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Abstract

Many industrial applications benefit from predictive computer simulation to reduce costs

and time, and shorten product development cycle. Computational multibody system dynam-

ics formalisms and software tools have proved to be particularly useful in the simulation of

machinery and mechanical systems. Nowadays, however, the complexity of the applications

under study often makes it necessary to consider the interaction of mechanical systems with

other components of different nature, physical behaviour, and time scale, such as hydraulics

or electronics. Co-simulation is an increasingly important approach to formulate and solve

the dynamics of these multiphysics setups. In these, modelling techniques and solvers that

are tailored to the requirements of each subsystem execute in parallel and are coupled via

the exchange of a limited number of inputs and outputs at certain communication times.

Co-simulation has clear potential in the modelling of complex engineering systems. On the

other hand, there are also challenges. The use of co-simulation may compromise the stability

of the numerical solution, especially when non-iterative coupling schemes are used.

In this work, we introduce a modelling technique to improve the dynamic interfacing of

mechanical systems in co-simulation setups, based on a reduced representation of multibody

systems. This reduced order model is used to obtain a physically meaningful prediction of the

evolution of the multibody subsystem dynamics that enables the improvement of the solution

of other subsystems. The technique is illustrated in the co-simulation of some examples that

include both mechanical and hydraulic components. Results show that dynamic interfaces
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based on reduced models can be used to improve the stability of non-iterative co-simulation

schemes in multiphysics engineering systems, enabling the use of larger communication step-

sizes.

Keywords: Co-simulation, Multibody System Dynamics, Multirate, Multiphysics, Reduced

Order Model

1 Introduction

Computer simulation of mechanical systems has reported significant benefits to industry dur-

ing the last decades, shortening product development cycles and reducing the costs associated

with testing, validation, and re-design of new products. In particular, advances in multibody sys-

tem (MBS) dynamics research have enabled the use of realistic models of complex, large-scale

mechanical systems in demanding simulation environments, e.g., those that require real-time

execution. Nowadays, various methods exist for the effective simulation and analysis of multi-

body systems [21, 3], and a large array of software tools have been developed to carry out this

task. However, there is increasing practical demand to couple multibody simulation to models

of subsystems of other physical domains, such as hydraulics and electronics. The individual sub-

systems in such multiphysics settings can have quite different properties, and may require the

use of different solvers and time scales.

The modelling and simulation of multiphysics systems can be approached in several ways. A

possibility is to define an all-encompassing set of equations that describes the response of every

element in the system [32]. This technique is sometimes referred to as monolithic simulation.

Another increasingly important option is the coupling of different domain-specific solvers in a

co-simulation setup. This makes it possible to use modelling and solution techniques tailored to

the requirements and time scale of each subsystem. The numerical integration of the subsystems

is coordinated via the exchange of input and output quantities at certain communication points

in time. Such an approach makes it possible to use domain-specific tools to model each com-

ponent; moreover, these can often be executed in parallel, reducing the wall-clock time elapsed

in computations. Multirate integration can also be used in this case, adjusting the step-size in

each subsystem to its particular time-scale [14]. The simulation of a vast range of multiphysics

systems can be addressed this way. To achieve this, a large number of partition methods, com-

munication strategies, and time-stepping approaches can be found in the literature [13, 37].
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In spite of its advantages, co-simulation poses a series of challenges that need to be ad-

dressed to obtain reliable and robust code execution. The co-simulation of dynamic models

requires common interface definitions to facilitate the exchange of information between sub-

systems. This issue has been tackled with the introduction of standards like the Functional

Mock-up Interface (FMI) [10]. Another major problem stems from the fact that solvers in a

co-simulation environment receive information from other subsystems in discrete time. Inter-

solver information exchange occurs only at discrete communication points, at which subsystems

are synchronized; the time interval between two communication points is usually referred to

as macro time-step. This inherently introduces coupling errors and discontinuities in the system

dynamics, sometimes making it difficult to guarantee that the integration proceeds in an ac-

curate or stable way [1]. This problem can be alleviated adopting iterative coupling schemes

[25]. However, these may become too time-consuming for some applications, such as those that

require real-time execution; besides, they cannot be used with certain simulation tools that do

not allow for subsystem resetting.

When non-iterative co-simulation is used, additional steps have to be taken to ensure that the

obtained results are accurate and the coupled integration process remains stable [6]. Adaptive

stabilization strategies, that extract information from subsystem dynamics to improve the com-

munication procedures, are gaining importance nowadays [17]. Possible ways to do this include

adjusting the integration step-sizes as a function of the system instantaneous frequency [8, 7]

or energy level [31], introducing adaptive damping to dissipate the excess energy generated at

the interface [28], and interpolating or extrapolating the system inputs to minimize the effect

of discrete-time input exchange. The simplest way to handle the inputs that a subsystem re-

ceives at the beginning of a macro time-step is to consider that they remain constant until the

next communication point. This extrapolation is known as zero-order hold (ZOH). Higher order

polynomials [2, 20] or smoothing techniques [30, 11] can also be used to extrapolate or predict

unknown values of the input data. Nevertheless, the above mentioned coupling techniques can

be made more accurate if some additional information about the internal dynamics of each sub-

system is available at each macro time-step. For example, stabilized coupling approaches were

derived in [33, 35, 34] based on the availability of the partial derivatives of the subsystem states

with respect to the coupling variables at the interface.

In this work, we propose to use a reduced order model to characterize the dynamics of a

multibody subsystem at the interface that connects it to the rest of components in a multiphysics
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co-simulation setup. Model order reduction is used in a variety of applications to decrease the

size of the system under study while preserving its most representative dynamic behaviour. This

is often done for efficiency reasons, e.g., to shorten simulation times when dealing with large fi-

nite element models. Reduced order models are also used to this end in the context of multibody

system dynamics, usually when dealing with models that account for the structural properties

of the system [27, 36]. A review and comparison of existing model order reduction methods

for structures and large flexible systems can be found in [9, 22]. In this paper, we also use a

reduced order model but this is conceptually different from the aforementioned models. Our

reduced model replaces the original full model during a macro time-step in a co-simulation

setup, during which it communicates to another subsystem. In many cases, this other subsys-

tem has different properties, i.e., smaller time scales and faster dynamics. This is often the case

of hydraulics elements and microelectronics controllers. Accordingly, their integration requires

shorter step-sizes, and more than one integration step takes place within a macro time-step. The

reduced model is updated at the beginning of each macro time-step and is subsequently used

to obtain information about the evolution of the mechanical subsystem until the next commu-

nication point occurs. During this interval, the integration of the reduced model proceeds at a

faster rate than that of the original full multibody model, closer to the time scale of the other

subsystem in the co-simulation. We will refer to this reduced model as reduced interface model

(RIM) in this paper.

The RIM reduces the computational complexity of the full model in two ways. First, in most

cases it has fewer degrees of freedom than the original model due to the projection of the

system dynamics to the interface subspace; moreover, if the original modelling was carried out

using dependent coordinates, then the kinematic constraint equations are no longer present in

the RIM, which can be expressed as a system of ordinary differential equations. Second, the

mass matrix and force term in the RIM are kept constant between communication points in the

co-simulation setup, which decreases the computational cost.

A commonly used approach to generate reduced order models is the extraction of represen-

tative motion modes from the dynamic response of the full order system, e.g., [36, 26]. Another

possibility is directly linearizing the dynamics equations of the multibody system [19]. Here, we

follow a different concept. The RIM that represents the original multibody system is obtained

from the characterization of the interface between the mechanical subsystem and the other sub-

system, which has a different physical nature, e.g., hydraulics. This interface from the point of

4



Multibody dynamics interface for stable co-simulation

view of the multibody system can be characterized with the set of interface velocity components

that represent the connection to the other subsystem. These interface velocities can define a sub-

space in the dynamic model, which can be interpreted in a way like the subspace of constrained

motion discussed in [24]. The dynamics of the whole multibody system can then be reformu-

lated and decomposed so that the dynamics associated with the interface subspace is explicitly

factored out. This gives rise to the concept of the RIM used here. In this paper, we show that

a RIM developed this way can be used to improve the stability of non-iterative co-simulation

setups that include multibody systems. It also makes it possible to use larger communication

step-sizes when it is used as interface between a full multibody model and other subsystems

with faster dynamics, e.g., hydraulic components. We illustrate the effectiveness of the method

with the simulation of hydraulically actuated mechanical systems.

2 Dynamic Interface Modelling

Let us assume that a multibody system M can be described with a set of nq independent gener-

alized coordinates q and n independent generalized velocities v, related to the time derivatives

of the coordinates, q̇, by transformation

q̇ = Nv (1)

where N = N (q) is an nq×n transformation matrix. The multibody system M can also interact

with a subsystem S, which, at the same time, can be constituted by several elements. In this

case, the dynamics equations of the multibody system can be written as

Mv̇ + c = f + fi (2)

where M is the n × n mass matrix of the system, c is the Coriolis and centrifugal effects term,

fi contains the interaction forces between subsystem S and the multibody system through their

common coupling interface, and f represents every other force applied on M.

The interaction forces fi affect the dynamics of the multibody system M in a subspace that
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can be parametrized by the interface velocities

wi = Aiv (3)

where wi are the p interface velocity components that parametrize the dynamics of the multi-

body system M at the interface and Ai is a p × n Jacobian matrix. The generalized forces

transmitted at the interface, fi, can be expressed according to this local parametrization as

fi = AT
i λi (4)

where λi is a p× 1 array that contains the forces transmitted at the interface.

A full transformation of the generalized velocities of the system can be performed to decouple

the interface dynamics, by introducing an additional set of velocities so that the new system

velocity is defined as [18]

w =

 wi

wa

 =

 Ai

B

v (5)

where wa is an (n− p)×1 array of generalized velocities that complement wi to a full set and de-

scribe the motion that is compatible with the interface velocities wi, and B is the corresponding

(n− p)×n Jacobian matrix. We will term wa admissible velocities. It is always possible to select

a set of admissible velocities wa that satisfy the condition AiM
−1BT = 0 to achieve decoupling,

and in such a case the dynamics equations (2) can be transformed into [23, 18]

 (
AiM

−1AT
i

)−1 0

0
(
BM−1BT

)−1


 ẇi

ẇa

+

 zi

za

 =

 τi

τa

+

 λi

0

 (6)

where

zi =
(
AiM

−1AT
i
)−1AiM

−1c−
(
AiM

−1AT
i
)−1Ȧiv (7)

za =
(
BM−1BT

)−1BM−1c−
(
BM−1BT

)−1Ḃv (8)

are the decoupled Coriolis and centrifugal terms, and the generalized force terms can be given
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by

τi =
(
AiM

−1AT
i
)−1AiM

−1f (9)

τa =
(
BM−1BT

)−1BM−1f (10)

Equation (6) provides a representation of the multibody system in which the dynamics as-

sociated with the interaction subspace is explicitly factored out. These interface dynamics equa-

tions can be written as

M̃ẇi = f̃ + λi (11)

where

M̃ =
(
AiM

−1AT
i
)−1 (12)

is the effective mass matrix and

f̃ = τi − zi =
(
AiM

−1AT
i
)−1

(
AiM

−1 (f − c) + Ȧiv
)

(13)

is the effective force term. Equation (11) describes the dynamics of the reduced interface model

(RIM) that represents the mechanical system M in terms of the local parametrization of the

interface to the other subsystems. Figure 1 conceptually illustrates the use of a RIM to represent

the dynamics of the multibody system M in the interaction with S.

It is important to mention that the interface velocities wi define the coupling between the

RIM and S. Therefore, the number of elements in S that interact with the multibody system

or their complexity are not relevant if all the interface velocities are considered together. On

the other hand, the p interface velocities can also be considered independently, so that a single

degree of freedom RIM would represent the interface for each interface velocity component.

This would result in a series of p decoupled RIMs, as opposed to considering the a single RIM

that represents the dynamics of the multibody system that couples the interface velocities, which

is reflected by the off-diagonal elements of the effective mass matrix (12).
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M̃

Interface wi,λi

Reduced interface
model (RIM)

Multibody
System M

Subsystem S

Figure 1: Interfacing a multibody system M to a subsystem S via a RIM

2.1 Extension to systems modelled with dependent coordinates

We consider now the case in which the multibody system is modelled with n dependent gener-

alized velocities u related by m kinematic constraints, expressed at the velocity level as

wc = Du (14)

where D is the m×n constraint Jacobian matrix and wc represents the m constrained velocities

that are given by kinematic constraints, often such as wc = 0 [23]. In this case, the system

dynamics in Eq. (2) must be rewritten to include a term gc = DTλ to account for the constraint

forces as

Hu̇+ d = g + gi + gc = g +DT
i λi +DTλ (15)

where H, d, gi, and g are the n × n mass matrix, the Coriolis and centrifugal effects term,

the interface forces, and the generalized forces expressed in terms of the set of velocities u,

respectively. Term λ contains the m reactions in the subspace of constrained motion, and Di is

the Jacobian matrix that relates the interface and the generalized dependent velocities

wi = Diu (16)
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The expressions of the effective mass matrix and force term in this case are given by

M̃ =
(
Di (I−Pc)H

−1DT
i
)−1 (17)

f̃ = M̃
(
Di (I−Pc)H

−1 (g − d) + Ḋiu+DiPcu̇
)

(18)

where I is the n × n identity matrix, and Pc is the projector matrix onto the subspace of con-

strained motion [23], which can be given as

Pc = H−1DT
(
DH−1DT

)−1D (19)

This form of the projector matrix Pc requires the Jacobian of the constraints D to have full

row rank, i.e., that all the kinematic constraints imposed on the mechanical system are linearly

independent. However, the projector matrix can also be determined when this is not the case,

making use of the Moore-Penrose generalized inverse for instance [23, 24]. The details of the

derivation of Eqs. (17) and (18) can be found in A.

3 Reduced Interface Model in Co-simulation Setups

We consider now the case in which the multibody system M is interfaced in a non-iterative co-

simulation scheme to another system S, which can be of a non-mechanical nature (see Fig. 2).

The dynamics of the multibody subsystem are given by Eq. (2) or (15); these equations

can be integrated using any of the methods available in the literature with an integration step-

size hM. The subsystem S, on the other hand, has its own dynamic formulation described by

a function g of the system state x, integrated with a different method and step-size hS . In this

case, it is reasonable to assume that hS < hM. The communication between the two subsystems

takes place via a co-simulation interface, through which information in the form of inputs u and

outputs y is exchanged at the beginning of each macro time-step, of size H. The subsystems

M :
∫
M, hM

q,v
Mv̇ + c = f + fi

Co-simulation
Manager

H

S :
∫
S , hS

x
ẋ = g (x)

yM

ySuM

uS

Figure 2: Multibody system (M) and subsystem (S) coupled in a co-simulation setup
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t

uS,i
uS,i (ts +H)

uS,i (ts)

uS,i (ts −H)

ts +Htsts −H

ts + hS · · · ts + bhS

ZOH Linear interpolation RIM

Figure 3: Illustration of the effect of different extrapolation methods on an input variable uS,i of
subsystem S

do not receive any information from each other until the following communication point. For

this reason, the input values uS may need to be extrapolated in some way within the macro

time-step. The simplest way to do this is assuming that they remain constant; this approach is

known as zero order hold (ZOH). Other extrapolation methods, e.g., polynomial-based ones, can

be used as well.

Figure 3 illustrates the effect of the chosen extrapolation on the evaluation of subsystem

inputs. At communication time ts, the multibody system provides the output yM to the co-

simulation manager, which is transferred as an input uS to the subsystem S. This value will not

be updated until the macro time-step is completed, at time t = ts + H. If a ZOH is used, the

value of uS(t) = yM(ts) is considered constant in this interval. A linear extrapolation approach

will evaluate uS as a linear function of time, based on the last two available values of the input.

With these methods, however, the values of uS required to integrate S at t = ts + khS , where

k = 1, 2, ..., b, are obtained without taking into consideration the dynamics of the subsystem M.

As a consequence, the use of one or another extrapolation method may or may not be beneficial

for the accuracy of the simulation, depending on the proximity of the predicted values to the

actual system behaviour. A way to deal with this issue is attempting to select the most suitable

extrapolation strategy based on the observed evolution of the input values available so far [5].

We propose here an alternative possibility based on the RIM described in Section 2. This model

can be used to provide a dynamics-based prediction of these inputs until the next communication

point. The values of uS within the macro time-step are obtained based on the integration of a
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M :
∫
M, hM

q,v

Mv̇ + c = f + fi

Co-sim.

Manager

H1

Co-sim.

Manager

H2

S :
∫
S , hS

x

ẋ = g (x)

RIM :
∫

RIM, hRIM

wi

M̃ẇi = f̃ + λi

yM

uM

yS

uS

u1y1 u2 y2

Figure 4: Multibody system M and subsystem S coupled in a co-simulation setup via a RIM of
M

RIM of the multibody system. This is expected to result in more accurate values of the inputs at

the intermediate integration steps t = ts + khS and a reduction of the deviations between the

predicted and the actually received inputs at the next communication point, ts +H.

The introduction of a RIM of subsystem M in the co-simulation leads to the scheme shown in

Fig. 4, a multirate integration algorithm in which two communication step-sizes, H1 and H2, are

employed. With this approach, subsystem S exchanges information through the co-simulation

manager only with the RIM. Both the RIM and S are integrated simultaneously and synchro-

nized every H2 seconds. The full multibody system model, on the other hand, is integrated at

a slower rate and synchronized with the RIM with a step-size H1 > H2. It must be noted that

the output yM, and subsequently the inputs of the RIM u1, must contain all the information

necessary to evaluate the effective mass matrix M̃ and the force vector f̃ required by the RIM

dynamics.

4 Examples

The ability of the RIM-based scheme described in Section 3 to improve the stability of mul-

tiphysics co-simulation will be demonstrated through the study of test problems composed of

both mechanical and hydraulics components.
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Table 1: Mechanical parameters of the single-actuated model

Length of link 1 L 1.0 m

Length of link 2 Lh 0.5 m

Mass of link 1 m 200 kg

Point mass at Q mp 250 kg

Point mass at R mh 100 kg

Coordinates of fixed point B (xB, yB)
(√

3/2, 0
)

m

Initial angle, link 1 (θ1)0 π/6 rad

Initial angle, link 2 (θ2)0 3π/2 rad

Gravity g −9.81 m/s2

4.1 Planar model with one hydraulic actuator

The first example used here is a planar model of a crane that features a hydraulic actuator, a

multibody system with two degrees of freedom shown in Fig. 5. A similar model was employed

by Naya et al. [29] to compare the efficiency and accuracy of monolithic and solver coupling

methods in the simulation of mechanical systems interfaced to hydraulic actuators.

1
2 (massless)

x

y

θ1

θ2

g

P

Q

R

O B

L
Lh

s1

Figure 5: Single-actuated planar model of a hydraulic crane

Link 1 is a rod of length L and distributed mass m. Link 2 has length Lh and is considered

to be massless. Two point masses mp and mh are placed at points Q and R. The system moves

under gravity effects and is actuated with a hydraulic piston that connects points B and P. The

values of the system properties used in the numerical experiments are summarized in Table 1.

The configuration of the system can be described by the two angles θ1 and θ2 as independent

generalized coordinates, q = [θ1, θ2]
T. The transformation matrix in Eq. (1) can be considered
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as the identity matrix and v = q̇. The dynamics equations in independent coordinates can then

be written as

Mv̇ + c = f + fh (20)

where fh contains the generalized forces exerted by the hydraulic actuator on the multibody

system.

The system can also be described by a set of dependent generalized coordinates x = [xP, yP, θ1, xR, yR]
T,

related by three kinematic constraint equations Φ(x) = 0. The dynamics equations can be writ-

ten as

Hu̇+ d = g + gh +DTλ (21a)

Φ =


L cos θ1 − 2xP

L sin θ1 − 2yP

(xR − L cos θ1)
2 + (yR − L sin θ1)

2 − L2
h

 = 0 (21b)

where u = ẋ, gh contains the hydraulic force, and D = ∂Φ
∂x is the 3 × 5 Jacobian matrix of the

kinematic constraints Du = 0.

The multibody-hydraulics interface in this example can be characterized with only one ve-

locity, namely the rate wi = ṡ1. This velocity component is related to the generalized velocities

as

ṡ1 =

[
L (xB sin θ1 − yB cos θ1)

2s1
0

]
v = Aiv (22)

ṡ1 =

[
xP − xB

s1

yP − yB
s1

0 0 0

]
ẋ = Diẋ (23)

Jacobian matrices Ai and Di are used to evaluate the effective mass and force terms in Eqs. (12)–

(13) and (17)–(18), respectively.

The magnitude of the hydraulic force exerted by the actuator can be evaluated as

fh = (p2 − p1) ap − cṡ1 (24)
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where p1 and p2 are the fluid pressures within the cylinder and ap is the total piston area.

A viscous friction model with coefficient c was used to represent internal dissipation in the

actuator, a simplified representation of which is shown in Fig. 6.

s1
l

l1 l2

p1 p2

Figure 6: Schematic of the hydraulic actuator

The dynamics of the hydraulic system can be described with the following set of first order,

ordinary differential equations [29]

ṗ1 =
β1
apl1

[
apṡ1 + aicd

√
2 (pP − p1)

ρ
δP1 − aocd

√
2 (p1 − pT)

ρ
δT1

]
(25)

ṗ2 =
β2
apl2

[
−apṡ1 + aocd

√
2 (pP − p2)

ρ
δP2 − aicd

√
2 (p2 − pT)

ρ
δT2

]
(26)

where l1 and l2 are the variable lengths of the chambers on each side of the piston, ai and ao

are the variable valve areas that connect these cylinder chambers to the pump and the tank in

the hydraulics system, cd is the discharge coefficient of the valves, ρ stands for the fluid density,

pP and pT are the hydraulic pressure at the pump and the tank respectively. Coefficients δP1, δP2,

δT1, and δT2 are 0 when the quantity inside the square root that precedes them is negative and 1

otherwise. Terms β1 and β2 stand for the bulk modulus in each cylinder chamber, and they are

evaluated as a function of the fluid pressure [12]

βi =
1 + api + bp2i

a+ 2bpi
, i = 1, 2 (27)

where a and b are constants for the fluid. Assuming that the two cylinder chambers have equal

volume at the starting time of the simulation, chamber lengths l1 and l2 are given by

l1 = 0.5l + s1,0 − s1

l2 = 0.5l + s1 − s1,0

(28)

where s1,0 is the initial length of the actuator. Valve areas ai and ao have m2 units and are

14



Multibody dynamics interface for stable co-simulation

obtained as

ai = 5 · 10−4κ

ao = 5 · 10−4 (1− κ)
(29)

In Eq. (29), κ ∈ [0, 1] is the valve control parameter or spool displacement, i.e., the kinematic in-

put that controls the motion of the piston. The hydraulic subsystem parameters for this problem

are shown in Table 2.

Table 2: Hydraulic parameters

Piston area ap 65 · 10−4 m2

Cylinder length l 0.442 m

Friction coefficient c 105 Ns/m

Valve discharge coefficient cd 0.67

Fluid density ρ 850 kg/m3

Hydraulic pressure at the pump pP 7.6 MPa

Hydraulic pressure at the tank pT 0.1 MPa

Compressibility coefficient a 6.53 · 10−10 Pa

Compressibility coefficient b −1.19 · 10−18

The manoeuvre simulated with this mechanical-hydraulic system consisted in a 10-s motion

during which the value of κ was kinematically guided and given as a function of time

κ =



κ0 , t ≤ ta

κ0 − 0.01 (t− ta) /tr , ta < t ≤ ta + tr

κ0 − 0.01 , ta + tr < t ≤ tb

κ0 − 0.01 + 0.03 (t− tb) / (2tr) , tb < t ≤ tb + 2tr

κ0 + 0.02 , tb + 2tr < t

(30)

where ta = 2 s and tb = 6 s, κ0 is the initial valve displacement, and tr is a time constant that

controls the rate of change of κ during transitions; its value was adjusted to tr = 1ms in this

study. If κ0 is adjusted to keep the system in static equilibrium, such a control law will result

in a stationary state for t ≤ 2 s, the extension of the actuator for 2 s < t ≤ 6 s, and then its

contraction until t = 10 s.
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4.1.1 Extension to systems with several actuators

The use of the RIM to describe the multibody dynamics at the interface with the hydraulics

is also straightforward in the case of systems with several actuators. Figure 7 shows the model

described in Section 4.1 with a second hydraulic actuator added between point P and the middle

point of link 2; the properties of this extra actuator are the same as those of the first one.

1
2 (massless)

x

y

θ1

θ2

g

P

Q

R

O B

L

Lh

s1

s2

Figure 7: Double-actuated planar model of a hydraulic crane

The consideration of the second actuator requires the redefinition of the interface velocities

wi, which can now be formulated as wi = [ṡ1, ṡ2]
T, where s2 is the time-varying length of the

second actuator. Considering again modelling using both independent and dependent coordi-

nates, analogous to Eqs. (22) and (23), we can express the interface velocities as

wi = Aiv (31)

or

wi = Diẋ (32)

16



Multibody dynamics interface for stable co-simulation

where

Ai =


L (xB sin θ1 − yB cos θ1)

2s1
0

−LLh sin θ1 − θ2
4s2

LLh sin θ1 − θ2
4s2

 (33)

Di =


xP − xB

s1

yP − yB
s1

0 0 0

0 0 0
xR
4s2

yR
4s2

 (34)

A 10-second manoeuvre was simulated with this example as well. The first cylinder received

the same actuation law described in Eq. (30), while the spool displacement for the second

actuator was given by

κ2 =

 κ2,0 − 0.0025t , t ≤ ta

κ2,0 − 0.005 , t > ta

(35)

where κ2,0 is the initial valve displacement that keeps the system in static equilibrium.

4.2 Off-road vehicle with robotic manipulator

The second test problem used was a modified version of the Juno rover [15], a wheeled robot

prototype for off-road exploration, developed by Neptec, shown in Fig. 8. Juno is a 300 kg ve-

hicle, designed to serve as a mobile platform for scientific equipment in unstructured environ-

ments. Its four wheels are connected to two side bogies, which in turn are linked to the main

vehicle body via revolute joints. A differential mechanism ensures that the pitch angle of the

chassis is equal to the average of those of the two side bogies. The two wheels on each side of

the rover are powered by the same electrical motor; the turning motion of the vehicle is obtained

through skid-steering.

In this work, a two-link manipulator with two hydraulic actuators was added to the model

of Juno. The links, of length Lc1 = 0.9m and Lc2 = 0.5m and uniformly distributed mass

mc1 = 15 kg and mc2 = 25 kg, were connected to each other and to the rover chassis via revo-

lute joints. The hydraulic actuators had the same properties as those described in Section 4.1,

17



A. Peiret et al.

(a) (b)

Figure 8: (a) Juno rover and (b) its multibody model featuring a two-link manipulator

except for the cylinder length, which was decreased to l = 0.3m. A scheme of the mechanism

is shown in Fig. 9; in this figure, e = 0.1m. The resultant mechanical system was described

using seven coordinates per body at the configuration level, namely the global x, y, and z co-

ordinates of its centre of mass (c.o.m.) plus four Euler-Rodrigues parameters to represent its

rotation. At the velocity level, the x, y, and z global components of the centre of mass veloc-

ity and the angular velocity of each body were used. The system has 13 degrees of freedom;

accordingly, the dynamics equations consisted in a system of 54 ordinary differential equations

plus 41 algebraic equations to enforce the kinematic constraints. A detailed description of the

system configuration and parameters can be found in B.

s1

s2

e

9L
c1
/1
0

L c1
/2

9Lc2/10

x

y

Figure 9: Schematic of the two-link manipulator mounted on the Juno rover
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The mechanical and hydraulic subsystems in the resulting model were coupled using direct

ZOH and RIM-based co-simulation. A 2.5-second manoeuvre, consisting in operating the ma-

nipulator during a point turn and the subsequent straight motion of the vehicle was simulated

to assess the behaviour of both coupling approaches. Between t = 0.1 s and t = 0.8 s a point-

turning motion was achieved by applying a torque τp = 75 Nm to the wheels on the port side of

Juno, and τs = −75 Nm to the wheels on the starboard side. For t > 1.6 s, all wheels received

a positive torque τ = 75 Nm, which resulted in a straight forward motion of the vehicle. The

interaction between the wheels and the terrain was modelled using the terramechanics relations

described in [16] and summarized in B.

The manipulator was actuated by regulating the valve control parameters of its actuators,

κc1 and κc2, according to the following laws:

κc1 =


κ01 , t ≤ ta,c

κ01 + 0.005 (t− ta,c) / (tb,c − ta,c) , ta,c ≤ t ≤ tb,c

κ01 + 0.005 , t ≥ tb,c

(36)

κc2 =

 κ02 − 0.01t/ta,c , t ≤ ta,c

κ02 − 0.01 , t ≥ ta,c

(37)

where κ01 and κ02 are the initial values of the valve parameters, ta,c = 1 s, and tb,c = 1.6 s.

4.3 Simulation methodology

The examples introduced in Sections 4.1 and 4.2 were simulated using two non-iterative co-

simulation schemes. The first one was a ZOH direct co-simulation approach like the one in Fig. 2.

Then, a RIM-based co-simulation scheme was tested, according to the description in Fig. 4.

In both cases, the output of the multibody system, yM included the actuators displacements

s = [s1, s2]
T and velocities ṡ = [ṡ1, ṡ2]

T = ẇi. The hydraulics outputs were the actuator forces,

fh,1 and fh,2. In RIM-based coupling, yM included terms M̃ and f̃ as well.

In direct co-simulation, the macro step-size H was made equal to the integration step-size

of the multibody system, H = hM, in order to reduce the number of simulation parameters.

When a RIM was used, the step-sizes were adjusted to H1 = hM and H2 = hS = hRIM. Moreover,
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hM was adjusted to be an exact multiple of the hydraulics step-size hS . All the subsystems were

integrated using a symplectic, semi-implicit Euler formula

qk+1 = qk + hMN
(
qk

)
vk+1 ; vk+1 = vk + hMv̇k (38)

sk+1 = sk + hRIMṡ
k+1 ; ṡk+1 = ṡk + hRIMs̈

k (39)

pk+1 = pk + hS ṗ
k (40)

where superscript k stands for the values at time tk and p contains the hydraulic pressures,

which define the internal state of the hydraulic subsystem S.

Regardless of the selected co-simulation scheme, an initialization stage is always necessary

to ensure the consistency of the internal states in the subsystems. In the examples described

in Section 4, the initial positions and velocities of the elements in the mechanical system were

known, but this was not the case for the hydraulic pressures, which needed to be determined

before proceeding with the numerical integration. Their values where evaluated solving the

following system of nonlinear equations in an iterative Newton-Raphson fashion


fh,1 − f

eq
s,1

fh,2 − f
eq
s,2

ṗ

 = 0 (41)

where f
eq
s,1 and f

eq
s,2 are the forces along s1 and s2 required for the initial static equilibrium of the

mechanical system.

The direct ZOH co-simulation process is summarized in Algorithm 1, where tM and tS stand

for the internal timestamps of the multibody and the hydraulics subsystems, respectively.

The RIM co-simulation approach is described by Algorithm 2. Here, we distinguish two inter-

nal times for each co-simulation manager: t1 for the interface between RIM and the multibody

model, and t2 for the interface between RIM and hydraulics.

The solution of the dynamics equations of the mechanical subsystem required different ap-

proaches depending on the nature of the simulated problems. The system dynamics expressed

with independent generalized coordinates, Eq. (20) could be directly solved to obtain the accel-

erations of the angle variables, v̇. However, if dependent coordinates were used, then a system
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Algorithm 1 Direct ZOH co-simulation

1: function INITIALIZE

2: Establish initial configuration in multibody system
3: Evaluate required equilibrium forces feq

s,1, f
eq
s,2

4: Evaluate equilibrium configuration in hydraulic subsystem, Eq. (41)
5: Verify initial equilibrium conditions, ṗ = 0, v̇ = 0
6: t = 0, tM = 0, tS = 0
7: end
8: function SIMULATION LOOP

9: while t < tend :
10: Synchronize systems, receive yM, yS , send uM, uS
11: Integrate subsystems until tM ≥ t and tS ≥ t
12: t = t+H
13: end
14: end

Algorithm 2 RIM-based co-simulation

1: function INITIALIZE

2: Establish initial configuration in multibody system
3: Evaluate required equilibrium forces feq

s,1, f
eq
s,2

4: Initialize RIM, s0
5: Evaluate equilibrium configuration in hydraulic subsystem, Eq. (41)
6: Verify initial equilibrium conditions, ṗ = 0, v̇ = 0, s̈ = 0
7: t1 = 0, t2 = 0, tS = 0, tM = 0
8: Synchronize all subsystems
9: end

10: function SIMULATION LOOP

11: while t1 < tend :
12: Synchronize M-RIM, receive yM, y1, send uM, u1

13: Parallel execution:
14: - Integrate M until tM ≥ t1
15: - function NESTED SIMULATION LOOP

16: while t2 < t1 :
17: Synchronize Hydraulics-RIM, receive yS , y2, send uS , u2

18: Integrate Hydraulics and RIM until tS ≥ t1 and tRIM ≥ t1
19: t2 = t2 +H2

20: end
21: end
22: t1 = t1 +H1

23: end
24: end

of differential algebraic equations (DAEs) had to be solved, e.g., the one defined by Eqs. (21a)

and (21b). In this case, an index-1 augmented Lagrangian algorithm [4] was used to solve the

dynamics and obtain the system accelerations and constraint reactions. For the Juno rover in

Section 4.2, configuration- and velocity-level projections were used to enhance the satisfaction

of the kinematic constraints.
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In the case of the single-actuated model, the co-simulation results obtained with Algorithms

1 and 2 were compared to those delivered by a monolithic formulation that solved together the

dynamics of the multibody system and the hydraulics [29]. The monolithic method formulates

the system dynamics equations as

Hu̇+ d = g + gh +DTλ

ṗ = h (p,x,u)
(42)

where h stands for the expressions in Eqs. (25) and (26). Introducing the trapezoidal rule in-

tegration formula into Eqs. (42), a dynamic equilibrium is established at time step k + 1. This

equilibrium can be expressed as a system of nonlinear equations and solved to obtain the sys-

tem coordinates x and hydraulic pressures p at time step k + 1 by means of Newton-Raphson

iteration. This approach has shown good accuracy and efficiency properties and was used as

reference to verify the correctness of the results delivered by the co-simulation methods.

5 Results

The results obtained in the simulation of the examples in Section 4 are summarized next. All

numerical experiments were performed on an Intel Core i7-3770 computer at 3.40 GHz with

8.00 GB RAM, running Windows 10 Enterprise. The system models were implemented and

executed in MATLAB R2017a.

5.1 Hydraulic manipulator model

The determination of the initial equilibrium configuration for the model resulted in the values

of the spool displacements and hydraulic pressures shown in Table 3. With these values, the

time-history of the spool displacements κ1 and κ2 are shown in Fig. 10.

5.1.1 Single-actuated model

The motion of the single-actuated model in Section 4.1 was simulated using the direct ZOH

co-simulation and the RIM-based co-simulation scheme. Results were compared to those ob-
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Table 3: Initial static equilibrium values for the hydraulic actuators

Actuator κ p1 (MPa) p2 (MPa)

1 0.45435 3.17 4.53

2 0.5 3.85 3.85
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Figure 10: Spool displacements of the hydraulic actuators

tained with the monolithic formulation mentioned in Section 4.3 integrated with a step-size

h = 0.5ms, which was used as reference. The step-sizes for both co-simulation schemes were

set to hM = 10ms and hS = 0.2ms. In all cases there were no significant differences between

the co-simulation results obtained with the sets of independent and dependent coordinates.

Figure 11 shows the actuator length s1 during the manoeuvre with the single-actuated

model. The three simulation methods, monolithic, direct ZOH co-simulation, and RIM-based

co-simulation delivered very similar results. Figure 11b highlights that the differences between

the predicted values of s1 by each approach remained below 2 mm. Moreover, it also shows

that direct co-simulation leads to an oscillatory behaviour of the solution after the change in

the input variable κ1 at t = 6 s. This oscillation is also present, although less noticeable, in the

response of the RIM co-simulation.

Figure 12 shows the horizontal component of the position and velocity vectors of point

R during motion, xR and ẋR, respectively. These confirm that the differences between the re-

sults obtained with the different methods did not affect significantly the resulting motion of

the model. In particular, the difference in the predicted x-coordinate of point R between direct
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Figure 11: (a) Actuator length s1 during motion of the single-actuated model, evaluated with
the monolithic approach, RIM co-simulation, and ZOH co-simulation; (b) detail view during
the maximum displacement interval of the manoeuvre; with time-step sizes hM = 10ms, hS =
0.2ms, and h = 0.5ms for the monolithic

ZOH and RIM-based co-simulations remained smaller than 1mm, i.e., less than 0.8% of the to-

tal motion amplitude. Regarding the velocity ẋR, the difference between the two co-simulation

approaches (ZOH and RIM) was always below 2mm/s.

Even though all the methods resulted in similar responses in the motion of the system, sig-

nificant differences can be noticed between direct ZOH and RIM-based co-simulations regarding

hydraulic pressures and actuator forces, especially around t = 2 s and t = 6 s, the time instants

at which input κ changes abruptly. Figure 13 shows the pressure p1 in the actuator, and the

actuator force fh; significant differences between the three simulation methods can be noticed

during these transients. While the maximum value reached after the change in κ1 was similar

for the three methods, the pressure p1 obtained with direct co-simulation was the highest; more

importantly, an oscillatory variation of this pressure can be observed in Fig. 13b. The RIM-based

co-simulation resulted in an oscillatory response as well, although more damped. In addition,

the sudden change in κ1 gave rise to an impact-like variation of the actuation. The monolithic

approach, in which multibody dynamics and hydraulic pressures are strongly coupled, quickly

dampened the peak force, keeping the simulation stable. Co-simulation methods, which do not

feature such a strong coupling between variables, resulted in oscillatory actuator forces, that

were eventually damped at the end of a transient period. Using a RIM in this case decreased

the severity of these oscillations, by providing a more physically meaningful way to evaluate the

inputs of the hydraulic subsystem.
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ẋ
R
[m

/
s]

RIM co-sim

ZOH co-sim

Monolithic

(c)

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

t [s]

V
el

o
ci

ty
d

iff
er

en
ce

,
∆
ẋ
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Figure 12: (a) x-coordinate and (c) x-component of the velocity of point R during the manoeuvre
with the single-actuated model; and difference of (b) xR and (d) ẋR obtained with direct ZOH
and RIM-based co-simulation; with time-step sizes hM = 10ms, hS = 0.2ms, and h = 0.5ms for
the monolithic

The oscillations in the actuator force introduced by the co-simulation methods may cause

the numerical integration to become unstable. As shown in Fig. 14a, increasing the multibody

integration step-size hM up to 15ms and, accordingly, the macro communication step-size H1,

resulted in the loss of stability of the direct ZOH co-simulation integration process. The use of a

RIM as interface made it possible to increase this step-size beyond hM = 25ms. Although larger

values of hM decreased the precision of the simulation, the solutions can still be considered

correct and the integration remained stable throughout the manoeuvre.
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Figure 13: (a) pressure p1 and (c) actuator force fh during the manoeuvre with the single-
actuated model; and detail view of (b) the pressure and (d) the force at t = 6 s; with time-step
sizes hM = 10ms, hS = 0.2ms, and h = 0.5ms for the monolithic

5.1.2 Double-actuated model

The model with two hydraulic actuators described in Section 4.1.1 was simulated using the

two co-simulation approaches (direct ZOH and RIM-based) and several step-sizes hM for the

multibody system, while keeping the hydraulics step-size constant, hS = 0.2ms. The actuator

force fh,2 is shown in Fig. 15, where step-size hM = 3 ms was used for both approaches. The

direct co-simulation exhibited a noticeable oscillatory behaviour after t = 6 s, compared to the

RIM-based co-simulation. Although both methods presented a force peak after changes in the

valve spool displacements, the RIM-based method was able to damp the oscillations more effi-

ciently.

Figure 16 shows the actuator displacement s1 for both co-simulation approaches. The direct
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Figure 14: Actuator displacement s1 in the single-actuated model for hS = 0.2ms, different
values of hM, and h = 0.5ms for the monolithic simulation
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Figure 15: Hydraulic actuator force fh,2 of the double-actuated model using direct ZOH and
RIM-based co-simulation with step sizes of hS = 0.2ms and hM = 3ms

ZOH co-simulation was not able to keep the equilibrium configuration stable and failed for step-

sizes larger than 3ms, whereas with the proposed RIM-based approach the system simulation

remained stable for step-sizes as large as 20ms. The RIM coupled the simulation of the two

hydraulic cylinders through the effective mass of the interface, as shown in Eq. (11) and, there-

fore, it described more accurately the interface dynamics in between macro time-steps. In the

actual mechanical system, the dynamics of the two hydraulic actuators are coupled through the

multibody system. When direct co-simulation is used instead, the effect of one actuator on the

mechanical system could not be perceived by the other actuator one until the end of each macro

time-step. The integration of the hydraulics differential equations (25) and (26) proceeds sep-

arately for each hydraulic cylinder for the duration of the macro step. As a consequence, each
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Figure 16: Actuator displacement s1 in the double-actuated model for hS = 0.2ms and different
values of hM

Table 4: Initial static equilibrium values of the spool displacement of the hydraulic actuators of
the manipulator mounted on the Juno rover

Actuator κ p1 (MPa) p2 (MPa)

1 0.5126 4.04 3.66

2 0.5 3.85 3.85

of the two actuators evolved as if they were not really interacting, which resulted in a com-

munication delay and the consequent loss of stability. The RIM-based approach accounts for

this dynamic coupling among the actuators, and is able to handle situations where the direct

co-simulation fails.

5.2 Off-road vehicle with robotic manipulator

The initial static equilibrium of the Juno rover manipulator assembly requires the spool displace-

ments and hydraulic pressures included in Table 4. The angles of the first and second rod with

respect to the horizontal x axis were set to θ1 = 45◦ and θ2 = −90◦.

With the initial values of κ shown in Table 4, the time-history of the spool displacements κc1

and κc2 during the manoeuvre with the Juno rover is that shown in Fig. 17.

It must be noted that the hydraulic manipulator mounted on the Juno rover turned out to be

a stiff problem, because of the mutual interaction between the dynamics of the hydraulic system
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Figure 17: Spool displacements during the manoeuvre with the Juno rover
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Figure 18: Actuator displacement s1 during the manoeuvre with the Juno rover for hS = 0.2ms
and different values of hM

and the forces developed at the wheel/terrain interface, given by the terramechanics relations.

This demanded the use of comparatively smaller step-sizes in the integration of the mechanical

system. Figure 18 shows the displacement of the first actuator, s1, during the manoeuvre with

the rover for different values of the step-size hM used to integrate the multibody system. Both

co-simulation approaches, direct ZOH and RIM-based, delivered practically the same motion for

hM = 1ms. However, hM could not be increased beyond 2 ms with the ZOH communication

without rendering the simulation unstable. The RIM-based co-simulation, on the other hand,

enabled the use of hM integration step-sizes up to 6 ms, while still delivering reasonably accurate

results.
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Table 5: Elapsed times in the simulation of the Juno rover manoeuvre

hM ZOH RIM

1 ms 15.32 s 20.76 s

2 ms (Failed) 11.03 s

3 ms (Failed) 7.64 s

4 ms (Failed) 6.17 s

5 ms (Failed) 5.28 s

Table 5 shows the elapsed times in the simulation of manoeuvre with both co-simulation

methods, for different step-sizes hM. The reported times were obtained averaging the times

elapsed in five runs of the program. The results shown correspond to the total CPU time re-

quired by the simulation, as the execution of the code was not parallelized, i.e., the subsystems

dynamics were evaluated sequentially in a single processor. It can be observed that using a RIM

introduces a computational overhead, derived from the need to evaluate the effective mass and

force terms in Eqs. (17) and (18), the integration of the RIM dynamics, and the additional com-

munication steps required to synchronize the RIM and the hydraulics blocks in Fig. 4. Nonethe-

less, results also showed that the RIM-based scheme was able to achieve shorter execution times

by employing larger step-sizes hM in the solution of the dynamics of the multibody system.

6 Conclusions

Non-iterative co-simulation of multiphysics models is a promising but challenging approach to

study the behaviour of complex engineering systems. With this technique, the exchange of in-

formation between subsystems takes place only at discrete synchronization points and this may

give rise to the instability of the numerical integration process. When a multibody system is

included in the simulation, a meaningful reduced interface model (RIM) representation can be

used to interface it to other subsystems, improving the overall stability and dynamics behaviour.

The RIM proposed here is based on the characterization of the multibody interface, which can

be described with the selection of a representative parametrization. Unlike other reduction tech-

niques, which obtain reduced order models from the extraction of motion modes from a previ-

ously known dynamic response of the full order model, our methodology is based on expressing

the multibody system dynamics in terms of the interface velocities. The resulting RIM is defined

by the effective mass matrix M̃ and force vector f̃ terms, respectively. This representation of
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the multibody system can then be used as communication interface between the full model and

other subsystems in the co-simulation setup.

The ability of the proposed RIM to enhance the stability of non-iterative co-simulation of

multiphysics systems was assessed with several examples that included both mechanical and

hydraulic components. Results confirmed that stability and dynamic behaviour were improved

using the RIM, and showed that coupling subsystem solvers through a RIM of the multibody

system can lead to a more stable integration process. The use of RIM representations of the

multibody system made the selection of larger communication step-sizes possible in the co-

simulation algorithm, reducing the total computation time required to carry out the simulation.
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A Effective mass matrix and force term expressions

Using the velocity transformation in Eq. (14), it is possible to decouple the system dynamics in

Eq. (15) as it was done in Eq. (6). The dynamics in the subspace of constrained motion can

accordingly be expressed as

(
DH−1DT

)−1ẇc =(
DH−1DT

)−1
(
DH−1

(
g − d+DT

i λi
)
+ Ḋiu+DH−1DTλ

) (43)

Assuming that DM−1DT is a regular matrix, the expression of the constraint reactions as a

function of λi can be obtained from Eq. (43) as

λ =
(
DH−1DT

)−1
(
ẇc − Ḋu−DH−1

(
g − d+DT

i λi
))

(44)
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The constrained system dynamics in Eq. (15)

Hu̇+ d = g +DT
i λi +DTλ (45)

can also be transformed and decoupled using the velocity transformation in Eq. (5) to obtain

(
DiH

−1DT
i
)−1ẇi =

(
DiH

−1DT
i
)−1

(
g − d+DTλ+ Ḋiu

)
+ λi (46)

Substituting the expression of λi given by Eq. (44) in Eq. (46), the acceleration of the interaction

interface becomes

ẇi =DiH
−1

(
I−DT

(
DH−1DT

)−1DH−1
)
(g − d)

+DiH
−1

(
I−DT

(
DH−1DT

)−1DH−1
)
DT

i λi

+Ḋiu+DiH
−1DT

(
DH−1DT

)−1
(
ẇc − Ḋu

)
(47)

The projector matrix onto the subspace of constrained motion, Pc, is obtained as [23]

Pc = H−1DT
(
DH−1DT

)−1D (48)

and the accelerations in the subspace of admissible motion can be written in terms of the system

generalized velocities and accelerations by differentiating Eq. (14) with respect to time

ẇc = Du̇+ Ḋu (49)

Substituting Eqs. (48) and (49) in Eq. (47)

ẇi =Di (I−Pc)H
−1 (g − d)

+Di (I−Pc)H
−1DT

i λi + Ḋiu+DiPcu̇
(50)

Equation (50) can be cast into the form

M̃cẇi = f̃c + λi (51)

32



Multibody dynamics interface for stable co-simulation

where

M̃c =
(
Di (I−Pc)H

−1DT
i
)−1 (52)

f̃c = M̃c

(
Di (I−Pc)H

−1 (g − d) + Ḋiu+DiPcu̇
)

(53)

are the effective mass matrix and force term of the mechanical system. Note that, when the

system is modelled with independent coordinates no kinematic constraints are imposed on the

system. In this case, the projector is the null matrix, and the effective mass matrix and force

term become

M̃ =
(
DiH

−1DT
i
)−1 (54)

f̃ = M̃
(
DiH

−1 (g − d) + Ḋiu
)

(55)

which are equivalent to the terms in Eqs. (12) and (13)

B Computational model of the Juno rover

The Juno rover most relevant dimensions are shown in Fig. 19. The numerical values of these

dimensions are reported in Table 6.

The mass and inertia properties of the different components used to model the Juno rover are

summarized in Table 7. The inertia moments are provided at the centre of mass and expressed

in the local axes of each component. The centre of mass of each component was assumed to be

located at its geometrical centre.

x
y

d1

r

h1

(a)

z
y

b

d2

d3

h2
h3r

(b)

Figure 19: Juno rover side (a) and front (b) views
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Table 6: Juno rover dimensions

Wheel radius r 0.2795 m

Wheel width b 0.2340 m

x-distance between wheel centres d1 0.8350 m

z-distance between bogie centres d2 1.2560 m

z-distance between wheel centres d3 1.5420 m

Height to ground of top surface of main body h1 0.4335 m

Height to ground of c.o.m. of bogie h2 0.3045 m

Height to ground of c.o.m. of main body h3 0.3295 m

Table 7: Mass and inertia properties of Juno model components

Component mass [kg] Ix [kgm2] Iy [kgm2] Iz [kgm2]

Wheel 10.0 0.7812 0.3906 0.3906

Bogie 70.0 9.16 18.32 9.16

Chassis 140.0 9.16 8.396 9.16

Manipulator, link 1 15.0 31.25 ·10−4 56.25 ·10−3 56.25 ·10−3

Manipulator, link 2 25.0 2.08 ·10−4 10.42 ·10−3 10.42 ·10−3

Table 8: Terrain parameters used to characterize the wheel-terrain interaction

Sinkage exponent n 1.0

Cohesion stress c 220 N/m2

Friction angle ϕ 33.1◦

Cohesive pressure-sinkage modulus kc 1.4 kN/m2

Frictional pressure-sinkage modulus kϕ 2000 kN/m2

Shear deformation modulus K 0.015 m

The forces and torques generated at the wheel-terrain interface were obtained using the

terramechanics relations reported in [16], as a function of the system state, i.e., its generalized

coordinates and velocities. With this approach, a set of terrain parameters, shown in Table 8,

is required to characterize the terrain behaviour. The selected parameters are representative of

dry sand terrains.

Figure 20 shows the forces and torques at the interface and the magnitudes that are nec-

essary to evaluate them using the terramechanics model. The load on the wheel is W , and its
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driving torque Ta. The wheel is moving with angular velocity ω and its centre translates with

velocity v, contained in the wheel plane.

x

z

ω

v

W

Ta

Ft Rc

Tr

Fn

ζ (θ)

σ (θ)
τ (θ)

θ

θ1
θ2

Figure 20: Terrain reactions at the wheel-soil interface

The normal stress, σ (θ), at the interface is obtained as

σ (θ) =

(
kc
b
+ kϕ

)
ζ (θ)n (56)

where b is the wheel width, ζ is the wheel sinkage, and θ is the angle that locates the contact

point with respect to the vertical direction. The shear stress at the interface can be determined

as

τ (θ) = (c+ σ (θ) tanϕ)
(
1− e−r(θ1−θ−(1−s)(sin θ1−sin θ))/K

)
(57)

where θ1 is the entry angle of the wheel, r is the wheel radius, and s stands for wheel slip,

defined in terms of the angular velocity ω of the wheel and the translational velocity of its

centre v as s = (rω − v) /rω.

The normal load exerted by the terrain on the wheel, Fn is evaluated as

Fn = rb

(∫ θ1

θ2

τ (θ) sin θ dθ +

∫ θ1

θ2

σ (θ) cos θ dθ

)
+ cz ζ̇ (58)

where θ2 is the exit angle and cz is a damping coefficient to provide the terrain model with

a dissipative behaviour, set to 10% of the terrain stiffness. The traction force Ft and rolling
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resistance are given by

Ft = rb

∫ θ1

θ2

τ (θ) cos θ dθ (59)

Rc = rb

∫ θ1

θ2

σ (θ) sin θ dθ (60)

and the resisting torque can be obtained as

Tr = r2b

∫ θ1

θ2

τ (θ) dθ (61)

The lateral force was assumed to be zero in this research.
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[21] Garćıa de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems.

The Real–Time Challenge. Springer–Verlag, New York, USA (1994). DOI 10.1007/

978-1-4612-2600-0

[22] Koutsovasilis, P., Beitelschmidt, M.: Comparison of model reduction techniques for large

mechanical systems. Multibody System Dynamics 20(2), 111–128 (2008)
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