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Abstract

Cure models are a class of time-to-event models where a proportion of individuals will never experience the event of 
interest. The lifetimes of these so-called cured individuals are always censored. It is usually assumed that one never knows 
which censored observation is cured and which is uncured, so the cure status is unknown for censored times. In this 
paper, we develop a method to estimate the probability of cure in the mixture cure model when some censored 
individuals are known to be cured. A cure probability estimator that incorporates the cure status information is intro-
duced. This estimator is shown to be strongly consistent and asymptotically normally distributed. Two alternative 
estimators are also presented. The first one considers a competing risks approach with two types of competing events, the 
event of interest and the cure. The second alternative estimator is based on the fact that the probability of cure can be 
written as the conditional mean of the cure status. Hence, nonparametric regression methods can be applied to esti-mate 
this conditional mean. However, the cure status remains unknown for some censored individuals. Consequently, the 
application of regression methods in this context requires handling missing data in the response variable (cure status). 
Simulations are performed to evaluate the finite sample performance of the estimators, and we apply them to the analysis 
of two datasets related to survival of breast cancer patients and length of hospital stay of COVID-19 patients requiring 
intensive care.
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1 Introduction
Standard survival models assume that, without censoring, all the subjects would experience the event of interest 
at some time. Such assumption may not be true in practice, for example, some patients could never experience a 
recur-rence of their primary cancer after treatment.1 These individuals are called long-term survivors, or, simply, 
cured from the event. In such cases, it is important to estimate the probability of being cured from the event. Cure 
models2 address this issue.

The mixture cure model (MCM)2 has received much attention in recent years. It assumes that the population is a 
mixture of cured and susceptible individuals. Note that here a “cured” individual is defined as being free of experiencing 
the event of interest even after being followed for an arbitrarily long time, and not necessarily cured in medical terms. 
Extensive research has been conducted for the standard MCM with both (semi)parametric3–5 and nonparametric6–8

approaches.
The absence of an individual’s cure status (i.e. cured, uncured) is an important challenge for cure models. A subject 

whose event is observed is known to be uncured. However, censoring prevents from observing whether a censored
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subject would eventually experience the event or not. This hinders the classification of censored observations as cured or
uncured. It is customary to assume no additional information on the cure status of censored individuals, thus, to model the
cure status as a latent variable. Nonetheless, there are situations where some of the censored individuals can be identified to
be immune to the event of interest, that is, to be cured. For example, diagnostic procedures in medical studies can provide
further information on whether a subject suffering a curable illness can be considered as cured and therefore will not die
from that disease. Also, for some types of cancer, it is extremely unlikely to have any recurrence later than a given time after
treatment, known as cure threshold. Consequently, those patients with observed time surpassing the cure threshold can be
considered cured from recurrence.9 In settings with a subgroup identified as cured from the event, there are three groups of
observations: the event times (of individuals experiencing the event during the follow-up time); the “regular” censored
times (of those who neither experienced the event nor were classified as cured); and a new third group, the “cured” censored
times (of those acknowledged as cured from the event). Just modeling the data under the usual cure model framework, that
considers the “cured” censored times as simple “regular” censored times, will not take advantage of this additional cure
status information given by the third group.

Few authors have studied cure models when the cure status is known for some censored observations. Nonparametric
cure probability estimation with cure status partially available was discussed without covariates by Laska and Meisner10

using the relationship of the cure rate with the survival function, and Betensky and Schoenfeld11 by a competing risk
approach. In a conditional setting with covariates, Safari et al.12 developed a generalized product-limit estimator of the
conditional survival function in the MCM when the cure status is partially known. In the parametric and semiparametric
modeling framework, the logistic regression is typically used to model the probability of cure, while the survival function
of the uncured individuals is modeled using a Bayesian semiparametric approach in the presence of covariates,13 a Cox
proportional hazards cure model,14 or an accelerated failure time model with errors distributed according to the seminon-
parametric distribution.15

In this paper, we propose a kernel estimator of the conditional cure probability with covariates in the MCM when the
cure status is partially known. It extends the unconditional nonparametric estimator by Laska and Meisner10 to handle cov-
ariates, and the conditional nonparametric estimator by Xu and Peng,6 tailored for the usual cure model framework, by
incorporating the cure status information.

A different approach for modeling survival data with a cure fraction when cure is randomly observed proceeds through a
competing risks model where the event of interest and being identified as cured are competing risks, and only the minimum
of the times of the two risks is observed.11,16 The probability of cure is the limit as time tends to infinity of the cumulative
incidence function (CIF) of the competing risk given by cure.

Alternatively, note that the cure status is a binary variable and the cure probability can be regarded as the conditional
expectation of the cure status. As a consequence, standard regression techniques can be used to model the probability of
cure. In the present MCM, the cure status is observed for the individuals with uncensored times (uncured) and for some
censored individuals (cured). But censored individuals with unknown cure status will either experience the event (censored
and susceptible) or never experience the event (censored and cured) in the future. Therefore, the cure status is only partially
observed. This turns the estimation of the cure probability into a regression problem with missing response values.

The most commonly used regression-based techniques to deal with missing data in the response variable are inverse
probability weighting (IPW)17–19 and multiple imputation (MI)20–23 methods. In the MI approach,24 multiple complete
data sets are produced from the incomplete data by imputing the missing data m times by some reasonable method.
Then, one can perform standard regression analysis with the imputed data and the resulting estimates are combined to
provide the final estimation. Commonly used imputation methods for missing response values include semiparametric
imputation,25 nearest neighbor imputation,26 and kernel-based techniques.27,20,28 Aerts et al.20 applied the nonparametric
kernel regression imputation scheme to estimate the unconditional mean of the response variable. In this paper, their pro-
cedure is extended to handle covariates, and applied when the response variable is the cure status. The method results in an
estimator of the conditional cure probability based on a regression fit with multiple imputation for the unknown cure status.
Note that this estimator strongly depends on the proportion of missing cure status, giving unreliable estimates under sub-
stantial missingness.

All the aforementioned estimators are valid in the general context where the identification of the cured subjects
is random and does not necessarily depend on a specified cure threshold. This is the case for our motivating
examples.

The first example relates to a dataset of breast cancer patients from The Cancer Genome Atlas.29A total of 898 breast
cancer female patients were diagnosed and followed over time between 1988 and 2013. Demographic and clinical char-
acteristics were recorded at baseline. Our goal was to estimate the probability of surviving from breast cancer given specific
patient characteristics. That is, the event of interest is death from breast cancer. The observed time-to-event was considered
as censored if the patient was alive at the end of the study, cancer-free either alive or dead, or lost to follow-up. Patients who



have been free of cancer for at least 10 years can be considered to be long-term survivors or “known cured observa-
tions.”30,31 Note that the observed times-to-event of these “cured” individuals are large, at least 10 years.

The second example considers the n = 2484 COVID-19 patients hospitalized in Galicia (NW of Spain) during the
first few weeks of the outbreak. The data was collected by the Galician Healthcare Service32 with the aim of improving
hospital management. During the initial phase of the pandemic, it was extremely necessary to estimate the occupancy of
both ward and ICU dependencies, in order to avoid overloads of the Galician healthcare system. To do this, it was
required to model the length of stay of patients in hospital capacities, and, in particular, to estimate the probability
that a patient admitted to the hospital would finally need ICU admission. That is, the event of interest was admission
to ICU of hospital inpatients. The observed time-to-event was censored if the patient did not enter ICU during the
follow-up. Some censored patients were discharged or died before admission to ICU so they would never require
ICU admission. In our context, this means that they can be considered as cured from the event. Unlike the previous
example, the observed times-to-event of these “cured” individuals are not necessarily large, as patients may die or be
discharged after a short stay.

The rest of the paper is organized as follows. In Section 2, a kernel estimator of the cure probability based on the
MCM is proposed and its asymptotic properties are studied. Also, a bootstrap bandwidth selector is proposed. In
Section 3, alternative estimators of the cure probability based, respectively, on the competing risks and regression
approaches are presented. The performance of these estimators is illustrated with a simulation study in Section 4.
The estimators are applied to the breast cancer and COVID-19 datasets in Section 5. Section 6 concludes with a dis-
cussion and thoughts for future work. Additional simulation results and proofs are relegated to the Supplemental
Material.

2 Mixture cure model when the cure status is partially known

2.1 Model notation
This section starts by introducing the notation in the MCM model when some censored individuals are randomly
observed to be cured from the event of interest. Let Y be the time until the event of interest and X a covariate
vector. The conditional cumulative distribution and survival functions of Y are F(t ∣ x) = P(Y ≤ t ∣ X = x), and
S(t ∣ x) = 1− F(t ∣ x) = P(Y > t ∣ X = x), respectively. Suppose the survival time Y is censored by a random variable
C, and Y and C are assumed to be conditionally independent given X = x. Under right censoring, only the pair (T , δ) is
observed, where T = min (Y , C) and δ = 1(Y < C). The conditional distribution of the observed time T is
H(t ∣ x) = P(T ≤ t ∣ X = x). Without loss of generality, hereafter, we consider a continuous covariate X with
density function m(x).

When considering a cure fraction, it is assumed that the time-to-event for a cured subject is Y = ∞, in order to represent
the fact that the event will never happen. Let ν = 1(Y = ∞) denote the indicator of being cured from the event. Note that ν
is partially observed because δ = 1 implies ν = 0, but ν is usually unknown for the censored observations. When t becomes
large, a fraction of the observations is still event-free and the survival function is improper:

lim
t→∞

S(t ∣ x) > 0.

The MCM considers that the population is a mixture of the cured and uncured subgroups. The probability of being cured is
1− p(x) = P(Y = ∞ ∣ X = x), and the conditional survival function of the uncured individuals, also known as latency, is
S0(t ∣ x) = P(Y > t ∣ Y <∞, X = x). The MCM writes S(t ∣ x) as

S t ∣ x
( ) = 1− p(x)+ p(x)S0 t ∣ x

( )
. (1)

In standard cure models, the cure status is known only for a subject who experienced the event during the follow-up period
(δ = 1) and thus known to be uncured (ν = 0). For a censored subject (δ = 0) the cure status ν is unknown, thus ν = 1 is
never observed. To accommodate the possible availability of the cure status information, let the censoring distribution be
an improper distribution function G(t ∣ x) = (1− π(x))G0(t ∣ x), so with probability π(x) the censoring variable is C = ∞,
and with probability 1− π(x) the value of the censoring variable C corresponds to a random censoring time C0 with proper
continuous distribution function G0(t ∣ x) = P(C0 ≤ t ∣ X = x).

Thereof, a cured subject (Yi = ∞), whose observed lifetime Ti is always censored, is known to be cured if Ci = ∞. So,
the cure status νi = 1 is observed for some censored individuals. Note that a cured individual is identified with probability
π(x). Let ξ be a binary random variable which indicates whether the cure status ν is observed (ξ = 1) or not (ξ = 0). If Y



and C are independent conditional on X = x, then the conditional probability of observing the cure status is

P(ξ = 1 ∣ X = x) = P(C < Y ∣ X = x)p(x)+ π(x)(1− p(x)).

The observed data {(Xi, Ti, δi, ξiνi), i = 1, . . . , n} is classified into three groups:

(a) the event is observed and the individual is known to be uncured (Xi, Ti, δi = 1, ξiνi = 0),
(b) the lifetime is censored and the cure status is unknown (Xi, Ti, δi = 0, ξiνi = 0),
(c) the lifetime is censored and the individual is known to be cured (Xi, Ti, δi = 0, ξiνi = 1),

where

Ti = min (Yi, Ci) 1− 1(Yi = ∞, Ci = ∞)
[ ]+ C0i1(Yi = ∞, Ci = ∞). (2)

In this context, when the observed times of the individuals known to be cured are random, the random variable C0 models
these observed cured times. In the unconditional setting in Betensky and Schoenfeld,11 besides Y and C, the so-called vari-
able U plays a similar role. In standard cure models, where the cure status is unknown for some censored observations
(π(x) = 0 and Ci <∞, ξiνi = 0, for i = 1, . . . , n), then Ti = min (Yi, Ci), and only groups (a) and (b) are considered.

To further understand the relationship between the notation introduced above and the usual notation in survival analysis
under right censoring, let Ti in (2) be the actual observed times, and let T̃i = min (Yi, Ci) denote the usual observed time, as
it is usually defined in standard survival analysis. Note that T̃i = Ti in groups (a) and (b) above. But if an observation is
known to be cured (ξiνi = 1), then Yi = ∞ and Ci = ∞, and the usual observed time is T̃i = ∞. Nonetheless, the actual
observed time for the individuals known to be cured is always finite and is recorded as Ti = C0i. Therefore, when an indi-
vidual is known to be cured it is guaranteed to observe a cure time C0i, similarly as in Betensky and Schoenfeld.11 In
summary, if the observed times Ti of the censored individuals known to be cured are replaced by an extremely large
observed time, say infinity, we recover the observations using the usual definition as T̃ i = min (Yi, Ci).

One key issue in cure models is identifiability. This arises because of the lack of cure status information at the end of the
follow-up period, resulting in difficulties in distinguishing models with high incidence of susceptibles and long tails of the
latency distribution from low incidence of susceptibles and short tails of the latency distribution.33 Following Hanin and
Huang,34 who discussed the identifiability of MCM, model (1) is identifiable if the latency function is proper. Thus, it is
assumed that limt→∞ S0(t ∣ x) = 0 for all x. This condition is similar to the zero-tail constraint in Taylor,9 López-Cheda
et al.7 and other works.

2.2 Proposed estimator of the cure probability
Assuming model (1), the cure probability can be written in terms of the survival function:

1− p(x) = P(Y = ∞ ∣ X = x) = lim
t→∞

P(Y > t ∣ X = x) = lim
t→∞

S(t ∣ x). (3)

An estimator of 1− p(x) could be derived from an estimator of S(t ∣ x) by computing its limit when t tends to infinity.
Consider the generalized product-limit estimator of the conditional survival function S(t ∣ x) when the cure is partially
observed,12

Ŝch t ∣ x
( ) =∏n

i=1

1− δ[i]Bh i[ ] x( )1 T i( ) ≤ t
( )∑n

j=i Bh[j](x) +
∑i−1

j=1 Bh[j] x( )1 ξ[j]ν[j] = 1
( )( )

, (4)

where X[i], δ[i], ξ[i] and ν[i] are the concomitants of the ordered observed times T(1) ≤ · · · ≤ T(n), Bh[i](x) are the
Nadaraya-Watson35,36 (NW) weights,

Bh[i] x( ) = Kh x− X[i]
( )∑n

j=1 Kh x− Xj

( ) , (5)

and Kh(·) = K( · /h)/h is a kernel function K(·) rescaled with bandwidth h → 0 as n → ∞. The proposed estimator of the
cure probability 1− p(x) is

1− p̂ch x( ) = Ŝch T1
(n) ∣ x

( )
=
∏n
i=1

1− δ[i]Bh i[ ] x( )∑n
j=i Bh[j](x) +

∑i−1
j=1 Bh[j] x( )1 ξ[j]ν[j] = 1

( )( )
, (6)



where T 1
(n) = maxi : δi=1 Ti is the largest uncensored observed lifetime. An important feature of the estimator is that one does

not need to know the observed censored time for the individuals who are known to be cured, as this estimator is precisely
the XP6 estimator computed with the usual observed times, that is, if the observed times of the individuals known to be
cured are replaced with an extremely large value (e.g. infinity).

Proposition 1. The estimator 1− p̂ch(x) has the following basic properties.

1. When there are no censored observations known to be cured, that is, ξiνi = 0 for i = 1, . . . , n, 1− p̂ch(x) reduces to the
XP estimator by Xu and Peng6:

1− p̂h(x) =
∏n
i=1

(
1− δ[i]Bh[i](x)∑n

j=i Bh[j](x)

)
. (7)

2. When individuals are classified as cured if their observed survival time exceeds a known fixed cure threshold, 1− p̂ch(x)
reduces to the XP estimator.

3. When there is no censoring, all the cure status indicators νi are observed (ξi = 1, i = 1, . . . , n). Then, 1− p̂ch(x) reduces
to the NW estimator:

1− p̂NWh x( ) =
∑n
i=1

Bhi x( )1 νi = 1( ) =
∑n

i=1 Kh x− Xi( )νi∑n
j=1 Kh x− Xj

( ) . (8)

In this case, the XP estimator will be zero.
4. In an unconditional setting, the proposed estimator is

1− p̂cn =
∏n
i=1

1− δ[i]
n− i+ 1+∑i−1

j=1 1 ξ[j]ν[j] = 1
( )( )

. (9)

In the case where an individual is known to be cured only if the observed time is greater than a known fixed time,
1− p̂cn reduces to the generalized maximum likelihood estimator10:

1− p̂n =
∏n
i=1

1− δ[i]
n− i+ 1

( )
. (10)

Moreover, if there are no individuals known to be cured, then 1− p̂cn becomes the unconditional version of the XP
estimator.

The proof of these properties is outlined in Appendix B of the Supplemental Material.

Proposition 2. The estimator 1− p̂ch(x) in (6) is the nonparametric local maximum likelihood estimator of 1− p(x).
The proof of Proposition 2 follows the proof of Proposition 2 in Safari et al.12, and it is omitted.

2.3 Asymptotic results
Here, the asymptotic properties of 1− p̂ch(x) are studied. For brevity the required assumptions are in Appendix A of the
Supplemental Material. Let us define the following (sub)distribution functions:

H t ∣ x
( ) = P T ≤ t ∣ X = x

( )
, (11)

H1(t ∣ x) = P T ≤ t, δ = 1 ∣ X = x
( )

, (12)

H11(t ∣ x) = P T ≤ t, ξν = 1 ∣ X = x
( )

, (13)

J (t ∣ x) = 1− H t ∣ x
( )+ H11 t ∣ x

( )
. (14)



The functions H(t ∣ x) and H1(t ∣ x) are the conditional distribution function of the observed times Ti, and the
conditional subdistribution function of the observed events, respectively. H11(t ∣ x) provides insight on the distribu-
tion of the cure times, that is, the recorded times Ti of the individuals known to be cured. J (t ∣ x) is the survival func-
tion of the observed times defined with the usual definition, that is, the conditional survival function of

T̃ = min (Y , C).
The NW kernel estimators of (11)–(14) are, respectively

Ĥh t ∣ x
( ) =∑n

i=1

Bhi(x)1 Ti ≤ t( ),

Ĥ1
h (t ∣ x) =

∑n
i=1

Bhi(x)1 Ti ≤ t, δi = 1( ),

Ĥ11
h t ∣ x
( ) =∑n

i=1

Bhi(x)1 Ti ≤ t, ξiνi = 1
( )

,

Ĵh(t
− ∣ x) =

∑n
i=1

Bhi(x)1 Ti ≥ t( ) +
∑n
i=1

Bhi(x)1 Ti < t, ξiνi = 1
( )

.

Further, define τH (x) = inf {t :H(t ∣ x) = 1}, τS0 (x) = inf {t : S0(t ∣ x) = 0} and τG0 (x) = inf {t :G0(t ∣ x) = 1}. Note
that τH (x) = max {τS0 (x), τG0 (x)}. Let τ0 = supx∈I τS0 (x), then it is required that

τ0 < τG0 x( ) for any x with probability 1. (15)

Condition (15) relies on the assumption that the follow-up is long enough for the support of the latency function S0(t ∣ x)
to be contained within the support of G0(t ∣ x). This implies that all observations censored after the largest uncensored
observed lifetime correspond to cured subjects, as the susceptible subjects will experience the event within the follow-up
period. This condition guarantees that the proposed estimator does not overestimate the true probability of cure. A similar
condition has been used in the literature.10,6–8 Xu and Peng6 pointed out that ifG0(t ∣ x) has a heavier tail than S0(t ∣ x), then
condition (15) can be relaxed. Maller and Zhou37 proposed a test to assess whether a condition analogous to (15) is fulfilled
in an unconditional setting. It is based on the difference between the largest observed time T(n) and the largest uncensored
time T 1

(n). If this interval is large, then there is sufficient follow-up time and (15) can be assumed. With covariates, one may

divide the data into subgroups according to the covariate values and apply this test in each subgroup. The next theorem
establishes an asymptotic representation for 1− p̂ch(x). The proof is in Appendix B of the Supplemental Material.
Based on that result, we prove the strong consistency and asymptotic normality. In Section 2.4, we will provide evidence
that 1− p̂ch(x) has smaller asymptotic variance than the XP estimator 1− p̂h(x).

Theorem 1 (Asymptotic representation). Suppose that Assumptions 1–8 and condition (15) hold, and the bandwidth
h = (hn) satisfies h → 0, log n/(nh) → 0 and nh5/ log n = O(1) as n → ∞. Then, for x ∈ I ,

{1− p̂ch(x)}− {1− p(x)} = {1− p(x)}
∑n
i=1

B̃hi x( )ζ Ti, δi, ξi, νi, τ0, x
( )+ Rn x( ),

where

ζ Ti, δi, ξi, νi, t, x
( ) = 1 Ti ≤ t, δi = 1( )

J (T−
i ∣ x)

−
∫t
0
1 Ti ≥ v( ) + 1 Ti < v, ξiνi = 1

( ){ } dH1 v ∣ x
( )

J 2 v− ∣ x
( ) , (16)

B̃hi x( ) = 1

m x( )
1

nh
K

x− Xi

h

( )
(17)

and Rn(x) satisfies

sup
x∈I

∣ Rn x( ) ∣= O log n
( )3/4

(nh)−3/4
( )

a.s. (18)

The following corollary on the strong consistency of the estimator 1− p̂ch(x) is deduced from Theorem 1.



Corollary 1 (Strong consistency). Suppose that Assumptions 1 to 8 and condition (15) hold, and the bandwidth h = (hn)
satisfies h → 0, log n/(nh) → 0 and nh5/ log n = O(1) as n → ∞. Then, for x ∈ I ,

sup
x∈I

∣ p̂ch x( ) − p x( ) ∣= O (nh)−1/2 log n
( )1/2( )

a.s.

The corollary is proved by considering the asymptotic representation in Theorem 1 and following similar arguments as
in the proof of Corollary 1 in Safari et al.12 for t = T 1

(n), so it is omitted.
The proof of the next proposition is in Appendix B of the Supplemental Material.

Proposition 3 (Asymptotic bias and variance). Suppose that Assumptions 1 to 8 and condition (15) hold and the band-
width h = (hn) satisfies h → 0, log n/(nh) → 0 and nh5/ log n = O(1) as n → ∞. Then, the asymptotic bias and variance
of the dominant term of 1− p̂ch(x) are, respectively,

μh,c(x) = h2Bc(x)+ O h4
( )

and σ2h,c(x) =
1

nh
s2c(x) + O

h

n

( )
.

The function Bc(x) in the dominant term of the bias is

Bc(x) = c1,c(x)+ c2,c(x)
( )

dK (19)

with dK = �v2K(v)dv,
c1,c(x) = 2(1− p(x))′m′(x)+ (1− p(x))′′m(x)

2m(x)
, (20)

and

c2,c(x) = (1− p(x))

∫τ0
0

G′(v− ∣ x)
1− G(v− ∣ x)

d

ds

S′ s ∣ x
( )

S s ∣ x
( )( )∣∣

s=v−dv. (21)

Here p′(x), p′′(x), S′(t ∣ x) and G′(t ∣ x) refer to the derivatives with respect to x. The function s2c (x) in the dominant term of
the variance is

s2c (x) =
1− p x( )( )2
m x( )

∫τ0
0

dH1 v− ∣ x
( )

(1− H v− ∣ x
( )+ H11(v− ∣ x))2

cK , (22)

with cK = �K2(v)dv.
The following theorem establishes the asymptotic normality of 1− p̂ch(x). The proof is in Appendix B of the

Supplemental Material.

Theorem 2 (Asymptotic normality). Suppose that Assumptions 1 to 8 and (15) hold, and the bandwidth h = (hn) satisfies
h → 0, log n = (nh) → 0 and nh5/ log n = O(1) as n → ∞. Then for x ∈ I it follows that:

(i) If nh5 → 0 and (log n)3/(nh) → 0, then

(nh)1/2 p̂ch(x)− p(x)
{ }

→ N (0, s2c(x)) in distribution.

(ii) If nh5 → C, where C > 0 is a constant then

(nh)1/2 p̂ch(x)− p(x)
{ }

→ N (C5/2Bc(x), s2c (x)) in distribution,

where Bc(x) is defined in (19) and s2c (x) in (22).

2.4 Effect of ignoring the cure status information
The use of the information given by the cure status has an impact on both the bias and variance of the proposed estimator of
the cure probability 1− p̂ch(x). When the cure status is ignored and the observed times of the individuals known to be cured



are considered as simple censored times, the asymptotic expressions of the bias and variance of the XP estimator,
1− p̂h(x), are

μh(x) = h2B(x)+ O h4
( )

and σ2h(x) =
1

nh
s2(x) + O

h

n

( )
,

where B(x) = (c1,c(x)+ c2(x))dK , with c1,c(x) in (20),

c2(x) = (1− p(x))

∫τ0
0

G′
0(v

− ∣ x)
1− G0(v− ∣ x)

d

ds

S′ s ∣ x
( )

S s ∣ x
( )( )∣∣

s=v−dv, (23)

and

s2(x) = 1− p x( )( )2
m x( )

∫τ0
0

dH1 v− ∣ x
( )

1− H v− ∣ x
( )( )2 cK .

The cure status information affects the bias of the proposed estimator only in the second term of Bc(x) in (19). If the cure
status information is ignored, the term 1− π(x) inG(t ∣ x) disappears and results to c2(x) in (23). Therefore, in terms of bias,
the gain of knowing the cure status is not straightforward as it depends on the derivatives of (1− π(x)) and G0(t ∣ x).

The effect of considering the cure status information on the variance is through the function H11(t ∣ x) of s2c (x) in (22).
When the cure status information is ignored, then H11(t ∣ x) = 0 and s2c (x) ≤ s2(x) for all x. So, when the known cure status
is taken into account, the variance of the proposed estimator of the cure probability decreases asymptotically with respect to
the XP estimator.

2.5 Bandwidth selection
The proposed estimator of the probability of cure 1− p̂ch(x) in (6), like the XP estimator 1− p̂h(x), depends on the band-
width h. Different approaches for bandwidth selection of kernel estimators are available in the literature.7 Here, a bootstrap
bandwidth selector is proposed to choose the smoothing parameter h for the cure rate estimator p̂ch(x). The principle is to
select the bandwidth h that minimizes the bootstrap version of the MSE approximated by Monte Carlo as:

MSE∗
x (h) ≃

1

B

∑B
b=1

{̂pc,∗bh (x) − p̂cg(x)}2, (24)

where 1− p̂c,∗bh (x) is the proposed estimator computed with the bth bootstrap resample and bandwidth h, 1− p̂cg(x) is the
proposed estimator computed with the original sample and pilot bandwidth g. The algorithm to compute the bootstrap
bandwidth for a fixed covariate value x is

Step 1. With the original sample and the pilot bandwidth g, compute 1− p̂cg(x) in (6).

Step 2. Choose a dense enough grid of L bandwidths {h1, . . . , hL}.
Step 3. Generate B bootstrap resamples {(X ∗(b)

i , T∗(b)
i , δ∗(b)i , ξ∗(b)i ν∗(b)i ) : i = 1, . . . , n}, for b = 1, . . . , B.

Step 4. With the bth bootstrap resample and the bandwidth hl compute 1− p̂c,∗bhl
(x), for l = 1, . . . , L.

Step 5. For hl, l = 1, . . . , L, compute the Monte Carlo approximation MSE∗
x (hl) given by (24).

Step 6. The bootstrap bandwidth, h∗x , is the bandwidth of the grid {h1, . . . , hL} that minimizes MSE∗
x (h) in (24).

The bootstrap resamples in Step 3 are generated similarly as in Li and Datta,38 using the simple weighted bootstrap or the
obvious bootstrap resampling methods. Without ties in the observed times, both methods are equivalent.39

2.6 The simple weighted bootstrap
Generate {X ∗

1 , . . . , X
∗
n } from the empirical distribution of {X1, . . . , Xn}. Next, for each X ∗

i generate (T∗
i , δ

∗
i , ξ

∗
i ν

∗
i ) from the

weighted empirical conditional distribution

F̂g(t, d, z ∣ X ∗
i ) =

∑n
j=1

Bgj(X
∗
i )1 T j ≤ t, δ j ≤ d, ξ jν j ≤ z
( )

where Bgj(x) are the NW weights (5) with bandwidth g.



2.7 The obvious bootstrap
Consider the estimator of the survival function 1− F̂c

g(t ∣ x) in (4) and the estimator for the censoring distribution:

1− Ĝc
g t ∣ x
( ) =∏n

i=1

1− 1− δ[i]
( )

1 ξ[i]ν[i] = 0
( )

Bg i[ ] x( )1 T i( ) ≤ t
( )∑n

j=i Bg[j](x) +
∑i−1

j=1 Bg[j] x( )1 ξ[j]ν[j] = 1
( )( )

,

computed with the same pilot bandwidth g. Simulate the bootstrap sample {(X ∗
i , T

∗
i , δ

∗
i , ξ

∗
i ν

∗
i ), i = 1, . . . , n} as follows.

Step 1. Generate {X ∗
1 , . . . , X

∗
n } from the empirical distribution of {X1, . . . , Xn}.

Step 2. For i = 1, . . . , n, set Y ∗
i = ∞ with probability 1− F̂c

g(T(n) ∣ X ∗
i ) = 1− p̂cg(X

∗
i ), and generate a finite survival

time otherwise:

Y ∗
i ∼

1− F̂c
g t ∣ X ∗

i

( )− (1− p̂cg X ∗
i

( )
)

p̂cg X ∗
i

( ) .

Generate C∗
i = ∞ with probability 1− Ĝc

g(T(n) ∣ X ∗
i ) = π̂cg(X

∗
i ), and

C∗
i ∼

1− Ĝc
g t ∣ X ∗

i

( )− πcg X ∗
i

( )
1− π̂cg X ∗

i

( ) , otherwise.

Let Ĝ0g(t ∣ x) be the kernel estimator of G0(t ∣ x), the distribution function of the observed times of the individuals
known to be cured:

Ĝ0g t ∣ x
( ) =∑n

i=1 Bgi x( )1 Ti ≤ t, ξiνi = 1
( )∑n

i=1 Bgi x( )1 ξiνi = 1
( ) .

For each i = 1, . . . , n, generate C∗
0i from Ĝ0g(t ∣ X ∗

i ). The bootstrap sample is {(T∗
i , δ

∗
i , ξ

∗
i ν

∗
i ), i = 1, . . . , n} where

T∗
i = min Y ∗

i , C
∗
i

( )
1− 1 Y ∗

i = ∞, C∗
i = ∞

( )[ ]+ C∗
0i1 Y ∗

i = ∞, C∗
i = ∞

( )
,

δ∗i = 1 Y ∗
i < C∗

i

( )
,

ξ∗i ν
∗
i = 1 Y ∗

i = ∞, C∗
i = ∞

( )
.

For computational efficiency, see López-Cheda et al.7,8 the bootstrap values of the covariate can be set to X ∗
i = Xi instead

of resampling it randomly from {X1, . . . , Xn}.
López-Cheda et al.7,8 and Safari et al.12 proposed to use a local pilot bandwidth depending on the sample size and the

distribution of the covariate:

gx = d+k (x)+ d−k (x)
2

1001/9n−1/9,

where d+k (x) and d
−
k (x) are the distances from x to the kth nearest neighbor on the right and left, and k is the integer part of n/4. If

there are not at least k neighbors on the right (or left), we use d+k (x) = d−k (x) (or d
−
k (x) = d+k (x)). The simulations in López-Cheda

et al.7 and Safari et al.12 demonstrated that the choice of the pilot bandwidth has small effect on the bootstrap bandwidth.

3 Alternative estimators of the cure rate
In this section, we introduce alternative methods for estimating the cure rate with covariates.

3.1 Competing risks estimators
The competing risks model considers that an individual is exposed to J types of failure or competing risks. For
j ∈ {1, . . . , J}, let Yj the time until the failure of type j happens, and consider the random pair (YF , D), where YF =
min (Y1, . . . , YJ ) is the time until the first failure, and D ∈ {1, 2, . . . , J} indicates the type of failure. Let C be a censoring
variable. Under right random censoring, the observations (YF , D) will be incomplete if follow-up ends before any failure
occurs. In this situation only (T , Δ) is observed, where T = min (YF , C) is the possibly censored observed time, and Δ =



1(YF < C)D is the type of event in the case a terminal event occurs andΔ = 0 indicates that the failure type is unknown and
the failure time is right-censored. The censoring mechanism is assumed to be non-informative.40 This general competing
risks model usually assumes that all patients will eventually experience one of the J possible types of risks if there is suf-
ficient follow-up and, therefore, does not consider the possibility of cure.

In the MCM with cured individuals randomly observed, Betensky and Schoenfeld11 showed that the event of interest
and cure can be regarded as two competing risks, in which cures are random and only the minimum between the cure and
event times is observed. The probability of cure is then simply the limit as t tends to infinity of the CIF of the cure, or just 1
minus the limit of the CIF of the event of interest. We adopt this perspective and introduce a competing risks model for the
MCM when the cure status is partially observed in the presence of covariates. Let {YE, Yc} be the latent failure times of 2
type failures: the event of interest (E) and the classification of an individual as cured (c). Let YF = min (YE , Yc) be the time
of the first failure and C the censoring time. For right censored competing risks data, let T = min (YE, Yc, C) be the
observed time, and the uncensoring indicator Δ = 1(YF < C)D where D ∈ {1, 2} is the type of risk. In this context, the
observed sample {(Ti, δi, ξiνi), i = 1, . . . , n} can be written as {(Ti, Δi), i = 1, . . . , n}, where

Δi =
0 if δi = 0, ξiνi = 0 (censored)

1 if δi = 1, ξiνi = 0 (event observed)

2 if δi = 0, ξiνi = 1 (known to be cured).

⎧⎪⎨⎪⎩
The CIF of the event of interest E is the probability that a failure of type 1 occurs at or before time t:

F1 t ∣ x
( ) = P YF ≤ t, D = 1 ∣ X = x

( )
.

The CIF of the second competing risk (individual known to be cured) is

F2 t ∣ x
( ) = P YF ≤ t, D = 2 ∣ X = x

( )
.

The probability of cure is simply the CIF of the competing risk cure (c) evaluated at infinity or the complementary of the
CIF of the event of interest (E) evaluated at infinity:

1− p x( ) = P YE = ∞ ∣ X = x
( ) = 1− lim

t→∞
F1(t ∣ x).

Equivalently,

1− p(x) = P Yc <∞ ∣ X = x
( ) = lim

t→∞
F2(t ∣ x).

The conditional version of the estimators of the CIFs in Klein and Moeschberger41 are the following (also see Effraimidis
and Dahl 42):

F̂1,h t ∣ x
( ) =∑n

i=1

δ[i]Bh i[ ] x( )1 T i( ) ≤ t
( )∑n

j=i Bh[j](x)
∏i−1

k=1

1− δ[k] + ξ[k]ν[k]
( )

Bh k[ ] x( )∑n
j=k Bh[j](x)

( )

=
∑n
i=1

δ[i]Bh i[ ] x( )1 T i( ) ≤ t
( )∑n

j=i Bh[j](x) Ŝh T−
i( ) ∣ x

( )
,

F̂2,h t ∣ x
( ) =∑n

i=1

ξ[i]ν[i]Bh i[ ] x( )1 T i( ) ≤ t
( )∑n

j=i Bh[j] x( )
∏i−1

k=1

1− δ[k] + ξ[k]ν[k]
( )

Bh k[ ] x( )∑n
j=k Bh[j](x)

( )
(25)

=
∑n
i=1

ξ[i]ν[i]Bh i[ ] x( )1 T i( ) ≤ t
( )∑n

j=i Bh[j](x) Ŝh T−
i( ) ∣ x

( )
, (26)

where Ŝh(t ∣ x) is the Beran43 estimator obtained by treating any of the competing risks as an event. The estimation of the
conditional CIFs in (25) and (26) allows us to model the conditional cure probability.

Proposition 4. The conditional probability of cure 1− p(x) can be estimated by

1− p̂1,h x( ) = 1− lim
t→∞

F̂1,h(t ∣ x) = 1−
∑n
i=1

δ[i]Bh i[ ] x( )∑n
j=i Bh[j](x) Ŝh T−

i( ) ∣ x
( )

, (27)



or by

1− p̂2,h x( ) = lim
t→∞

F̂2,h t ∣ x
( ) =∑n

i=1

ξ[i]ν[i]Bh i[ ] x( )∑n
j=i Bh[j](x) Ŝh T−

i( ) ∣ x
( )

. (28)

If the last observation is an event or an observed cured individual, then the sum of both estimated CIFs equals 1 at the
limit when t tends to infinity, and 1− p̂1,h(x) = 1− p̂2,h(x). If, however, the last observation is censored, then 1− p̂1,h(x)
and 1− p̂2,h(x) are not equivalent. In this case, 1− p̂1,h(x) is an upper bound for the cure rate and 1− p̂2,h(x) is a lower
bound. The differences in such a case are more apparent when the censoring rate is high.

Note that, in the absence of censoring,

Ŝh T−
i( ) ∣ x

( )
=
∏i−1

k=1

1− δ[k] + ξ[k]ν[k]
( )

Bh k[ ] x( )∑n
j=k Bh[j](x)

( )
=
∏i−1

k=1

∑n
j=k+1 Bh[j](x)∑n
j=k Bh[j](x)

=
∑n
j=i

Bh[j](x).

So the cure probability estimator is

1− p̂1,h x( ) = 1−
∑n
i=1

δ[i]Bh i[ ] x( )∑n
j=i Bh[j] x( ) Ŝh T−

i( ) ∣ x
( )

= 1−
∑n
i=1

δ[i]Bh i[ ] x( )∑n
j=i Bh[j] x( )

∑n
j=i

Bh[j](x)

= 1−
∑n
i=1

δ[i]Bh i[ ] x( ) =
∑n
i=1

ξ[i]ν[i]Bh i[ ] x( ).

Similarly,

1− p̂2,h x( ) =
∑n
i=1

ξ[i]ν[i]Bh i[ ] x( ).

Thus, the cure rate estimators reduce to the sum of the weights of the individuals known to be cured, which is the NW
estimator of the cure probability in (8).

This approach to the estimation of the cure rate can be viewed as arising from a redistribution to the right algorithm.44 In
particular, the mass of Bhi(x) initially assigned to the censored observations (neither event nor observed to be cured) is
redistributed equally to all subjects at risk for the event and cure at the time of censoring. The cure rate is then simply
the weighted sum of the mass attached to each subject that is cured.

3.2 Multiply imputed NW estimator
The proposed estimator in (6) is based on the relationship in (3) between the cure probability 1− p(x) and the survival
function S(t ∣ x). So, to estimate the probability of cure it requires the observations {(Ti, δi), i = 1, . . . , n}. Nonetheless,
the cure probability can also be written as 1− p(x) = E(ν ∣ X = x), that is, the conditional expectation of the cure
status ν, or equivalently 1− p = E(ν) for an unconditional setting. An estimator based on this latter relationship would
only require the observed values of the covariate X and the cure status ν, dismissing the observed values of (T , δ).

The NW estimator is one of the most frequently used estimators in nonparametric regression. So, the estimator in (8)
might be considered for the estimation of the cure probability 1− p(x) = E(ν ∣ X = x). Similarly, the unconditional cure
probability 1− p = E(ν) might easily be estimated using the empirical estimator 1− p̂ =∑n

i=1 νi/n. These methods
require that the cure status ν is completely observed. However, in the present setup, the cure status ν remains unknown
for some of the censored observations. There has been extensive work dealing with regression modeling when the response
variable is only partially observed.28,45,46 Aerts et al.20 developed a fully nonparametric local multiple imputation (MI)
procedure to estimate the unconditional mean of a variable in the presence of missing response data. When the cure
status is not completely observed because of censoring, but it is partially available, their methodology can be applied to
the estimation of 1− p. To the best of our knowledge, the MI methodology in Aerts et al.20 has not been extended to esti-
mate the conditional mean. We extend this methodology to estimate 1− p(x) in the presence of a covariate.



It is important to define the nature of the missingness mechanism, as it highly influences the performance of statistical
techniques that deal with missing data. The MI estimator20 requires the strongly ignorable missing at random (siMAR)
assumption,47 which implies the probability that the cure status is observed depends only on the covariate X but not on
the response variable ν:

E(ξ ∣ X ) = E(ξ ∣ X , ν). (29)

This is weaker than missingness completely at random (MCAR) from dependence on the observed variable X is allowed.
Note that this siMAR condition is not fulfilled under the MCM model with the cure status partially known if Y and C are
conditionally independent given X = x, as the probability of observing the cure status is different for the cured (ν = 1) and
the susceptible (ν = 0) individuals, and therefore it depends on the cure status:

E(ξ ∣ X , ν = 1) = P(ξ = 1 ∣ X , Y = ∞) = P(C = ∞ ∣ X , Y = ∞) = π(X ),

E(ξ ∣ X , ν = 0) = P(ξ = 1 ∣ X , Y <∞) = P(Y < C ∣ X , Y <∞)

= P(Y < C, C <∞ ∣ X , Y <∞)+ P(C = ∞ ∣ X , Y <∞)

= P(Y < C ∣ X , Y <∞, C <∞)(1− π(X ))+ π(X ).

Unless P(Y < C ∣ X , Y <∞, C <∞) = 0, which yields the time of all the susceptible individuals to be censored,
the siMAR condition (29) cannot be assumed if Y and C are independent conditionally on X = x. Nonetheless,
note that the higher the value of π(X ), which means the lower missingness rate in the cure status, the smaller the dif-
ference between E(ξ ∣ X , ν = 1) and E(ξ ∣ X , ν = 0), and the closer the siMAR assumption to hold.

The main idea in the approach of Aerts et al.20 is to use the assumed regression relationship between X and ν to impute
locally the missing observations of ν. This idea is extended to estimate the conditional expectation for a continuous cov-
ariate X . An outline of the algorithm is:

Step 1. (Resampling step) Fix an integer M , for m = 1, . . . , M perform a nonparametric resampling of the observed

data. That is, for each observation i = 1, . . . , n, if the cure status is observed (ξi = 1) generate ν∗(m)i from the distribution
L(Xi) with cumulative distribution function ∑n

j=1

Bξ
g1j Xi( )1 ν j ≤ u

( )
where Bξ

g1j(x) are the kernel weights with bandwidth g1:

Bξ
g1j(x) =

ξjKg1 (x− Xj)∑n
i=1 ξiKg1 (x− Xi)

.

Step 2. (Imputation step) Given the resampled data from Step 1., the missing values of ν are imputed using local resam-

pling. More specifically, conditionally on the resampled data {(Xi, ν
∗(m)
i , ξi) : i = 1, . . . , n}, a second distribution L∗(Xi)

is constructed, with cumulative distribution function∑n
j=1

Bξ
g2j Xi( )1 ν∗(m)j ≤ u

( )
where the kernel weights Bξ

g2j(x) are computed with a second bandwidth g2. Then, if νi is missing, generate ν+,m
i fromL∗(Xi).

Step 3. (Computation of the final estimator) For ν̃mi = ξiνi + (1− ξi)ν
+,m
i , let 1− p̂mn = (1/n)

∑n
i=1 ν̃

m
i be the empirical

estimator of the cure probability with the mth augmented dataset. The multiple imputation (MI) estimator for the cure
probability 1− p is

1− p̂MI
n = 1

M

∑M
m=1

(1− p̂mn ). (30)

Analogously, let us define 1− p̂mh (x) =
∑n

i=1 Bhi(x)̃νmi as the NW estimator in (8) computed with bandwidth h and the
mth augmented dataset. The final multiply imputed NW (MI-NW) estimator for the cure probability 1− p(x) is

1− p̂MI-NW
h (x) = 1

M

∑M
m=1

(1− p̂mh (x)). (31)



Note that Step 1 is needed to fully account for all uncertainty in predicting the missing values by adding extra variability
into the multiply imputed values.48 Under conditions similar to those in Cheng,27 Aerts et al.20 showed that the proposed
estimator of 1− p in (30) is consistent, and provided asymptotic expressions for the bias and variance. Next, the asymp-
totic expressions of the bias and variance for the MI-NW estimator in (31), following the ideas in Aerts et al.20 are
derived. The proof is deferred to Appendix B of the Supplemental Material.

Proposition 5. Suppose that the siMAR condition and Assumptions 1 (i), 2 (i), 3 (i), 8 and 9 hold. Also, the bandwidths h, g1,
g2 satisfy h → 0, g1 → 0, g2 → 0, nh → ∞, ng1 → ∞ and ng2 → ∞ as n → ∞. The asymptotic bias of 1− p̂MI-NW

h (x) is

μMI-NW
g1,g2,h (x) = h2c1,c(x)+ g21 + g22

( )
c2,MI-NW(x)+ o (h2 + g21 + g22)

2
( )

,

where c1,c(x) is defined in (20), and

c2,MI-NW(x) =
1− π x( )( ) π x( ) 1− p x( )( )

m x( )[ ]′′
2m x( )π x( ) dK . (32)

If the bandwidths are g1/h → C1 and g2/h → C2, then the asymptotic variance is

σ2h,MI-NW x( ) = 1

nh

1− p(x)

m(x)

(
cK (1− π x( ))p x( )

Mπ x( ) + π(x)cK + (1− π(x)) cK ,C1,C2 +
1− π(x)

π(x)
dK,C1,C2

[{
+ (1− p(x)) cK + 2cK ,C2 +

1− π(x)

π(x)
(cK,C1,C2 + 2dK,C1,C2 )

( )]})
+ 2

ng1
1− p x( )( )21− π x( )

π x( ) K 0( ) + o (Mnh)−1
( )+ o (nh)−1

( )+ o (ng1)
−1

( )
, (33)

where cK,C = ��K(u)K(v)K(u+ Cv)dudv,

cK,C1,C2 =
∫∫∫

K(u)K(v)K(w)K(u+ C1v+ C2w)dudvdw

and

dK,C1,C2 =
∫∫∫

K(u)K(v)K(w)K(u+ C1v+ C2(u+ w))dudvdw.

The term h2c1,c(x) in the bias, which also appears in the bias μh,c(x) of the proposed estimator in (20) and in the bias μh(x)
of the XP estimator, is the dominant term of the bias of the NW estimator, while (g21 + g22) c2,MI-NW(x) stems from the mul-
tiple imputation procedure in Steps 1 and 2 above. The comparison in terms of bias of the proposed estimator and the
MI-NW estimator is a trade-off between the terms c2,c(x) in (21) and c2,MI-NW(x) in (32).

As for the variance, note that if C1 = C2 = 0 then cK,C2 = cK,C1,C2 = dK,C1,C2 = cK , whereas if C1 = ∞ or C2 = ∞,
then cK ,C2 = cK,C1,C2 = dK,C1,C2 = 0. It should be noted that in terms of variance, the comparison between the proposed
estimator and the MI-NW estimator is not straightforward. It is easy to prove that in the case of no missingness, the dom-
inant term of the bias reduces to that of the NW estimator c1,c(x), whereas the leading term of the variance becomes
(1/nh)(σ2(x)+ μ2(x))/m(x), where σ2(x) = var(ν ∣ X = x) = p(x)(1− p(x)) and μ(x) = E(ν ∣ X = x) = 1− p(x).

4 Simulation study
A simulation study was conducted to assess the finite sample performance of the proposed estimator, 1− p̂ch(x), compared
with:

(a) the competing risks estimators 1− p̂1,h(x) in (27) and 1− p̂2,h(x) in (28),
(b) the XP estimator 1− p̂h(x) in (7),
(c) the MI-NW estimator 1− p̂MI-NW

h (x) in (31) with M = 5 multiple imputations,
(d) and the semiparametric estimator15 1− p(x; γ̂), where γ̂ are the parameter estimates.



Data were generated from the MCM in (1), where the latency part is modeled using a truncated exponential distribution:

S0 t ∣ x
( ) = exp −α x( )t{ }−exp −α x( )4.605{ }

1−exp −α x( )4.605{ } if 0 ≤ t ≤ 4.605

0 if t > 4.605,

{
where α(x) = exp ( x+20

40 ). Six scenarios characterized by the cure probability function were considered. As Table 1 shows,
the cure probability encompasses a wide range of functions, intended to cover any reasonable practical scenario.

The proportion of individuals identified as being cured was set to π(x) = 0.2 and 0.8. The censoring time C was gen-
erated so that C = ∞ with probability π(x), and with probability 1− π(x), C was generated from a Weibull distribution
with shape parameter α = 2, scale parameter β = 2, and density function

g(t; β, α) = βα−βtβ−1 exp −t/α
( )β

, for t > 0.

The covariate X was uniformly distributed on the interval [−20, 20]. Note that S0(t ∣ x) is truncated at τ0 = 4.605, so that
the support for C is larger than the support of Y in order to fulfill condition (15). Depending on the scenario, the percentage
of censored observations ranged from 22.6% (in Scenario 4 with π(x) = 0.2) to 80.8% (in Scenario 5 with π(x) = 0.2). For
each scenario, 1000 datasets of sample sizes n = 50, 100 and 200 were generated.

Two different designs were considered. They differ with respect to the distribution of the observed times of the indivi-
duals known to be cured, represented byH11(t ∣ x). In Design 1, the observed cure times were simulated to be falling within
the largest censored times. This design was intended to reflect the pattern of the observed lifetimes of the patients known to
be cured in the breast cancer data. No big differences are expected between the proposed cure rate estimator (equivalent to
XP estimator computed with the observed cure times shifted to be arbitrarily large times) or ignoring the known cure status
(XP estimator computed with the unmodified observed times). In Design 2, the distribution of the observed times of the
known cured patients in COVID-19 data is mimicked. In this case the observed cure times were simply chosen at random
among the censored times. Large differences are now expected the available cure status with the proposed estimator 1−
p̂ch(x) and XP estimator 1− p̂h(x). This section contains the results for π(x) = 0.8, n = 100 and for Design 2; additional
results are in Appendix C of the Supplemental Material.

The first goal was to evaluate the small sample size performance of 1− p̂ch(x) in terms of squared bias, variance and
MSE when the optimal bandwidth is used. For nonparametric estimators, the search for the optimal bandwidth h was per-
formed in a grid of 21 values ranging from 1.5 to 100 and equispaced on a logarithmic scale. Besides, the pilot bandwidths
(g1, g2) required of the MI-NW estimator were searched in a grid of 11 bandwidths equispaced from 1.5 to 100 on a loga-
rithmic scale. The Epanechnikov kernel was used.

The MSE of 1− p̂ch(x), 1− p̂1,h(x), 1− p̂2,h(x), 1− p̂h(x) and 1− p̂MI-NW
h (x), all of them computed with the correspond-

ing optimal bandwidths, and the MSE of 1− p(x; γ̂)when n = 100, π(x) = 0.8 for Design 2 are illustrated in Figure 1. Note
that while the performance of 1− p̂ch(x), 1− p̂1,h(x), 1− p̂2,h(x), 1− p̂MI-NW

h (x) and 1− p(x; γ) is affected by the design,
that of 1− p̂h(x) is not affected as it ignores the information provided by the observations identified as cured. The estimator
1− p̂ch(x) outdoes 1− p̂h(x) for most values of X . The differences in squared bias between 1− p̂ch(x) and the competing
risks estimators are quite apparent in Scenarios 1–3 and 6. As it can be seen, in all the scenarios 1− p̂ch(x) outperforms
1− p̂1,h(x) and 1− p̂2,h(x). Table 2 collects the MSE, squared bias and variance of all the estimators. When the cured indi-
viduals are predominantly identified, the competing risks approaches 1− p̂1,h(x), 1− p̂2,h(x) and the proposed estimator
1− p̂ch(x) provide similar results in terms of bias, variance as well as MSE when using the same bandwidth h (see
Table 2 for π(x) = 0.8). However, when a high percentage remains unidentified for the cured individuals, the proposed
estimator is highly competitive, while 1− p̂2,h(x) seems to behave poorer, particularly when the cure probability is high

Table 1. Characteristics of the simulated scenarios.

Scenario 1− p(x)

% censoring

% curedπ(x) = 0.2 π(x) = 0.8

1 Logistic function (1+ exp (0.476+ 0.358x))−1 48.0 47.0 46.0

2 Cubic function 0.5− x3/16000 52.0 51.0 50.0

3 Linear function 0.5− 0.025x 51.0 50.4 50.0

4 Low constant 0.2 22.6 20.5 20.0

5 High constant 0.8 80.8 80.3 80.0

6 Convex function 0.0025x2 36.0 34.0 33.3



(see Table S2 with π(x) = 0.2 in Appendix C of the Supplemental Material). The estimators 1− p̂ch(x) and 1− p̂MI-NW
h (x)

show similar performances.
The simulation results for Design 2 are presented in Table 2 (as well as in Figure S1 in Appendix C of the Supplemental

Material). In general the proposed estimator 1− p̂ch(x) has smaller MSE than XP estimator 1− p̂h(x) for most values of X .
This shows the loss of efficiency incurred in if the known cures are not incorporated in the estimation methodology. As

Figure 1. MSE of the proposed estimator 1− p̂ch(x), the competing risk estimators 1− p̂1,h(x) (CR1) and 1− p̂2,h(x) (CR2), the
MI-NW estimator 1− p̂MI-NW

h (x), the XP estimator 1− p̂h(x) (all computed with the optimal bandwidth), and the semiparametric

estimator 1− p(x; γ̂) in the simulated scenarios and under Design 2 for π(x) = 0.8 and n = 100.
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expected, in Scenario 1, the semiparametric estimator, which considers a logistic regression model to fit the probability of
cure with an EM algorithm for estimating the regression parameter γ, behaves well. However, the estimator 1− p̂ch(x) is
competitive for a wide range of values close to x = −20 and x = 20, and even beats 1− p(x; γ̂) for covariate values around
x = 0. The estimator 1− p̂ch(x) outperforms 1− p(x; γ̂) in Scenarios 2–6, where the underlying logistic model assumption
for the cure probability in 1− p(x; γ̂) is not met. Finally, it must be noted that 1− p̂ch(x) is quite competitive with respect to
1− p̂1,h(x), 1− p̂2,h(x) and 1− p̂MI-NW

h (x), behaving better in general.
For n = 200 in Design 2 (see Figure S2 and Table S1 in Appendix C of the Supplemental Material), the differences in

squared bias are much smaller for 1− p̂ch(x), 1− p̂1,h(x), 1− p̂2,h(x), 1− p̂MI-NW
h (x) and 1− p(x; γ̂). Regarding the vari-

ance, 1− p̂ch(x) performs better in most scenarios.
Figure S2 (right) and Table S2 in Appendix C of the Supplemental Material show that our method is efficient when there

is a small proportion of individuals identified as cured, when n = 100 and π(x) = 0.2. Interestingly, when π(x) = 0.2,
1− p̂ch(x) is still efficient and even beats 1− p̂h(x) for most values of X . Besides, 1− p̂MI-NW

h (x) and 1− p̂2,h(x)
perform poorly due to a significant increase in both squared bias and variance leading to poor MSE results. This suggests
that the use of 1− p̂ch(x) is advantageous even when only a few individuals are identified as cured.

Simulations were conducted to evaluate the performance of the bandwidth selector discussed in Section 2.5, using
B = 1000 resamples and a grid of bandwidths from 1.5 to 100. Figure S4 (in Appendix C of the Supplemental
Material) shows the quartiles of the selected bootstrap bandwidth h∗x for Scenarios 1–6 under Design 2. The optimal band-
width was also compared to h∗x . The performance of h∗x varies depending on the scenario, but in general it performs well in
all scenarios. Bandwidth choice seems to be more important in Scenarios 1–3 and 6, as different bandwidths result in sens-
ibly different MSE. In Scenarios 4 and 5, different bandwidths yield approximately the same MSE. In this case, the boot-
strap bandwidth being relatively far from the optimal bandwidth does not entail a significant loss of efficiency, see
Figure S4 in Appendix C of the Supplemental Material.

5 Real data analysis
We applied all the estimators of the cure rate to the breast cancer and COVID-19 datasets described in Section 1.

5.1 Breast cancer data
When analyzing the survival of breast cancer patients, it is of great interest to study the effect of well-established clinico-
pathologic prognostic factors.49,50 The aim of the analysis was to estimate the probability of not dying from breast cancer
depending on cancer stage, number of positive lymph nodes, menopausal status, margin status, and age at diagnosis. In this
dataset, only 42 (4.7%) patients died from cancer within the follow-up period. The observed times for the remaining
patients were right-censored. In this censored group, 20 patients (2.2%) were cancer free for more than 10 years, suggesting
they might be long-term survivors, in our model, known to be cured from the event “death from cancer.” This results in a
very high missingness rate, 93.1%, for the cure indicator, ν. Maller and Zhou3 test (p-value <0.001) provides evidence
supporting condition (15), clearly endorsing the use of 1− p̂ch(x) and 1− p̂cn to estimate the probability of not dying
from cancer.

The probability of cure as a function of the categorical covariates (cancer stage, number of positive lymph nodes, meno-
pausal status, margin status) was estimated for the different groups of patients using:

(a) the proposed estimator 1− p̂cn in (9) with its ŝeB(1− p̂cn);

(b) the empirical estimator 1− p̂ =∑n
i=1 ξiνi(

∑n
i=1 ξi)

−1 with its ŝe(1− p̂);
(c) the unconditional competing risks estimators 1− p̂1,n with its ŝeB(1− p̂1,n), 1− p̂2,n with its ŝeB(1− p̂2,n);

(d) the MI estimator 1− p̂MI
n in (30) with its ŝeB(1− p̂MI

n ) and M = 20;
(e) the unconditional XP estimator 1− p̂n in (10) with its ŝe(1− p̂n).

The bootstrap procedure in Section 2.5 was used to estimate the standard errors ŝeB(1− p̂cn), ŝeB(1− p̂1,n), ŝeB(1− p̂2,n),
and ŝeB(1− p̂MI

n ), with B = 1000 bootstrap resamples. The standard error ŝe(1− p̂n) was computed with Greenwood’s
formula using the R package survival. Moreover, the standard error of 1− p̂ was calculated using the standard

error formula of the sample proportion ŝe(1− p̂) =
�����������������������
p̂(1− p̂)(

∑n
i=1 ξi)

−1
√

.
To the best of our knowledge, there is no any specifically tailored bandwidth selector for the pilot bandwidths (g1, g2)

required in the computation of 1− p̂MI
n . Thus, in this analysis (g1, g2) were selected using the cross-validation selector of

Bowman et al.,51 available in the R package kerdiest.52 The results are given in Table 3. The empirical estimator 1− p̂



seems to underestimate the true 1− p. Note that all the patients with unknown cure status are excluded, so the estimate is
computed with a considerably reduced sample size. If the excluded patients are not MCAR, the reduced sample might not
be representative. The MI estimator uses the complete sample, but it still appears to be performing poorly because 93.1% of
patients have missing cure status. The unconditional XP estimator, 1− p̂n, does consider the censored observations,
however, it dismisses the cure status information so it still underestimates the true cure probabilities. The estimators
1− p̂cn, 1− p̂1,n and 1− p̂2,n make use of the available information of the cure status giving reasonably accurate estimates.

The estimated probability of not dying from breast cancer as a function of the continuous covariate age, is given in
Figure 2. The estimator 1− p̂ch(x) is compared with the competing risks estimators 1− p̂1,h(x), 1− p̂2,h(x), and the XP
estimator 1− p̂h(x), all computed with the bootstrap bandwidth selector discussed in Section 2.5 using B = 1000 resam-
ples. It is also compared with the semiparametric estimator 1− p(x; γ̂) and the MI-NW estimator 1− p̂MI-NW

h (x) computed
withM = 20. The bandwidth h for the MI-NW estimator was chosen via an improved cross-validation bandwidth selector
for the NW estimator,53 using the R package np.54 Figure 2 also shows the 95% confidence interval (CI) of the estimator
1− p̂ch(x). The CI was computed based on the asymptotic normality of the estimator 1− p̂ch(x) in which the bootstrap

Table 3. Demographic characteristics of breast cancer patients, and the numbers of dead patients (death), patients known to be cured

(cured) and patients with unknown cure status (unknown). Also given are the estimated probability of being cured from breast cancer

(1− p) estimated using 1− p̂cn, 1− p̂, 1− p̂1,n , 1− p̂2,n, 1− p̂MI
n , and 1− p̂n with their respective estimated standard errors (ŝe).

Uncured Censored Estimated probability of not dying from cancer

Characteristic Count (%) Dead Curedb Unknown 1− p̂cn 1− p̂ 1− p̂1,n 1− p̂2,n 1− p̂MI
n 1− p̂n

(ŝeB) (ŝe) (ŝeB) (ŝeB) (ŝeB) (ŝe)

Age
<55 years 371 (41.3) 21 11 339 0.579 0.344 0.579 0.579 0.363 0.561

(0.084) (0.084) (0.084) (0.099) (0.093) (0.097)

≥55 years 527 (58.7) 21 9 497 0.766 0.300 0.766 0.766 0.310 0.766

(0.089) (0.084) (0.089) (0.089) (0.095) (0.081)

Stagesa

I 164 (19.8) 5 4 155 0.812 0.444 0.812 0.812 0.372 0.812

(0.099) (0.166) (0.099) (0.143) (0.191) (0.092)

II 514 (62.0) 20 10 484 0.630 0.333 0.631 0.631 0.352 0.590

(0.095) (0.086) (0.095) (0.103) (0.098) (0.118)

III 151 (18.2) 10 4 137 0.593 0.286 0.593 0.474 0.308 0.593

(0.148) (0.121) (0.148) (0.170) (0.136) (0.139)

Menopausal a

statusa

Pre 185 (22.3) 10 0 175 0.248 0.000 0.248 0.000 0.000 0.248

(0.244) (0.000) (0.244) (0.000) (0.000) (0.205)

Peri 63 (7.6) 7 11 45 0.725 0.611 0.725 0.725 0.596 0.707

(0.094) (0.115) (0.094) (0.105) (0.121) (0.105)

Post 581 (70.1) 17 9 555 0.803 0.346 0.803 0.723 0.397 0.803

(0.091) (0.093) (0.091) (0.109) (0.107) (0.083)

No. of positive
lymph nodesa

0 392 (50.5) 12 11 369 0.754 0.478 0.754 0.754 0.484 0.754

(0.085) (0.104) (0.085) (0.085) (0.115) (0.087)

1–3 299 (38.5) 16 6 277 0.639 0.273 0.639 0.548 0.337 0.639

(0.118) (0.095) (0.118) (0.139) (0.111) (0.114)

> 3 86 (11.1) 11 3 72 0.468 0.214 0.468 0.351 0.270 0.439

(0.152) (0.110) (0.152) (0.150) (0.124) (0.157)

Margin statusa

Negative 761 (92.5) 21 14 726 0.744 0.400 0.744 0.744 0.406 0.730

(0.075) (0.083) (0.075) (0.090) (0.092) (0.083)

Positive 62 (7.5) 4 3 55 0.771 0.429 0.771 0.771 0.431 0.771

(0.131) (0.187) (0.131) (0.184) (0.216) (0.128)

aMissing observations present.
b“Cured” from the event “death from breast cancer.”



procedure was used to estimate ŝeB(1− p̂ch(x)):

1− p̂ch(x) ∓ z1−α
2
ŝeB 1− p̂ch(x)
( )

,

where zβ is the βth quantile of the standard normal.
Although 1− p(x; γ̂) shows that the probability of not dying from breast cancer increases with age, the curves from the other

estimators suggest that the logistic model assumed in the semiparametric estimator might not be appropriate. Specifically, they
indicate an increment of that probability only for younger to middle age patients. The estimators 1− p̂ch(x), 1− p̂1,h(x),
1− p̂2,h(x) and 1− p̂h(x) suggest no effect of the age on the probability for elderly patients, while 1− p̂MI-NW

h (x) implies
that the probability decreases with age in older patients. Observe that the probability of not dying from breast cancer given
by 1− p̂h(x), an estimator that disregards the available information about cure status, is equal or lower than the probability esti-
mated with 1− p̂ch(x). Nonetheless, the differences between 1− p̂ch(x) and 1− p̂h(x) are subtle, as the proportion of the iden-
tified known cures is small. When the last observation is an event or known to be cured, the estimator 1− p̂ch(x) produces the
same estimate as the competing risks estimators 1− p̂1,h(x) and 1− p̂2,h(x).

Finally, the MI-NW estimator shows a similar trend as 1− p̂ch(x) and 1− p̂h(x), although the estimated probabilities are
substantially smaller. As pointed out before, the performance of 1− p̂MI-NW

h (x) worsens significantly because of the
extremely high proportion of patients with missing cure status.

5.2 COVID-19 data
Since the COVID-19 pandemic started countries around the world are experiencing a large number of cases, with many
patients requiring hospitalization wards. Although most infected people presented with mild disease, there were many
severe cases that required long stays in ICU, overwhelming the healthcare systems with critical consequences on
disease mortality. An accurate knowledge of the duration of hospitalization, and the prediction of the probability that a

Figure 2. Estimation of the probability of not dying from breast cancer patients by using the proposed estimator 1− p̂ch(x) and its 95% CI, the

competing risks estimator 1− p̂1,h(x) (CR1) and 1− p̂2,h(x) (CR2), the XP estimator 1− p̂h(x) (all computed with the bootstrap bandwidth),
the MI-NW estimator 1− p̂MI-NWh (x) (computed using the cross-validation bandwidth), and the semiparametric estimator 1− p(x; γ̂).



hospitalized inpatient would require a bed in ICU, are key for understanding the hospital demand for beds and crucial for
decision-making and suitable planning.

As mentioned in Section 1, our second dataset contains the 10454 confirmed COVID-19 cases reported by the Galician
Healthcare Service32 between 6 March and 7 May 2020. The time of interest is the length of stay in hospital ward until
admission to ICU, and the aim of this analysis was to estimate the probability of admission to ICU from hospital ward
given age and sex as covariates of interest, see Table 4. For 2380 hospitalized patients for at least one day, 1063
(44.7%) were 75 years of age or above and 1262 (53%) were males. A total of 1638 (68.8%) patients were discharged
alive before entering ICU, and 328 (13.8%) had died before entering ICU. None of them will require admission to ICU
eventually, so all of them can be considered as “cured” from the event of interest, that is, admission to ICU. Note that
“cure” means being free of experiencing admission to ICU, not cured in medical terms.

A total of 197 of the 2380 inpatients in hospital ward required admission to ICU, which gives an empirical estimated
probability of admission to ICU of p̂ = 197/2380 = 0.083. However, the true number of patients requiring ICU is
expected to be larger than 197, as some of the 217 (9.1%) inpatients still in hospital bed at the end of the study might even-
tually need admission to the ICU. This shows that p̂ = 0.083 might underestimate the probability of admission to ICU,
motivating the use of alternative estimators than can handle censoring. It is assumed that condition (15) applies, as the
result of the test of Maller and Zhou3 suggests (p-value <0.001).

Table 4 shows the estimated probabilities of requiring ICU, given by the proposed estimator p̂cn, the unconditional com-
peting risks estimators p̂1,n, p̂2,n, the empirical estimator p̂, the MI estimator p̂MI

n with M = 20, and the unconditional XP
estimator p̂n. It should be noted that only 9.1% patients were still in a hospital bed at the end of the study, for whom even-
tual admission to ICU is unknown (missing cure status). Therefore, the proportion of individuals with observed cure status
is high.

In this situation, the estimators p̂cn, p̂1,n and p̂MI
n are expected to perform nicely, and the results for p̂ are likely to

improve as the biased performance towards insufficient cure status information fades away. The estimator p̂2,n tends to
overestimate probability of requiring ICU. In addition, XP estimator is expected to perform poorly since it dismisses
the significant information given by the observed cured individuals.

As Table 4 shows, the estimated probabilities of admission to ICU given by the empirical estimator, the MI estimator
and the proposed estimator are very similar. This suggests that it is possible that the missing data mechanism from this

Table 4. Demographic characteristics of COVID-19 patients, and the numbers of dead patients (death), patients known to be cured

(cured) and patients with unknown cure status (unknown). Also given are the estimated probability of admission to ICU (p), when the

probability of not requiring ICU (1− p) is estimated using 1− p̂cn, 1− p̂, 1− p̂1,n , 1− p̂2,n, 1− p̂MI
n and 1− p̂n with their respective

estimated standard errors (ŝe).

Uncured Censored Estimated probability of requiring ICU

Variables Count (%) ICU admission Deada Dischargeda Unknown p̂cn (ŝeB) p̂ (ŝe) p̂1,n (ŝeB) p̂2,n (ŝeB) p̂MI
n (ŝeB) p̂n (ŝe)

Age
0–24 years 22 (0.9) 0 0 17 5 0.000 0.000 0.000 0.156 0.000 0.000

(0.000) (0.000) (0.000) (0.087) (0.000) (0.000)

25–54 years 359 (15.1) 25 5 316 13 0.071 0.072 0.071 0.071 0.077 0.172

(0.013) (0.014) (0.014) (0.014) (0.014) (0.056)

55–64 years 354 (14.9) 41 24 271 18 0.114 0.122 0.117 0.123 0.121 0.138

(0.017) (0.018) (0.017) (0.018) (0.018) (0.022)

65–74 years 582 (24.5) 96 35 411 40 0.165 0.177 0.169 0.180 0.176 0.318

(0.016) (0.016) (0.016) (0.018) (0.017) (0.076)

75–84 years 571 (24.0) 34 101 377 59 0.059 0.066 0.061 0.061 0.067 0.083

(0.010) (0.011) (0.010) (0.011) (0.011) (0.016)

85 years and over 492 (20.7) 1 163 246 82 0.002 0.002 0.002 0.027 0.003 0.004

(0.002) (0.002) (0.002) (0.012) (0.003) (0.004)

Sex
Female 1118 (47.0) 55 136 822 105 0.049 0.054 0.051 0.051 0.053 0.091

(0.006) (0.007) (0.007) (0.007) (0.007) (0.022)

Male 1262 (53.0) 142 192 816 112 0.114 0.124 0.115 0.131 0.124 0.175

(0.009) (0.010) (0.009) (0.012) (0.010) (0.034)

a “cured” from the event “admission to ICU.”



dataset is close to siMAR assumption. On the other hand, the estimated probabilities given by the XP estimator p̂n seem to
be too high.

Figure 3 shows the estimated probability of requiring admission to ICU depending on age, obtained using the estimator
1− p̂ch(x), the competing risks estimators 1− p̂1,h(x), 1− p̂2,h(x), the XP estimator 1− p̂h(x), all computed using the
bootstrap bandwidth selector as in the breast cancer example, the semiparametric estimator 1− p(x; γ̂), and the MI-NW
estimator 1− p̂MI-NW

h (x) computed using the same bandwidth selectors as in the breast cancer example. Although the semi-
parametric estimator suggests a uniformly decreasing effect of age on the probability of admission to the ICU, the other
three estimators indicate that the logistic assumption for the cure probability might not be acceptable, as the curve patterns
are characterized by a constant to a slightly increasing probability of admission to the ICU for younger patients (below 55
years), a sharp increase of the probability for middle age patients (from 55 to 69 years) and a decrease for elderly patients
(70 years or older). For the aforementioned reasons, the XP estimator seems to overestimate the probability of ICU admis-
sion. Regarding the MI-NW estimator, the pattern of the estimated probability is consistent with that of the proposed esti-
mator. However, it seems to underestimate the probability of admission to ICU for young-to-middle age patients. This is
due to the low percentage of observed admissions to ICU for patients of those ages, resulting in an estimation with a high
percentage of missing response.

6 Discussion
A novel nonparametric estimator of the conditional probability of cure is proposed for the MCMwhen some censored indi-
viduals can be observed to be cured from the event. It reduces to well-known estimators in the literature for the uncondi-
tional setting, when there is a cure threshold, if there are no observed cured individuals, and when there is no censoring.
In contrast to regression based estimators, the proposed estimator is based on the MCM. It uses the available information of
the observed times, and therefore can lead to substantial gain in efficiency.

Figure 3. Estimation of the probability of admission to ICU for hospitalized COVID-19 patients estimated using the proposed

estimator 1− p̂ch(x) and its 95% CI, the competing risks estimators 1− p̂1,h(x) (CR1) and 1− p̂2,h(x) (CR2), the XP estimator

1− p̂h(x) (all computed with the bootstrap bandwidth), the MI-NW estimator 1− p̂MI-NW
h (x) (computed using the cross-validation

bandwidth), and the semiparametric estimator 1− p(x; γ̂).



When compared with the XP estimator, also based on the MCM but disregarding the information given by the cure 
status, it has been demonstrated to have smaller asymptotic variance. The advantage in terms of bias is not guaranteed, 
as it depends on the conditional probability of knowing the cure status information and the censoring distribution. On 
the other hand, simulations and the analysis of two real data examples show that our estimator yields significant improve-
ment compared to XP estimator, which ignores cure status information.

The cure rate can alternatively be estimated using a competing risks model. The main disadvantage of this approach is 
that if the last observation is not an event nor an observed cured individual, then the estimator of the cure rate is not unique, 
and only upper and lower bounds are provided. In that case, if the censoring rate is high both estimates can be quite dif-
ferent, and deciding which one is preferable is not straightforward. However, when a high percentage remains unidentified 
for the cured individuals, the proposed estimator is highly competitive, while the CR2 estimator behaves poorly, particu-
larly when the cure probability is high.

The MI-NW estimator performs well when the cure status is highly observed, but it performs poorly when few censored 
individuals are known to be cured as the siMAR assumption is violated. Besides, it is computationally quite expensive, 
particularly when the sample size is large, and it requires the selection of three different bandwidths. The semiparametric 
estimator15 is somewhat affected when the logistic assumption is violated and it might be challenging to obtain stable esti-
mates for the model parameters if the sample size is small. Moreover, the empirical estimator of the unconditional cure 
probability clearly underestimates the true probability and it cannot handle continuous covariates.

As discussed in Section 3.2, the probability of cure can be estimated as a regression function with the cure indicator as 
the response. We are aware of the existence of other ways of dealing with missingness in the response. To name one of 
them, the problem can also be addressed using IPW method.55,24,56 However, it has not been considered because the per-
formance is expected to be similar to that of the MI-NW estimator, and the efficiency of this method is expected to depend 
largely on the level of missingness.

In summary, the proposed estimator performs well when there are individuals known to be “cured” from the considered 
event, and it is efficient under high proportion of missingness in the cure status. Moreover, it does not require any para-
metric assumption for the cure probability. Also, it can be applied when the cure identification does not rely necessarily on 
the observed time-to-event being larger than a cure threshold, and when there is not any individual known to be cured or 
without censoring.

The proposed estimator of the cure rate requires the assumption of independent censoring. Besides, it is focused on 
ordinary right censored time-to-event data. However, in practical studies, lifetimes might be correlated to the censoring 
distribution, and observations may suffer from other types of censoring or truncation. Approaches that handle these com-
plexities deserve further investigation.

Finally, all estimators in the present paper are specifically designed to estimate the probability of an event as a function 
of a one-dimensional covariate. We note that, to avoid the curse of dimensionality when estimating the probability for mul-
tiple covariates, alternative techniques such as product kernels57 or a single-index model58 can be considered. Such devel-
opments warrant future research.
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