

This is an ACCEPTED VERSION of the following published document:

C. Eiras-Franco, V. Bolón-Canedo, S. Ramos, J. González-Domínguez, A.
Alonso-Betanzos, and J. Touriño, "Multithreaded and Spark parallelization
of feature selection filters", Journal of Computational Science, Vol. 17, Part
3, Nov. 2016, Pp. 609-619

Link to published version: https://doi.org/10.1016/j.jocs.2016.07.002

General rights:

©2016 Elsevier B.V. All rights reserved. This manuscript version is made available
under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/bync-
nd/4.0/. This version of the article has been accepted for publication in Journal of
Computational Science. The Version of Record is available online at
https://doi.org/10.1016/j.jocs.2016.07.002

Multithreaded and Spark parallelization of feature selection filters

Carlos Eiras-Francoa,∗, Verónica Bolón-Canedoa, Sabela Ramosb, Jorge González-Domı́nguezb, Amparo
Alonso-Betanzosa, Juan Touriñob

aComputer Science Dept., University of A Coruña, 15071 A Coruña, Spain

bDept. of Electronics and Systems, University of A Coruña, 15071 A Coruña, Spain

Abstract

Vast amounts of data are generated every day, constituting a volume that is challenging to analyze. Techniques such as

feature selection are advisable when tackling large datasets. Among the tools that provide this functionality, Weka is one

of the most popular ones, although the implementations it provides struggle when processing large datasets, requiring

excessive times to be practical. Parallel processing can help alleviate this problem, effectively allowing users to work with

Big Data. The computational power of multicore machines can be harnessed by using multithreading and distributed

programming, effectively helping to tackle larger problems. Both these techniques can dramatically speed up the feature

selection process allowing users to work with larger datasets. The reimplementation of four popular feature selection

algorithms included in Weka is the focus of this work. Multithreaded implementations previously not included in Weka

as well as parallel Spark implementations were developed for each algorithm. Experimental results obtained from tests

on real-world datasets show that the new versions offer significant reductions in processing times.

Keywords: Multithreading, Spark, Feature selection, Machine Learning

∗Corresponding authors

Email address: carlos.eiras.franco@udc.es (Carlos Eiras-Franco)

 submitted to Journal of Computational Science April 1, 2016

1. Introduction

Massive amounts of data are generated on a daily basis

nowadays. As an example, IBM estimated that in the time

span between 2010 and 2012, 90% of the data worldwide

were produced at a rate of 2.5 exabytes per day [1]. This

data-generating trend has sparked interest in data analyt-

ics, which in turn has created the need for new tools, al-

gorithms and methodologies that can cope efficiently with

such massive amounts of data. Consequently, the dimen-

sionality (samples × features) of datasets being analyzed

in machine learning problems has been steadily growing

in the last years. Taking the datasets posted in the pop-

ular libSVM Database [2] as a reference, their size has

increased five hundredfold. This results in a challenge for

traditional machine learning algorithms, as overfitting can

negatively impact their performance, more complex mod-

els are harder to interpret and both speed and efficiency of

these algorithms decrease as the dimensionality increases.

This situation has spawned a number of techniques de-

signed to deal with big dimensionality datasets. This di-

mensionality can refer to samples, features or both. In the

case in which we confront with datasets containing numer-

ous features, feature selection techniques are mandatory.

Feature selection consists in the process of determining the

relevant features and trying to remove as much irrelevant

and redundant information as possible, without leading to

a degradation in the classification performance.

The Weka (Waikato Environment for Knowledge Anal-

ysis) suite [3] is a very popular machine learning platform

that has been downloaded over six million times. It can be

used as a stand-alone application or imported as a library

from the user’s code. Feature selection is among its func-

tionalities with several algorithms available to the user.

This ample range of algorithms included in Weka makes

its use widespread among data scientists for data analysis

and for the development and testing of new algorithms.

In addition, the fact that Weka runs on Java and is de-

signed with single-machine setups in mind, makes it very

suitable for the average user. Nevertheless, some of the im-

plementations in Weka still struggle when processing large

datasets, requiring very long execution times, effectively

limiting the size of the datasets that can be analyzed with

it. An improvement in the time efficiency of these algo-

rithms will enable its many users to process large datasets

that up to now were out of reach for these implementa-

tions.

On the other hand, and to specifically address the Big

Data issue, new parallel programming solutions have been

created in the last decade, such as MapReduce [4], that was

implemented in the open-source solution Apache Hadoop

[5] or, more recently, Apache Spark [6], which aimed at

being a solution to Big Data analysis. The advent of these

new technologies led to the creation of parallel machine

learning libraries: Mahout [7] that runs on top of Apache

Hadoop, and MLlib [8] that uses Apache Spark, are some

examples. Although these libraries contain a wide variety

of machine learning algorithms, they do not provide many

options when it comes to feature selection.

Spark is designed for distributed computing and can

achieve great performance processing large amounts of data,

but few implementations of feature selection algorithms

are available. Moreover, to be able to use the Mahout or

MLlib libraries, the user needs to have a Hadoop or Spark

installation and, although they can run on single-machine

environments, a cluster of computers would be needed to

fully exploit these libraries, which is not always available

for regular users.

The aim of this work is to obtain new implementa-

tions of these popular feature selection algorithms that are

able to tackle sizable problems in different environments

and find out the suitability of these implementations to

different amounts of computing resources. To this end,

multithreaded implementations for Weka and distributed

versions in Spark will be proposed. This will allow users

to analyze larger datasets in shorter times and choose the

most adequate implementation to the resources available

2

to them.

This paper is organized as follows: Sections 2 and 3

are an overview of feature selection and parallelization ap-

proaches respectively. Section 4 describes the algorithms

that are the object of this paper. The results of our tests

are presented in Section 5 and in Section 6 we discuss our

conclusions.

2. Feature selection

Feature selection is the name given to the process that

detects relevant features and discards those that are re-

dundant or irrelevant. The goal of this technique is to

obtain a subset of features that has minimum degradation

of performance when used by a classifier while describing

the given problem properly. It simplifies the dataset both

in size and in complexity of understanding [9], which leads

to simpler and faster classification algorithms, better prob-

lem comprehension and reduced storage requirements.

2.1. Feature selection methods

Feature selection methods can be classified into two

categories: individual evaluators or subset evaluators. In-

dividual evaluators are also called rankers and they assign

a weight to each attribute that represents its relevance.

Subset evaluators, on the contrary, employ a search strat-

egy to determine a candidate subset of features and have

the advantage of removing redundant attributes at the cost

of being more complex. According to the relationship with

the learning method used, feature selection methods can

also be divided as follows [10]:

• Filters are methods that are applied independently

of the induction process. They are, in general, com-

putationally inexpensive.

• Wrappers use the induction algorithm as a black

box to evaluate the fitness of each candidate subset.

This results in algorithms that are computationally

demanding but more accurate.

• Embedded methods perform feature selection in

the process of training and are typically specific to

given learning algorithms.

In this paper, three of the most commonly used filter

methods (InfoGain, RELIEF-F and CFS) and an embed-

ded method (SVM-RFE) were selected for reimplementa-

tion using a parallel approach. The first two filters are

rankers that return an order for the features to be dis-

carded below a threshold of the user’s choice and they are

included in the Weka suite:

• Information Gain (InfoGain) [11] is a filter that

computes the mutual information of the different fea-

tures with respect to the class and provides an or-

dered ranking of all the features according to this

value.

• RELIEF-F [12] is a heuristic estimator built upon

the RELIEF algorithm [13] that deals efficiently with

noisy and incomplete datasets and with multiclass

problems. It works by locating its nearest neighbors

for each instance from the same and opposite class

and updating the weights of each feature accordingly.

The remaining two algorithms are subset evaluators.

To perform feature selection they search through the space

of all possible attribute combinations for the set that of-

fers a better score according to a heuristic method that

depends on the algorithm.

• CFS [14] is a subset evaluator independent from the

induction process that tries to identify correlations

between attributes and the class.

• SVM-RFE [15], which stands for Support Vector

Machine Recursive Feature Elimination is an em-

bedded method that filters the attributes iteratively

using a SVM at each stage to rank them.

The choice of these algorithms was made to obtain a

set of tools that are well suited to a wide range of datasets.

3

CFS and InfoGain perform well when the data has a large

number of attributes when compared to the number of

instances and are very fast, but they do not perform as

well when there is noise in the inputs. RELIEF-F is very

good at eliminating redundant and correlated features,

even when there is noise in the inputs and attributes are

non-linear, but it is much slower and does not perform well

when few examples are available. Lastly, SVM-RFE de-

tects correlation and redundancy even with few examples,

but it performs poorly when there is noise in the inputs

and is very time consuming [9].

Table 1 shows the theoretical complexity of the four

methods described above.

Table 1: Theoretical complexity of the four feature selection methods

focus of this work (where m is the number of examples and n is the

number of attributes)

Method Complexity

InfoGain nm

RELIEF-F nm2

CFS n2m

SVM-RFE max(n,m)m2

3. Parallel approaches

The main purpose of this work is to parallelize the

standard implementations of RELIEF-F, InfoGain, CFS

and SVM-RFE. In order to empower Weka users, multi-

threaded implementations are proposed. Furthermore, to

enable users that can access computational clusters, we

developed and tested Spark versions of the algorithms.

3.1. Multithreaded processing

Multithreading allows users to take advantage of mul-

ticore systems without imposing the overhead of creating

multiple processes and providing direct access to a com-

mon address space. However the creation and manage-

ment of threads introduces a computational overhead that

makes the use of threads suboptimal when the tasks par-

allelized have low complexity.

Java provides parallel programming support in the core

of the language. This feature enables programmers to

write code that exploits multithreading without the need

to use any external library. Since Weka is written in Java,

we use this support to implement our multithreaded par-

allel codes. We divide the feature selection algorithms in

tasks that can be performed in parallel, which allows us to

exploit the computational power of multicore machines.

3.2. Parallelization with Apache Spark

To alleviate the difficulties of developing distributed

programs, a team of Google engineers developed the MapRe-

duce framework [4] that handles the common aspects of

distributed programs, providing the programmer with a

tool to run parallel programs without having to worry

about anything but the implementation of the algorithm.

The programming paradigm introduced by MapReduce

requires the tasks to be divided in two separate steps: the

Map phase, that applies a function given by the user to

every element; and the Reduce phase, that combines the

resulting values. Oftentimes elements consist of key-value

pairs and the Reduce phase merges results that have the

same key, although this is not mandatory. The abstraction

resulting of decomposing a job in simple Map and Reduce

functions allows the framework to divide both data and

code across the computing nodes, a task performed by a

master node. Typically, the framework splits the data in as

many chunks as nodes are available, distributes it among

them so that each node can apply the Map function to

the assigned elements. The results are then rearranged

by the master node, using a key partitioning scheme, and

distributed again back to the nodes so that they perform

the Reduce phase.

MapReduce was implemented in the open-source frame-

work Hadoop [5] and rapidly achieved great popularity for

its reliability and scalability. Still, this direct implementa-

4

tion left room for an important improvement that was later

implemented by the Spark [6] framework: the transition

between the Map and Reduce phase requires data to be

shuffled by the master node and redistributed to the nodes,

in a time-consuming process that is unnecessary when sev-

eral Map transformations need to be applied before the

Reduce phase or in iterative algorithms. By avoiding un-

needed data movement and introducing other optimiza-

tions Spark performs several times faster than Hadoop for

certain applications [16].

Spark allows the programmer to manage work distri-

bution by means of using Resilient Distributed Datasets

(RDDs), an abstraction that represents a read-only set

of objects that is distributed across multiple machines.

RDDs can be transformed, performing an operation on

each element, which can be done in parallel in each node,

and they can be reduced, combining elements, which re-

quires that the whole dataset is shuffled and redistributed

to the nodes in a time-consuming process. Additionally,

data can be sent to the nodes to work with by using broad-

cast variables, and the worker nodes can write increments

to special variables named accumulators.

We decomposed the feature selection algorithms in in-

dependent tasks for a Spark implementation that will allow

the user to take advantage of a computer cluster to process

large datasets in reduced time.

4. Implemented algorithms

Four algorithms (listed in Table 2) were the object of

this work. Of the 8 possible implementations (a Weka

multithreaded and a Spark version for each algorithm), 2

were already available and 6 were developed as part of this

work.

4.1. RELIEF-F algorithm

The original RELIEF-F algorithm [12] loops through

a set of instances R finding for each instance its k nearest

neighbors from the same class, called nearest hits H, and

Table 2: Summary of algorithms in this paper

Algorithm Multithreaded Weka Spark implementation

RELIEF-F New implementation New implementation

InfoGain New implementation Available in Spark

packages

CFS Included in Weka New implementation

SVM-RFE New implementation New implementation

the k nearest neighbors from each different class, which

are denoted as nearest misses M(C). When all neighbors

are found, the weight for each attribute W [A] is updated

by subtracting the weighted average distance (computed

with the diff function, that returns the Manhattan dis-

tance between two instances) of each hit H and adding, for

each class C other than R’s, the weighted average of the

distance to each miss M(C). When computing averages,

distances are weighted by the probability P of the class

and divided by the total number of instances m.

Regarding the multithreaded implementation, the job

was divided into as many tasks as threads we wanted to

use, then a thread was created for each task. This ap-

proach avoided the need for a thread pooler to manage

the execution of threads. This process is detailed in Algo-

rithm 1.

The process of finding the nearest neighbors for each

instance (by means of the loop described between Lines

2 and 7 of Algorithm 1) is very time consuming since it

requires comparing it with all other instances. This search

can be executed independently for each instance and there-

fore it can be performed in parallel with no synchronization

issues.

In our Spark implementation the work is split in the

same way: each node computes the nearest neighbors to a

subset of the examples. Every possible pairing of example

indices is generated and stored in a Spark RDD, which is

then distributed to the nodes. The whole dataset is sent

5

Algorithm 1: Pseudo-code for multithreaded

RELIEF-F
Input: R ←Set of instances having a set of

attributes A and classified in classes from a

set C

Output: W ← vector storing the weight of each

attribute

1 set all weights W[A]← 0.0

2 for i← 1 to THREADS AVAILABLE do in

parallel

3 Si ← disjoint subset of instances

4 foreach I in Si do

5 find k nearest hits H

6 for each class c ε C / c 6= class(I) do

7 from class c find k nearest misses M(c)

end

end

end

8 foreach a in A do

9 foreach Ri in R do

10 W[a]←W[a]−
k∑

j=1

diff(a,Ri,H)
m∗k +

∑
c6=class(R)

[
P (c)

1−P (class(Ri))

k∑
j=1

diff(a,Ri,M(c))
m∗k

]
end

end

to the nodes as a broadcast variable, so that they use it

as a lookup table. This approach obtains a considerable

speed gain, but effectively limits the size of the dataset to

the maximum size a Spark broadcast variable can handle.

4.2. InfoGain algorithm

The InfoGain algorithm assigns the weight (W) of each

attribute (A) by contrasting its information gain with re-

spect to the class. To calculate this value, the entropy (H)

of each class given the attribute in question is subtracted

from the entropy of that class:

InfoGain(Class,Attribute) =

H(Class)−H(Class|Attribute)
(1)

Entropy of a variable is defined as −
∑

i p(i) ∗ log(p(i)),

where i loops through every possible value of the variable.

The observed probability of a variable taking a value is

represented by p(i), and it is calculated as the ratio of

cases where the variable takes that value divided by the

total number of appearances of the given variable.

Weka implements this calculation by looping through

all the dataset counting the number of appearances of ev-

ery possible value for each attribute, storing the counts

in an array. Then this array is used to compute the in-

formation gain of each attribute. This process has linear

complexity.

In our proposed multithreaded solution, detailed in Al-

gorithm 2, the counting of every possible value is per-

formed in parallel for a subset of the samples (Line 4). This

requires an additional step, described in Line 7, that com-

bines the counts of each thread into a global count. Since

this division is performed on the number of instances, it

will be more effective when the dataset has numerous in-

stances. For small datasets, the additional accumulative

step can take more time than the one that is gained from

counting in parallel, but for large datasets the time re-

quired to add up the partial counts should be negligible

when compared to the counting process.

6

Lastly, the process of obtaining the information gain

values from the counts can also be performed indepen-

dently for each attribute, therefore it can be computed

in parallel (Line 11). The functions Entropy and Condi-

tionalEntropy shown in Line 14 represent the calculation

of H(Class) and H(Class|Attribute) respectively.

Again, the use of a thread pooler was avoided by cre-

ating as many tasks as threads are available.

The InfoGain algorithm is already included in the Spark

Infotheoretic Feature Selection package [17] that imple-

ments several algorithms that share a common structure

by the use of a framework [18]. This was the version tested

in this paper.

4.3. CFS algorithm

CFS is a subset evaluator that uses the correlation be-

tween attributes to obtain a score for a group of attributes.

The computational cost for this algorithm is greatly influ-

enced by the need to obtain the matrix that contains the

Pearson product-moment correlation coefficients between

every possible pair of attributes. The time complexity of

this process grows quadratically with the number of at-

tributes and linearly with the amount of samples, which

means that most of time of the CFS algorithm is spent in

this process. Once the correlation matrix and the stan-

dard deviations of each attribute have been computed,

CFS searches the space containing every possible attribute

subset looking for one that obtains the highest score in its

evaluation method.

The search algorithms used can vary in their complex-

ity, from simple greedy algorithms as the one described in

Algorithm 3 that simply adds to the set the best candidate

at each step, to more complex backtracking ones like Best-

First, listed in Algorithm 4. This search method keeps a

list with every candidate set that it encounters ordered by

their score in the evaluating function. For each candidate,

it explores every possible addition to the set, adding the

resulting new set to the candidate list if its score is high

Algorithm 2: Pseudo-code for multithreaded Info-

Gain
Input: R ←Set of instances having a set of

attributes A and classified in classes from a

set C

Output: W ← vector storing the weight of each

attribute

1 set all counts← 0.0

2 for t← 1 to THREADS AVAILABLE do in

parallel

3 St ← disjoint subset of instances

4 foreach I in St do

5 foreach a in A do

6 countsa,valueI(a),class(I) ←

partial countst,a,valueI(a),class(I) +

weight(I)

end

end

end

7 for t← 1 to THREADS AVAILABLE do

8 foreach a in A do

9 foreach v in valuesa do

10 foreach c in C do
countsa,v,c += partial countst,a,v,c

end

end

end

end

11 for t← 1 to THREADS AVAILABLE do in

parallel

12 At ← disjoint subset of attributes

13 foreach a in At do

14 W [a]← Entropy(countsa)−

ConditionalEntropy(countsa)

end

end

7

enough. This process goes on until the examination of can-

didate sets renders no new candidates for a given number

of iterations (named MAX STALE in Line 6 of Algorithm

4).

Algorithm 3: Greedy stepwise search used in CFS

Input: A ←Set of all possible attributes

Input: S ←Previously selected attributes

Input: previous merit←Merit of S

Output: S out← Selected attributes

1 best merit← previous merit

2 best set← S

3 for a← A do in parallel

set merit← computeMerit((S, a))

4 if set merit > best merit then

5 best merit← set merit

6 best set← (S, a)

end

end

7 if best set! = S then

8 return greedy stepwise(A, best set, best merit)

end

else

9 return best set

end

The evaluation function used by CFS is described in

Algorithm 5. It increases when the attributes are highly

correlated with the class and it decreases when any at-

tribute is highly correlated with other attributes that are

already in the set.

In the existing Weka implementation, which is included

by default in the Weka suite, the computation of the cor-

relation matrix is performed in parallel by several threads,

although this only occurs when the user chooses to pre-

compute the correlation matrix. Otherwise the matrix is

computed in an on-demand basis, which offers better per-

formance.

Our proposed Spark implementation first performs the

Algorithm 4: Best-first search used in CFS

Input: A ←Set of all possible attributes

Output: S ← Selected attributes

1 stale← 0

2 candidates← OrderedList((empty, 0))

3 merit cache← empty

4 best set← empty

5 best merit← 0

6 while candidates.hasElements() and

stale<MAX STALE do

7 S, S Merit← candidates.popF irst()

8 added← false

9 for a← A do in parallel

10 if (S, a) in merit cache then
set merit←

merit cache.getMerit((S, a))

end

else

set merit← computeMerit((S, a))

merit cache.storeMerit((S, a), set merit)

end

11 if set merit > S merit then

12 candidates.push((S, a), set merit)

13 if set merit > best merit then

14 added← true

15 stale← 0

16 best merit← set merit

17 best set← (S, a)

end

end

end

18 if not added then

19 stale← stale+ 1

end

end

8

Algorithm 5: Subset evaluation in CFS

Input: A ← Subset of attributes

Input: C ← Matrix containing the correlation

between the ith and jth attributes in C[i][j]

Input: SDev ←Array containing the standard

deviation for each attribute

Output: M ← Merit of subset

1 numerator ← 0

2 denominator ← 0

3 for a← A do

4 numerator ← numerator+C[a][class] ∗SDev[a]

5 denominator ← denominator + SDev[a]2

6 for b← A where b < a do

7 denominator ←

denominator+2∗SDev[a]∗2∗SDev[b]∗C[a][b]

end

end

8 M ← numerator√
denominator

correlation matrix computation in parallel and then the

search process (either BestFirst or GreedyStepwise) is per-

formed, evaluating the different candidate subsets also in

parallel.

4.4. SVM-RFE algorithm

To perform feature selection, the SVM Recursive Fea-

ture Elimination (SVM-RFE) algorithm makes use of sup-

port vector machine classifiers to assign a weight to each

attribute. Starting with the whole set of attributes, an

SVM is trained to classify binary datasets. The weights

assigned to the features by the SVM are then examined

and those with the lowest absolute value are removed from

the set and added to the ranking in the lowest positions, as

shown in Line 16 of Algorithm 6 (the number of elements

added at each iteration can be configured with the STEP

variable). Then the process is repeated for the remaining

attributes until the ranking is complete (Line 12).

In order to work with multiclass datasets, a different

ranking is obtained for each class (Line 3) using a one-vs-

all approach, that is, assuming that those elements per-

taining to a class other than the one being analyzed are

negative examples. Then those rankings are combined by

looping through them and adding to the final ranking the

best of each list, then the second best and so on, in a loop

described in Line 5. The process for obtaining the rank-

ing for each class can be done in parallel, and this is the

approach taken in our multithreaded Weka implementa-

tion. This allows the new version to take much less time

when processing multiclass datasets, while not hindering

the performance when used with binary datasets.

In the Spark implementation, by contrast, it is the pro-

cess of training the SVMs that is done in parallel, allowing

to save time both on multiclass and binary datasets. This

can be done by using the existing SVM with stochastic

gradient descent (SGD) implementation in Spark’s ML-

lib library. SGD is an incremental algorithm that is well

suited for parallelization. Weka employs Sequential Mini-

mal Optimization (SMO [19]), an analytical method that

is generally faster, but much harder to parallelize. This

change in the nature of the SVM training algorithm results

in a selected set of features that can be different from that

obtained with Weka.

4.5. Further considerations

It is worth mentioning that the studied algorithms are

very varied regarding their time complexity, which trans-

lates in differences in the portion of the total processing

time that is devoted to the algorithm. Since one of the

goals of this work is to provide a reference guide for users

choosing what implementation to use, we have opted for

listing the total execution time instead of just the time

invested in the algorithm because we think that this will

give users a more accurate idea of what to expect from

a certain implementation. That being said, there may be

some use cases where the algorithm is used in a different

context (for instance loading a dataset once and then per-

9

Algorithm 6: Pseudo-code for multithreaded SVM-

RFE
Input: S ←Set of instances having a set of

attributes A and classified in classes from a

set C

Output: ordered← Ordered attributes

1 attributeScoresByClass← empty

2 for c← C do in parallel

3 attributeScoresByClass[c]←

RankBySVM(c, S)

end

4 ordered← empty

5 for a← A do

6 for c← C do

7 if not

ordered.contains(attributeScoresByClass[c][a])

then

8 ordered.add(attributeScoresByClass[c][a])

end

end

end

9 return ordered

Function RankBySVM(c, S)

10 numAttrs ← Number of attributes

11 ranking ← empty stack

12 while numAttrs > 0 do

13 weights ← new SVMClassifier(S,c).weights

14 for w in weights do

15 weights[w] = weights[w]2

end

16 for i in 0 to STEP do

17 worstAttr ← findWorst(weights)

18 S.removeAttr(worstAttr)

19 ranking.add(worstAttr)

end

end

20 return ranking

forming several iterations of a feature selection algorithm)

that takes more advantage from the time gain associated

with the parallel implementation. Nonetheless, we choose

to compare the execution time of the whole process of per-

forming feature selection on a dataset contained in a file

since it will be the most common use case.

5. Experimental results

The goal of this work is to take advantage of multi-

threaded and distributed processing to speed up feature

selection. Hence, the features selected and the weights as-

signed by the new versions of the algorithms are the same

as those obtained with the original versions, excluding any

differences that may arise due to rounding or numeric pro-

cessing (except in the case of SVM-RFE that obtains dif-

ferent results in Spark due to the change of the nature

of the underlying SVM). Consequently, these new versions

do not modify the classification accuracy, but aim at being

able to perform feature selection in a reasonable, shorter

time. Therefore, the results listed below focus on the exe-

cution time of the feature selection process.

In order to provide a variety of scenarios to test the

proposed Weka and Spark implementations, seven high

dimensional datasets were chosen (see their characteris-

tics in Table 3). We used the Higgs dataset, which con-

sists of 11,000,000 instances with 28 numerical attributes

that represent kinematic properties of particles detected

in an accelerator [20]. The second dataset used, from here

on called Epsilon, was artificially created in 2008 for the

Pascal Large Scale Learning Challenge [21]. A prepro-

cessed version available on the LibSVM dataset reposi-

tory [22] was used. This dataset consists of 500,000 in-

stances that have 2,000 numerical features each. Since

both datasets mentioned above are binary datasets, one

additional dataset with several classes was selected, KDD99

[23]. It contains close to 5 million samples of 41 connec-

tion parameters each that are categorized in 23 different

classes. Also, SVMs require that datasets have numeric

10

attributes only, so any non-numeric attribute needs to be

transformed. Therefore, three multiclass datasets with

numeric features were chosen: Isolet [24] consists of al-

most 8000 instances with 617 attributes each, divided in

27 classes. USPS [25] is a dataset containing over 7000 ex-

amples of elements with 256 attributes, representing hand-

written characters, with 10 different labels. Lastly, the

Poker dataset contains over a million elements with 10

features each, classified in 10 different classes, represent-

ing possible hands in the poker card game. An additional

larger dataset named KDDB consisting of 19 million sam-

ples with 30 million attributes was included as an example

of very high dimensionality [26].

Table 3: Dataset description

Dataset Features Instances Classes

Higgs 28 11,000,000 2

Epsilon 2,000 500,000 2

KDD99 41 4,898,430 23

Isolet 617 7900 27

USPS 256 7291 10

Poker 10 1,025,010 10

KDDB 29,890,095 19,264,097 2

The experiments were run on up to 8 nodes of a com-

puter cluster. Each node has the specifications described

in Table 4. The Weka version used was 3.7.12 running on

OpenJDK 1.7.0 55. The OS installed in this machine was

Rocks 6.1, based on CentOS 6.x. Spark applications were

run using the MapReduce Evaluator (MREv) tool, that

unifies the configuration of various distributed computing

environments [27].

To measure the performance of the new versions of the

algorithms comparatively to the original implementations

we used the speed-up measure, defined as the ratio between

the original sequential time and the parallel one.

Table 4: Computer cluster description

16 nodes consisting of:

Processor: 2 × Intel Xeon E5-2660 Sandy Bridge-EP

at 2.20Ghz

Cores: 8 per processor (16 per node)

Threads: 2 per core (total of 32 threads per node)

Hard drive: 1 × SSD 480GB SATA3

RAM: 64 GB DDR3 1600 MHz

Network: InfiniBand FDR & Gigabit Ethernet

5.1. On the preprocessing of the datasets: Parallelization

of a discretization algorithm

Some feature selection algorithms, such as InfoGain,

require the attributes of the dataset to be discrete. This

specification often forces the user to preprocess the dataset

in order to obtain a modified version with discrete fea-

tures. Weka provides an implementation of the Fayyad-

Irani Minimum Descriptive Length (MDL) algorithm [28]

that fulfills that purpose, although this process can be very

time consuming. The goal of this algorithm is to transform

real-valued attributes to discrete ones while maintaining as

much information as possible. To achieve this, real values

need to be assigned to different bins that cover the whole

range of values of the attribute. The size, number, and

distribution of the bins is decided by the algorithm in a

long process that is performed independently for each at-

tribute. This allows us to obtain better performance by

using separate threads to compute different attributes, as

described in Algorithm 7. A similar parallelization with

Spark has not been addressed in this section as it was al-

ready available in Spark packages [29]. Table 5 shows the

execution times for the sequential implementation com-

pared to the multithreaded one when run on a 16 core

machine using the three more general datasets (with and

without numerical features, as explained at the beginning

of this section).

11

Algorithm 7: Fayyad-Irani discretization

Input: A ← List of attributes

Input: S ← dataset

1 for a← A do in parallel

2 orderedS ← S.orderBy(a)

3 bins[a]← computeCutPoints(a)

// computeCutPoints uses mutual

information to obtain the bins in

which to discretize the values for

attribute a.

end

4 for i← 1 to THREADS AVAILABLE do in

parallel

5 Si ← disjoint subset of instances

6 foreach I in Si do

7 for a← A do

8 Si[a]← bins[a].transform(Si[a])

end

end

end

Although the computing process is independent for

each thread, a separate copy of the dataset needs to be

allocated for each task, since its first step is to order it

by the attribute being examined. The overhead created

by copying the dataset can be quite large if the dataset

is sizable, but in most cases it is not as large as the gain

obtained by computing in parallel. In our experiments all

datasets but one obtained a favorable speed-up, indepen-

dently of their size. The new version performed worse than

the sequential one for the Higgs dataset, due to its large

size and few attributes, which amounts to costly copies of

the dataset and less parallelism.

Table 5: Execution times of the discretization algorithm implemen-

tations

Dataset Runtime (s) Speed-up

1 core 16 cores

Higgs 1585 1709 0.93

KDD99 316 196 1.61

Epsilon 1976 881 2.24

5.2. Analysis of the RELIEF-F implementations

The good adaptability of RELIEF-F to a parallel en-

vironment (which is often referred to as being “embar-

rassingly parallel”) translates into significant decreases in

terms of execution time. Despite this improvement, RELIEF-

F’s complexity grows quadratically with the number of

samples and linearly with the number of features and this

still makes it yield long times when the number of instances

of the dataset is very high. However, our multithreaded

implementation can take advantage of machines with a

large number of cores, decreasing computational times.

In order to be able to make a comparison with the

sequential version, we have used reduced versions of the

largest general datasets (with numerical and non-numerical

features) when analyzing the RELIEF-F implementation.

For the Epsilon and the KDD99 datasets the top 10% of

12

the instances were used, amounting to a total of 50,000 and

almost 500,000 instances, respectively. The Higgs dataset

had to be further trimmed, using the top 4%, consisting

of 440,000 instances.

We performed tests with different number of threads

processing the same datasets in order to illustrate the rela-

tion between the execution time and the number of threads

employed. The results of these experiments are shown in

Figure 1. The node used to run the benchmarks offered

16 cores, each one capable of running two threads using

HyperThreading. When 16 threads are used, they are

mapped to different cores with exclusive use of resources,

obtaining maximum performance. On the contrary, when

we request the use of 32 threads, they are placed two on

each core, competing for the core resources [30]. This re-

sults in a degradation of performance that, in our best

case, barely improves on the use of 16 threads. Therefore,

all subsequent experiments were made using just the 16

cores.

2 4 8 16 32

2

4

6

8

10

12

14

16

Number of threads

S
p

ee
d

-u
p

re
la

ti
ve

to
se

q
u

en
ti

al
ve

rs
io

n

Higgs (4%)

KDD99 (10%)

Epsilon (10%)

Figure 1: Speed-up vs number of threads for RELIEF-F

Table 6 lists the execution times of sequential and mul-

tithreaded Weka implementations. The multithreaded ver-

sion was executed using the 16 cores available. A signif-

icant performance increase exists for all datasets. When

the dataset being analyzed is large, the time taken to man-

age threads becomes irrelevant in comparison to the time

gained by making computations in parallel. The multi-

threaded version of the algorithm was able to process the

large datasets between 12.6 and 16.7 times faster than the

sequential one. The good adaptability of this algorithm

to a parallel paradigm reflects in the superlinearity of the

speed-up obtained for the Higgs dataset.

Table 6: Execution times of RELIEF-F Weka implementations

Dataset Runtime (s) Speed-up

1 core 16 cores

Higgs (4%) 105443 6328 16.7

KDD99 (10%) 154305 10517 14.7

Epsilon (10%) 84149 6678 12.6

Table 7 lists the execution times of the RELIEF-F im-

plementations in Weka and Spark for different amount of

cores. The Epsilon dataset was chosen for this compari-

son since its execution time was high on Weka and its size

was suitable for the Spark implementation. As discussed

in Section 4.1, the Spark implementation of RELIEF-F

requires that the entire dataset is broadcast to all nodes.

Good scalability is observed when more nodes are added

and, even with one node (16 cores), the Spark implemen-

tation is more efficient than the Weka one.

Table 7: Execution times of RELIEF-F implementations (speed-up

listed for Weka 16 cores vs Spark 128 cores)2

Dataset Runtime (s) Speed-up

Weka Spark

cores

1 16 16 32 64 128

Epsilon

(10%) 84149 6678 5382 2840 1076 608 10.98

2To assess the advantage of using Spark and a computer cluster

13

5.3. Analysis of the InfoGain implementations

The Weka implementation of the InfoGain feature se-

lection algorithm requires the attributes to be discrete, so

it performs a discretization process when needed before

the feature selection is started. This discretization is in-

dependent from the InfoGain algorithm so, to eliminate

its impact in the execution time and obtain a more ac-

curate comparison of the two versions of the algorithm,

all datasets used to test the InfoGain feature selector were

discretized beforehand using the same algorithm employed

by Weka [28]. This resulted in datasets that, in some cases,

had several attributes with constant value. Additionally,

to speed up this process for users, a multithreaded imple-

mentation of this algorithm is provided, as described in

Section 5.1.

Table 8 shows the comparison of the execution times

between both versions of the algorithm when run on the

different datasets that have been previously discretized.

The multithreaded version was run using the 16 cores of

the node.

Table 8: Execution times of InfoGain Weka implementations

Dataset Runtime (s) Speed-up

1 core 16 cores

Higgs 204.3 192.4 1.06

KDD99 145.6 140.1 1.04

Epsilon 458.5 424.7 1.08

KDDB 200.0 192.0 1.08

When put in relation with the whole execution time,

the speed improvement is negligible. Nevertheless, a deeper

analysis of the implementation reveals that most of the

time needed to perform InfoGain feature selection in Weka

is spent getting the dataset ready, first reading it from disk

and then checking that the attributes are fit for the algo-

vs Weka on a single machine, the speed-up listed is the best Weka

result vs the best Spark result using this particular setup.

rithm. The feature selection process itself takes a short

time when compared to the total execution time, so even

a dramatic improvement in the time efficiency of the al-

gorithm would lead to modest speed-ups for datasets that

take a long time to process. Nevertheless, as discussed

in Section 4.5, some use cases may take advantage of the

speed-up obtained when just comparing the time devoted

to the algorithm which, in the Weka implementation we

are presenting, is close to the number of cores employed.

The Spark implementation tested was the one included

in the InfoTheoretic Feature Selection Spark package [17].

Results can be seen in Table 9. Instead of the KDD99

dataset, KDDB was used to illustrate how this method is

capable of handling very high dimensional datasets.

Table 9: Execution times of InfoGain implementations (speed-up

listed for Weka 16 cores vs Spark 128 cores)

Dataset Runtime (s) Speed-up1

Weka Spark

cores

1 16 16 32 64 128

Higgs 204 192 578 375 353 173 1.11

Epsilon 458 424 1067 642 448 335 1.27

KDDB 200 192 631 500 384 407 0.47

Although performance increases when adding more cores,

for the same number of cores the existing Spark implemen-

tation performs much worse than Weka. This results in

the need of more nodes to achieve the same times than in

Weka, being highly inefficient in terms of resources. For

this particular algorithm and datasets it would be more

advisable to use Weka on a single machine rather than the

existing Spark implementation.

5.4. Analysis of the CFS implementations

The existing multithreaded implementation of the CFS

algorithm included in Weka does not offer a significant im-

provement over the sequential one, being even slower in

14

some cases. This is a result of the parallelization approach

used, that requires that the entire correlation matrix is pre-

computed beforehand, in contrast with the sequential ver-

sion, that only calculates each value when needed. Since

the search method does not try every possible combination

of attributes, oftentimes only a small fraction of the cor-

relation matrix needs to be computed. Avoiding to com-

pute these unnecessary values saves significant time that,

in some cases, results in smaller computation times than

the ones obtained by precomputing the entire correlation

matrix with several cores. Our Spark implementation com-

putes the entire correlation matrix every time, but it is still

much more time-efficient than the Weka one, as shown in

Table 10. The computation time decreases as more nodes

are added which and, when combined with the much bet-

ter performance than the Weka algorithm obtained for the

same number of cores, results in high speed-ups.

Table 10: Execution times of CFS implementations (speed-up listed

for Weka 16 cores vs Spark 128 cores)

Dataset Runtime (s) Speed-up

Weka Spark

cores

1 16 16 32 64 128

Higgs 1350 1173 110 98 95 91 12.89

Epsilon 7183 8642 579 438 356 324 26.67

5.5. Analysis of the SVM-RFE implementations

Since the parallelization approach taken for the mul-

tithreaded Weka implementation divides the work along

classes, multiclass datasets were needed for this experi-

ment. Execution times are shown in Table 11 (please note

that times marked with − are executions that take more

than three days). The different SVM training algorithm

used in Weka and Spark makes a real difference regarding

the kind of dataset that can be tackled with each imple-

mentation. The Weka version (and thus our multithreaded

version), which uses SMO (see Section 4.4), performs re-

ally well when there is a large number of attributes and,

therefore, the SVM training process has to be repeated

a large number of times. In this case the approach used

by the Spark version takes much longer, because for every

new training process the data needs to be shuffled. This,

in some cases, makes its use unfeasible (for instance Isolet

and USPS). On the contrary, when datasets have fewer

attributes (such as Poker), the SVM training process is

repeated fewer times and SGD can be leveraged to train

the model with a large number of examples in a much

smaller time than SMO. This clearly differentiates both

implementations in terms of the datasets that they handle

efficiently. Table 11 shows how SGD is suitable for datasets

with a large number of attributes and few instances (Isolet

and USPS) whereas SMO performs better when there is

a large number of instances and fewer attributes (such as

Poker).

Table 11: Execution times of SVM-RFE implementations

Dataset Runtime (s)

Weka Spark

cores

1 16 16 32 64 128

Isolet 86730 15415 - - - -

USPS 10098 2508 - - - -

Poker - - 1229 1536 1220 1447

Poker (20 %) 28621 10280 530 520 472 465

6. Conclusions

This work has explored new implementations of four

popular feature selection algorithms. We have proposed

new versions that take advantage of multithreaded pro-

cessing to speed up the computation for their use in Weka

and also distributed versions that use Apache Spark, en-

abling users to tackle bigger datasets in a reasonable time.

15

For those implementations that already existed (see Ta-

ble 2), tests were performed to assess their suitability for

different kinds of datasets.

The experimental results obtained show a significant

improvement in execution time for the RELIEF-F algo-

rithm, achieving even superlinear speed-ups for large real-

world datasets on a 16 core node, and scaling well in num-

ber of nodes for Spark. A considerable improvement was

also obtained for a new distributed CFS implementation in

Apache Spark that largely outperforms the existing mul-

tithreaded version included in Weka, and scales well when

more cores are added. A new multithreaded InfoGain im-

plementation was developed and compared to the existing

Spark one, finding that its short execution times make the

time gain obtained using a computer cluster less relevant,

therefore advising the use of our proposed implementation

on a single computer. Lastly, a new SVM-RFE multi-

threaded implementation enables users to process multi-

class datasets up to four times faster than the sequential

counterpart included in Weka, and a new Spark version

allows the analysis of datasets that because of their di-

mensions could not be processed by Weka.

As future work, it would be interesting to explore dif-

ferent sampling techniques and their effects on the features

selected for a variety of datasets, since this approach may

offer a way to use algorithms that are computationally de-

manding on reduced versions of large datasets. Also pur-

suing a RELIEF-F implementation with Spark that could

handle larger datasets than the ones at reach for the im-

plementation presented in this paper would be advisable.

Acknowledgements

This work has been financed in part by Xunta de Gali-

cia under Research Network R2014/041 and project GRC-

2014/035, and by Spanish Ministerio de Economı́a y Com-

petitividad under projects TIN2012-37954 and TIN-2015-

65069-C2-1-R, partially funded by FEDER funds of the

European Union. V. Bolón-Canedo acknowledges support

of the Xunta de Galicia under postdoctoral Grant code

ED481B 2014/164-0. Additionally, the collaboration of

Jorge Veiga on setting up and using the MREv tool for

Spark execution was essential for this work.

References

[1] IBM Big Data, IBM - Bringing Big Data to the Enterprise,

2015. http://www-01.ibm.com/software/data/bigdata/. Ac-

cessed: 2015-10-20.

[2] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for

support vector machines. ACM Transactions on Intelligent Sys-

tems and Technology (TIST), 2(3):27, 2011.

[3] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,

Peter Reutemann, and Ian H Witten. The WEKA data mining

software: an update. ACM SIGKDD explorations newsletter,

11(1):10–18, 2009.

[4] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified

data processing on large clusters. Communications of the ACM,

51(1):107–113, 2008.

[5] Apache Hadoop Project. http://hadoop.apache.org/. Ac-

cessed: 2015-10-20.

[6] Apache Spark: Lightning-fast cluster computing. https://

spark.apache.org/. Accessed: 2015-10-20.

[7] Apache Mahout Project. http://mahout.apache.org/. Ac-

cessed: 2015-10-20.

[8] Machine Learning Library (MLlib) Guide. http://spark.

apache.org/docs/latest/mllib-guide.html. Accessed: 2015-

10-20.

[9] Verónica Bolón-Canedo, Noelia Sánchez-Maroño, and Am-

paro Alonso-Betanzos. Feature Selection for High-Dimensional

Data. Springer, 2015.

[10] Isabelle Guyon. Feature extraction: foundations and applica-

tions, volume 207. Springer Science & Business Media, 2006.

[11] J. Ross Quinlan. Induction of decision trees. Machine learning,

1(1):81–106, 1986.

[12] Igor Kononenko. Estimating attributes: analysis and extensions

of RELIEF. In Machine Learning: ECML-94, pages 171–182.

Springer, 1994.

[13] Kenji Kira and Larry A Rendell. A practical approach to feature

selection. In Proceedings of the ninth international workshop on

Machine learning, pages 249–256, 1992.

[14] Mark A Hall. Correlation-based feature selection for machine

learning. PhD thesis, The University of Waikato, 1999.

[15] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir

Vapnik. Gene selection for cancer classification using support

vector machines. Machine learning, 46(1-3):389–422, 2002.

16

[16] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott

Shenker, and Ion Stoica. Spark: cluster computing with working

sets. In Proceedings of the 2nd USENIX conference on Hot

topics in cloud computing, volume 10, page 10, 2010.

[17] An infotheoretic feature selection framework for apache

spark. http://spark-packages.org/package/sramirez/

spark-infotheoretic-feature-selection. Accessed: 2015-

10-20.

[18] Gavin Brown, Adam Pocock, Ming-Jie Zhao, and Mikel Luján.

Conditional likelihood maximisation: a unifying framework for

information theoretic feature selection. The Journal of Machine

Learning Research, 13(1):27–66, 2012.

[19] John Platt et al. Fast training of support vector machines using

sequential minimal optimization. Advances in kernel method-

ssupport vector learning, 3, 1999.

[20] Higgs dataset at the UCI Machine Learning Repository. http:

//www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. Ac-

cessed: 2015-10-20.

[21] Soeren Sonnenburg, Vojtech Franc, Elad Yom-Tov, and Michele

Sebag. Pascal large scale learning challenge. In 25th Inter-

national Conference on Machine Learning (ICML2008) Work-

shop,, volume 10, pages 1937–1953, 2008.

[22] LibSVM dataset repository. http://www.csie.ntu.edu.tw/

~cjlin/libsvmtools/datasets/. Accessed: 2015-10-20.

[23] S Hettich and SD Bay. KDD cup 1999 data. The UCI KD

Archive, Irvine, CA: University of California, Department of

Information and Computer Science, 1999.

[24] M. Lichman. Uci machine learning repository, 2013.

[25] Jonathan J Hull. A database for handwritten text recognition

research. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 16(5):550–554, 1994.

[26] J. Stamper, A. Niculescu-Mizil, S. Ritter, G.J. Gordon, and

K.R. Koedinger. Bridge to algebra data set from kdd cup 2010

educational data mining challenge, 2010.

[27] Jorge Veiga, Roberto R Expósito, Guillermo L Taboada, and

Juan Touriño. Mrev: An automatic mapreduce evaluation tool

for big data workloads. Procedia Computer Science, 51:80–89,

2015.

[28] Usama M. Fayyad and Keki B. Irani. Multi-interval discretiza-

tion of continuous-valued attributes for classification learning.

In IJCAI, pages 1022–1029, 1993.

[29] Spark implementation of Fayyad’s discretizer based

on Minimum Description Length Principle (MDLP).

http://spark-packages.org/package/sramirez/

spark-MDLP-discretization. Accessed: 2015-10-20.

[30] Subhash Saini, Johnny Chang, and Haoqiang Jin. Performance

Evaluation of the Intel Sandy Bridge Based NASA Pleiades

Using Scientific and Engineering Applications. In High Per-

formance Computing Systems. Performance Modeling, Bench-

marking and Simulation, pages 25–51. Springer, 2014.

17

	portada eiras
	EirasFranco_Carlos_2016_Multithreaded_and_Spark_parallelization_of_feature_selection_filters
	jocs2015-r1

