

This is an ACCEPTED VERSION of the following published document:

Losada, J., Raposo, J., Pan, A., Montoto, P., Álvarez, M. (2015). A Custom Browser
Architecture to Execute Web Navigation Sequences. In: Wang, J., et al. Web Information
Systems Engineering – WISE 2015. WISE 2015. Lecture Notes in Computer Science(), vol
9419. Springer, Cham. https://doi.org/10.1007/978-3-319-26187-4_11

Link to published version: https://doi.org/10.1007/978-3-319-26187-4_11

General rights:

This version of the article has been accepted for publication, after peer review and is
subject to Springer Nature’s AM terms of use, but is not the Version of Record and does
not reflect post-acceptance improvements, or any corrections. The Version of Record is
available online at: https://doi.org/10.1007/978-3-319-26187-4_11.

https://doi.org/10.1007/978-3-319-26187-4_11
https://doi.org/10.1007/978-3-319-26187-4_11
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://doi.org/10.1007/978-3-319-26187-4_11

adfa, p. 1, 2015.
© Springer-Verlag Berlin Heidelberg 2015

A Custom Browser Architecture to Execute
Web Navigation Sequences

José Losada, Juan Raposo, Alberto Pan, Paula Montoto and Manuel Álvarez

Information and Communications Technology Department, University of A Coruña
Facultad de Informática, Campus de Elviña, s/n, 15071, A Coruña (Spain)

{jlosada, jrs, apan, pmontoto, mad}@udc.es

Abstract. Web automation applications are widely used for different purposes
such as B2B integration and automated testing of web applications. Most current
systems build the automatic web navigation component by using the APIs of con-
ventional browsers. This approach suffers performance problems for intensive
web automation tasks which require real time responses and/or a high degree of
parallelism. Other systems use the approach of creating custom browsers to avoid
some of the tasks of conventional browsers, but they work like them, when build-
ing the internal representation of the web pages. In this paper, we present a com-
plete architecture for a custom browser able to efficiently execute web navigation
sequences. The proposed architecture supports some novel automatic optimiza-
tion techniques that can be applied when loading and building the internal repre-
sentation of the pages. The tests performed using real web sources show that the
reference implementation of the proposed architecture runs significantly faster
than other navigation components.

Keywords: Web Automation, Optimization, Browser Architecture.

1 Introduction

Most today's web sources do not provide suitable interfaces for software programs. That
is why a growing interest has arisen in so-called web automation applications that are
able to automatically navigate through websites simulating the behavior of a human
user. Web automation applications are widely used for different purposes such as B2B
integration, web mashups, automated testing of web applications, Internet meta-search
or business watch. For example, a technology watch application can use web automa-
tion to automatically search in the different websites and daily retrieve new patents and
articles of a predefined area of knowledge.

A crucial part of web automation technologies is the ability to execute automatic
web navigation sequences. An automatic web navigation sequence consists in a se-
quence of steps representing the actions to be performed by a human user over a web
browser to reach a target web page. Figure 1 illustrates an example of a web navigation
sequence that retrieves the list of patents matching the search term “World Wide Web”
in the European Patent Office website (www.epo.org).

Fig. 1. Navigation Sequence Example.

The approach followed by most of the current web automation systems [2] [9] [11] [15]
[16] [17] consists in using the APIs of conventional web browsers to automate the ex-
ecution of navigation sequences. This approach does not require developing a custom
navigation component, and guarantees that the accessed pages will behave the same as
when they are accessed by a human user. While this approach is adequate to some web
automation applications, it presents performance problems for intensive web automa-
tion tasks which require real time responses (because web browsers are client-side ap-
plications and they consume a significant amount of resources).

There exist other systems which use the approach of creating custom browsers to
execute web navigation sequences [5] [8] [10]. Since they are not oriented to be used
by humans, they can avoid some of the tasks of conventional browsers (e.g. page ren-
dering). Nevertheless, they work like conventional browsers when building the internal
representation of the web pages. Since this is the most important part in terms of the
use of computational resources, their performance enhancements are not very signifi-
cant.

In this work, we present a custom browser architecture oriented to the efficient exe-
cution of web navigation sequences. This architecture is influenced by a set of optimi-
zations that we have designed to be automatically applied during the process of loading
and building the internal representation of the web pages. Some of these optimizations
are based on the fact that, in the web automation systems, navigation sequences are
defined 'a priori' and executed multiple times. Using this peculiarity, the navigation
component can extract some useful information during the first execution of the se-
quence (at definition time) and use that information in the next executions of the same
sequence, to minimize the use of resources (CPU, memory, bandwidth and execution
time). To support these optimizations, the proposed architecture includes some novel
components not present in any other web navigation systems.

The rest of the paper is organized as follows. Section 2 briefly describes the models
our approach relies on. Section 3 presents an overview of the architecture and function-
ing of the conventional and custom browsers, and introduces a set of automatic optimi-
zations that can be applied in custom browsers. Section 4 explains in detail the proposed
architecture. Section 5 describes the experimental evaluation of the approach. Section
6 discusses related work. Finally, section 7 summarizes our conclusions.

2 Background

2.1 Document Object Model

The main model we rely on is the Document Object Model (DOM) [4]. This model
describes how browsers internally represent the HTML web page currently loaded and
how they respond to user performed actions on it. An HTML page is modelled as a tree,
where each HTML element is represented by an appropriate type of node. An important
type of nodes are the script nodes, used to execute a script code typically written in a
scripting language such as JavaScript.

In addition, every node in the tree can receive events produced (directly or indirectly)
by the user actions. Event types exist for actions such as clicking on an element (click),
or moving the mouse cursor over it (mouseover), to name but a few. Each node can
register a set of listeners for different types of events. An event listener executes arbi-
trary script code that has the entire page DOM tree accessible and can perform actions
such as modifying existing nodes, creating new ones or even launching new events.

2.2 Dependencies between nodes

In our previous work [12], we introduced the concept of dependency between nodes of
the DOM. This is a key concept in the custom browser architecture proposed in this
work. We can summarize the idea with the following definitions:

Definition 1. We say the node n1 depends on node n2 when n2 is necessary for the
correct execution of n1. We say that n2 is a dependency of n1 and denote it as n1→ n2.
The following rules define this type of dependencies:

1. If the script code of a node s1 uses an element (e.g. a function or a variable) declared
or modified in a previous script node s2, then s1→ s2. Rationale: to be able to exe-
cute the script code of s1, the node s2 must be executed previously.

2. If the script code of a node s uses a node n, then s→ n. Rationale: to be able to
execute the script code of s, the node n must be loaded previously, e.g., if s obtains
a reference to an anchor node (e.g. using the function getElementById) and navigates
to the URL specified by its href attribute, then it will not be possible to execute s
unless the anchor node is loaded.

3. If the script code of a node s makes a modification in a node n, then n→ s. Rationale:
the action performed by s may be needed to allow n to be used later, e.g., if s modifies
the action attribute of a form node to set the target URL, then it will not be possible
to submit the form unless s is executed previously.

Definition 2. We say that there exists a dependency conditioned to the event e being
fired over the node n, between two nodes n1 and n2, when the node n2 is necessary for
the correct execution of the node n1, when the event e is fired over the node n. We
denote this as n1→e|n n2. For example, suppose n is a node with a listener for the on-
MouseOver event. The listener uses a function defined in s. Then n →onMouseOver|n s.
Analogous rules to the ones explained before define this type of dependencies, which,
in this case, involve nodes containing event listeners.

Fig. 2. Example of dependencies between nodes.

Figure 2 illustrates an example of dependencies between nodes. In the example, the
script s1 defines the function f. This function access the link node l1 (using the function
getElementById), so s1→ l1. In addition, the script s2 uses the function f, so s2→ s1.

3 Overview

This section presents an overview about the architecture and functioning of the conven-
tional browsers (section 3.1), custom browsers (section 3.2), and introduces a set of
automatic optimizations that can be applied in custom browsers (section 3.3).

3.1 Conventional Web Browsers

A web browser is a software application used for retrieving and presenting resources
downloaded from the WWW. The architecture of the modern web browsers (Figure
3.a) [6] includes the high level components: Graphical User Interface, Browser Engine
and Rendering Engine; and the auxiliary subsystems: JavaScript Interpreter, Network-
ing, Display Backend, HTML Parser and Data Persistence.

1. The Graphical User Interface includes the browser display area except the main win-
dow where the response page is rendered (address bar, toolbars, main menu, etc.).

2. The Browser Engine is a high level interface for querying and manipulating the ren-
dering engine. It provides methods for high level browser actions, e.g., initiate the
loading of a URL, go back to the previous page, etc.

3. The Rendering Engine represents the core of the browser. It is the responsible for
processing and painting the HTML contents. The page loading process fires a set of
events in cascade and most of them are processed sequentially by this component.

Due to the semantics of JavaScript, web browsers execute scripts in a sequential
form. Nevertheless, there are some special cases where they can execute JavaScript in
parallel. First, the scripts containing the attribute async can be executed asynchronously
with the rest of the page loading. This feature has been introduced in HTML5 [18]. The
other scenario where JavaScript can be executed in parallel is using Web Workers (also
introduced in HTML5). A Web Worker can execute JavaScript in background but have
the major limitation that the code cannot access the DOM tree objects.

Figure 3.b shows the processing steps of the rendering engine in the web browsers:

1. Download and Decode: the HTML contents are downloaded and decompressed.
2. Processing: the DOM tree is built. For efficiency purposes, this is an incremental

process in most of the browsers. When new resources are discovered, they are down-
loaded and processed (style sheets, scripts, etc.). Style sheets contain presentation
information, used to build the page layout. Script nodes contain scripting code.

3. Layout and Rendering: the layout tree contains rectangles with visual attributes like
dimensions and colors (this structure is different from the DOM tree). The rendering
process paints the layout on the browser window using the display backend layer.

Fig. 3. Web Browsers Reference Architecture and Rendering Engine.

3.2 Custom Browsers

Custom browsers are navigation components, used in web automation systems, special-
ized in the execution of navigation sequences. Custom browsers usually simulate the
behavior of a real browser and they are designed with two main goals: the perfect emu-
lation of a conventional browser (if the custom browser does not behave just the same
as a real browser, the sequence execution could lead to wrong web pages) and efficiency
in the execution of the navigation sequences.

Custom browsers are not human-oriented and the visualization of the pages is not
necessary. This will increase the efficiency because there is no need for building and
render the page layout. In the custom browsers architecture, the Browser Engine is also
the entry point for accessing the Rendering Engine, but it does not receive commands
from the user interface. Instead, the Browser Engine receives the list of commands of
the navigation sequence to be executed. These commands will represent events pro-
duced by a human user in a real web browser, e.g., navigations to URLs or user events
over the DOM elements of the loaded page.

3.3 Automated Optimizations in Custom Browsers

As we have commented, in custom browsers, the rendering of the page layout is not
required, because the visualization of the web page is not necessary for the correct ex-
ecution of the navigation sequence. A first optimization we have considered consists in
avoiding the CSS styling of the DOM elements when it is not necessary. Note that CSS
styling is necessary only when the style attributes of a node are used during the JavaS-
cript evaluation. Therefore, the styling information can be calculated on-demand only

for the required DOM nodes. In our approach, each node will contain an internal struc-
ture with the visualization attributes, initially set to null. During the JavaScript evalua-
tion, when the style attributes of a DOM node are accessed, the visualization infor-
mation is generated on-demand only for that node.

A second issue to be considered is that, in web automation environments, navigation
sequences are known 'a priori' and executed multiple times. This peculiarity can be used
to extract some useful information during a first execution of each navigation sequence,
at definition time, with the goal to use that information in the following executions and
improve its efficiency. We will focus in two points:

1. Load minimized DOM trees. As described in our previous work [12], there are a lot
of fragments of the web pages that are not necessary for the correct execution of the
navigation sequences. For example, if the navigation sequence fills a form and fires
a click event on the submit button, in most of the cases, many fragments of the page
will not be involved in this sequence execution (for example, ads, banners, iframes,
menus, etc.). These irrelevant fragments can be ignored (not added to the DOM tree),
without affecting to the correct execution of the navigation sequence.

2. Parallelize the execution of script nodes. Web browsers execute the scripts contained
in the web pages sequentially (except some particular exceptions explained in sec-
tion 3.1), even when scripts have no dependencies between them. Script elements
that are not dependent could be executed in parallel without affecting to the correct
execution of the navigation sequence.

To achieve these two objectives, in our approach, the custom browser will work in
two phases: optimization and execution. The optimization phase requires one execution
of the navigation sequence. In this execution, the navigation component automatically
calculates some optimization information and saves it. More in detail, it calculates:

1. Which nodes of the DOM tree are necessary for the correct execution of the se-
quence, and which ones can be discarded (irrelevant nodes). To do so, the script
evaluation is monitored to collect all dependencies between the nodes in the DOM
tree (following the rules cited in the section 2.2). Using this dependencies, the irrel-
evant nodes are identified and represented using XPath-like [19] expressions. This
process is deeply described in [12].

2. A script dependency graph, which contains, for each script S in the page, the list of
other scripts that must be executed before, because they contain dependencies nec-
essary for the correct execution of the script S. The script dependency graph is also
calculated using the dependencies between the nodes obtained during the JavaScript
evaluation. The scripts contained in this graph are also represented using XPath-like
expressions. This process is deeply described in [13].

The execution phase involves the next executions of the same navigation sequence.
In this phase, the rendering engine uses the information previously generated to execute
the sequence more efficiently. When each page is loaded, a reduced DOM tree is built,
discarding the irrelevant nodes, and the scripts of the page are evaluated in parallel
according to the script dependencies graph.

4 Proposed Architecture

In this section, we describe the proposed architecture for a custom browser able to sup-
port the previously described optimization techniques.

1. To support the on-demand CSS simulation technique, the custom browser architec-
ture should take into account that:
(a) The visualization information will be stored in the DOM nodes directly.
(b) The CSS Subsystem will be accessed only from the JavaScript Engine.

2. To support the minimized DOM optimization technique, the designed architecture
should include the following elements:
(a) A module able to interact with the JavaScript Engine during the optimization

phase to collect the dependencies between the nodes.
(b) A module able to interact with the HTML Subsystem during the execution phase,

to detect and discard the irrelevant nodes previously identified.
(c) The Data Persistent Layer should be extended to provide a mechanism for saving

and retrieving the irrelevant nodes of each web page.
3. To support the parallel JavaScript execution technique, the custom browser archi-

tecture should include the following elements:
(a) A module able to calculate the graph with the dependencies between scripts.
(b) The Data Persistent Layer should be extended to provide a mechanism for saving

and retrieving the script dependency graph.
(c) A pool of reusable threads to execute scripts in parallel.
(d) A component able to detect available scripts and execute them in parallel using

the pool of reusable threads.

4.1 Architecture Core Components.

Figure 4 shows the components of the custom browser architecture: Browser Engine,
Rendering Engine, Data Persistence Layer and Browser Core Objects; the Rendering
Engine subsystems: Main Thread, Event Queue, Dispatcher Thread, Thread Pool (for
the parallel script execution); and the auxiliary subsystems: HTML Engine, JavaScript
Engine, CSS Subsystem, Networking Layer, and Optimizer.

The Browser Engine receives the list of commands from the navigation sequence
and translates them into events that are placed in the Event Queue. The Event Queue
contains the sorted list of events pending for its execution. Each event execution can
produce new events (child events) that are also placed in this queue.

The Dispatcher Thread is the responsible for assigning events to execution threads.
When the custom browser is executed as a regular browser (without using the optimi-
zation information), all events are executed in the Main Thread one by one, until the
queue is empty. When the custom browser is executed using the optimization infor-
mation previously collected during the optimization phase, the Dispatcher Thread ana-
lyzes the event queue, looking for scripts ready for its execution that could be evaluated
in parallel. A script is parallelizable when all other scripts that depends on, have already

finished its execution. The Thread Pool (containing reusable threads) is used to eval-
uate these scripts in parallel. Other events are executed in the Main Thread. If all threads
of the pool are busy evaluating scripts, the Main Thread can also execute scripts.

Fig. 4. Browser Architecture Core Components.

During the optimization phase, the Optimizer is the responsible for the calculation
of the dependencies between the nodes, the set of irrelevant nodes (not required for the
correct execution of the sequence) and the script dependency graph. It is also the re-
sponsible for saving the optimization information using the Data Persistence Layer.
During this phase, when the scripts are evaluated, the JavaScript Engine invokes the
Optimizer to collect the dependencies between the nodes. Then, after the page loading,
when all scripts finished its execution, the Optimizer analyzes these dependencies and
generates the optimization information using XPath-like expressions to represent the
nodes. In the execution phase, the Dispatcher also uses the Optimizer to detect the
scripts that could be executed in parallel. When a script finishes its execution, the Op-
timizer updates the script dependency graph and the Dispatcher is notified. If there are
new scripts ready for execution that could be evaluated in parallel, the Dispatcher places
them in the available threads of the pool.

The CSS Subsystem parses and stores the CSS snippets. The JavaScript Engine uses
the CSS Subsystem to dynamically calculate the CSS style attributes on-demand (dur-
ing the script evaluation). If the JavaScript code does not reference the style attributes,
these calculations can be omitted, saving the corresponding processing time. Figure 5
illustrates an example of on-demand CSS styling and also outlines the pseudo-code of
the algorithm that calculates the structure with the CSS properties. In the example, the
CSS attributes are calculated only for two nodes (html and body).

The HTML Engine is responsible for parsing the HTML and XML streams. It uses
the Optimizer (during the DOM building stage) to identify the irrelevant fragments, and
build a minimized version of the DOM tree containing only the relevant nodes.
The Networking Layer is responsible for the execution of HTTP requests. Multiple
downloads can be executed in parallel. A cache of downloaded files is provided to in-
crease the performance and prevent unnecessary downloads.

Fig. 5. On-Demand CSS Styling.

All the subsystems can access to the Browser Core Objects, including the windows
and the documents with the DOM tree of each loaded page. Windows and frames can
be accessed thought the window manager object. Each window contains the currently
loaded document object (and also the history with previously loaded documents). Each
node can contain an additional structure with the visualization information. This struc-
ture is generated only if the style attributes are required during the script evaluation.

The Data Persistence Layer: provides a mechanism for accessing the persistent in-
formation, including the cache of downloaded JavaScript and CSS files, the cache of
compiled scripts, cookies, optimization information (irrelevant nodes and the script de-
pendency graph) and browser configuration parameters.

4.2 Event Execution Model

The event execution model considers different types of events (e.g. DOM load, script
execution, user actions, etc.) and each event stores information about its execution state.
Figure 6 shows the supported event states and the transitions between them:

Created: initial state, before adding the event to the queue. Most events immediately
switch to Ready state when they are inserted in the queue. If the event depends on other
actions (e.g. download a file), it will be placed in the queue as Not Ready (Locking). If
the event requires a delay (e.g. using setTimeout function), it will be placed in the queue
as Not Ready (Unlocking).

Not Ready: the event is in the queue but it cannot be executed because there are
unfinished pending actions associated to the event. Not Ready (Locking) events block
the queue and no other events can be executed until this event finishes (except paral-
lelizable scripts). Not Ready (Unlocking) events does not block the queue and other
events can be executed in the meantime.

Ready: the event is ready to be executed. If it is a script event and it is parallelizable,
then it can be executed, in the Main Thread or in a thread of the pool, when all its
dependencies (according to the script dependency graph) are in Completed state. In
other case, it will be executed in the Main Thread following the queue order.

Running: the event is out of the queue and it is being executed. This running event
can generate new events that must be executed immediately (even before finishing its
own execution). In that case, this running event pauses its execution and returns to the
queue. For example, if a style sheet is discovered during the HTML parsing, a CSS

event is created and placed in the queue; the HTML parsing stops its execution, returns
to the queue (in a position higher than the CSS event), and it will continue just after
finishing the CSS processing.

If the event is a periodic timer event (e.g. using setInterval function), it will be placed
in the queue again, just after finishing its execution.

Finished: the event finished its execution but has unfinished child events. This state
is used to correctly detect when a script has completely finished (necessary to evaluate
the scripts in parallel). If a script S, produces JavaScript child events, other scripts in
the page detected as dependent of S cannot be executed until the child events of S end
its execution (at that moment, S switch to Completed state and the script dependency
graph is updated).

Completed: the event and its child events have finished (this is a recursive process).
Failed: the event (or one associated preload action) has finished with errors.

Fig. 6. Event Transition States.

4.3 Rendering Engine Processing Steps and Thread Model

Figure 7.a shows the processing steps of the rendering engine of a custom browser de-
signed according to the proposed architecture (using its automatic optimization capa-
bilities at execution time). We can summarize the differences with other navigation
systems as follows: the Layout and Render steps are not necessary; CSS rules are ap-
plied on-demand only to the required nodes; when building the page, irrelevant frag-
ments are identified and not added to the tree; and finally, the scripts are evaluated in
parallel, following the script dependency graph.

Figure 7.b illustrates the multi-thread model used in the browser architecture.
Browser Engine Thread: using a separated thread for the Browser Engine allows a

better control on the rendering engine. In addition, the navigation sequence commands
can be placed in the queue asynchronously.

Dispatcher Thread: responsible for selecting events from the queue and assigning
these events to the execution threads. Events can be selected in queue order (pop
method) to be executed in the Main Thread (note that, the pop method does not always
return the first event in the queue, due to the state Not Ready (Unlocking)), or not fol-
lowing the queue order (get method) if they are script events that can be executed in a
thread of the pool.

Main Thread: executes all kind of events. This thread can access to the event queue
to place new events generated during the execution of the running event.

Parallel Scripts Thread Pool: execute JavaScript events in parallel. These threads
can also place new events in the queue.

Network Thread Pool: executes HTTP requests in parallel.
The inter-thread communication is managed through the Event Queue and the events

inserted in it. The Browser Engine will keep a reference to the events added to the queue
(when the navigation sequence commands are translated to browser events). Using this
reference, the Browser Engine will be able to know the execution progress because each
event stores information about its current state, previous transitions between states,
child events generated, etc. The Browser Engine will place in the queue special types
of events for actions such as stop the execution after a predefined timeout, etc.

Fig. 7. Rendering Engine Processing Steps and Thread Model.

5 Evaluation

To evaluate the validity of the proposed architecture, we developed a reference imple-
mentation that emulates Microsoft Internet Explorer. This navigation component was
implemented in Java using open source libraries. In the experiments, we selected web-
sites from different domains and different countries, included in the top 500 sites on the
web according to Alexa [1]. The test machine was a quad-core with 16GB of RAM.
The thread pool size (for parallel script evaluation) was limited to a maximum of 3.

In the first experiment, we tested the architecture performance comparing the exe-
cution time of our custom browser using its automatic optimization capabilities with
the custom browser without using the optimization techniques, and also with other rep-
resentative navigation components. On one hand, we used a navigation component
based on HtmlUnit [8] because it is a popular open source project with JavaScript and
CSS support. On the other hand, we used a navigation component developed using the
APIs of Microsoft Internet Explorer (MSIE from now). The three navigation compo-
nents (the reference implementation, HtmlUnit and MSIE) were configured to use its
caching capabilities. In addition, MSIE was configured to prevent image downloading
and plugin execution (e.g. to avoid showing banner videos). In each website we rec-
orded a navigation sequence representative of its main function (e.g. a product search

in an e-commerce website). Every sequence executed events to fill and submit forms,
to navigate through hyperlinks, etc.

Table 1 shows the average execution time of 30 consecutive executions of each nav-
igation sequence used in the tests, discarding those executions that do not fit in the
range of the standard deviation. The table also shows, between brackets (in the second,
third and fourth columns), the percentage of the execution time in comparison with the
custom browser using the automatic optimization capabilities (first column).

The execution of the custom browser using its optimization capabilities always got
best results (first column). Calculating the average of the percentages, the execution
time of the custom browser without using its automatic optimization capabilities is 3.1
times slower (310%). Discarding the results that do not fit in the range of the average
± standard deviation it is 2.4 times slower, and the median value indicates that it is 2.46
times slower. Regarding the other two browsers, HtmlUnit is the one that got better
results. It is, in average, 4.7 times slower (470%). Discarding the results that do not fit
in the range of the average ± standard deviation it is 3.49 times slower, and the median
value indicates that it is 3.78 times slower. The navigation component based on MSIE
is, in average, 6.84 times slower (684%). Discarding the results that do not fit in the
range of the average ± standard deviation it is 5.44 times slower, and the median value
indicates that it is 5.34 times slower.

In the second experiment, we executed a load test benchmark using multiple brows-
ers executing the same navigation sequence in parallel. This experiment was not exe-
cuted using the real websites because most of them do not allow the level of concur-
rency required for the parallel load testing. Instead, we simulated the real web site sav-
ing the contents of the downloaded pages (including the JavaScript files, CSS files, etc.)
in a local web server, and modifying HTML contents and JavaScript files to emulate
the form submission and the AJAX requests (this simulation forbade HTTP requests
outside the local web server). In this experiment, 30 different instances of the same type
of browser (e.g. 30 custom browser instances, 30 MSIE instances and 30 HtmlUnit
instances) executed the same navigation sequence in parallel during 5 minutes.

Table 2 shows the number of finished executions of the navigation sequence using
the custom browser (with and without using its optimization capabilities), and also us-
ing HtmlUnit and MSIE. The custom browser when uses its optimization capabilities
always got best results (first column). Compared with the custom browser without using
optimization capabilities, it completed, in average, 4.89 times more executions (489%).
Discarding the results that do not fit in the range of the average ± standard deviation, it
completed 3.5 times more executions, and the median value indicates that it completed
3.6 times more executions. Compared with HtmlUnit, the custom browser using its au-
tomatic optimization capabilities completed, in average, 14.25 times more executions
(1425%). Discarding the results that do not fit in the range of the average ± standard
deviation, it completed 9.29 times more executions and the median value indicates that
it completed 9.68 times more executions. Compared with MSIE, it completed, in aver-
age, 20.57 times more executions (2057%). Discarding the results that do not fit in the
range of the average ± standard deviation, it completed 12.33 times more executions,
and the median value indicates that it completed 12.99 times more executions.

Table 1. Execution Times.

Table 2. Load Tests BenchMark.

6 Related Work

Most of the current web automation systems (Smart Bookmarks [9], Wargo [15], Sele-
nium [17], Kapow [11], WebVCR [2],WebMacros [16]) use the APIs of conventional
browsers to automate the execution of navigation sequences. This approach has two
important advantages: it does not require to develop a new browser (which is costly),
and it is guaranteed that the page will behave in the same way as when a human user
access it with her browser. Nevertheless, it presents performance problems for intensive
web automation tasks which require real time responses. This is because web browsers
are designed to be client-side applications and they consume a significant amount of
resources.

Other systems use the approach of creating simplified custom browsers. For exam-
ple, Jaunt [10] lacks the ability to execute JavaScript. HtmlUnit [8] and EnvJS [5] use
their own custom browser with support for advanced JavaScript features. They are more
efficient than conventional web browsers, because they are not oriented to be used by
humans and can avoid some tasks (e.g. rendering). Nevertheless, they work like con-
ventional browsers when building the internal representation of the web pages. Since
this is the most important part in terms of the use of computational resources, their
performance enhancements are smaller than the ones achieved with our approach.

Traditional web browsers (Firefox, Chrome, etc.) implement some optimizations,
(e.g., Mozilla Firefox uses the speculative parsing [13] to early discover resources and
start preload actions), but they always calculate the CSS visualization information of
all the DOM nodes, evaluate scripts in a sequential form, and load the pages completely.

Other browsers exploit different levels of optimization and parallelism. For example,
ZOOMM [3] is a parallel browser engine that exploits HTML pre-scanning with re-
source prefetching, concurrent CSS styling and parallel script compilation, and Adren-
aline [7] speeds up page processing by splitting the original page in mini-pages, ren-
dering each of these mini-pages in a separate process.

7 Conclusions

In this paper we presented a complete architecture for a headless custom browser spe-
cialized in the execution of web navigation sequences. The architecture supports a set
of novel automatic optimization techniques not implemented in any other navigation
component and includes some elements not present in any other navigation system.

This architecture design, exploits some peculiarities of web automation environ-
ments. First, custom browsers do not require some operations that are unconditionally
executed in conventional browsers (e.g. build page layout and rendering), and second,
the fact that, in the web automation systems, the same navigation sequences are exe-
cuted multiple times. This peculiarity is used to extract some useful information during
a first execution of each navigation sequence, with the goal to use that information in
the following executions and improve the efficiency.

To evaluate the validity of the proposed architecture, we developed a reference im-
plementation following the architecture principles. In the experiments, we analyzed the

performance of the architecture comparing our custom browser with other navigation
components. The reference implementation, using optimization techniques, got the best
results, followed by the same reference implementation without using those optimiza-
tion capabilities, and, at a greater distance, by the other navigation components.

We can conclude that a custom browser built according to the proposed architecture
is able to execute the navigation sequences faster, consuming fewer resources than
other existing navigation components.

8 References

1. Alexa. The Web Information Company. http://www.alexa.com.
2. Anupam, V., Freire, J., Kumar, B., Lieuwen, D.: Automating web navigation with the

WebVCR. Comput. Netw. 33(1–6), 503–517 (2000).
3. Calin Cascaval, Seth Fowler, Pablo Montesinos-Ortego, Wayne Piekarski, Mehrdad Re-

shadi, Behnam Robatmili, Michael Weber, and Vrajesh Bhavsar. 2013. ZOOMM: a parallel
web browser engine for multicore mobile devices. In Proceedings of the 18th ACM
SIGPLAN symposium on Principles and practice of parallel programming (PPoPP '13).
ACM, New York, NY, USA, 271-280.

4. Document Object Model (DOM). http://www.w3.org/DOM/.
5. EnvJS. http://www.envjs.com/.
6. Grosskurth, A., Godfrey, M. W., September 2005. A reference architecture for web brows-

ers. In: ICSM’05: Proceedings of the 21st IEEE International Conference on Software
Maintenance (ICSM’05). pp. 661–664.

7. H. Mai, S. Tang, S. T. King, C. Cascaval, and P. Montesinos. A case for parallelizing web
pages. In Proceedings of the 4th USENIX conference on Hot Topics in Parallelism, Hot-
Par’12, Berkeley, CA, USA, June 2012. USENIX Association.

8. HtmlUnit. http://htmlunit.sourceforge.net/.
9. Hupp D., Miller R.C.: Smart Bookmarks: automatic retroactive macro recording on the web.

In: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Tech-
nology, pp. 81–90. ACM New York, Newport (2007).

10. Jaunt. Java Web Scraping & Automation. http://jaunt-api.com.
11. Kapow: http://kapowsoftware.com/.
12. Losada J., Raposo J., Pan A., Montoto P.: Efficient execution of web navigation sequences.

World Wide Web Journal. DOI 10.1007/s11280-013-0259-8. ISSN 1386-145X.
13. Losada J., Raposo J., Pan A., Montoto P., Álvarez M.: Optimization Techniques to Speed

Up the Page Loading in Custom Web Browsers. Manuscript accepted for publication in
ICEBE 2015. Beijing, China (23-25 October 2015).

14. Mozilla HTML5 Parser. https://developer.mozilla.org/en-
US/docs/Web/Guide/HTML/HTML5/HTML5_Parser

15. Pan A., Raposo J., Álvarez M., Hidalgo J., Viña A.: Semiautomatic wrapper generation for
commercial web sources. In: IFIP WG8.1 Working Conf. on Engineering Information Sys-
tems in the Internet Context, pp. 265–283. Kluwer, B.V. Deventer, Japan (2002).

16. Safonov A., Konstan J., Carlis J.: Beyond hard-to-reach pages: interactive, parametric web
macros. In: 7th Conference on Human Factors & the Web. Madison 2001.

17. Selenium: http://seleniumhq.org.
18. HTML5. https://html.spec.whatwg.org.
19. XML Path Language (XPath), http://www.w3.org/TR/xpath

http://www.w3.org/DOM/
http://www.w3.org/TR/xpath

	PortadaRUC_declaracionDerechos.pdf
	This is an ACCEPTED VERSION of the following published document:
	General rights:

