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Summary

In lifetime data, like cancer studies, there may be long term survivors, which lead to
heavy censoring at the end of the follow-up period. Since a standard survival model is
not appropriate to handle these data, a cure model is needed. In the literature, covari-
ate hypothesis tests for cure models are limited to parametric and semiparametric
methods. We fill this important gap by proposing a nonparametric covariate hypoth-
esis test for the probability of cure in mixture cure models. A bootstrap method is
proposed to approximate the null distribution of the test statistic. The procedure can
be applied to any type of covariate, and could be extended to the multivariate setting.
Its efficiency is evaluated in a Monte Carlo simulation study. Finally, the method is
applied to a colorectal cancer dataset.
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1 CURE MODELS

Classical methods to analyze lifetime data assume that all subjects would experience the failure if there is no censoring and
they are followed for long enough. They do not consider the possibility of a group of nonsusceptible individuals that will not
develop such event and can be considered as cured. However, there is an increasingly large number of situations where there
are individuals who can be deemed to be immune to the event of interest. One well-known example of long-term survivors is
cancer studies.
In the literature, the most popular cure model is the mixture cure model (recent reviews of cure models can be found in Peng

and Taylor1, and Amico and Van Keilegom2, among others). Mixture cure models, proposed by Boag3, split the population
into two groups: the cured, who will never experience the event of interest, and the susceptible group. These models allow to
estimate the probability of being cured and the survival function of the uncured population, or latency, depending on a set of
covariates. Themain advantage of this model is that it allows covariates to have different influence on cured and uncured patients.
A detailed review of this model is provided by Maller and Zhou.4 The estimation of cure models has been extensively studied
using parametric and semiparametric methods.5,6,7,8,9,10,11 A nonparametric estimator for the probability of cure12,13 and for the
latency function13,14 in the mixture cure model was recently introduced and some asymptotic properties further studied. This
enables the mixture cure model with covariates to be addressed in a completely nonparametric way.
It is always of interest to test if a covariate has some influence on the cure rate or on the survival time of the susceptible

patients. Müller and Van Keilegom15 propose a test statistic to assess whether the cure rate, as a function of the covariates,
satisfies a certain parametric model. However, to the best of our knowledge, no hypothesis tests for covariate effects in mixture

0Abbreviations: CHUAC, Complexo Hospitalario Universitario de A Coruña; CM, Cramér-von Mises; CRC, colorectal cancer; K, Kolmogorov-Smirnov; KM,
Kaplan-Meier; NW, Nadaraya-Watson
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cure models has been proposed yet in a completely nonparametric way. To fill this important gap, a covariate hypothesis test
for the probability of cure is presented in this paper. The method, evaluated in a Monte Carlo simulation study, is based on a
covariate hypothesis test for nonparametric regression.16
The methodology is applied to a real dataset related to colorectal cancer patients. We worked with a dataset related to 414

colorectal cancer (CRC) patients from the University Hospital of A Coruña (CHUAC), Spain. The variable of interest is the time
(in months) since diagnosis until death from cancer. An individual is considered long-term survivor or cured if he or she will
not die because of colorectal cancer. Censoring is caused by “cure”, death due to any other cause different to colorectal cancer,
dropout, or end of the study.
The information provided is, along with the observed lifetime and the censoring indicator, the location (colon n1 = 111,

rectum n2 = 303), the age (23-102 years) and the stage (1-4), which is the main determinant in prognosis of these patients. The
stage has 3 components: T (related to the size of the tumor and whether it has invaded nearby tissue), N (which measures the
lymph nodes that are involved) and M (referring to the presence of metastasis). These components are combined so that we can
classify each patient in a unique stage from 1 to 4. About 50% of the observations are censored, with the percentage of censoring
depending on the stage. The number of patients in Stage 1 is 62 (70.97% censored, aged 23-84), in Stage 2 is 167 (55.09%
censored, aged 36-102), in Stage 3 is 133 (39.85% censored, aged 30-88) and 52 in Stage 4 (30.77% censored, aged 43-88).
Cure models should be applied when there is a strong rationale for the existence of cured subjects. Colorectal cancer is one

of the leading causes of cancer mortality and morbidity worldwide, accounting for 9.4% of all cancer cases and 1 million new
cases annually.17 Death rates from CRC have declined progressively over the last decades, due to improvements such as earlier
diagnosis and better treatments, most notably surgical techniques, such as laparoscopic surgery and total mesorectal excision.18
This increased the rates of long-term survivors, conventionally been defined by those with at least 5-year survival times after
cancer diagnosis.19 The long-term survival rate for colorectal cancer patients is, for example, 90.3% when colorectal cancers
are detected at a localized stage.20 This shows feasible the possibility of cure in the CRC patients of the analyzed dataset.
Cure models usually require not only biological evidence for the possibility of cure, but also large sample sizes and a rea-

sonably long follow-up time.5 This is particularly important if censoring is heavy, since too much censoring or insufficient
follow-up time can lead to overestimated cure rates.21 There are several ways to guess if the follow-up period (almost 19 years in
the dataset) is long enough. A characteristic of a cure model is that the limit of the survival function is non-zero as time tends to
infinity. Then if the Kaplan-Meier (KM) plot suggests a non-zero asymptote, then a cure model may be appropriate and useful.
Figure 1 shows the KM estimate for the survival function for the colorectal cancer dataset. We can appreciate that the survival
curve has a plateau at the end of the study. This non-zero asymptote could be taken as an estimator of the cure rate, that is, the
proportion of patients who will not die from colorectal cancer, so they can be considered as “cured”.
Maller and Zhou22 proposed a simple nonparametric test to devise whether the follow-up time is enough. The procedure is

based on the length of the interval at the right tail where the KM estimator of the survival function is constant. A long and stable
plateau with heavy censoring at the tail of the KM curve is taken as an evidence that the follow-up period has been sufficient.
The results of the test22 suggest that there is a significant evidence for the existence of a cure rate (p = 0.0008589).
The rest of the article is organized as follows. In Section 2 we introduce the notation and we give a detailed description of the

nonparametric mixture cure model.12,13,14 In Section 3 we focus on the hypothesis tests for the probability of cure. According
to the number of covariates, we address three situations: (a) in Section 4 we study if the probability of cure depends on a
one-dimensional covariate Z (Case 1); (b) in Section 5, we assume that the probability of cure depends on a one-dimensional
covariate X, and we study if it also depends on a m-dimensional covariate Z (Case 2); and (c) Section 6 addresses the general
case of (X,Z), where X is ℝq-valued and Z is ℝm-valued (Case 3). The good performance of the test was assessed in a
simulation study.We also applied the proposedmethodology to the real dataset related to colorectal cancer patients fromCHUAC
(Complexo Hospitalario Universitario de A Coruña), Spain.

2 NONPARAMETRIC MIXTURE CURE MODELS

Throughout this paper we assume that individuals are subject to random right censoring, and that the censoring time, C , and the
time to occurrence of the event, Y , are conditionally independent given a set of covariates, say X. The conditional distribution
function of Y is F (t|x) = P (Y ≤ t|X = x), and the corresponding survival function is S(t|x) = 1 − F (t|x). The observed
time is T = min(Y , C), and � = I(Y ≤ C) is the uncensoring indicator. Moreover, the conditional distribution functions of
C and T are G and H , respectively. Let us denote by � the cure indicator, with � = 0 if the individual is susceptible to the
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FIGURE 1 Survival function estimation for the colorectal cancer dataset computed with the Kaplan-Meier estimator. The black
crosses correspond to censored observations.

event, and � = 1 otherwise (it is cured). Note that if � = 1, it is assumed that Y = ∞. The probability of not being cured
(incidence) is p(x) = P (� = 0|X = x), and the conditional survival function of the uncured group, also called latency, is
S0(t|x) = P (Y > t|� = 0,X = x). Then, the mixture cure model becomes:

S(t|x) = 1 − p(x) + p(x)S0(t|x).

Without loss of generality, let X be a univariate continuous covariate with density function fX . The observations will be
{(Xi, Ti, �i), i = 1,… , n}, i.i.d. copies of the random vector (X, T , �).
Xu and Peng12 introduced the following kernel type cure rate estimator:

1 − p̂ℎ(x) =
n
∏

i=1

(

1 −
�[i]Bℎ[i](x)
∑n
r=i Bℎ[r](x)

)

= Ŝℎ(T 1max|x), (1)

where Ŝℎ(t|x) is the conditional product-limit estimator23,

Bℎ[i](x) =
Kℎ(x −X[i])

∑n
j=1Kℎ(x −X[j])

are the Nadaraya-Watson (NW) weights with Kℎ(⋅) =
1
ℎ
K
(

⋅
ℎ

)

the rescaled kernel with bandwidth ℎ → 0 and T 1max =
maxi∶�i=1(Ti) is the largest uncensored failure time. Here T(1) ≤ … ≤ T(n) are the ordered observed times Ti’s, and �[i] and
X[i] are the corresponding uncensoring indicator and covariate concomitants. The estimator (1) has been proved to be the local
maximum likelihood estimator of the cure rate13, consistent and asymptotically normal.12 Furthermore, López-Cheda et al13
obtained and i.i.d. representation, found an asymptotic expression of the mean squared error, and proposed a bootstrap selector
for the smoothing parameter ℎ.
Mixture cure models might have identifiability issues due to problems associated with the tail of the distribution F . If the

follow-up is not long enough, events could plausibly occur after the longest observed time, making very difficult to distinguish
between cured subjects and long-term uncured subjects. Some conditions on the latency component, S0, should be imposed to
make the mixture cure model identifiable when the cure rate 1 − p (x) is completely unspecified.24,25 Some of these conditions
cover the conditional latency function to be fully parametrically specified, or the dependence of S0 on the covariate through
a proportional hazards form10 or an accelerated failure time structure.26 When the latency function is completely unspecified,
identifiability is guaranteed if S0 is a proper survival function, that is, if S0 (�−|x) = 0 for all x, where � > 0 is the length
of the observation period, including the possibility of � = ∞.25 According to Hanin and Huang25, the assumption of a proper
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latency function S0 is similar to the zero-tail constraint:6,13,27

�0(x) ≤ �G (x) for all x, (2)

where �0 (x) and �G (x) are the right extremes of the supports of S0 (t|x) and G (t|x), respectively. Assumption (2) states that
there is zero probability of a susceptible individual surviving longer than the largest possible censoring time. Identifiability of
the model when applying the proposed test is entailed with assumption (2), that is, essentially assuming that all the observations
after the largest failure time are cured.
To be confident that condition (2) is true, the length of follow-up should be chosen with considerable care. A nonparametric

test for assumption (2) was proposed by Maller and Zhou.22 The idea is based on the difference between the largest observed
time, T(n), and the largest uncensored time, T 1max, that is, the interval at the right tail of the distribution where the KM estimator
of the survival function, S, has got a long stable plateau. A large interval with heavy censoring is considered an evidence that
the follow-up period has been sufficiently long for the assumption (2) to be true.

3 HYPOTHESIS TESTS FOR THE CURE RATE

Testing the effect of a covariate is of primary importance in regression analysis, because the number of potential covariates to
be included in the model can be extremely large. In particular, in mixture cure models, variable selection is of great interest,
since the covariates having an effect on the survival of the uncured patients are not necessarily the same as those impacting
the probability of cure. We propose a nonparametric covariate hypothesis test for the cure rate based on a test for selecting
explanatory variables in nonparametric regression without censoring.16 The main advantage over other smoothed tests is that it
only requires a smooth nonparametric estimator of the regression function depending on the explanatory variables present under
the null hypothesis. This feature is computationally convenient and partially solves the problem of the “curse of dimensionality”
when selecting regressors in a nonparametric context.
Let us denote by W = (X,Z) =

(

X1,… , Xq , Z1,… , Zm
)

the explanatory covariates. We would like to test if the cure
probability, as a function of the covariate vectorW , only depends on X but not on Z:

H0 ∶ E (�|X,Z) ≡ 1 − p (X) vs.H1 ∶ E (�|X,Z) ≡ 1 − p (X,Z) , (3)

where the function p(x, z) depends not only on x but also on z.
Different cases are considered in this paper, depending on the dimension of the covariates: (a) Case 1, where W = Z is

univariate (Section 4); (b) Case 2, whereW = (X,Z), with a one-dimensional covariate X and an m-dimensional covariate Z
(Section 5), and (c) the general Case 3, with W = (X,Z) where X is ℝq-valued and Z is ℝm-valued, that can be generalized
from Case 2 (see Section 6).
The main challenge of testing (3) is that the response variable (the cure indicator, �), is only partially observed due to the

censoring. The uncensored observations are known to be uncured (� = 0), but it is unknown if a censored individual will be
eventually cured or not (� is missing). The novelty of the proposed test is that this inconvenience is overcome expressing the
regression function of the unobservable (and inestimable) response, �, as a regression function with response �, which is not
observable but estimable. This implies that the test is carried out with the variables (W , �̂), that is, in a context without censoring.
Let us define the variable �, which is a conditional proxy for �, as follows:

� =
�(1 − I(� = 0, T ≤ �))

1 − G (�|W )
, (4)

where � is an unknown time beyond which a subject can be considered cured. It is easy to check that E(�|W ) = E(�|W ) if the
distribution of (C|W , � = 0) equals that of (C|W , � = 1). Specifically,

E(�|W ) = E(�|W , � = 0)P (� = 0|W ) + E(�|W , � = 1)P (� = 1|W ).

Since � = 0 implies � = 0, then E(�|W , � = 0) = 0 and E(�|W ) reduces to

E(�|W ) =
E(�(1 − I(� = 0, T ≤ �))|W , � = 1)

1 − G(�|W )
P (� = 1|W ). (5)
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Note that � = 1 implies � = 0, hence T = C and the numerator in (5) is,

E(�(1 − I(� = 0, T ≤ �))|W , � = 1)
= E(1 − I(C ≤ �)|W , � = 1) = E(I(C > �)|W , � = 1)
= P (C > �|W , � = 1) = 1 − G(�|W , � = 1).

Therefore, if C and � are independent conditionally onW , then

1 − G(�|W , � = 1)
= P (C > �|W , � = 1)[P (� = 1|W ) + P (� = 0|W )]
= P (C > �|W , � = 1)P (� = 1|W ) + P (C > �|W , � = 0)P (� = 0|W )
= P (C > �|W ) = 1 − G(�|W ).

As a consequence, E(�|W ) in (5) is

E(�|W ) =
1 − G(�|W , � = 1)
1 − G(�|W )

P (� = 1|W ) = P (� = 1|W ) = E(�|W ).

Note that {�i, i = 1,… , n} are not observable because � and the conditional distribution function G(t|W ) are not known.
Therefore � and G(t|W ) have to be estimated to obtain an estimation of {�i, i = 1,… , n}. Several estimators of the conditional
distribution G(t|W ) can be considered according to the dimension and type of the covariate vector W . As an alternative to,
among others, the popular Cox proportional hazards model, we propose a completely nonparametric approach. Specifically, in
Case 1 (W = Z), if Z is continuous, G(t|z) can be estimated using the conditional product-limit estimator23 with a cross-
validation (CV) bandwidth selector.28 Otherwise, when Z is discrete or qualitative with values {z1,… , zk}, the stratified KM
estimator can be used for every subsample Z = zj , j = 1,… , k. In Cases 2 and 3, the conditional distribution G(t|w) can
be estimated nonparametrically according to the type of the covariates W following the general ideas in Racine and Li.29 For
example, in the simplest scenario of a bivariate covariateW = (X,Z), if both covariates are continuous,G(t|w) can be estimated
with the generalization of the conditional product-limit estimator30 with a cross-validation (CV) bandwidth selector28, whereas
if both (X,Z) are discrete or qualitative, with the stratified KM estimator using the corresponding subsamples.
The estimation of �, a cure threshold beyond which a censored observation can be assumed as cured, would seem an ill-

posed problem since whether an individual is cured or not is not always observable. However, note that under condition (2), the
largest observed survival time, T 1max, converges in probability to �0.

12 Therefore, condition (2) guarantees asymptotically that all
subjects censored after T 1max can be assumed to be cured. As a consequence, we suggest to estimate in practice � as the largest
uncensored failure time, �̂ = T 1max.
As a result, the estimation of the values {�i, i = 1,… , n} are the following: if �i = 1, or if �i = 0 and Ti ≤ �̂, then �̂i = 0;

otherwise �̂i = 1∕(1− Ĝ(�̂|Wi)). The test can also be applied even when there is no cure, that is, when E(�|W ) = E(�|W ) = 0.
In that case, �̂ = T 1max will be close to the largest observed time T(n), and the estimates of � in (4) will be mostly zero. This would
yield values of the test statistics, to be introduced in next sections, close to zero, suggesting to keep the null hypothesis that the
cure rate does not depend on the covariateW .

4 CASE 1

In this case we study if the cure rate, as a function ofW = Z, is a constant value versus if it depends on the covariate Z:

H0 ∶ E (�|Z) = 1 − p constant vsH1 ∶ E (�|Z) = 1 − p(Z),

where p(z) is not a constant function. Using the observations {(Zi, �̂i), i = 1,… , n}, the test we propose is based on the following
process:

Un(z) =
1
n

n
∑

i=1

(

�̂i −

(

1
n

n
∑

j=1
�̂j

))

I
(

Zi ≤ z
)

, (6)

which is a mean of the difference between the estimates of � and the conditional mean of � under the null hypothesis.
Possible test statistics are the Cramér-von Mises (CM) test, CMn =

∑n
i=1 U

2
n (Zi), or the Kolmogorov-Smirnov (K) test,
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Kn = maxi=1,…,n |n1∕2Un(Zi)|. The null distribution of the test statistic is approximated by the bootstrap procedure. The boot-
strap resampling plan used is similar to the one for bandwidth selection in nonparametric incidence and latency estimation but
mimicking the null hypothesis.13,14
The steps of the method are described below. The bootstrap resampling plan mimicsH0, since in Step 2 the cured observations

are generated with constant probability 1 − p̂. We propose to estimate the cure rate as 1 − p̂ = ŜKMn (∞), the KM estimator
of the survival function S(t) = P (Y > t) evaluated at the largest uncensored observation. Note that to generate an uncured
observation, the conditional distributions F0(t|z) and G(t|z) in Steps 2.1 and 2.2 have to be estimated. When Z is continuous,
suitable estimators are the nonparametric latency estimator13 and the conditional PL estimator23, respectively. Otherwise, these
functions can be estimated using the corresponding stratified KM estimators. The method proceeds as follows:

1. For i = 1, 2,… , n, obtain Z∗
i in {Z1,… , Zn} by random resampling with replacement.

2. Let 1 − p̂ be an estimation of the cure probability. For i = 1, 2,… , n:

2.1 Obtain a bootstrap cured observation Y ∗i = ∞ with probability 1 − p̂, and draw Y ∗i from a nonparametric estimator
of the conditional distribution F̂0(t|Z∗

i ) = 1 − Ŝ0(t|Z
∗
i ) otherwise.

2.2 Draw C∗i from a nonparametric estimator of the conditional distribution G(t|Z∗
i ).

2.3 Compute T ∗i = min(Y
∗
i , C

∗
i ) and �

∗
i = I(Y

∗
i ≤ C∗i ).

3. With the bootstrap resample, {(Z∗
i , T

∗
i , �

∗
i ), i = 1,… , n}, compute �̂∗i in (4), obtain the bootstrap version of Un in (6), and

the corresponding bootstrap version of the Cramér-von Mises and Kolmogorov-Smirnov statistics, CM∗
n and K∗

n .

4. Repeat B times Steps 1-3 in order to generate B values of CM∗
n and K∗

n . Define the critical values d
∗
CM and d∗K as the

values which are in position ⌈(1 − �)B⌉ in the corresponding sorted vector.

5. Compare the value of the statistic,CMn (respectively,Kn), obtained with the original sample with d∗CM (respectively, d∗K ),
and reject the null hypothesis if CMn > d∗CM (respectively, Kn > d∗K ). In addition, the p-value can be calculated as the
proportion of resamples for which the bootstrap statistic, CM∗

n (respectively K∗
n ) is larger than the value of the statistic

with the original sample, CMn (respectively Kn).

In the case of Z a non-ordinal qualitative covariate with values {z1,… , zk}, there is no natural way to order the values of Z
from lowest to highest. This makes it impossible to compute the indicator function in the test statistic (6). We propose to consider
all the possible k! permutations of the values of Z and compute Un(z) (and the corresponding CMn and Kn statistics) for each
“ordered” permutation. Finally, the maximum of the k! values CMn and Kn is computed and compared with the critical point
obtained by the bootstrap likewise.
A different approach consists in working with k−1 dummy variables. The main benefit of this method would be that the value

of the statistic is computed k−1 times, whereas with the previous method, the statistic should be computed k! times. Therefore,
when the number k of levels is high, this approach is considerably less computationally expensive. However, the clear advantage
of the first approach is that the categorical covariate is tested as a whole, regardless the number of levels. For the simulation
study in Section 4.1.3 the first approach was considered.

4.1 Simulation study
The purpose of the simulation study was to assess the practical behavior of the proposed test in different scenarios according to
the covariate vectorW . We considered � = 2000 trials of sample sizes n = 50, 100, 200 and 500. A total of B = 2000 bootstrap
resamples were drawn. The nominal significance level was � = 0.05 along the scenarios. All the results were obtained using a
script implemented in R language.31
For Case 1 with W = Z, we investigated the finite sample behavior of the test for Z continuous, discrete and nominal. The

censoring variable, C , had conditional distribution G(t|z) ∼ Exp(�(z)), with �(z) = 0.6∕(2 + (z − 20)∕40), and the survival
function of the uncured individuals was

S0(t|z) =
exp(−�(z)t) − exp(−�(z)�0)

1 − exp(−�(z)�0)
I(t ≤ �0), (7)

where �0 = 4.605 and � (z) = exp ((z + 20)∕40).
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TABLE 1 Results of the test for Case 1 withW = Z continuous with distributionU (−20, 20), under the null and the alternative
hypotheses, respectively. The case without cure has also been considered.

H0 H1
p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 1

60.4% cens
50% cure

52.5% cens
40% cure

44.6% cens
30% cure

36.6% cens
20% cure

21% cens
Without cure

54.6% cens
46.7% cure

n CM K CM K CM K CM K CM K CM K
50 0.046 0.055 0.045 0.051 0.045 0.050 0.039 0.042 0.021 0.018 0.983 0.978
100 0.043 0.050 0.051 0.057 0.042 0.045 0.044 0.045 0.015 0.011 0.999 0.999
200 0.053 0.055 0.047 0.046 0.037 0.039 0.046 0.040 0.021 0.013 1 1
500 0.065 0.053 0.056 0.054 0.056 0.053 0.048 0.041 0.024 0.014 1 1

4.1.1 Z continuous
Let Z be a continuous random variable with distribution U (−20, 20). Under the null hypothesis, H0 ∶ E(�|Z) = 1 − p, we
considered four different scenarios: p = 0.5, 0.6, 0.7, 0.8. We also considered the case of no cure (p = 1). Under the alternative
hypothesis, the cure probability was

1 − p(z) = 1 −
exp(0.476 + 0.358z)

1 + exp(0.476 + 0.358z)
. (8)

The average percentage of censored data was 54.65% and of cured data was 46.66%.
To estimate the conditional distribution function G(t|z), required in the estimation of � in (4) and in Step 2.2 of the bootstrap

procedure, and F0(t|z), needed in Step 2.1 of the bootstrap, we used the conditional product-limit23 and the conditional latency13

estimators, respectively. The bandwidth was selected, with the CV procedure28, from a grid of 10 equispaced bandwidths ℎj =
Djn−1∕5, from D1 = 4 to D10 = 60.
The results are given in Table 1. It is noteworthy that, underH0, the size of the test is quite close to the nominal level � = 0.05

for all the values of p, even for large censoring rates (p = 0.5) and small sample sizes (n = 50). As expected, when there is no
cure, the test is conservative regardless the sample size, keeping the null hypothesis that the cure probability does not depend
on Z. Furthermore, underH1, the power of the test is very close to 1 for all the sample sizes, even for n = 50.

4.1.2 Z discrete
We considered a discrete covariate Z with 3 ordered values z1 < z2 < z3. The uncure probabilities p(zi) were obtained
evaluating in zi the function p in (8). For each scenario, we chose the values {zj , j = 1, 2, 3} such that p(z1) = p(z2) =
p(z3) ∈ {0.5, 0.6, 0.7, 0.8} underH0, including the no cure case p(z1) = p(z2) = p(z3) = 1. UnderH1, we considered the cases
p(z1) ∈ {0.1, 0.3}, p(z2) = 0.5 and p(z3) ∈ {0.7, 0.9}. We simulated two situations according to the probability mass function
of Z given by Πz(zi) = P (Z = zi): Πz = (1∕3, 1∕3, 1∕3) and Πz = (1∕5, 1∕5, 3∕5).
The results in Table 2 under the null hypothesis suggest that the sample size n = 50 seems to be quite small in general, specially

for low cure rates. However, the rejection rate underH0 increases up to the nominal level � = 0.05 as the sample size gets larger.
Under the alternative hypothesis, the power of the test is quite acceptable even for small sample sizes, being very close to 1when
the values of the cure rate are more distant from the null hypothesis, that is, for (p(z1), p(z2), p(z3)) = (0.1, 0.5, 0.9). Finally,
when there is no cure, the rejection rates are much smaller than the nominal value (lower than 0.01 for any sample size n).

4.1.3 Z qualitative
A qualitative covariate Z with three possible values {b1, b2, b3} was considered. For each scenario, {b1, b2, b3} were linked to
the numerical values {z1, z2, z3} such that the values p(b1), p(b2) and p(b3) and the latency functions S0(t|b1), S0(t|b2) and
S0(t|b3) were given by p(z) in (8) and S0(t|z) in (7) evaluated at {z1, z2, z3}, respectively. The conditional distribution of the
censoring variable was C|Z = b1 ∼ Exp(0.6), C|Z = b2 ∼ Exp(0.45) and C|Z = b3 ∼ Exp(0.3).
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TABLE 2 Size (top) and power (bottom) of the test for Case 1 with Z discrete, under the null and the alternative hypotheses,
respectively.

H0 ∶ E
(

�|Z = zi
)

= 1 − p, i = 1, 2, 3

p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 1
60.8% cens
50% cure

52.7% cens
40% cure

44.5% cens
30% cure

36.1% cens
20% cure

14.1% cens
Without cure

n CM K CM K CM K CM K CM K
50 0.038 0.029 0.041 0.043 0.037 0.039 0.032 0.034 0.009 0.008
100 0.039 0.039 0.046 0.040 0.048 0.037 0.032 0.030 0.009 0.007
200 0.051 0.051 0.040 0.041 0.043 0.045 0.038 0.039 0.005 0.006
500 0.043 0.040 0.041 0.043 0.051 0.050 0.050 0.047 0.004 0.004

H1 ∶ E
(

�|Z = zi
)

= 1 − pi, i = 1, 2, 3

(

p
(

z1
)

, p
(

z2
)

, p
(

z3
))

= (0.3, 0.5, 0.7)
(

p
(

z1
)

, p
(

z2
)

, p
(

z3
))

= (0.1, 0.5, 0.9)

Πz = (1∕3, 1∕3, 1∕3) Πz = (1∕5, 1∕5, 3∕5) Πz = (1∕3, 1∕3, 1∕3) Πz = (1∕5, 1∕5, 3∕5)
60% cens
50% cure

52.2% cens
42% cure

58.8% cens
50% cure

44.3% cens
34% cure

n CM K CM K CM K CM K
50 0.386 0.348 0.303 0.305 0.925 0.884 0.895 0.892
100 0.680 0.635 0.614 0.604 0.991 0.987 0.986 0.986
200 0.920 0.885 0.842 0.823 0.999 0.999 0.998 0.997
500 0.999 0.998 0.996 0.994 1 1 0.999 0.999

Under H0 ∶ p(b1) = p(b2) = p(b3) = p, we used p ∈ {0.5, 0.6, 0.7, 0.8}, along with the case of no cure (p = 1). Under
the alternative hypothesis, two scenarios were considered, (p(b1), p(b2), p(b3)) = (0.3, 0.5, 0.7) and (0.1, 0.5, 0.9). Each scenario
was simulated with two possible probability mass functions for Z, (1∕3, 1∕3, 1∕3) and (1∕5, 1∕5, 3∕5).
The results, given in Table 3, are very similar to those in the Z discrete case (Table 2). The sample size n = 50 seems to be

small to achieve the nominal level � = 0.05, specially for low cure rates. However, the rejection rate underH0 with moderate and
large sample sizes increases significantly, reaching the nominal value 0.05, faster for larger cure rates. Regarding the alternative
hypothesis, as expected, the power of the test is higher for large sample sizes and whenH1 is easier to detect, that is, in the most
extreme case (p(b1), p(b2), p(b3)) = (0.1, 0.5, 0.9). As in the previous cases, with no cures the rejection rates of the test are very
low.

4.2 Application to the CRC dataset
We firstly started studying if the tumor location (Z) had any effect on the cure rate. Since the result of the test was not significant
(pCM = 0.180, pK = 0.434), for the rest of the analyses we worked with all the individuals regardless the location of the tumor,
both colon and rectum. Next we studied, separately, the effect of the covariates age (Z1) and stage (Z2) on the probability of cure.
Age at diagnosis and tumor stage are known to strongly influence colorectal cancer treatment regimen and five-year survival.32,33
However, the effect of the age and stage on the probability of cure is rarely analyzed, few studies of cure for colorectal cancer
patients have focused on the estimation of cure by age and stage at diagnosis34, but not on the statistical significance of those
covariates on the probability of cure. Conlon et al35 propose a multi-state Markov model with an incorporated cured fraction
to assess how specific covariates influence the cure rate. They state that the covariate age does not have any influence, unlike
the covariate stage. Furthermore, the studies of cure for colorectal cancer patients usually categorize the age into intervals, not
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TABLE 3 Size (top) and power (bottom) of the test for Case 1 with Z qualitative with values {b1, b2, b3} and probability mass
function Πz =

(

Πz(b1),Πz(b2),Πz(b3)
)

under the null and the alternative hypotheses, respectively. The results without cure are
also given.

H0 ∶ E
(

�|Z = bi
)

= 1 − p, i = 1, 2, 3

p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 1
68% cens
50% cure

52.7% cens
40% cure

44.5% cens
30% cure

36.1% cens
20% cure

14.1% cens
Without cure

n CM K CM K CM K CM K CM K
50 0.036 0.039 0.033 0.037 0.039 0.042 0.024 0.027 0.008 0.009
100 0.043 0.043 0.041 0.040 0.041 0.039 0.028 0.029 0.006 0.006
200 0.052 0.048 0.039 0.041 0.041 0.043 0.037 0.037 0.010 0.010
500 0.042 0.041 0.043 0.046 0.039 0.041 0.048 0.045 0.004 0.004

H1 ∶ E
(

�|Z = bi
)

= 1 − pi, i = 1, 2, 3

(

p
(

b1
)

, p
(

b2
)

, p
(

b3
))

= (0.3, 0.5, 0.7)
(

p
(

b1
)

, p
(

b2
)

, p
(

b3
))

= (0.1, 0.5, 0.9)

Πz = (1∕3, 1∕3, 1∕3) Πz = (1∕5, 1∕5, 3∕5) Πz = (1∕3, 1∕3, 1∕3) Πz = (1∕5, 1∕5, 3∕5)
60.1% cens
50% cure

52.2% cens
42% cure

58.8% cens
50% cure

44.3% cens
34% cure

n CM K CM K CM K CM K
50 0.294 0.303 0.297 0.291 0.863 0.848 0.899 0.894
100 0.575 0.579 0.589 0.579 0.990 0.989 0.987 0.989
200 0.871 0.861 0.818 0.813 1 1 0.998 0.997
500 0.998 0.998 0.994 0.992 1 1 1 1

treating it as a continuous covariate. So the purpose was to test whether the age or the stage have a significant effect on the cure
rate, using the nonparametric hypothesis test.
In Figure 2 we can appreciate how the nonparametric estimator of the cure rate changes with the age (Z1). In general, the

cure probability decreases with increasing age, suggesting that the age may have some influence on the cure rate. Younger
patients are likely to tolerate the intensive cancer treatments better than older patients, and therefore they achieve cure with
higher probability. On the other hand, elderly patients are substantially less likely to receive surgery and chemotherapy.34 The
test found this effect of the age on the cure probability as significant (pCM = 0.017, pK = 0.026).
We also tested the effect of the age on the cure probability within each stage (see Figure 3). In Stage 1 the cure rate remains

almost constant regardless the age (it fluctuates around 25% for most patients), whereas for Stages 2 and 3 the age may have some
influence since the cure probability decreases as the age increases. Specifically, in Stage 2, this probability decreases with the
age, from about 30% in patients with age at diagnosis 50-60 to 7% for patients above 80. Regarding Stage 3, the cure probability
is around 35% for individuals younger than 60, whereas for patients above this age that probability decreases dramatically. In
Stage 4, the nonparametric estimation of the cure probability is 0. This result suggests that long-term survival for individuals at
this stage is uncommon. When the test was applied for each stage separately, the effect of the age on the cure probability was
not found significant in any stage (pCM = 0.410, pK = 0.276 for Stage 1; pCM = 0.418, pK = 0.498 for Stage 2; pCM = 0.186,
pK = 0.166 for Stage 3; and pCM = 0.767, pK = 0.767 for Stage 4).
Regarding the effect of the stage (Z2) on the probability of cure, the more tumors are detected at earlier stage, the more

curative resections are possible.36 The estimated cure probabilities for each stage support that statement, decreasing from 0.28
in Stage 1 to 0.13 in Stages 2 and 3, and 0 in Stage 4, see Figure 4. However, these differences in the cure rate according to the
stage were not significant (pCM = 0.475 and pK = 0.655).
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FIGURE2Left panel: Nonparametric estimation of the cure probability depending on the age computedwith the bootstrap band-
width (solid line) and with a smoothed bootstrap bandwidth (dashed line). The thin solid line represents the Parzen-Rosenblatt
kernel density estimation of the covariate age, using Sheather and Jones’ plug-in bandwidth. Right panel: Estimated KM survival
curves for age groups.

5 CASE 2

In this case, W = (X,Z) has dimension m + 1, with a one-dimensional covariate, X, and an m-dimensional covariate, Z. We
study if the cure probability, as a function ofW = (X,Z), only depends on the covariate X, that is:

H0 ∶ E (�|X,Z) = 1 − p(X) vsH1 ∶ E (�|X,Z) = 1 − p(X,Z),

where p(x, z) depends on z. To do this, we use the observations {(Xi,Zi, �̂i), i = 1,… , n}. Following16, the statistic is defined
as:

Un(x, z) =
1
n

n
∑

i=1
f̂X(Xi)

(

�̂i − m̂(Xi)
)

I
(

(Xi,Zi) ≤ (x, z)
)

, (9)

where f̂X(x) is a nonparametric estimator of the density function of the covariate X, m̂(x) is a nonparametric estimator of the
regression function m(x) = E (�̂|X = x), and ≤ stands for component-wise inequality. Note that the process Un in (9) is a
weighted mean of the difference between the �̂i and their conditional mean under the null hypothesis. Similarly to Case 1, we
consider the Cramér-von Mises, CMn =

∑n
i=1 U

2
n (Wi) and the Kolmogorov-Smirnov, Kn = maxi=1,…,n |n1∕2Un(Wi)| statistics.

When the covariateX is continuous, the density ofX can be nonparametrically estimatedwith the Parzen-Rosenblatt estimator
f̂X,ℎ(x) which depends on a bandwidth ℎ, and the regression function m(x) with the NW kernel estimator m̂ℎ(x) computed with
the same bandwidth ℎ. As a consequence, a bandwidth ℎ needs to be selected for the computation of the test statistic in (9), say
Un,ℎ. There are two main approaches for bandwidth selection in smoothing-based hypothesis tests: power maximization under
the alternative hypothesis37; and minimization of p-values.38,39 The two approaches are strongly related.40
For a categorical or discrete variableX, the estimated density, f̂X(Xi), and regression function, m̂(Xi), in (9) are replaced by

Π̂(Xi) =
1
n

n
∑

j=1
I(Xj = Xi) and m̂(Xi) =

1
n

∑n
j=1 I(Xj = Xi)�̂j
Π̂(Xi)

,

respectively. Therefore, in this case the process Un in (9) does not depend on any smoothing parameter ℎ.
Similarly as in Case 1, for any qualitative variable inW = (X,Z)with no intrinsic order in their values, the indicator function

I
(

Wi ≤ w
)

in (9) is computed for all the possible “ordered” permutations of the values of the qualitative covariates.
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FIGURE 3 Nonparametric estimation of the cure probability depending on the age for the patients in every stage separately,
computed with the bootstrap bandwidth (solid line) and with a smoothed bootstrap bandwidth (dashed line). The thin solid line
represents the Parzen-Rosenblatt kernel density estimation of the covariate age, using Sheather and Jones’ plug-in bandwidth.

The distribution of the test under H0 is approximated by the bootstrap, considering the following procedure, parallel to the
algorithm presented in Section 4:

1. For i = 1, 2,… , n, obtain (X∗
i ,Z

∗
i ) from {(X1,Z1),… , (Xn,Zn)} by random resampling with replacement.

2. For i = 1, 2,… , n, compute a nonparametric estimator of the cure probability, 1 − p̂(X∗
i ). Then:

2.1 With probability 1 − p̂(X∗
i ) generate a bootstrap cured observation Y ∗i = ∞. Otherwise, Y ∗i is drawn from a

nonparametric estimator of F0(t|X∗
i ,Z

∗
i ) = 1 − S0(t|X

∗
i ,Z

∗
i ).

2.2 Draw C∗i from a nonparametric estimator of the conditional distribution G(t|X∗
i ,Z

∗
i ).

2.3 Compute T ∗i = min(Y
∗
i , C

∗
i ) and �

∗
i = I(Y

∗
i ≤ C∗i ).
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FIGURE 4 Estimated survival functions according to the stage.

3. With the bootstrap resample, {(X∗
i ,Z

∗
i , T

∗
i , �

∗
i ), i = 1,… , n}, compute �̂∗i in (4), obtain the bootstrap version of Un in (9),

and the bootstrap version of the Cramér-von Mises and Kolmogorov-Smirnov statistics, say CM∗
n and K∗

n .

Steps 4-5 are the same as those in the bootstrap procedure of Section 4. Note that in order to mimicH0, the bootstrap resamples
are generated assuming in Step 2 that the cure rate does not depend on Z.
As in Case 1, a nonparametric estimator of the cure probability, 1 − p(x), is needed is Step 2. When X is continuous, we

propose to use the nonparametric estimator12,13 1 − p̂g(x) = Ŝg(T 1max|x), the conditional PL estimator of the survival function
S(t|x) evaluated at the largest uncensored time, with a CV bandwidth selector.28 For a discrete or qualitative variable X with
values {x1,… , xk}, the cure rate 1 − p(xj) = E(�̂|X = xj) can be estimated as the sample mean of the {�̂i, i = 1,… , n} such
that Xi = xj .
Nonparametric estimators of the functions F0(t|x, z) = 1 − S0(t|x, z) and G(t|x, z) are required in Steps 2.1 and 2.2. These

estimators depend on the type of the covariates W = (X,Z), and they can be computed following the methodology in Racine
and Li.29 Specifically, the estimator of G(t|x, z) is the same as the one considered for the estimation of � in (4) (see Section
3). The conditional distribution F0(t|x, z) = 1 − S0(t|x, z) can be estimated with the generalized conditional product-limit
estimator.30 All the aforementioned estimators are computed with the corresponding CV bandwidth selector.28

5.1 Simulation study
In this case, W = (X,Z) has dimension m + 1, with a univariate X and a m-dimensional covariate Z. For simplicity, in this
simulation study we assumed that Z was also one-dimensional. The test statistic depends on the type of covariates X and Z.
For the sake of brevity, we will show only the results for the cases when (X,Z) are both continuous (Section 5.1.1) and discrete
(5.1.2). Since theW = (X,Z) continuous case was a highly time consuming process, only B = 1000 bootstrap resamples were
generated in that case.
The censoring variable C had conditional distribution C|X = x,Z = z ∼ Exp(�(x, z)), with �(x, z) = 0.6∕(2 + (0.5(x +

z) − 20)∕40), and the latency was

S0(t|x, z) =
exp(−�(x, z)t) − exp(−�(x, z)�0)

1 − exp(−�(x, z)�0)
I(t ≤ �0),

where �0 = 4.605 and � (x, z) = exp ((z + 20)∕40) underH0 and � (x, z) = exp ((x + z + 20)∕40) underH1. The incidence was

p(x, z) =
exp(0.476 + 0.358x(1 + �2z))

1 + exp(0.476 + 0.358x(1 + �2z))
, (10)
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TABLE 4 Size (top) and power (bottom) of the test for Case 2 with X and Z continuous with distribution N(0, 5), under the
null and the alternative hypotheses, respectively.

H0 H1
52.8% cens
42.4% cure

53.2% cens
43.1% cure

n ℎ = Cn−1∕3 CM K CM K
50 2.71

5.43
8.14
10.86
12.21
13.57
16.28

0.013
0.015
0.018
0.032
0.039
0.041
0.048

0.021
0.028
0.040
0.066
0.075
0.085
0.095

0.061
0.081
0.088
0.091
0.088
0.085
0.084

0.069
0.093
0.097
0.110
0.118
0.112
0.108

100 2.15
4.31
6.46
8.62
9.69
10.78
12.93

0.024
0.030
0.036
0.044
0.047
0.049
0.057

0.034
0.040
0.057
0.077
0.091
0.096
0.116

0.444
0.488
0.544
0.580
0.584
0.590
0.600

0.375
0.432
0.443
0.450
0.450
0.450
0.437

200 1.71
3.42
5.13
6.84
7.69
8.55
10.26

0.036
0.034
0.036
0.032
0.036
0.040
0.039

0.033
0.042
0.043
0.062
0.070
0.079
0.100

0.777
0.802
0.830
0.845
0.847
0.848
0.853

0.712
0.739
0.748
0.735
0.722
0.706
0.685

500 1.26
2.52
3.78
5.04
5.67
6.30
7.56

0.042
0.045
0.046
0.050
0.050
0.050
0.057

0.056
0.063
0.062
0.060
0.068
0.081
0.096

0.990
0.989
0.994
0.995
0.995
0.996
0.997

0.977
0.977
0.978
0.973
0.968
0.969
0.959

with �2 = 0 underH0 and �2 = 0.225 underH1.

5.1.1 (X,Z) continuous
We considered two continuous covariates (X,Z)with distributionN(0, 5). The conditional distribution functions F0(t|x, z) and
G(t|x, z)were estimated with the generalized latency13 and product-limit30 estimators, respectively. For the bandwidth required
by these estimators, we used the CV bandwidth selector28, using a search grid of equispaced bandwidths ℎj = Djn−1∕6, from
D1 = 3.5 to D10 = 30. The performance of the test Un,ℎ was assessed in a grid of bandwidths ℎ = Cn−1∕3m, following Delgado
and González-Manteiga16, where C= 10, 20, 30, 40, 45, 50, 60, and m was the dimension of the tested covariate Z (note that
in our case, m = 1).
The results are given in Table 4. The performance of the test underH0 is quite acceptable for any sample size if the bandwidth

ℎ is suitably chosen, specially as the sample size increases. In that case, the dependence of the results on the bandwidth ℎ seems
to weaken. The power of the test underH1 is quite high regardless the bandwidth, increasing, as expected, with the sample size.
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TABLE 5 Uncure probabilities, {p(xi, zj), i, j = 1, 2, 3} for Case 2 when X and Z are discrete with values {x1, x2, x3} and
{z1, z2, z3}, respectively. The values p(xi, zj) are obtained evaluating p in (10) in (xi, zj), i, j = 1, 2, 3.

H0 z1 = 0.6157 z2 = 0.6157 z3 = 0.6157

x1 = −2.4622 0.40 0.40 0.40
x2 = −0.19702 0.60 0.60 0.60
x3 = 1.0371 0.70 0.70 0.70
H1 z1 = −13.123 z2 = 0 z3 = 4.9454
x1 = −2.4622 0.10 0.60 0.80
x2 = −0.19702 0.35 0.40 0.42
x3 = 1.0371 0.56 0.30 0.22

TABLE 6 Size and power of the test for Case 2 with X and Z discrete, with values {x1, x2, x3} and {z1, z2, z3}, respectively.
The probability mass function of X, Πx, equals that of Z, Πz.

H0 H1
Πz = (1∕3, 1∕3, 1∕3) Πz = (1∕5, 1∕5, 3∕5) Πz = (1∕3, 1∕3, 1∕3) Πz = (1∕5, 1∕5, 3∕5)

55.4% cens
42.9% cure

52.6% cens
37.6% cure

54.1% cens
44.1% cure

52.9% cens
38% cure

n CM K CM K CM K CM K
50
100
200
500

0.029
0.048
0.041
0.044

0.044
0.059
0.056
0.049

0.040
0.045
0.042
0.040

0.066
0.051
0.050
0.043

0.076
0.231
0.494
0.946

0.092
0.212
0.377
0.854

0.073
0.158
0.244
0.514

0.099
0.149
0.225
0.449

5.1.2 (X,Z) discrete
The covariates X and Z are discrete variables with values {x1, x2, x3} and {z1, z2, z3}, respectively. For any scenario, the
values of X were {x1, x2, x3} = {−2.4622,−0.19702, 1.0371}. The values of Z were z1 = z2 = z3 = 0.6157 under H0, and
{z1, z2, z3} = {−13.123, 0, 4.9454} underH1. The probabilities p(xi, zj), with i, j = 1, 2, 3, are given by p in (10) evaluated at
(xi, zj), see Table 5 for details. We simulated two different situations depending on the corresponding probability mass functions
for X and Z: in the first one, both are (1∕3, 1∕3, 1∕3), whereas in the second one, both are (1∕5, 1∕5, 3∕5).

Table 6 shows the results of the test. Under the null hypothesis, the rejection levels are very close to the nominal � = 0.05,
specially for larger sample sizes. It is important to highlight that the power of the test increases considerably with the sample
size. For instance, for CM it increases from 0.076 with n=50, to 0.946 with n=500.

5.2 Application to the CRC dataset
Since the probability of cure was found to depend on the age of the patient (X), see Section 4.2, the test was performed to study
if it also depended on the cancer stage (Z). Note that since the covariate age (X) is continuous, a bandwidth ℎ was required
to compute the test statistic in (9). The test was applied using a set of bandwidths ℎ = Cn−1∕3 with C = 10, 20, 40, 60, 100,
125, 150, 200, 250, 300, 350, 400, 450, 500, 550 and 600. The results indicate that if the age (X) is assumed to affect the cure
probability, then the effect of the stage (Z) was not statistically significant with any of the values of ℎ considered, from the
smallest one ℎ1 = 1.34 (pCM = 0.394, pK = 0.504) to the largest one ℎ16 = 80.50 (pCM = 0.068, pK = 0.073).
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6 EXTENSIONS OF THE TEST

The test can be generalized to a covariate vectorW = (X,Z), where X is ℝq-valued and Z is ℝm-valued, as follows:

Un(w) =
1
n

n
∑

i=1
f̂X(Xi)(�̂i − m̂(Xi))I(Wi ≤ w), (11)

where f̂X(x) and m̂(x) are multidimensional nonparametric estimators of the density function ofX and the regression function
m(x) = E(�̂|X = x), respectively.
Dealing with multivariate covariates W complicates the nonparametric estimation of the density function fX(x) and the

regression function m(x) needed for the computation of Un(w) in (11), the estimation of the conditional censoring distribu-
tion G(t|w) required for the estimation of �i in (4), and the estimation of the latency function S0(t|w), essential in Step 2.1 of
the bootstrap procedure. Suitable nonparametric estimators are available in the literature16,29,30 that avoid the curse of dimen-
sionality using product kernels. Specifically, if X is continuous, the density fX(x) and the regression function m(x) can be
nonparametrically estimated as follows:

f̂Xℎ(Xi) =
1
nℎq

n
∑

j=1
K
(Xi −Xj

ℎ

)

and m̂ℎ(Xi) =
1
nℎq

1
f̂Xℎ(Xi)

n
∑

j=1
K
(Xi −Xj

ℎ

)

�̂j ,

where K denotes a kernel function onℝq such as K(x) =
∏q

j=1K(xj), and ℎ→ 0 is the bandwidth parameter. This general case
is not considered in the simulation study.

7 CONCLUSIONS

A nonparametric hypothesis test for the effect of covariates W = (X,Z) on the probability of cure in mixture cure models is
introduced. Specifically, X is assumed to affect the cure rate and the influence of Z is tested. The methodology, that can be
applied to any type of covariates, enjoys the flexibility of nonparametric hypothesis tests, with the advantage of getting rid of
the need for a bandwidth parameter when there is not any continuous variable inX, including the simplest case of no covariate
X. For more complex scenarios, the choice of a smoothing parameter ℎ is required. Several bandwidth selectors for smoothed
tests are proposed in the literature that can also be applied in this context.
The test is based on the estimation of an unobservable variable �, a variable with the same conditional expectation as �, through

suitable estimation of the conditional distribution of the censoring variable G(t|w), and a cure threshold �. To approximate
the distribution of the test using the bootstrap, the estimation of the cure rate p(x) and the latency function S0(t|w) is also
needed. The results of the simulation study support the use of nonparametric estimators for these functions with a CV bandwidth
selector.28 The method is applied to a colorectal cancer dataset, and the results show that the covariate age has a significant
influence on the cure probability.
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