑡|𝑥), we considered a dataset of 233 patients of sarcoma cancer aged 20–90

from theUniversityHospital of Santiago de Compostela, Spain (CHUS). Sarcoma is a rare type of cancer that represents 1%
of all adult solid malignancies. If a tumor can be surgically removed to render the patient with sarcoma free of detectable
disease, 5 years is the survival time at which sarcoma oncologists assume long-term remissions (Choy, 2014). Overall, 59
patients died from sarcoma, and the remaining 174 patients were censored. Among censored patients, 18 patients were
tumor free for more than 5 years. Hence, they were assumed to be long-term survivors. The aim was to estimate the
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TABLE 2 Descriptive demographic and clinical characteristics of sarcoma patients stratified by age, sex, location of the sarcoma,
metastatic, and the margin status

Censored
𝒏 (%) Death Cured UnknownCharacteristics 

Agea

<60 105 (45.3) 25 9 71
≥60 127 (54.7) 33 9 85

Sex
Male 100 (42.9) 25 7 68
Female 133 (57.1) 34 11 88

Tumor sitea

Retroperitoneal 86 (37.2) 28 4 54
Extremities 70 (30.3) 14 5 51
Other sites 75 (32.5) 16 9 50

Metastatica

No 112 (67.1) 11 9 92
55 (32.9) 32 3 20Yes 

Margin statusa

Negative 133 (65.8) 26 12 95
Positive 69 (34.2) 17 3 49

Note: In addition, the total number of patients for each subgroup (𝑛), the number of patients died of sarcoma (death), those who were known to be cured (cured),
and those with unknown cure status (unknown) are given.
aA few missing data.

F IGURE 5 Survival estimates for sarcoma patients aged 40 (left) and 90 (center) years are obtained with the proposed estimator 𝑆𝑐
ℎ
(𝑡|𝑥)

(solid black line) and Beran’s estimator 𝑆ℎ(𝑡|𝑥) (solid gray line), both computed with the corresponding bootstrap bandwidth, and the semi-
parametric estimator of Bernhardt (2016) (dashed gray line). The right figure shows survival estimates stratified by the margin status, negative
margin (solid lines) versus positive margin (dashed lines). These estimates are computed using the proposed estimator 𝑆𝑐

𝑛(𝑡) (black lines) and
the Kaplan–Meier estimator (gray lines)

survival time of the patients until death from sarcoma as a function of covariates such as the age at diagnosis, sex, tumor
site, cancer spread (metastasis), and the margin status. The variables selected for estimating the survival probabilities
were previously reported to be related to long-term sarcoma survival (Carbonnaux et al., 2019; Daigeler et al., 2014, among
others).
Table 2 shows the descriptive demographic and clinical characteristics of sarcoma patients by age, sex, and relevant

clinical factors. Of the 233 patients, 100 (42.9%) were males. Tumor site was categorized as retroperitoneal, extremities,
or other. Most tumors were found in the retroperitoneum (37%) and in the extremities (30%), with other areas of the body
accounting for about 33%. Fifty-five (32.9%) patients were diagnosed of metastatic sarcoma.
Figure 5 compares the results obtained using the proposed estimator 𝑆𝑐

ℎ
(𝑡|𝑥), which takes into account the 18 long-

term survivors, with Beran’s estimator 𝑆ℎ(𝑡|𝑥), which ignores individuals known to be cured and treats them as simply
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censored observations. Both estimators were computedwith the corresponding bootstrap bandwidth. The semiparametric
estimator of Bernhardt (2016) was also considered as reference. All estimators show that the survival curve decreaseswhen
age increases from 40 to 90 years. We find the largest differences between the proposed estimator and Beran’s estimator
at the right tail of the distribution, where the survival curve for 𝑆𝑐

ℎ
(𝑡|𝑥) is slightly higher. As the cure probability can be

obtained as the limit of 𝑆(𝑡|𝑥)when 𝑡 → ∞ using the proposed estimator of the survival curvewill yield in higher estimates
of the probability of cure.
On the other hand, the survival curve estimated by the semiparametric estimator of Bernhardt (2016) tends to decrease

much slower than those obtained with the nonparametric estimators 𝑆𝑐
ℎ
(𝑡|𝑥) and 𝑆ℎ(𝑡|𝑥), suggesting that further testing

is required to provide evidence that assumptions in the semiparametric model are fulfilled.
Figure 5 on the right shows the survival curves of sarcoma patients stratified by the margin status. In this case, the pro-

posed estimator in an unconditional setting 𝑆𝑐
𝑛(𝑡) is applied and the Kaplan and Meier (1958) estimator is considered as

reference. The survival curves tend to decrease with time in both subgroups. The positive margin survival curve decreases
slightly faster than the negative survival curve. In addition, the distinction between 𝑆𝑐

𝑛(𝑡) and the Kaplan–Meier esti-
mator is found at the right tail of the distribution with the survival curves estimated by 𝑆𝑐

𝑛(𝑡) being slightly higher than
the Kaplan–Meir curves. For example, the survival probability, at the tail of the distribution, for patients with negative
margins is around 0.51 when estimated by 𝑆𝑐

𝑛(𝑡), while it is around 0.47 when estimated by the Kaplan–Meier estimator.
Again, the estimated probability of cure is slightly higher when the survival curve is fitted taking into account the known
cured subjects.

6 DISCUSSION

The proposed nonparametric estimator of the survival function takes advantage of the additional cure status informa-
tion that Beran’s estimator ignores. As a further step, it could be used to derive nonparametric estimators for the cure
probability and the latency function.
Thus far, the estimation procedure was discussed involving a single continuous covariate. It would be of interest to

extend our estimator to the case of multiple covariates, with 𝐗 a vector of mixed discrete, categorical, and/or continuous
variables. One possibility is to consider product kernels (Li & Racine, 2008). Another possibility is to use dimension reduc-
tion techniques like a single-index model. Specifically, the idea is to apply the proposed estimator of the survival function
with a new covariate given by an estimator of the index 𝐗̃ = 𝛽𝑇𝐗, with 𝛽 a parameter vector of the same dimension of 𝐗.
Semiparametric index estimation of the conditional distribution in the presence of right censoringwas considered recently
by Li and Patilea (2018).
Although the proposed estimator utilizes the cure status information and shows good results both theoretically and

practically, it is not without limitations. It is competitive over Beran’s estimator in terms of the MISE, showing a general
better behavior. But for some values of the covariate, it does not result in an improvement but a slightly worse MISE
performance. The clear gain in terms of the integrated variance could be cancelled out by the integrated squared bias,
which depends on the cure probability, the conditional censoring distribution, and the conditional probability of observed
cured individuals. For the semiparametric estimator by Bernhardt (2016), our numerical experience indicates that if the
sample size is small (<100), it is challenging to obtain stable values for the model parameters.
The R package npcure by López-de-Ullibarri et al. (2020) provides the nonparametric estimation and testing procedures

inmixture curemodels proposed by López-Cheda, Cao, et al. (2017), López-Cheda, Jácome, et al. (2017), and López-Cheda
et al. (2020), including Beran’s estimator. The situation when cure status is partially known is not currently supported by
the package but will be considered in future versions. Further, the estimator of the conditional survival function intro-
duced in this paper and subsequent estimators of the cure rate and latency functions will be incorporated in the upgraded
package.

ACKNOWLEDGMENTS
Weare grateful toDr.ÁngelDíaz-Lagares,Head ofCancer Epigenomics Lab, TranslationalMedicalOncologyGroup (IDIS,
CHUS), for providingwith the sarcoma dataset obtained from the public TheCancer GenomeAtlas (TCGA) program. This
work has been supported by MINECO grant MTM2017-82724-R, the Xunta de Galicia (Grupos de Referencia Competitiva
ED431C-2016-015), and the Centro de Investigación de Galicia “CITIC,” funded by Xunta de Galicia and the European
Union (EuropeanRegional Development Fund-Galicia 2014-2020 Program), by grant ED431G 2019/01, all of them through
the ERDF.



SAFARI et al. 14

CONFL ICT  OF  I  NTEREST
The authors declare that there is no conflict of interest.

DATA  AVAILAB IL ITY  STATEMENT
The sarcoma dataset supporting the reproducibility of the findings is provided as Supplementary Information.

OPEN  RESEARCH  BADGES
This article has earned an Open Data badge for making publicly available the digitally-shareable data necessary to 
reproduce the reported results. The data is available in the Supporting Information section.

This article has earned an open data badge “Reproducible Research” for making publicly available the code necessary 
to reproduce the reported results. The results reported in this article were reproduced partially due to their computational 
complexity.

ORCID
Wende Clarence Safari https://orcid.org/0000-0003-4639-7552
Ignacio López-de-Ullibarri https://orcid.org/0000-0002-3438-6621
María Amalia Jácome https://orcid.org/0000-0001-7000-9623

REFERENCES
Amico, M., & Van Keilegom, I. (2018). Cure models in survival analysis. Annual Review of Statistics and Its Application, 5, 311–342.
Beran, R. (1981). Nonparametric regression with randomly censored survival data (Technical Report). Berkeley, CA: University of California. 
Bernhardt, P. W. (2016). A flexible cure rate model with dependent censoring and a known cure threshold. Statistics in Medicine, 35(25), 4607–
4623.

Betensky, R. A., & Schoenfeld, D. A. (2001). Nonparametric estimation in a cure model with random cure times. Biometrics, 57(1), 282–286. 
Billingsley, P. (1968). Convergence of probability measures. New York: Wiley.
Boag, J. W. (1949). Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal Statistical Society.
Series B, 11(1), 15–53.

Cao, R., & González-Manteiga, W. (1993). Bootstrap methods in regression smoothing. Journal of Nonparametric Statistics, 2, 379–388. 
Carbonnaux, M., Brahmi, M., Schiffler, C., Meeus, P., Sunyach, M.-P., Bouhamama, A., Karanian, M., Tirode, F., Pissaloux, D., Vaz, G., Ray-
Coquard, I., Blay, J.-Y., & Dufresne, A. (2019). Very long-term survivors among patients with metastatic soft tissue sarcoma. Cancer 

Medicine, 8(4), 1368–1378.
Chen, T., & Du, P. (2018). Promotion time cure rate model with nonparametric form of covariate effects. Statistics in Medicine, 37(10), 1625–1635. 
Choy, E. (2014). Sarcoma after 5 years of progression-free survival: Lessons from the French sarcoma group. Cancer, 120(19), 2942–2943. 
Dabrowska, D. M. (1989). Uniform consistency of the kernel conditional Kaplan–Meier estimate. Annals of Statistics, 17, 1157–1167.
Daigeler, A., Zmarsly, I., Hirsch, T., Goertz, O., Steinau, H., Lehnhardt, M., & Harati, K. (2014). Long-term outcome after local recurrence of
soft tissue sarcoma: a retrospective analysis of factors predictive of survival in 135 patients with locally recurrent soft tissue sarcoma. British
Journal of Cancer, 110(6), 1456–1464.

Hanin, L., & Huang, L.-S. (2014). Identifiability of cure models revisited. Journal of Multivariate Analysis, 130, 261–274.
Iglesias-Pérez,M.C., &González-Manteiga,W. (1999). Strong representation of a generalized product-limit estimator for truncated and censored
data with some applications. Journal of Nonparametric Statistics, 10(3), 213–244.

Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association,
53(282), 457–481.

Laska, E. M., & Meisner, M. J. (1992). Nonparametric estimation and testing in a cure model. Biometrics, 48(4), 1223–1234.
Li, C.-S., Taylor, J. M., & Sy, J. P. (2001). Identifiability of cure models. Statistics & Probability Letters, 54(4), 389–395.
Li, G., & Datta, S. (2001). A bootstrap approach to nonparametric regression for right censored data. Annals of the Institute of Statistical Mathe-
matics, 53, 708–729.

Li, Q., & Racine, J. S. (2008). Nonparametric estimation of conditional cdf and quantile functions with mixed categorical and continuous data.
Journal of Business Economics & Statistics, 26(4), 423–434.

Li, W., & Patilea, V. (2018). A dimension reduction approach for conditional Kaplan–Meier estimators. TEST, 27(2), 295–315.
López-Cheda, A., Cao, R., Jácome, M.A., & Van Keilegom, I. (2017). Nonparametric incidence estimation and bootstrap bandwidth selection in
mixture cure models. Computational Statistics & Data Analysis, 105, 144–165.

López-Cheda, A., Jácome, M.A., & Cao, R. (2017). Nonparametric latency estimation for mixture cure models. TEST, 26(2), 353–376.
López-Cheda, A., Jácome, M. A., Van Keilegom, I., & Cao, R. (2020). Nonparametric covariate hypothesis tests for the cure rate in mixture cure
models. Statistics in Medicine, 39(17), 2291–2307.

López-de-Ullibarri, I., López-Cheda, A., & Jácome, M. A. (2020). npcure: Nonparametric estimation in mixture cure models (R Package Version
0.1-5). https://cran.r-project.org/web/packages/npcure/

https://orcid.org/0000-0003-4639-7552
https://orcid.org/0000-0003-4639-7552
https://orcid.org/0000-0002-3438-6621
https://orcid.org/0000-0002-3438-6621
https://orcid.org/0000-0001-7000-9623
https://orcid.org/0000-0001-7000-9623


15 SAFARI et al.

Maller, R. A., & Zhou, S. (1992). Estimating the proportion of immunes in a censored sample. Biometrika, 79(4), 731–739.
Maller, R. A., & Zhou, S. (1996). Survival analysis with long-term survivors. Chichester: Wiley.
Nadaraya, E. A. (1964). Some new estimates for distribution functions. Theory of Probability & Its Applications, 9(3), 497–500.
Nieto-Baraja, L. E., & Yin, G. (2008). Bayesian semiparametric cure rate model with an unknown threshold. Scandinavian Journal of Statistics,
35(3), 540–556.

Patilea, V., & Van Keilegom, I. (2020). A general approach for cure models in survival analysis. Annals of Statistics, 48(4), 2323–2346.
Taylor, J. M. (1995). Semi-parametric estimation in failure time mixture models. Biometrics, 51(3), 899–907.
Van Keilegom, I., & Veraverbeke, N. (1997). Estimation and bootstrap with censored data in fixed design nonparametric regression. Annals of
the Institute of Statistical Mathematics, 49(3), 467–491.

Wu, Y., Lin, Y., Lu, S.-E., Li, C.-S., & Shih, W. J. (2014). Extension of a Cox proportional hazards cure model when cure information is partially
known. Biostatistics, 15(3), 540–554.

Xu, J., & Peng, Y. (2014). Nonparametric cure rate estimation with covariates. Canadian Journal of Statistics, 42(1), 1–17.

SUPPORT ING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Safari WC, López-de-Ullibarri I, Jácome MA. A product-limit estimator of the
conditional survival function when cure status is partially known. Biometrical Journal. 2021;63:984–1005.
https://doi.org/10.1002/bimj.202000173

APPENDIX A
The following assumptions are made.
Assumption 1.

(i) Let 𝐼 = [𝑥1, 𝑥2] be an interval contained in the support of the density function of 𝑋,𝑚(𝑥), such that

0 < 𝛾 = inf
𝑥∈𝐼𝜀

𝑚(𝑥) < sup
𝑥∈𝐼𝜀

𝑚(𝑥) = Γ < ∞

for some 𝐼𝜀 = [𝑥1 − 𝜀, 𝑥2 + 𝜀] with 𝜀 > 0 and 0 < 𝜀Γ < 1. And for all 𝑥 ∈ 𝐼, 𝑌, 𝐶 are conditionally independent at
𝑋 = 𝑥.

(ii) There exist 𝑎, 𝑏 ∈ ℝ, with 𝑎 < 𝑏 satisfying 𝐽(𝑡|𝑥) ≥ 𝜃 > 0 for (𝑡, 𝑥) ∈ [𝑎, 𝑏] × 𝐼𝜀.

Assumption 2. The first derivative with respect to 𝑥 of function 𝑚(𝑥) exists and is continuous in 𝑥 ∈ 𝐼𝜀, and the first
derivatives with respect to 𝑥 of functions 𝐻(𝑡|𝑥), 𝐻1(𝑡|𝑥), and 𝐻11(𝑡|𝑥) exist and are continuous and bounded in (𝑡, 𝑥) ∈

[0,∞) × 𝐼𝜀.

Assumption 3. The second derivative with respect to 𝑥 of function 𝑚(𝑥) exists and is continuous in 𝑥 ∈ 𝐼𝜀, and the
second derivatives with respect to 𝑥 of functions 𝐻(𝑡|𝑥), 𝐻1(𝑡|𝑥), and 𝐻11(𝑡|𝑥) exist and are continuous and bounded in
(𝑡, 𝑥) ∈ [0,∞) × 𝐼𝜀.

Assumption 4. The first derivatives with respect to 𝑡 of𝐻(𝑡|𝑥),𝐻1(𝑡|𝑥), and𝐻11(𝑡|𝑥) exist and are continuous in (𝑡, 𝑥) ∈

[𝑎, 𝑏] × 𝐼𝜀.

Assumption 5. The second derivatives with respect to 𝑡 of 𝐻(𝑡|𝑥), 𝐻1(𝑡|𝑥), and 𝐻11(𝑡|𝑥) exist and are continuous in
(𝑡, 𝑥) ∈ [𝑎, 𝑏] × 𝐼𝜀.

Assumption 6. The first derivative with respect to 𝑥 and the second derivative with respect to 𝑡 of 𝐻(𝑡|𝑥), 𝐻1(𝑡|𝑥), and
𝐻11(𝑡|𝑥) exist and are continuous in (𝑡, 𝑥) ∈ [𝑎, 𝑏] × 𝐼𝜀.
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Assumption 7. The (sub)densities corresponding to the (sub)distribution functions 𝐻(𝑡|𝑥), 𝐻1(𝑡|𝑥), and 𝐻11(𝑡|𝑥) are
bounded away from 0 in [𝑎, 𝑏] × 𝐼𝜀.

Assumption 8. The kernel function 𝐾(𝑣) is a symmetrical density with zero mean, vanishing outside (−1, 1), and the
total variation is less than 𝜆 < ∞.

Motivation of the proposed estimators. The cumulative hazard function Λ(𝑡|𝑥) can be written as follows:
Λ(𝑡 ∣ 𝑥) =∫

𝑡

0

𝑑𝐹 (𝑣 ∣ 𝑥)

1 − 𝐹 (𝑣− ∣ 𝑥)
= ∫

𝑡

0

{
1 − 𝐺(𝑣− ∣ 𝑥) + 𝐺11(𝑣− ∣ 𝑥)

}
𝑑𝐹(𝑣 ∣ 𝑥)

{1 − 𝐺(𝑣− ∣ 𝑥) + 𝐺11(𝑣− ∣ 𝑥)} {1 − 𝐹(𝑣− ∣ 𝑥)}
, (A1)

where 𝐺11(𝑡|𝑥) = 𝑃(𝐶 ≤ 𝑡, 𝜉 = 1, 𝜈 = 1|𝑋 = 𝑥) is the conditional censoring subdistribution of the individuals observed to
be cured. The numerator in (A1) is 𝑑𝐻1(𝑡 ∣ 𝑥):

∫
𝑡

0

{
1 − 𝐺(𝑣− ∣ 𝑥) + 𝐺11(𝑣− ∣ 𝑥)

}
dF(𝑣 ∣ 𝑥)

= ∫
𝑡

0

𝑃(𝐶 ≥ 𝑣 ∣ 𝑋 = 𝑥)dF(𝑣 ∣ 𝑥) + ∫
𝑡

0

𝑃(𝐶 < 𝑣, 𝜉 = 1, 𝜈 = 1 ∣ 𝑋 = 𝑥)dF(𝑣 ∣ 𝑥)

= 𝑃(𝑌 ≤ 𝑡, 𝐶 ≥ 𝑌 ∣ 𝑋 = 𝑥) + 𝑃(𝑌 ≤ 𝑡, 𝐶 < 𝑌, 𝜉 = 1, 𝑌 = ∞ ∣ 𝑋 = 𝑥)

= 𝑃(𝑇 ≤ 𝑡, 𝛿 = 1 ∣ 𝑋 = 𝑥) = 𝐻1(𝑡 ∣ 𝑥). (A2)

Similarly, the denominator in (A1) is 𝐽(𝑡−|𝑥):{
1 − 𝐺(𝑡− ∣ 𝑥) + 𝐺11(𝑡− ∣ 𝑥)

}
{1 − 𝐹(𝑡− ∣ 𝑥)}

= {𝑃(𝐶 ≥ 𝑡 ∣ 𝑋 = 𝑥) + 𝑃(𝐶 < 𝑡, 𝜉 = 1, 𝜈 = 1 ∣ 𝑋 = 𝑥)}𝑃(𝑌 ≥ 𝑡 ∣ 𝑋 = 𝑥)

= 𝑃(𝑌 ≥ 𝑡, 𝐶 ≥ 𝑡 ∣ 𝑋 = 𝑥) + 𝑃(𝑌 ≥ 𝑡, 𝐶 < 𝑡, 𝜉 = 1, 𝜈 = 1 ∣ 𝑋 = 𝑥)

= 𝑃(𝑇 ≥ 𝑡 ∣ 𝑋 = 𝑥) + 𝑃(𝑇 < 𝑡, 𝜉 = 1, 𝜈 = 1 ∣ 𝑋 = 𝑥)

= 1 − 𝐻 (𝑡− ∣ 𝑥) + 𝐻11 (𝑡− ∣ 𝑥) = 𝐽(𝑡− ∣ 𝑥). (A3)

Taking (A2) and (A3) into account, (A1) can be written as

Λ(𝑡 ∣ 𝑥) = ∫
𝑡

0

𝑑𝐻1(𝑣 ∣ 𝑥)

𝐽(𝑣− ∣ 𝑥)
. (A4)

Consider the Nadaraya–Watson kernel estimates of𝐻1(𝑡|𝑥) and 𝐽(𝑡−|𝑥):
𝐻̂1

ℎ
(𝑡 ∣ 𝑥) =

𝑛∑
𝑖=1

𝐵hi(𝑥)𝟏 (𝑇𝑖 ≤ 𝑡, 𝛿𝑖 = 1) , (A5)

𝐽ℎ(𝑡
− ∣ 𝑥) =

𝑛∑
𝑖=1

𝐵hi(𝑥)𝟏 (𝑇𝑖 ≥ 𝑡) +

𝑛∑
𝑖=1

𝐵hi(𝑥)𝟏 (𝑇𝑖 < 𝑡, 𝜉𝑖𝜈𝑖 = 1) . (A6)

The estimator of Λ(𝑡|𝑥) when the cure status is partially known, Λ̂𝑐
ℎ
(𝑡|𝑥), is obtained by plugging in (A4) the estimates

(A5) and (A6). As for the estimator of the survival function, it can be shown that 𝑆(𝑡|𝑥) = exp{−Λ(𝑡|𝑥)}. By considering
a Taylor’s expansion of the exponential function around 0 and evaluating it at each increment of Λ̂𝑐

ℎ
(𝑡|𝑥), the estimator

𝑆𝑐
ℎ
(𝑡|𝑥) in (3) is obtained.
Proof of Proposition 1. The estimator 𝑆𝑐

ℎ
(𝑡|𝑥) has the following properties:
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1. If there is no known cure status, 𝑆𝑐
ℎ
(𝑡|𝑥) reduces to 𝑆ℎ(𝑡|𝑥).

Proof. It is straightforward because 𝜉𝑖𝜈𝑖 = 0, 𝑖 = 1, … , 𝑛. □

2. In the specific case when some individuals are observed as cured when their survival time exceeds a known fixed cure
threshold, 𝑆𝑐

ℎ
(𝑡|𝑥) reduces to 𝑆ℎ(𝑡|𝑥).

Proof. Assume there exists a common specific known cure threshold 𝑑𝑖 = 𝑑 for 𝑖 = 1, … , 𝑛. This implies that in the
ordered sample, {(𝑋[𝑖], 𝑇(𝑖), 𝛿[𝑖], 𝜉[𝑖], 𝜉[𝑖]𝜈[𝑖]) ∶ 𝑖 = 1, … , 𝑛}, the 𝑛1 first observations correspond to individuals with𝑇(𝑖) <

𝑑 either not cured or with unknown cure status (𝜉[𝑖]𝜈[𝑖] = 0), and the remaining𝑚 observations are cured individuals
with 𝑇(𝑖) ≥ 𝑑 and 𝜉[𝑖]𝜈[𝑖] = 1. Therefore,

𝑆𝑐
ℎ
(𝑡 ∣ 𝑥) =

𝑛∏
𝑖=1

⎧⎪⎨⎪⎩1 −
𝛿[𝑖]𝐵ℎ[𝑖] (𝑥) 𝟏

(
𝑇(𝑖) ≤ 𝑡

)∑𝑛1

𝑗=𝑖
𝐵ℎ[𝑗] (𝑥) +

∑𝑛

𝑗=𝑛1+1
𝐵ℎ[𝑗] (𝑥)

⎫⎪⎬⎪⎭ =

𝑛∏
𝑖=1

⎧⎪⎨⎪⎩1 −
𝛿[𝑖]𝐵ℎ[𝑖] (𝑥) 𝟏

(
𝑇(𝑖) ≤ 𝑡

)∑𝑛

𝑗=𝑖
𝐵ℎ[𝑗] (𝑥)

⎫⎪⎬⎪⎭ = 𝑆ℎ(𝑡 ∣ 𝑥).

This completes the proof. □

3. When there is no censoring, the estimator 𝑆𝑐
ℎ
(𝑡|𝑥) reduces to the kernel type estimator of the conditional survival func-

tion.

Proof. Without censoring, 𝑇𝑖 = 𝑌𝑖, 𝛿𝑖 = 1 and the cure status is always observed 𝜉𝑖 = 1. In this situation, the 𝑛 = 𝑛1 +

𝑚 observations can be ordered and split into the 𝑛1 uncured individuals with finite lifetimes 𝑌𝑖 , and the 𝑚 cured
individuals with lifetime 𝑌𝑖 = ∞. Thus,

𝑆𝑐
ℎ
(𝑡 ∣ 𝑥) =

𝑛∏
𝑖=1

⎧⎪⎨⎪⎩1 −
𝐵ℎ[𝑖] (𝑥) 𝟏

(
𝑌(𝑖) ≤ 𝑡

)
∑𝑛

𝑗=𝑖𝐵ℎ[𝑗] (𝑥) +
∑𝑖−1

𝑗=1𝐵ℎ[𝑗] (𝑥) 𝟏
(
𝜈[𝑗] = 1

)⎫⎪⎬⎪⎭
=

𝑛∏
𝑖=1

⎧⎪⎨⎪⎩1 −
𝐵ℎ[𝑖] (𝑥) 𝟏

(
𝑌(𝑖) ≤ 𝑡

)∑𝑛1

𝑗=𝑖
𝐵ℎ[𝑗] (𝑥) +

∑𝑛

𝑗=𝑛1+1
𝐵ℎ[𝑗] (𝑥)

⎫⎪⎬⎪⎭ =
∏

𝑖∶𝑌(𝑖)≤𝑡

⎧⎪⎨⎪⎩
∑𝑛

𝑗=𝑖+1
𝐵ℎ[𝑗] (𝑥)∑𝑛

𝑗=𝑖
𝐵ℎ[𝑗] (𝑥)

⎫⎪⎬⎪⎭ .

Note that the kernel estimator of the survival function 𝑆ℎ(𝑡|𝑥) = ∑𝑛

𝑖=1𝐵ℎ[𝑖](𝑥)𝟏(𝑌(𝑖) > 𝑡) is a step function with jumps
𝐵hi(𝑥) at the observations, 𝑌𝑖 . By defining 𝑘 = max{𝑖 ∶ 𝑌(𝑖) ≤ 𝑡} i.e., 𝑌(𝑘) ≤ 𝑡 and 𝑌(𝑘+1) > 𝑡, one can write

∏
𝑖∶𝑌(𝑖)≤𝑡

⎧⎪⎨⎪⎩
∑𝑛

𝑗=𝑖+1
𝐵ℎ[𝑗] (𝑥)∑𝑛

𝑗=𝑖
𝐵ℎ[𝑗] (𝑥)

⎫⎪⎬⎪⎭ =
∏

𝑖∶𝑌(𝑖)≤𝑡

{
𝑆ℎ(𝑌(𝑖) ∣ 𝑥)

𝑆ℎ(𝑌(𝑖−1) ∣ 𝑥)

}
=

𝑆ℎ(𝑌(1) ∣ 𝑥)

1

𝑆ℎ(𝑌(2)|𝑥)
𝑆ℎ(𝑌(1) ∣ 𝑥)

…
𝑆ℎ(𝑌(𝑘) ∣ 𝑥)

𝑆ℎ(𝑌(𝑘−1) ∣ 𝑥)

= 𝑆ℎ(𝑌(𝑘) ∣ 𝑥) =

𝑛∑
𝑖=1

𝐵ℎ[𝑖] (𝑥) 𝟏(𝑌(𝑖) > 𝑡).

This completes the proof. □

4. In an unconditional setting the proposed estimator is

𝑆𝑐
𝑛 (𝑡) =

𝑛∏
𝑖=1

⎧⎪⎨⎪⎩1 −
𝛿[𝑖]𝟏

(
𝑇(𝑖) ≤ 𝑡

)
𝑛 − 𝑖 + 1 +

∑𝑖−1

𝑗=1
𝟏
(
𝜉[𝑗]𝜈[𝑗] = 1

)⎫⎪⎬⎪⎭ .



SAFARI et al. 18

Proof. In unconditional setting the weights are 1∕𝑛 for 𝑖 = 1, … , 𝑛. Thus, the proposed estimator becomes

𝑆𝑐
𝑛 (𝑡) =

𝑛∏
𝑖=1

⎧⎪⎨⎪⎩1 −
𝛿[𝑖]

1

𝑛
𝟏
(
𝑇(𝑖) ≤ 𝑡

)
1

𝑛
(𝑛 − 𝑖 + 1) +

1

𝑛

∑𝑖−1

𝑗=1
𝟏
(
𝜉[𝑗]𝜈[𝑗] = 1

)⎫⎪⎬⎪⎭ .

In the particular case where an individual is known to be cured only if the observed time is greater than a known fixed
time, say 𝑑, with 𝑛 = 𝑛1 + 𝑚 observations, when 𝑚 are identified as cured, the ordered observed lifetimes are 𝑇(1) ≤
⋯ ≤ 𝑇(𝑛1) strictly lower than 𝑑, and the 𝑚 cured individuals with 𝑇(𝑖) ≥ 𝑑. Thus, 𝑆𝑐

ℎ
(𝑡|𝑥) reduces to the generalized

maximum likelihood estimator in Laska and Meisner (1992):

𝑆𝑐
𝑛(𝑡) =

𝑛∏
𝑖=1

⎧⎪⎨⎪⎩1 −
𝛿[𝑖]

1

𝑛
𝟏
(
𝑇(𝑖) ≤ 𝑡

)
1

𝑛
(𝑛1 − 𝑖 + 1) +

1

𝑛
𝑚

⎫⎪⎬⎪⎭ =

𝑛∏
𝑖=1

{
1 −

𝛿[𝑖]𝟏(𝑇(𝑖) ≤ 𝑡)

𝑛 − 𝑖 + 1

}
.

This completes the proof. □

Proof of Proposition 2. The proof follows the argument in Theorem 2 in López-Cheda, Cao, et al. (2017) and Theorem 1
in Laska and Meisner (1992). To derive the expression of the local likelihood of the mixture cure model, we consider the
three potential cases for the 𝑖th observation:

1. Case 1: 𝛿𝑖 = 1. The event is observed and the individual is not cured. We observe 𝑌𝑖 = 𝑡𝑖, 𝜈𝑖 = 0, with probability:

𝑃 (𝑌𝑖 = 𝑡𝑖, 𝐶𝑖 > 𝑡𝑖, 𝜈𝑖 = 0 ∣ 𝑋 = 𝑥) = 𝑃 (𝐶𝑖 > 𝑡𝑖 ∣ 𝑌𝑖 = 𝑡𝑖, 𝜈𝑖 = 0, 𝑋 = 𝑥)

×𝑃 (𝑌𝑖 = 𝑡𝑖 ∣ 𝜈𝑖 = 0, 𝑋 = 𝑥) 𝑃 (𝜈𝑖 = 0 ∣ 𝑋 = 𝑥)

= 𝑆𝐶∣𝑌,𝑋,𝜈=0 (𝑡𝑖 ∣ 𝑥)
{
𝑆0(𝑡

−
𝑖

∣ 𝑥) − 𝑆0(𝑡𝑖 ∣ 𝑥)
}
𝑝 (𝑥) ,

where 𝑆𝐶∣𝑌,𝑋,𝜈=0(𝑡 ∣ 𝑥) is the conditional survival function for the censoring variable 𝐶 for uncured individuals.
2. Case 2: (𝛿𝑖 = 0, 𝜉𝑖𝜈𝑖 = 0). The individual is censored and the cure status is unknown. We observe 𝐶𝑖 = 𝑡𝑖 , and 𝜈𝑖 is

unknown, with probability:

𝑃 (𝑌𝑖 > 𝑡𝑖, 𝐶𝑖 = 𝑡𝑖 ∣ 𝑋 = 𝑥) =𝑃 (𝑌𝑖 > 𝑡𝑖, 𝐶𝑖 = 𝑡𝑖 ∣ 𝜈𝑖 = 1, 𝑋 = 𝑥) 𝑃(𝜈𝑖 = 1 ∣ 𝑋 = 𝑥)

+ 𝑃 (𝑌𝑖 > 𝑡𝑖, 𝐶𝑖 = 𝑡𝑖 ∣ 𝜈𝑖 = 0, 𝑋 = 𝑥) 𝑃(𝜈𝑖 = 0 ∣ 𝑋 = 𝑥)

=𝑓𝐶∣𝑋,𝜈=1 (𝑡𝑖 ∣ 𝑥) {1 − 𝑝 (𝑥)} + 𝑓𝐶∣𝑋,𝜈=0 (𝑡𝑖 ∣ 𝑥) 𝑆0 (𝑡𝑖 ∣ 𝑥) 𝑝 (𝑥) ,

where 𝑓𝐶∣𝑋,𝜈=1(𝑡 ∣ 𝑥) and 𝑓𝐶∣𝑋,𝜈=0(𝑡 ∣ 𝑥) are the conditional density functions for the censoring variable 𝐶 of the cured
and uncured individuals, respectively.

3. Case 3: (𝛿𝑖 = 0, 𝜉𝑖𝜈𝑖 = 1). The individual is censored and known to be cured.We observe𝐶𝑖 = 𝑡𝑖, 𝜈𝑖 = 1, with probability

𝑃 (𝑌𝑖 > 𝑡𝑖, 𝐶𝑖 = 𝑡𝑖, 𝜈𝑖 = 1 ∣ 𝑋 = 𝑥) =𝑃 (𝐶𝑖 = 𝑡𝑖 ∣ 𝑌𝑖 > 𝑡𝑖, 𝜈𝑖 = 1, 𝑋 = 𝑥)

× 𝑃 (𝑌𝑖 > 𝑡𝑖 ∣ 𝜈𝑖 = 1, 𝑋 = 𝑥) 𝑃 (𝜈𝑖 = 1 ∣ 𝑋 = 𝑥)

=𝑓𝐶∣𝑋,𝜈=1 (𝑡𝑖 ∣ 𝑥) {1 − 𝑝 (𝑥)} .

In the absence of specification of the distribution of 𝑋, the terms in the log-likelihood are weighted with the kernel
weights 𝐵ℎ[𝑖](𝑥). Then, the local likelihood of the data is

𝐿 (𝑋, 𝑇, 𝛿, 𝜉, 𝜈) =

𝑛∏
𝑖=1

[
𝑆𝐶∣𝑌,𝑋,𝜈=0

(
𝑇(𝑖) ∣ 𝑥

){
𝑆0(𝑇

−
(𝑖)

∣ 𝑥) − 𝑆0(𝑇(𝑖) ∣ 𝑥)
}

𝑝 (𝑥)
]𝐵ℎ[𝑖](𝑥)𝟏(𝛿[𝑖]=1)
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×
[
𝑓𝐶∣𝑋,𝜈=1

(
𝑇(𝑖) ∣ 𝑥

)
{1 − 𝑝 (𝑥)} + 𝑓𝐶∣𝑋,𝜈=0

(
𝑇(𝑖) ∣ 𝑥

)
𝑆0

(
𝑇(𝑖) ∣ 𝑥

)
𝑝 (𝑥)

]𝐵ℎ[𝑖](𝑥)𝟏(𝛿[𝑖]=0,𝜉[𝑖]𝜈[𝑖]=0)

×
[
𝑓𝐶∣𝑋,𝜈=1

(
𝑇(𝑖) ∣ 𝑥

)
{1 − 𝑝 (𝑥)}

]𝐵ℎ[𝑖](𝑥)𝟏(𝛿[𝑖]=0,𝜉[𝑖]𝜈[𝑖]=1)
.

If the distribution of the censoring variable 𝐶 is conditionally independent of 𝑌 and the cure status 𝜈 given the covariate
𝑋, then

𝐿 (𝑋, 𝑇, 𝛿, 𝜉, 𝜈) =

𝑛∏
𝑖=1

[𝑞𝑖(𝑥)𝑝 (𝑥)]
𝐵ℎ[𝑖](𝑥)𝟏(𝛿[𝑖]=1){1 − 𝑝 (𝑥) + 𝑆0

(
𝑇(𝑖) ∣ 𝑥

)
𝑝 (𝑥)

}𝐵ℎ[𝑖](𝑥)𝟏(𝛿[𝑖]=0,𝜉[𝑖]𝜈[𝑖]=0)

× {1 − 𝑝 (𝑥)}
𝐵ℎ[𝑖](𝑥)𝟏(𝛿[𝑖]=0,𝜉[𝑖]𝜈[𝑖]=1)

(
1 −

𝑖−1∑
𝑗=1

𝑔𝑗 (𝑥)

)𝐵ℎ[𝑖](𝑥)𝟏(𝛿[𝑖]=1)

𝑔𝑖(𝑥)
𝐵ℎ[𝑖](𝑥)𝟏(𝛿[𝑖]=0) (A7)

where, for 𝑖 = 1, … , 𝑛, 𝑞𝑖(𝑥) = 𝑆0(𝑇
−
(𝑖)
|𝑥) − 𝑆0(𝑇(𝑖)|𝑥) are the increments of 𝑆0(𝑡|𝑥), and 𝑔𝑖(𝑥) = 𝐺(𝑇(𝑖)|𝑥) − 𝐺(𝑇−

(𝑖)
|𝑥) the

increments of𝐺(𝑡|𝑥). Let𝑃𝑖(𝑥) = 𝑝(𝑥)𝑞𝑖(𝑥) be the increments of 𝑆(𝑡|𝑥), then∑𝑛

𝑖=1𝑃𝑖(𝑥) = 𝑝(𝑥). Maximizing (A7) is equiv-
alent to maximizing the likelihood

𝐿 (𝑋, 𝑇, 𝛿, 𝜉, 𝜈) =

𝑛∏
𝑖=1

𝑃𝑖(𝑥)
𝐵ℎ[𝑖](𝑥)𝟏(𝛿[𝑖]=1)

(
1 −

𝑖−1∑
𝑗=1

𝑃𝑗 (𝑥)

)𝐵ℎ[𝑖](𝑥)𝟏(𝛿[𝑖]=0,𝜉[𝑖]𝜈[𝑖]=0)(
1 −

𝑛∑
𝑗=1

𝑃𝑗 (𝑥)

)𝐵ℎ[𝑖](𝑥)𝟏(𝛿[𝑖]=0,𝜉[𝑖]𝜈[𝑖]=1)

.

(A8)

Further, consider the functions 𝜆𝑖(𝑥) = 𝑃𝑖(𝑥)∕{1 −
∑𝑖−1

𝑗=1𝑃𝑗(𝑥)} satisfying

1 −

𝑘∑
𝑗=1

𝑃𝑗 (𝑥) =

𝑘∏
𝑗=1

{1 − 𝜆𝑗 (𝑥)}. (A9)

Then, the increments 𝑃𝑖(𝑥) can be written in terms of 𝜆𝑖(𝑥):

𝑃𝑖 (𝑥) = 𝜆𝑖 (𝑥)

{
1 −

𝑖−1∑
𝑗=1

𝑃𝑗 (𝑥)

}
= 𝜆𝑖 (𝑥)

𝑖−1∏
𝑗=1

{
1 − 𝜆𝑗 (𝑥)

}
. (A10)

By substituting (A9) and (A10) in (A8), the likelihood (A8) is

𝐿 (𝑋, 𝑇, 𝛿, 𝜉, 𝜈; 𝑝, 𝑆0) =

𝑛∏
𝑖=1

𝜆𝑖(𝑥)
𝐵ℎ[𝑖](𝑥)𝟏(𝛿[𝑖]=1)

𝑛∏
𝑖=1

[
𝑖−1∏
𝑗=1

{
1 − 𝜆𝑗 (𝑥)

}]𝐵ℎ[𝑖](𝑥)𝟏(𝛿[𝑖]=1)

×

𝑛∏
𝑖=1

[
𝑖−1∏
𝑗=1

{
1 − 𝜆𝑗 (𝑥)

}]𝐵ℎ[𝑖](𝑥)𝟏(𝛿[𝑖]=0,𝜉[𝑖]𝜈[𝑖]=0) 𝑛∏
𝑖=1

[
𝑛∏

𝑗=1

{
1 − 𝜆𝑗 (𝑥)

}]𝐵ℎ[𝑖](𝑥)𝟏(𝛿[𝑖]=0,𝜉[𝑖]𝜈[𝑖]=1)

.

Taking into account that
∏𝑛

𝑖=1[
∏𝑖−1

𝑗=1𝑎𝑗]
𝑏𝑖

=
∏𝑛

𝑖=1𝑎

∑𝑛
𝑗=𝑖+1𝑏𝑗

𝑖
, where 𝑎𝑖 and 𝑏𝑖 , 𝑖 = 1, … , 𝑛, are arbitrary sequences of non-

negative numbers, the likelihood becomes

𝐿 (𝑋, 𝑇, 𝛿, 𝜉, 𝜈; 𝑝, 𝑆0) =

𝑛∏
𝑖=1

𝜆𝑖(𝑥)
𝐵ℎ[𝑖](𝑥)𝟏(𝛿[𝑖]=1)

𝑛∏
𝑖=1

{1 − 𝜆𝑖 (𝑥)}
∑𝑛

𝑗=𝑖+1𝐵ℎ[𝑗](𝑥)𝟏(𝜉[𝑗]𝜈[𝑗]=0)+
∑𝑛

𝑗=1𝐵ℎ[𝑗](𝑥)𝟏(𝛿[𝑗]=0,𝜉[𝑗]𝜈[𝑗]=1).
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Maximizing the likelihood 𝐿(𝑋, 𝑇, 𝛿, 𝜉, 𝜈; 𝑝, 𝑆0) is equivalent to maximizing the local log-likelihood:

Ψ{𝜆1 (𝑥) , … , 𝜆𝑛 (𝑥)} =

𝑛∑
𝑖=1

[
𝐵ℎ[𝑖] (𝑥) 𝟏

(
𝛿[𝑖] = 1

)
, log 𝜆𝑖 (𝑥)

+

{
𝑛∑

𝑗=𝑖+1

𝐵ℎ[𝑗] (𝑥) 𝟏
(
𝜉[𝑗]𝜈[𝑗] = 0

)
+

𝑛∑
𝑗=1

𝐵ℎ[𝑗] (𝑥) 𝟏
(
𝛿[𝑗] = 0, 𝜉[𝑗]𝜈[𝑗] = 1

)}
, log (1 − 𝜆𝑖)

]

subject to
∏𝑛

𝑖=1{1 − 𝜆𝑖(𝑥)} = 1 − 𝑝(𝑥). The maximizer 𝜆𝑖(𝑥) of the log-likelihood is

𝜆𝑖 (𝑥) =
𝐵ℎ[𝑖] (𝑥) 𝟏

(
𝛿[𝑖] = 1

)
∑𝑛

𝑗=𝑖
𝐵ℎ[𝑗] (𝑥) +

∑𝑖−1

𝑗=1
𝐵ℎ[𝑗] (𝑥) 𝟏

(
𝜉[𝑗]𝜈[𝑗] = 1

) .
In virtue of (A10), the estimator 𝑆𝑐

ℎ
(𝑡|𝑥) computed by forming the product of 𝜆𝑖 ’s such that 𝑇(𝑖) ≤ 𝑡 is the nonparametric

maximum likelihood estimator of 𝑆(𝑡|𝑥). This completes the proof of Proposition 2. □

Proof of Corollary 1. The dominant part of Λ̂𝑐
ℎ
(𝑡|𝑥) − Λ(𝑡|𝑥) in Theorem 1 verifies

𝑛∑
𝑖=1

𝐵hi(𝑥)𝜁 (𝑇𝑖, 𝛿𝑖, 𝜉𝑖, 𝜈𝑖, 𝑡, 𝑥) =∫
𝑡

0

𝑑𝐻̂1
ℎ
(𝑣 ∣ 𝑥)

𝐽 (𝑣− ∣ 𝑥)
− ∫

𝑡

0

𝐽ℎ (𝑣− ∣ 𝑥)

𝐽2 (𝑣− ∣ 𝑥)
𝑑𝐻1 (𝑣 ∣ 𝑥)

=∫
𝑡

0

𝑑𝐻̂1
ℎ
(𝑣 ∣ 𝑥) − 𝑑𝐻1(𝑣 ∣ 𝑥)

𝐽 (𝑣− ∣ 𝑥)
− ∫

𝑡

0

𝐽ℎ (𝑣− ∣ 𝑥) − 𝐽(𝑣− ∣ 𝑥)

𝐽2 (𝑣− ∣ 𝑥)
𝑑𝐻1 (𝑣 ∣ 𝑥)

=

[
𝐻̂1

ℎ
(𝑣 ∣ 𝑥) − 𝐻1 (𝑣 ∣ 𝑥)

𝐽 (𝑣− ∣ 𝑥)

]𝑡

0

+ ∫
𝑡

0

𝐻̂1
ℎ
(𝑣 ∣ 𝑥) − 𝐻1 (𝑣 ∣ 𝑥)

𝐽2 (𝑣− ∣ 𝑥)
dJ(𝑣 ∣ 𝑥)

− ∫
𝑡

0

𝐽ℎ (𝑣− ∣ 𝑥) − 𝐽(𝑣− ∣ 𝑥)

𝐽2 (𝑣− ∣ 𝑥)
𝑑𝐻1 (𝑣 ∣ 𝑥)

≤1

𝜃
sup

𝑎≤𝑡≤𝑏,𝑥∈𝐼
∣ 𝐻̂1

ℎ
(𝑡 ∣ 𝑥) − 𝐻1 (𝑡 ∣ 𝑥) ∣ +

1

𝜃
sup

𝑎≤𝑡≤𝑏,𝑥∈𝐼
∣ 𝐻̂1

ℎ
(𝑡 ∣ 𝑥) − 𝐻1 (𝑡 ∣ 𝑥) ∣

−
1

𝜃2
sup

𝑎≤𝑡≤𝑏,𝑥∈𝐼
∣ 𝐽ℎ (𝑡 ∣ 𝑥) − 𝐽 (𝑡 ∣ 𝑥) ∣ .

The last three terms in the inequality are bounded by applying Lemma 5 in Iglesias-Pérez and González-Manteiga (1999),
which holds not only for conditional survival functions like 1 − 𝐻(𝑡|𝑥), but also for conditional subdistribution functions
as 𝐻1(𝑡|𝑥) and 𝐻11(𝑡|𝑥) (see Remark 2 in Iglesias-Pérez and González-Manteiga, 1999, and the proof of Theorem 2.1 in
Dabrowska, 1989). As a consequence, the dominant term of Λ̂𝑐

ℎ
(𝑡|𝑥) − Λ(𝑡|𝑥) is bounded by

sup
𝑎≤𝑡≤𝑏,𝑥∈𝐼

∣

𝑛∑
𝑖=1

𝐵hi(𝑥)𝜁 (𝑇𝑖, 𝛿𝑖, 𝜉𝑖, 𝜈𝑖, 𝑡, 𝑥) ∣= 𝑂
{
(nh)−1∕2

(log 𝑛)
1∕2
}

.

Using the results of Theorem 2 it is straightforward to prove the second part of this corollary. □

Proof of Proposition 3. From Theorem 2, the bias of the nonparametric estimator 1 − 𝐹𝑐
ℎ
(𝑡|𝑥) is asymptotically equal to

the expected value

(nh)−1
{1 − 𝐹 (𝑡 ∣ 𝑥)}

𝑚 (𝑥)

𝑛∑
𝑖=1

𝐾

(
𝑥 − 𝑋𝑖

ℎ

)
𝜁 (𝑇𝑖, 𝛿𝑖, 𝜉𝑖, 𝜈𝑖, 𝑡, 𝑥) = 𝐼 + II, (A11)
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where

𝐼 =
(nh)−1

{1 − 𝐹 (𝑡 ∣ 𝑥)}

𝑚 (𝑥)

[
𝑛∑

𝑖=1

𝐾

(
𝑥 − 𝑋𝑖

ℎ

)
𝜁 (𝑇𝑖, 𝛿𝑖, 𝜉𝑖, 𝜈𝑖, 𝑡, 𝑥) − E

{
𝑛∑

𝑖=1

𝐾

(
𝑥 − 𝑋𝑖

ℎ

)
𝜁 (𝑇𝑖, 𝛿𝑖, 𝜉𝑖, 𝜈𝑖, 𝑡, 𝑥)

}]
, (A12)

II =
(nh)−1

{1 − 𝐹 (𝑡 ∣ 𝑥)}

𝑚 (𝑥)
E

{
𝑛∑

𝑖=1

𝐾

(
𝑥 − 𝑋𝑖

ℎ

)
𝜁 (𝑇𝑖, 𝛿𝑖, 𝜉𝑖, 𝜈𝑖, 𝑡, 𝑥)

}
. (A13)

As 𝐸(𝐼) = 0, the asymptotic bias of the estimator 1 − 𝐹𝑐
ℎ
(𝑡 ∣ 𝑥) is II. Using Lemmas 1 and 2 in the Supporting Information,

II =
ℎ2 {1 − 𝐹 (𝑡 ∣ 𝑥)} (Φ′′

𝑐 (𝑥, 𝑡, 𝑥)𝑚 (𝑥) + 2Φ′
𝑐 (𝑥, 𝑡, 𝑥)𝑚

′ (𝑥))𝑑𝐾

2𝑚 (𝑥)
+ 𝑂

(
ℎ4
)
,

with Φ′
𝑐(𝑦, 𝑡, 𝑥) and Φ′′

𝑐 (𝑦, 𝑡, 𝑥) the first and second derivatives of Φ𝑐(𝑦, 𝑡, 𝑥) with respect to 𝑦. Recalling (A11), the asymp-
totic variance of 1 − 𝐹𝑐

ℎ
(𝑡|𝑥) is

Var (𝐼) =
{1 − 𝐹 (𝑡 ∣ 𝑥)}

2

𝑚2(𝑥)
(𝑉1 − 𝑉2), (A14)

where

𝑉1 =
1

𝑛ℎ2
E
{

𝐾2

(
𝑥 − 𝑋

ℎ

)
𝜁2 (𝑇, 𝛿, 𝜉, 𝜈, 𝑡, 𝑥)

}
, 𝑉2 =

1

𝑛ℎ2

[
E
{

𝐾

(
𝑥 − 𝑋

ℎ

)
𝜁 (𝑇, 𝛿, 𝜉, 𝜈, 𝑡, 𝑥)

}]2
.

From Lemmas 1 and 2 in the Supporting Information, 𝑉2 reduces to

𝑉2 =
1

4

ℎ2

𝑛
𝑑2
𝐾

{
Φ′′

𝑐 (𝑥, 𝑡, 𝑥)𝑚 (𝑥) + 2Φ′
𝑐 (𝑥, 𝑡, 𝑥)𝑚

′ (𝑥)

𝑚 (𝑥)

}2

+ 𝑂

(
ℎ4

𝑛

)
. (A15)

As for 𝑉1, let us define Φ𝑐
1(𝑦, 𝑡, 𝑥) = 𝐸(𝜁2(𝑇, 𝛿, 𝜉, 𝜈, 𝑡, 𝑥)|𝑋 = 𝑦). Then, after a change of variable and a Taylor’s expansion

(as in the proof of Lemma 1 in the Supporting Information) we obtain

𝑉1 =
1

nh
Φ𝑐

1 (𝑥, 𝑡, 𝑥)𝑚 (𝑥) 𝑐𝐾 +
1

2

ℎ

𝑛
𝑒𝐾

𝑑2

𝑑𝑦2

{
Φ𝑐

1 (𝑦, 𝑡, 𝑥)𝑚 (𝑦)
} |𝑦=𝑥 + 𝑂

(
𝑛−1ℎ3

)
, (A16)

where 𝑒𝐾 = ∫ 𝑣2𝐾2(𝑣)dv. The proof concludes by substituting (A15) and (A16) into (A14). □

Proof of Theorem 3. From Theorem 2, we consider

(nh)1∕2
{
𝐹𝑐
ℎ
(𝑡 ∣ 𝑥) − 𝐹 (𝑡 ∣ 𝑥)

}
= (nh)1∕2 {1 − 𝐹 (𝑡 ∣ 𝑥)}

𝑛∑
𝑖=1

𝐵̃hi (𝑥) 𝜁 (𝑇𝑖, 𝛿𝑖, 𝜉𝑖, 𝜈𝑖, 𝑡, 𝑥) + (nh)1∕2𝑅𝑛2 (𝑡, 𝑥)

with 𝜁(𝑇, 𝛿, 𝜉, 𝜈, 𝑡, 𝑥) and 𝑅𝑛2(𝑡, 𝑥) given in (5) and (7), respectively. The condition (log 𝑛)3∕(nh) → 0 implies that
(nh)1∕2(log 𝑛∕(nh))3∕4 → 0, so the remainder term (nh)1∕2𝑅𝑛2(𝑡, 𝑥) is negligible. Consequently, the asymptotic distribu-
tion of (nh)1∕2{𝐹𝑐

ℎ
(𝑡 ∣ 𝑥) − 𝐹(𝑡 ∣ 𝑥)} is that of

(nh)1∕2
1 − 𝐹 (𝑡 ∣ 𝑥)

𝑚 (𝑥)

𝑛∑
𝑖=1

1

nh
𝐾

(
𝑥 − 𝑋𝑖

ℎ

)
𝜁 (𝑇𝑖, 𝛿𝑖, 𝜉𝑖, 𝜈𝑖, 𝑡, 𝑥) = (nh)1∕2(𝐼 + II), (A17)
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where 𝐼 and II are given in (A12) and (A13). Under the assumption 𝑛ℎ5 → 0, we have (nh)1∕2II = 𝑜(1). Therefore, the
asymptotic distribution of (A17) is that of (nh)1∕2𝐼. Let us define (nh)1∕2𝐼 =

∑𝑛

𝑖=1
𝜂𝑖,ℎ(𝑡, 𝑥), where

𝜂𝑖,ℎ(𝑡, 𝑥) =
(𝑛ℎ)

−1∕2
{1 − 𝐹 (𝑡 ∣ 𝑥)}

𝑚 (𝑥)

[
𝐾

(
𝑥 − 𝑋𝑖

ℎ

)
𝜁 (𝑇𝑖, 𝛿𝑖, 𝜉𝑖, 𝜈𝑖, 𝑡, 𝑥) − E

{
𝐾

(
𝑥 − 𝑋𝑖

ℎ

)
𝜁 (𝑇𝑖, 𝛿𝑖, 𝜉𝑖, 𝜈𝑖, 𝑡, 𝑥)

}]
is a sequence of 𝑛 independent random variables with mean 0. Note that

Var(𝜂𝑖,ℎ(𝑡, 𝑥)) = ℎVar(𝐼) =
1

𝑛

{1 − 𝐹(𝑡 ∣ 𝑥)}
2

𝑚(𝑥)
Φ𝑐

1(𝑥, 𝑡, 𝑥)𝑐𝐾 + 𝑂

(
ℎ2

𝑛

)
=

1

𝑛
𝑠2𝑐 (𝑡, 𝑥) + 𝑂

(
ℎ2

𝑛

)
with Var(𝐼) in (A14) and 𝑠2𝑐 (𝑡, 𝑥) in (13). As Var(𝜂𝑖,ℎ(𝑡, 𝑥)) < ∞ for 𝑖 = 1, … , 𝑛 and Var(𝜂ℎ(𝑡, 𝑥)) =

∑𝑛

𝑖=1Var(𝜂𝑖,ℎ(𝑡, 𝑥)) is
positive, then we can apply Lindeberg’s theorem (Billingsley, 1968) to obtain∑𝑛

𝑖=𝑖
𝜂𝑖,ℎ (𝑡, 𝑥)

𝑠2𝑐 (𝑡, 𝑥)
→ 𝑁 (0, 1) in distribution.

Therefore, (nh)1∕2{𝐹𝑐
ℎ
(𝑡|𝑥) − 𝐹(𝑡|𝑥)} → 𝑁(0, 𝑠2𝑐 (𝑡, 𝑥)) in distribution. This proves (i). In parallel to the proof (i) we

can prove (ii) as follows, note that if 𝑛ℎ5 = 𝐶5 then the bias term is (nh)1∕2II = (nh)1∕2{ℎ2𝐵𝑐(𝑡, 𝑥) + 𝑂(ℎ4)} =

(𝑛ℎ5)
1∕2

𝐵𝑐(𝑡, 𝑥) + 𝑂{(𝑛ℎ9)
1∕2

} with 𝐵𝑐(𝑡, 𝑥) in (9). Thus, (nh)
1∕2

{𝐹𝑐
ℎ
(𝑡|𝑥) − 𝐹(𝑡|𝑥)} → 𝑁(𝐶5∕2𝐵𝑐(𝑡, 𝑥), 𝑠

2
𝑐 (𝑡, 𝑥)) in distribu-

tion. This completes the proof. □
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