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SUMMARY

This paper presents two main contributions. The first is a compact representation of huge sets of functional
data or trajectories of continuous time stochastic processes, which allows keeping the data always
compressed, even during the processing in main memory. It is oriented to facilitate the efficient computation
of the sample autocovariance function without a previous decompression of the data set, by using only
partial local decoding. The second contribution is a new memory efficient algorithm to compute the sample
autocovariance function.
The combination of the compact representation and the new memory efficient algorithm obtained in our
experiments the following benefits. The compressed data occupy in disk 75% of the space needed by the
original data. The computation of the autocovariance function used up to 13 times less main memory, and
run 65% faster than the classical method implemented, for example, in the R package.

KEY WORDS: Big data; compact representation; autocovariance function; efficient computation; func-
tional data; R package

1. INTRODUCTION

In the last decade, we are attending to an exceptional growing demand for large-scale data analysis,
which is linked to the new field called Big Data. The need to process huge collections of data
poses several challenges. On one hand, statistics and artificial intelligence communities continue to
develop new methods and techniques to analyze data. On the other hand, computer scientists have
to adapt analytical algorithms to data sets with data volume too large, data rate too fast, and data
too heterogeneous, the so-called Volume, Velocity, and Variability. In this work, we deal with the
first issue: data volume too large.

Researchers or professionals working in Big Data need mastering many different
techniques and skills. To facilitate their work, several packages appeared, mainly SAS (see
http://www.sas.com/), Matlab (see http://www.mathworks.com/products/matlab), and R
(see http://www.r-project.org). These packages are very useful, but they have scalability
problems [1]. For example, the Installation and Administration manual of R recommends loading
into main memory data sets that occupy only 10-20 % of the available RAM and warns that if the
data set exceeds 50% of the available RAM, the system will be unusable due to operation overhead,
even the simplest ones. The solution to these problems is in most cases the use of parallel processing
[2, 1, 3, 4]. Parallel processing is a straightforward solution, probably due to the existence of a good
set of available tools. However, while putting most of the efforts in this strategy, one is missing
chances to improve the scalability by means of other techniques. The use of more evolved data
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structures and algorithms is losing the role that they had in the past when the hardware technology
was more limited.

One of the alternatives is the in-memory data management, that advocate to take advantage of
the higher bandwidth and lower latency of the upper levels of the memory hierarchy [5, 6, 7]. A
parallel research line called compact data structures [8] has the same objective. Perhaps in-memory
data management is more focused in traditional databases, whereas compact data structures have
a broader scope, including many different data types and data structures. In any case, the target
is to fit, efficiently query, and manipulate much larger data sets in main memory, and thus avoid
costly disk accesses. To achieve this goal, compression techniques are used, but one must be careful
when choosing the techniques. Although there are highly sophisticated compression methods, not
all are valid for in-memory data management. For example, most compression methods require
starting the decompression from the beginning, something unfeasible in our scenario. In addition
the decompression procedure should be fast, otherwise the processing times would be excessive.

Compression of floating point numbers has been proven difficult, mainly because the data sets
usually contain many distinct values and with few repetitions. These two features make sequences
of floating point numbers poorly skewed and, as a consequence, the entropy of those sequences
is high, making them virtually incompressible with statistical compressors. Therefore, general
purpose compressors may not succeed over sequences of floating point numbers. Instead, there
are compressors that take advantage of properties of the data domain. Thus, there are compressors
specially designed for images, video, or sound [9, 10, 11, 12], for general scientific data [13, 14], or
for more specific domains [15, 16].

Although our method can be used for trajectories of any continuous time stochastic process, in
this work, we rely on the characteristics of Brownian motion to develop an in-memory compression
technique especially suited for these data. Since the seminal work by Einstein [17], the Brownian
motion has been extensively used to model the movements of particles subject to instantaneous
imbalanced combined forces exerted by collisions. Brownian motion and related stochastic pro-
cesses have been successfully used to model the movement of colloidal particles or the trajectory
of pollen grains suspended in water. Over the past forty years, starting with the papers by [18],
the Brownian motion and related processes have been used to model option pricing and plenty of
financial time series (see, for instance, [19]).

Our method is designed to efficiently compute empirical moments from a sample of observed
trajectories of the stochastic process. One example of these moments is the empirical autocovariance
function, which is a very important tool for functional principal component analysis. It can be used
for dimension reduction, as in the Karhunen-Loève decomposition.

Our method, called Compact representation of Brownian Motion (CBM) compresses sequences
of 32-bit floating point numbers representing Brownian motion trajectories up to around 75% of
the original size. We show that we can compute the sample autocovariance function keeping the
data compressed in main memory, using only partial local decoding of the data when needed. In
addition, we present a modification of the typical algorithm to compute the sample autocovariance
function, which allows a much better main memory usage, and that can be used for trajectories of
any continuous time stochastic process.

We compare our C++ implementation, which receives as input CBM compressed data, against:
the R implementation (in fact a C program) and our own C implementation, both operating on plain
data. We show that, if we use the classical method to compute the sample autocovariance function,
the CBM consumes up to 3.7 times less memory than the R package, and in the order of a C
program. What is more surprising is that the computation of the sample autocovariance function is
around 65% faster than the C program run over the plain data, thanks to the use of the compression
process to precompute values and a better usage of the memory hierarchy.

The new memory efficient algorithm to compute the sample autocovariance function obtains big
memory savings, up to 13 times less than the R package. Moreover, using CBM, this version is up
to 25% faster than the classical version applied over plain data.

The outline of the paper is as follows. Section 2 presents the motivation for the use of compression
in the context of empirical autocovariance computation for Brownian motion trajectories. Section
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Figure 1. Four trajectories (curves) of a Brownian motion.

3 shows some related work in the compression field. Section 4 presents CBM. Section 5 describes
the algorithm to compute the sample autocovariance function that saves main memory. Section 6
shows the results of our empirical evaluation, and Section 7 presents our conclusions and directions
of future work.

2. BROWNIAN MOTION AND AUTOCOVARIANCE ESTIMATION

In real life, the Brownian motion can be used to model plenty of phenomena. It can be observed in
microscopic particles that, when floating in a fluid, exhibit continuous but very jittery and erratic
motion, since they are continuously bombarded by the fluid molecules. This natural phenomenon
was formalized by Norbert Wiener in a rigorous mathematical way, as a stochastic process with
continuous time.

The Brownian motion is a notion of central importance in probability theory, and it is used as a
building block for a number of related random processes that are of great importance in a variety of
applications in many fields, in pure Mathematics and in Applied Mathematics. Economics is one of
the main applications of Brownian motion. It is used, for example, to predict the prices of financial
products. In Medicine, it has been used in image analysis. Brownian motion has many applications
in Engineering. For example, it can be used to model noise in electronics and instrument error. In
Physics, for example, it is used to model the movement of little particles in a fluid or a gas, like in
the aerosol transport phenomena.

2.1. Brownian trajectories

A Brownian trajectory (or curve) is just an observation of a Brownian motion stochastic process. In
practice, this can be one of the components of a 3D motion, for example, the height of the particle,
X(t). These values make up a trajectory, and thus a trajectory is a function that, for every time
instant, t, gives a real number. In practice, time is discretized and a trajectory is also discretized as
a sequence of floating point numbers. Figure 1 shows an example of several Brownian trajectories.
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2.2. Autocovariance function estimation

Brownian trajectories are randomly observed functions, so statistical analysis of them can be
included in the field of functional data analysis. This is a very active research topic in modern statis-
tics that focuses on analyzing complex and high dimensional data structures [20, 21, 22]. Classical
important problems in this field are dimension reduction and supervised classification. These can be
addressed using functional principal component analysis and functional data discriminant analysis
(see [20, 23] among many other). To carry out these techniques, estimation of autocovariance
functions or autocorrelation functions is needed. These are the extension of covariance matrices
or correlation matrices to the context of functional data.

In this work, as an example of a statistical process that operates on functional data, we consider
the autocovariance function estimation for Brownian trajectories. For a collection of trajectories
X1, X2, . . . , Xn, the value each one has at time t ∈ T , is represented by X1(t), X2(t), . . . , Xn(t),
and the autocovariance function is estimated using Equation (1):

Ĉ (s, t) =
1

n

n∑
i=1

(
Xi (s)−X (s)

) (
Xi (t)−X (t)

)
, T , (1)

for every s, t ∈ T , where X (s) = 1
n

∑n
i=1Xi (s). It is clear that direct computation of (1), based on

a large number of trajectories, n, for a large number, m, of instants t ∈ T is a time-consuming
process and it requires plenty of memory and disk. This is an important problem in Big Data
analysis.

3. RELATED WORK

3.1. Compressing Integer Numbers

Let S = (s1, s2, . . . , sn) be a sequence of symbols over an alphabet Σ. A code is an injective
function C : Σ→ {0, 1}∗, that assigns a distinct sequence of bits C(si) (codeword) to each symbol
si ∈ Σ. A way to compress S is to order the symbols of Σ by their frequency in S, and assign shorter
codewords to the more frequent symbols. This strategy is called statistical encoding, Huffman
coding [24] is the best code that is univocally decodable.

If Σ is formed by integers, Huffman can be used, but if the size of Σ is large, since Huffman has
to explicitly store the function C, that space may be prohibitive. In this case, fixed or static codes
can be used. These codes do not use the probabilities, instead, each integer is always mapped to the
same codeword, that is, C does not depend on the exact input sequence S and therefore there is no
need to store it.

Still, the main idea is the same, compression is achieved by assigning shorter codewords to the
more frequent integers, and it is assumed that these numbers are the smallest integers. Therefore
better compression can be obtained if the original sequence is preprocessed with relative or
differencing encoding. Each integer, except the first one, is replaced by its difference with the
previous one. However, the differences can be negative, this poses a problem since most codes for
integers only work with positive numbers. The first solution is to store all the integers in absolute
value and add 1 bit per integer to indicate whether the original integer was positive or negative. This
additional bit can be avoided by using the ZigZag encoding, which maps signed integers to unsigned
integers. The -1 is encoded as 1, 1 as 2, -2 as 3, and so on. The problem with this approach is that
numbers with a large magnitude will have a codeword with an even greater magnitude.

Examples of fixed codes are the unary code, Elias codes (γ-codes and δ-codes) [25], or Golomb
codes [26]. From the input sequence, the Golomb encoder chooses one parameter m. The codeword
assigned to a source symbol si is composed of two parts. The first one is q = bsi/mc encoded
in unary. The second part is r = si − qm encoded in minimal binary: being c = dlogme, the first
2c −m values of r are encoded in binary using c− 1 bits, and the rest are encoded in binary using c
bits. The Rice codes [27] are a special case of Golomb codes, in which the parameter m is chosen to



5

be a power of two. This choice makes their computation faster, and thus Rice codes are extensively
used.

The codes shown so far produce codewords of arbitrary bit lengths. This causes bit manipulations
that slow down the encoding and decoding processes. To avoid this, there is a family of codes that
produce codewords formed by one or more chunks of b bits, usually of 8 bits. The first example
is Vbyte [28]. The blog sic+ 1 bits required to represent si in binary are split into blocks of b− 1
bits. The chunk holding the most significant bits of si is completed with a bit set to 0 in the highest
position, whereas the rest are completed with a bit set to 1 in the highest position. Therefore, using
chunks of 8 bits, the first chunk of a codeword is always a number between 0 and 127, and the
rest are between 128 and 255. Therefore, we can split the byte values into two types, the beginners
(values between 0 and 127) and the continuers (values between 128 and 255), the beginners signal
the begin of a codeword. (s,c)-Dense Code (SCDC) [29] is similar to Vbyte, it also has two types of
chunks, but instead of beginners, it uses stoppers. A codeword is formed by one stopper, and zero,
one or more continuers. The stopper chunk signals the end of a codeword, and thus, that the next
chunk corresponds to the next codeword. However, instead of using 128 values for each set, SCDC
decides what is the best distribution of the byte values between stoppers and continuers for a given
input sequence, in order to obtain the best compression.

Codes based on chunks are faster, but they pay a price in space. A different family of codes tries
to join the good space consumption of the bit-based codes and the fast encoding and decoding of the
byte-aligned codes. Instead of encoding and decoding each source symbol, these codes treat short
sequences of numbers and read whole computer words from the input.

PforDelta [30] encodes a fixed number of integers at a time (typically 128), using for all of them
the number of bits needed for the largest one. A fraction of the largest numbers (usually 10%) is
encoded separately, and the other 90% is used to calculate how many bits are needed per number.

The codes shown so far do not provide direct access to positions, that is, we cannot directly
access the codeword representing the ith symbol in the original sequence without decompressing
from the beginning, because they use variable length codewords. The classical solution to this
problem is to use absolute pointers to sampled elements, that is, to each hth-element of the sequence.
These pointers obviously suppose an overhead. However, there are techniques that avoid the use
of pointers. These techniques use a conventional code along with an additional structure to allow
direct access. Examples can be based on Elias-Fano codes [31, 32], on Interpolative coding [33],
or on Vbyte [34]. The latter approach is denoted as Directly Addressable Codes (DACs). Instead of
storing all the chunks of each codeword before the chunks of the next codeword, DACs store the
last chunk (the least significant) of all codewords sequentially. For those codewords that have more
than one chunk, that is, those with the mark bit set to one, the second least significant chunks are
stored separately and so on. DACs can use different chunk sizes for first, second,... chunks in order
to adjust them to obtain the best possible compression. However, decoding DACs has to pay the
price of recovering the different chunks of a codeword from the different independent sequences of
chunks.

Various techniques make use of the wavelet tree [35], which is a structure that can store the vari-
able length codewords of a sequence, allowing to retrieve the ith codeword without decompressing
the previous codewords. It has been used with Huffman [35], Vbyte [36], Elias and Rice codes [37],
or Fibonacci codes [38].

3.2. Compressing Floating Point Numbers

General-purpose compressors may not perform well over floating point data, thus compression
methods specifically designed to compress those numbers were developed following two main
strategies. The first one is based on allowing some loss of precision [9, 10, 16]. The second one
uses a predictor that, before compressing a symbol, obtains a prediction of its value based on
previous values, and then stores the difference between the prediction and the actual value [13].
Space saving is obtained because such a difference is a smaller value than the original one and, in
addition, it is usually compressed with some sort of encoder. Following this strategy, the well-known
ALS compression method [11] of MPEG-4 combines two predictors and Golomb-Rice or Block
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Gilbert Moore coding. Lindstrom and Isenburg [12] presented a lossless compression method that
uses a predictor, called Lorenzo, and encodes the difference with a two level compression scheme.
The method proposed by [39] selects the best predictor from an available set, based on the values
immediately compressed before the current value. In [15], a regression line computed from the last
compressed values is used to predict the next value. The works in [14, 40, 41] use a forecast system
based on jump address predictors for CPUs.

In [42], it is presented several alternatives for compressing and indexing sequences of floating
point numbers. This work uses data structures designed to index and compress text, adapted to be
used on the most significant part of the numbers, whereas the remainder part of the number is stored
in plain form.

Concerning Brownian motion values and compression, [43] is the only related work. In this paper,
compression methods were used, but the target was to predict future values of stock shares, and not
space saving.

4. CBM

There are good compression methods designed for floating point numbers, but they are not valid
for in-memory processing since they require to decompress from the beginning, and in some cases,
they obtain slow compression and/or decompression times.

CBM is based on a very simple compression method, the differencing encoding. However, this
technique cannot be directly applied. Observe that if we subtract two 32-bits floating point numbers,
we obtain a new floating point number and therefore we still need 32 bits to represent it. To avoid
this problem, we translate the floating point numbers into integers. As we will see later, we only
deal with positive numbers, then we simply cast the floating point numbers to the integer that has
the exact same 32-bit binary representation.

Next, we have to reduce the size of those 32-bit numbers. Using the typical prediction strategy to
compress floating point numbers is a challenge since Brownian motion values are used precisely
to model the randomness. Nevertheless, the processed values have an interesting characteristic,
they come from a Brownian motion, and thus two consecutive values cannot differ too much. This
fits quite nicely with the differencing encoding method, however, we do not use it directly. The
differences of CBM are not with respect to the previous number, they are the difference with respect
to the previous number plus the average of the differences between each pair of consecutive numbers
of its trajectory. In other words, we use a prediction strategy, where the prediction computed
to encode a given number is the previous number plus the average of the differences between
each pair of consecutive numbers of the considered trajectory. That is, for each trajectory Xi, we
compute the average of the differences between consecutive values at times t− δ and t for all t ∈ T
(avgDiff (Xi)). Then, to compress the value of that trajectory at time t ∈ T , denoted by Xi(t), we
make a prediction Pi(t) from the previous value Xi(t− δ) as: Pi(t) = Xi(t− δ)+avgDiff (Xi), so
we encode Xi(t) as the prediction minus the actual value to encode (Pi(t)−Xi(t)).

CBM considers all numbers in absolute value since the difference between two numbers of
different sign yields larger differences. Observe, for example, that the difference between 1 and
-2 is 3, whereas the difference between 1 and 2 is only 1.

Therefore, the first step of CBM translates the original numbers into positive values. For this, we
have to options:

• To use a bitmap (bitMapS) to mark the positions of negative numbers.
• To use ZigZag encoding.

Figure 2 shows an example using bitmaps.
The second step takes the 32-bit number representing each floating point number and casts it into

an unsigned integer without any change in the bit number. Step 3 computes the differences between
consecutive numbers and obtains the average difference of the trajectory, which in our example is
12. Obviously, observe that the first value of the sequence must be kept in plain.
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Figure 2. Compression process of a trajectory.

Step 4 transforms the differences into positive values again. Therefore, we can use either a bitmap
(bitMapP) or a ZigZag encoding.

Step 5 shows the result of subtracting the average difference from each difference. Converting
the resulting values to absolute values requires the addition of another bitmap (shown in step 6),
or the use of a ZigZag encoding again. Finally, the sequence of differences is compacted with a
compressor for integers, the bitmaps (if they exist) are compacted with a bitmap compressor [44],
and the first value of each trajectory and the average difference is stored in plain.

Algorithm 1 Compression.
1: function COMPRESSION(t trajectories, #Points)
2: for each trajectory ti do
3: First[ti] = ti[1] . Store first value of each trajectory
4: for p← 2,#Points do
5: if ti[p] < 0 then bitMapS[ti, p− 1]← 1 . Mark the positions of negative values
6: diffs[ti, p− 1]← |ti[p]| − |ti[p− 1]| . Compute differences
7: if diffs[ti, p− 1] < 0 then
8: bitMapP[ti, p− 1]← 1 . Mark the positions of negative values
9: diffs[ti, p− 1]← |diffs[ti, p− 1]| . Change of sign

10: avgDiff ← avg(diffs[ti]) . Compute the average difference of the current trajectory
11: for p← 1,#Points− 1 do
12: diffs[ti, p]←diffs[ti, p]− avgDiff . Subtract the average difference
13: if diffs[ti, p] < 0 then
14: bitMapA[ti, p]← 1 . Mark the positions of negative values
15: diffs[ti, p]← |diffs[ti, p]| . Change of sign
16: Compression of bitMapS, bitMapP, and bitMapA
17: Compression of diffs with a compressor for integers.

Algorithm 1 shows the pseudocode of the compression algorithm, where the bitmaps can be
avoided by using ZigZag encoding. Since the compression method is based on differences, it is
obvious that the decompression must start at a position with a number in plain form. In our method,
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we only store in plain form the first number of each trajectory, but we could store numbers in
plain form at regular intervals, in order to be able to start the decompression at those points. This
feature allows us to decompress portions of the input data set. In our case, we can decompress
trajectories individually. This allows saving main memory during the computation of any algorithm
over the compressed sequence since we can decompress only the trajectories needed at a given step
of the algorithm. For this, it is important to have a fast decompression algorithm, otherwise, the
computation times could be harmed.

Algorithm 2 shows the decompression algorithm. This process starts by taking the first number
of a trajectory in plain. In line 5, we obtain the average difference of that trajectory, which was
stored in plain for each trajectory during the compression procedure. Next, for each number in the
compressed file, we perform the reverse process of that shown in the compression procedure. For
decompressing a given number, we read the difference corresponding to that number and we add
(or subtract) the average difference of the trajectory. Then that value is added (or subtracted) to the
previous number. Finally, if the number was originally a negative value, then the sign is changed.

Algorithm 2 Decompression
1: function DECOMPRESSION(#trajectories, #Points)
2: for t← 1,#trajectories do
3: Values[t][1]←First[t] . Get first value of each trajectory
4: lastProcNumber←First[t]
5: avgDiff ←AvgDiffs[t] . Get the average difference of the current trajectory
6: for p← 2,#Points do
7: number←diffs[t, p− 1] . Get the difference between points
8: if bitMapA[t][p− 1] then . Check if is added or subtracted to average difference
9: number←avgDiff−number

10: else
11: number←avgDiff +number
12: if bitMapP[t][p− 1] then . Check if is subtracted or added to the previous number
13: number←lastProcNumber+number
14: else
15: number←lastProcNumber−number
16: lastProcNumber←number . The number is saved to calculate the next
17: if bitMapS[t][p− 1] then . Check if real number was negative
18: number←-number
19: Values[t][p]←number
20: return Values

5. MEMORY EFFICIENT COMPUTATION OF THE SAMPLE AUTOCOVARIANCE
FUNCTION

To compute the sample autocovariance function in (1) at two time instants, s and t, the values of all
trajectories in these two time instants are needed. In addition, the classical implementation of that
equation forces to use each trajectory many times. In this way, the classical algorithms, implemented
in R for example, maintain the whole data set in memory. However, the equation can be implemented
using each trajectory only once, accumulating in each entry of the sample autocovariance function
the contribution to the sum due to the considered trajectory, as shown in Algorithm 3.

However, the algorithm requires the average value of all trajectories at all time instants (avgt). To
obtain those values, for each time instant, we would require loading the value of all trajectories
in that time instant. This process should be performed in advance, which yields to worse the
running times. Instead, we compute this value during the compression process, and we add it to
the compressed sequence, indeed it is required by the decompression procedure. In this way, the
autocovariance computing process can read it from the compressed file.

CBM uses a compact data structure strategy since it enriches the compact representation to
improve the manipulation of the data. It takes advantage of the compression process to perform
pre-calculations that will be useful during further processing of the data set.
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Algorithm 3 Autocovariance computation trajectory by trajectory
1: function COVARIANCE COMPUTATION(t trajectories, #Points)
2: for each trajectory ti do
3: for p← 1,#Points do . Traverses all the time instants
4: for q ← p,#Points do . Traverses the time instants from p to the end
5: cov[p, q]← cov[p, q] + ((ti[p]− avgp) ∗ (ti[q]− avgq))
6: cov[q, p]← cov[p, q]

7: for p← 1,#Points do
8: for q ← 1,#Points do
9: cov[p, q]← cov[p, q]/#trajectories

Note that this algorithm is not linked to CBM or the Brownian motion, as it can be used for
trajectories of any continuous time stochastic process.

6. EXPERIMENTAL STUDY

6.1. Data set analysis

Table I shows the details of the data sets used in this study. Several thousands (n =
10000, 20000, 30000) of Brownian motion trajectories were simulated in m = 1000, 2000,
10000, 15000, 20000, 30000 time instants in T = [0, 10]. The Brownian motion considered has
zero mean and covariance function c(s, t) = min{s, t}. It has been simulated by using independent
normally distributed increments for contiguous time instants. The data sets can be downloaded
from http://sarela.dc.fi.udc.es/datasets.

The first column of Table I shows the number of trajectories (n) and the number of time instants
(m), with the form n×m. The second column shows its size in MBs.

In order to give an idea of how hard is to compress those data sets, we use Shannon’s information
theory [45] to measure the amount of information in those data sets. We used the zero-order
empirical entropy (in bits/number). Given a sequence S[1, n] over an alphabet Σ = [1 . . . σ], the
zero-order empirical entropy is H0(S) =

∑
i=1...σ ni/n log(n/ni), where ni is the number of

occurrences of the ith symbol of Σ in S.
To compute the entropy, we regarded the source file as a sequence of 1-byte, 2-byte, and 4-byte

integers. The latter case considers the original numbers, but regarded as integers. For each case, we
provide the empirical entropy in bits per number and the value of log(|Σ|), where |Σ| denotes the
size of the alphabet, that is, the list of distinct values found in the data set. blog(|Σ|)c+ 1 gives the
minimum number of bits required to represent each number using binary codes of the same length,
which is adequate for uniform distributions.

When the original data set is processed considering integers of 1 byte, the empirical entropy is
around 7.38 bits per number, whereas log(|Σ|) is exactly 8, since in all datasets, the 256 possible
1-byte values are present. When the data set is regarded as a sequence of 2-byte integers, the entropy
is around 14.22 bits per number and log(|Σ|) is 16. Finally, in the case of 4 byte integers the values
of the empirical entropy are between 22.75-26.50 bits per integer. In this case, log(|Σ|) is not 32,
since not all possible 32-bit values are present in the datasets.

Observe that in the case of 1-byte integers and 4-byte integers, the empirical entropy is very close
to log(|Σ|), whereas in the case of 2-byte integers, there is a little gap. This is probably due to the
nature of Brownian trajectories and the internal format of floating point numbers. In a Brownian
trajectory, the differences between close numbers are small, thus the most significant 16-bits of the
32-bit floating point numbers will vary less since that part includes the sign (1 bit), the exponent
(8 bits) and the most significant part of the mantissa (7 bits). Therefore, the first 16-bit numbers
will have a more skewed distribution and this is precisely where CBM obtains compression, like all
compressors designed for floating point data.

Anyhow, it seems that the chances to compress are low, since the simple binary representation
of the numbers is close to the amount of information they carry, that is, the original sequence has
an almost flat distribution and a large amount of distinct numbers, and this is precisely the worst
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scenario to achieve compression. This is not surprising, since values simulated from a Brownian
motion are inherently random.

1-byte integers 2-byte integers 4-byte integers

Data set size Size (MBs)
Entropy

(bits/
1b-int)

log(|Σ|)
Entropy

(bits/
2b-int)

log(|Σ|)
Entropy

(bits/
4b-int)

log(|Σ|)

10000x1000 38.15 7.38 8 14.22 16 23.14 23.17
20000x2000 152.59 7.39 8 14.22 16 24.83 24.94
10000x10000 381.47 7.39 8 14.21 16 25.66 25.86
10000x15000 572.20 7.38 8 14.22 16 25.93 26.18
20000x20000 1525.88 7.38 8 14.22 16 26.34 26.71
30000x30000 3433.23 7.39 8 14.22 16 26.50 27.00

Table I. Data set sizes and entropy.

1-byte integers 2-byte integers 4-byte integers

Data set size
Entropy

(bits/
1b-int)

log(|Σ|)
Entropy

(bits/
2b-int)

log(|Σ|)
Entropy

(bits/
4b-int)

log(|Σ|)

10000x1000 6.60 8 12.07 16 21.53 21.86
20000x2000 6.54 8 11.89 16 21.56 22.39
10000x10000 6.37 8 11.44 16 20.79 22.47
10000x15000 6.33 8 11.32 16 20.59 22.65
20000x20000 6.29 8 11.24 16 20.46 23.30
30000x30000 6.24 8 11.13 16 20.25 23.75

Table II. Entropy of the files of differences.

Recall that our strategy can be divided in two main steps: first, we preprocess the original data
set in order to obtain a sequence of differences and second, we compress such sequence using
compressor for integers. The sequence of differences (shown in the Step 6 in Figure 2) is analyzed
in Table II. We can see a decrease in the entropy, and thus the integer compressor will be more
successful in this new preprocessed file. As an example, if we apply the SCDC compressor over
the original sequence, the output is even bigger than the original file, around 125%, whereas if
we apply it over the sequence of differences, the compression ratio is around 85% in large files,
including the auxiliary bitmaps. These auxiliary bitmaps are the price that CBM has to pay, in part,
for that decrease of entropy, which in the case of the SCDC version represents 11− 11.5% of the
compressed data set, and between 11.5− 13.34% in the case of the DAC version.

Another interesting effect of the preprocessing is that, when the original dataset is considered
as a sequence of 4-byte integers, the entropy grows as the size of data set increases. However, in
the sequence of differences, the entropy decreases as the size of data set increases, and this will be
reflected in the compression ratio, as it will be shown below.

6.2. Setup

Our test machine has an Intel(R) Core(tm) i7-3820@3.60GHz CPU (4 cores/8 siblings) and 64GB of
DDR3 RAM. It runs Ubuntu Linux 12.04 (Kernel 3.2.0- 121-generic). The hard disk was a Seagate
ST3000DM001.

As compressor for integers, we used the following techniques: DAC, SCDC, PforDelta, and
Kulekci [37] using Rice and Elias encoding. We tested other compressors for integers, but they
yield worse values.

By default, we used the three bitmaps: bitMapA, bitMapP , and bitMapS. For DAC and Kulekci
with Rice encoding, we also provide the values substituting bitMapP and bitMapS by ZigZag
encoding. We tested this approach for the rest of techniques, but the results were worse than the full
bitmap versions or they did not run.

We only substituted the bitMapP and bitMapS, since if we use ZigZag encoding in the
step corresponding to the bitMapA, the numbers will have a larger magnitude, and thus, since
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compressors for integers are designed to compress small integers, most of them did not work, or if
they run, the results were poor.

6.3. Compression performance

Table III shows the compression ratio, that is, the size of the compressed data set as a percentage of
its original size. We compare CBM, against: Gnu gzip†, a Ziv-Lempel-based compressor, the p7zip‡

compressor, which is a LZMA compressor with a dictionary of up to 4 Gigabytes, and fpzip§, a
compressor specially designed to compress floating point numbers. In the case of gzip, we used the
default level of compression.

fpzip obtains the best results, between 15% and 21% better than CBM, except in the largest data
set, where fpzip did not run. The next level is p7zip, yet CBM is very close, in the largest data
set, the Kulekci-Elias version is on a par, and the PforDelta version is at most 8% worse. However,
neither fpzip nor p7zip allow partial decompression, essential to directly use the compressed data in
main memory.

With respect to the CBM versions, the PforDelta and DAC-ZZ are the most homogeneous,
although in the largest data set the best one is the Kulekci-Elias version. The SCDC and Kulekci-
Rice versions are in general worse.

CBM
DAC Kulekci Pfor

Data set size gzip p7zip fpzip bitmap ZZ SCDC Rice-b Rice-ZZ Elias Delta
10000× 1000 92.61 80.81 72.42 85.13 84.73 89.78 95.85 99.13 132.88 83.20
20000× 2000 92.30 79.05 70.82 81.41 81.05 87.58 92.15 91.22 105.33 80.84
10000× 10000 90.35 75.01 66.85 76.23 75.91 85.63 89.16 84.08 79.20 76.00
10000× 15000 89.66 73.98 65.79 75.32 75.00 85.43 88.88 83.39 76.30 75.16
20000× 20000 89.15 73.21 64.96 74.61 74.29 85.26 88.76 83.03 74.59 74.59
30000× 30000 88.47 72.12 n/a 73.76 73.44 85.07 88.61 82.66 72.67 73.93

Table III. Compression ratio.

Table IV shows the performance in compression time. Again the best method is fpzip, except
in the largest data set, where it did not run, and then gzip is the fastest. CBM pays the price of
performing a compression process per trajectory. If CBM would compress the data of all trajectories
in a unique run of the integer compressor, and thus producing a unique compressed data set, it would
be even faster than fpzip. However, in order to be able to load into memory the data of only one
compressed trajectory, the trajectories have to be compressed isolatedly.

For our purpose of using compressed data in main memory, the key feature is the decompres-
sion performance, a slow decompression process will harm the processing. Table V shows the
decompression times. CBM-PforDelta is the fastest technique, between 2.2 and 3.9 times faster
than gzip, which compresses between 9 and 15 percentage points less. fpzip, which obtains the best
compression, is around 5 times slower than CBM PforDelta.

6.4. Memory consumption during the computation of the sample autocovariance function

Table VI shows the maximum virtual memory¶ consumption during the computation of the sample
autocovariance function using the classical algorithm (see Section 2.2). With this approach, the
whole input data set is stored in main memory.

We compare the R implementation, using plain data (binary representation of numbers), our own
C implementation, and our implementations using CBM compressed data as input.

†http://www.gzip.org/
‡http://p7zip.sourceforge.net/
§http://computation.llnl.gov/projects/floating-point-compression-zfp-fpzip
¶This includes the complete space of addresses of the process.
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CBM
DAC Kulekci Pfor

Data set size gzip p7zip fpzip bitmap ZZ SCDC Rice-b Rice-ZZ Elias Delta
10000× 1000 1.59 6.28 0.74 1208.92 4848.92 14.21 5.30 5.31 6.30 11.46
20000× 2000 6.31 25.81 3.29 2721.44 10514.35 39.04 14.84 14.93 18.75 44.46
10000× 10000 17.17 66.07 8.39 1578.49 6191.75 73.53 24.42 24.84 33.46 103.31
10000× 15000 26.13 98.36 12.83 1596.06 6232.87 102.14 34.99 34.83 47.69 152.22
20000× 20000 68.38 365.18 37.71 3246.89 13229.90 256.13 91.02 91.31 123.80 401.15
30000× 30000 155.19 915.98 n/a 4968.80 21806.09 518.64 198.20 197.19 271.69 889.26

Table IV. Compression time (secs.).

CBM
DAC Kulekci Pfor

Data set size gzip p7zip fpzip bitmap ZZ SCDC Rice-b Rice-ZZ Elias Delta
10000× 1000 0.45 2.02 0.72 0.26 0.24 0.19 0.94 1.59 8.42 0.14
20000× 2000 2.14 7.97 2.80 1.08 0.89 0.69 4.24 6.14 32.39 0.60
10000× 10000 5.19 19.36 6.89 2.52 2.07 1.61 8.20 10.49 75.07 1.45
10000× 15000 7.78 28.74 9.98 3.74 3.14 2.40 10.68 13.62 109.90 2,16
20000× 20000 13.21 81.34 28.13 10.69 8.14 6.42 28.18 34,81 289.06 5.98
30000× 30000 50.36 187.55 n/a 22.06 18.24 14.68 59.55 71.64 633.63 13.01

Table V. Decompression time (secs.).

We also performed another experiment, which supposes that the data set is stored on disk
compressed with a classical compressor. Therefore a previous full decompression is needed in order
to obtain the uncompressed version, which is then processed with the normal C program. In this
case, we give the highest value of memory consumption between the decompression process and
the computation of the sample autocovariance function. These values correspond to the columns
labeled as “C+gzip”, “C+p7zip”, and “C+fpzip”.

The C and CBM implementations are basically the same C program. Both programs maintain the
whole data set in main memory, but the CBM version keeps the data set in compressed form and
only decompresses an individual trajectory when the algorithm requires those data in a given step.

The C implementation is on a par with CBM, there are two reasons for this. First, in both cases
the output is kept in main memory uncompressed, and this is the biggest component of the memory
consumption. Observe in Table VI that when processing the data set of size 30000× 30000, both
alternatives consume around 10 GBs. The input data set requires around 3.3 GBs uncompressed
and 2.5 GBs compressed. The output is stored in doubles (in order to be fair with R), and then it
occupies 6.6 GBs, the biggest part. The second factor is that the advantage of the CBM in the input
size (0.8 GBs) is compensated by the fact that, at a given step of the algorithm, the CBM version
has to decompress a treated trajectory, and therefore, that trajectory is stored twice in main memory.
In addition, some auxiliary data structures are needed to perform the decompression.

Considering the experiment where the data are compressed with a classical compressor, the
decompression process of gzip and p7zip has a smaller memory footprint than the computation
of the sample autocovariance function. However, fpzip, which is the best compressor in disk space,
consumes a large amount of memory, between 76% and 3.7 times more than CBM, and indeed it
did not run with the largest file.

Finally, the R implementation is the worst one. It consumes between 87% and 3.71 times more
memory than CBM.

The memory consumption of the memory efficient version, which uses the Algorithm 3, is shown
in Table VII. Except in the small files, where the C implementation consumes less space than CBM,
in the larger data sets, they are on a par again.

In the case of “C+gzip” and “C+p7zip”, even using the memory efficient algorithm to compute
the sample autocovariance function, the decompression process consumes less main memory, except
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with p7zip in small files. Obviously, now the gap between “C+fpzip” and CBM is even bigger: CBM
consumes between 87% and 5% of “C+fpzip”.

CBM
C + DAC Kulekci Pfor

Data set size R C gzip p7zip fpzip bitmap ZZ SCDC Rice-b Rice-ZZ Elias Delta
10000× 1000 223 50 50 50 254 60 60 60 60 60 60 60
20000× 2000 648 187 187 187 982 197 197 197 197 197 197 197
10000× 10000 2545 1149 1149 1149 3204 1159 1159 1159 1159 1159 1159 1158
10000× 15000 4060 2293 2293 2293 3777 2303 2303 2303 2303 2303 2303 2303
20000× 20000 9096 4582 4582 4582 12782 4592 4592 4592 4592 4592 4592 4592
30000× 30000 19358 10305 10305 10305 n/a 10315 10314 10315 10315 10315 10314 10315

Table VI. Memory consumption (in MBs) of the classical algorithm.

CBM
C + DAC Kulekci Pfor

Data set size C gzip p7zip fpzip bitmap ZZ SCDC Rice-b Rice-ZZ Elias Delta
10000× 1000 12 12 37 254 25 23 25 25 23 25 25
20000× 2000 35 35 37 982 59 49 60 59 49 59 59
10000× 10000 767 767 767 3204 814 789 814 814 789 814 814
10000× 15000 1721 1721 1721 3777 1787 1749 1787 1787 1749 1787 1787
20000× 20000 3130 3130 3130 12782 3216 3116 3216 3216 3116 3216 3216
30000× 30000 6919 6919 6919 n/a 7219 6994 7219 7219 6994 7219 7219

Table VII. Memory consumption (in MBs) of the memory efficient algorithm.

6.5. Time to Compute the sample autocovariance function

Table VIII shows the time required to compute the sample autocovariance function. In the experi-
ments “C+gzip”, “C+p7zip”, and “C+fpzip”, the values are resulting from adding the decompression
time and the time of the computation of the sample autocovariance function using the C program
over the uncompressed data.

CBM did not improve the values of the C implementation in memory consumption, however in
this experiment, CBM clearly beats the C implementation. There are two reasons for this. First,
the computation of the covariance function requires the average value of all trajectories at all time
instants (see Section 2.2). In the case of CBM, those values are computed during compression and
stored in the compressed file. However, the C program has to calculate those values before running
the main loop implementing Equation (1). The second factor is the memory hierarchy. While the
output has a big impact in the memory footprint, that space is not critical for the running times.
However, the input data is read repeatedly, and making the input data available to the processor as
quickly as possible has a big impact in the running times. A shorter input has more chances of being
stored in higher levels of the memory hierarchy.

With the largest dataset, the C implementation of the classical algorithm consumes up to 10 GBs
of virtual memory, while the maximum resident memory‖, is 6.8 GBs. Therefore the 3.2 GBs of
difference must be stored on disk in the swap area, moreover, that data are interchanged between
disk and memory during the computation, implying an important slowdown. Even in the smallest
data set, the virtual memory peak was 50 MBs, while the resident memory peak was 44 MBs. These
values are similar for the CBM version, but the number of interchanges between memory and disk
could have an important impact. The same applies for the interchanges between memory and the
different levels of processor cache, where the number of reads that are successfully solved in low
level caches has a big impact.

‖The space of RAM used by the process.



14 BRISABOA ET AL.

CBM is between 50% and 66% faster than the C implementation and between 13% and 40%
faster than R. Observe that, R is faster than the C program. The reason is probably again the memory
hierarchy: R uses almost twice as much main memory space as the C program.

If we consider that a previous decompression is needed before running the C program, the
improvements are obviously better, CBM is between 67% and 2 times faster.

This experiment shows that the decompression required by CBM is really fast and therefore the
computation time is not harmed.

CBM
C + DAC Kulekci Pfor

Data set size R C gzip p7zip fpzip bitmap ZZ SCDC Rice-b Rice-ZZ Elias Delta
10000× 1000 5 6 7 8 7 4 4 4 5 5 12 4
20000× 2000 42 50 52 58 53 31 31 30 34 36 63 30
10000× 10000 515 612 618 632 619 372 375 372 379 383 447 371
10000× 15000 1155 1374 1382 1403 1384 834 845 834 844 854 942 834
20000× 20000 4134 4863 4876 4944 4891 2945 2965 2948 2982 2994 3240 2947
30000× 30000 14006 16488 16538 16676 n/a 9952 10233 9945 9984 10022 10847 9938

Table VIII. Computation time (secs.) for the sample autocovariance function with the classical algorithm.

Table IX shows the times when using the memory efficient version of the algorithm. Now, the gap
between CBM and the C implementation is shorter, they are almost on a par, and only in the largest
files, CBM is around 3.5% faster. In a given step of the algorithm, only one trajectory is loaded into
memory, therefore, the C implementation has more chances to fit that trajectory in the upper levels
of the memory hierarchy.

Again, resident memory usage supports this explanation. In the largest data set, the peak con-
sumption of virtual memory was 6,919 MBs, while the maximum resident memory consumption
was 6,915 MBs. This implies that interchanges between the swap area and memory are almost inex-
istent, and then the memory efficient algorithm using CBM is even faster than the C implementation
of the classical algorithm, which intuition says that should be faster since it has the complete data
set uncompressed in main memory.

If we consider the experiment where the data were compressed with a classical compressor, then
CBM is up to 13 % faster.

CBM
C + DAC Kulekci Pfor

Data set size C gzip p7zip fpzip bitmap ZZ SCDC Rice-b Rice-ZZ Elias Delta
10000× 1000 3 4 5 4 6 4 4 5 5 12 4
20000× 2000 42 45 50 45 44 44 45 47 49 75 43
10000× 10000 487 493 507 494 490 520 507 519 518 583 488
10000× 15000 1131 1139 1160 1141 1109 1139 1141 1158 1155 1267 1105
20000× 20000 4088 4101 4169 4116 4015 4028 4085 4092 3982 4373 3936
30000× 30000 14258 14308 14446 n/a 13744 15220 13838 14301 13587 15853 13568

Table IX. Computation time (secs.) for the sample autocovariance function with the memory efficient
algorithm.

In Figure 3, we show the trade-off between memory consumption and computation time using the
largest data set with the two algorithms to compute the sample autocovariance function (classical
and memory efficient ones). We only provide the values of some of the versions of CBM to avoid
cluttering the figure. In addition, the values of “C+fpzip” are not present since fpzip did not run in
this data set.

With the classical algorithm, we can see that clearly CBM has the best balance, as it has almost
the same memory consumption as the C implementation, but better running times. Observe that R
has by far a worse memory consumption.
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Figure 3. Trade off memory consumption/computation time with the dataset 30000× 30000.

In the memory efficient version plot, R is not present. The differences are shorter, having the
C implementation a slight advantage in memory consumption, and the CBM-DAC-bit and CBM-
PforDelta versions a slight advantage in time.

Figure 4 shows the trade-off between disk space and the time needed to compute the sample
autocovariance function. With the classical algorithm, CBM is again the best alternative by far in
both disk space and time. “C+p7zip” occupies a bit less space in disk, but requires much more time
to compute the sample autocovariance function. When using the memory efficient algorithm, CBM
PforDelta shows the best balance.

Figure 5 shows the final picture, by comparing R and the classical C implementation against
our proposal: the use of CBM and a new memory efficient algorithm to compute the sample
autocovariance function. With respect to memory consumption, the efficient versions has the lowest
memory consumption. The memory efficient C implementation consumes 2.8 times less memory
than R. In the case of the C program and CBM, the use of the memory efficient algorithm implies a
reduction around 48% in the memory footprint with respect to the classical implementations.

In disk space, the best option is p7zip, but its fastest version (that uses the memory efficient
algorithm) is 45% slower than CBM-PforDelta with the classical algorithm, which is the version
that shows a best balance in this plot.

Finally, the classical implementation of CBM-PforDelta is 40% faster than R and 65% than the
classical C implementation.
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Figure 4. Trade-off disk space/computation time with the data set of size 30000× 30000.

7. CONCLUSIONS AND FUTURE WORK

In this work, we have shown that parallel processing is not the only way to improve the scalability
of a large-scale analysis system. It is an easy way since there many hardware and software tools
available. We still have the opportunity to squeeze more data structures and algorithms, something
common in the early times of computer science, where the hardware and software resources were
much more limited. We apply a compact data structures strategy to improve the scalability of the
analysis of Brownian motion trajectories, although our solutions can be applied to any continuous
time stochastic process. However, our techniques do not prohibit the use of parallelization, on the
contrary, they are even more suitable, since each node can process one trajectory independently
from the others and data interchanges consume less bandwidth.

CBM is a strategy to represent Brownian trajectories in a compressed way using around 75% of
the original space. The novelty is that this saving is also applicable to main memory space, since
we can keep the data set compressed all the time, decoding an isolated trajectory when needed and
keeping the rest of the representation in a compressed form. Moreover, one isolated trajectory can
be extracted from the compressed file in disk, loaded into main memory, and decompressed. In this
way, the empirical autocovariance function is computed using up to 13 times less main memory
space than when using the traditional method on plain data.
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Figure 5. Overall the data set of size 30000× 30000.

The new approach does not only save space in disk and main memory, but it also obtains
reductions in running times. We use two strategies for this. First, the average value of all trajectories
in all time instants, which is needed in the computation of the autocovariance function, is computed
during the compression and stored in the compressed file. Second, the savings in main memory
allow a better usage of the memory hierarchy. Therefore, our approach is up to 65% faster than
running a classical C program. Moreover, we have shown that our memory efficient version of the
algorithm is even faster than the classical setup, that is, storing the complete input data set in main
memory

In addition, thanks to the possibility of decompressing parts of CBM compressed data, we can
apply the memory efficient algorithm without a previous decompression. If we have to decompress
the input dataset before the application of a C program, that process is up to 67% slower than
computing the sample autocovariance function using directly CBM compressed data.

As future work, we plan to improve the compression ratio of the method, to test the method with
other continuous time stochastic processes (other than the Brownian motion) and to include other
interesting statistics to be computed from the sample of trajectories.
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