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Abstract

We present a new compact representation to efficiently store and query large RDF datasets
in main memory. Our proposal, called BMatrix, is based on the k2-tree, a data structure
devised to represent binary matrices in a compressed way, and aims at improving the re-
sults of previous state-of-the-art alternatives, especially in datasets with a relatively large
number of predicates. We introduce our technique, together with some improvements on
the basic k2-tree that can be applied to our solution in order to boost compression. Experi-
mental results in the flagship RDF dataset DBPedia show that our proposal achieves better
compression than existing alternatives, while yielding competitive query times, particularly
in the most frequent triple patterns and in queries with unbound predicate, in which we
outperform existing solutions.

Introduction

The amount of valuable resources publicly available on the Web, in recent years, has
increased to such an extent that new problems have arisen related to processing those
resources. Getting insight into data and extracting knowledge from huge repositories
of information has become a critical task. Based on the principles of the Semantic
Web [1], the Web of Data has emerged as an effort to provide an environment of
common access to the published data, by representing it through standard formats,
so that it can be automatically reachable, and discovered.

The Resource Description Framework (RDF) [2] is a W3C recommendation to
describe any resource in the form of triples (subject, predicate, object). The popularity
of RDF has led to the development of RDF stores, systems devoted to the storage
of RDF data that also provide query support to access the stored information. The
standard language to perform queries on RDF datasets is SPARQL [3], and basic
graph patterns or triple patterns constitute its core. A triple pattern is a tuple
(s, p, o), s ∈ S, p ∈ P and o ∈ O, where each element can be set to a value or left
unbound. For instance, (s, p, ?) matches all the RDF triples that have subject s and
predicate p.

RDF does not enforce an underlying storage format. Hence, a large number of
works have been proposed in the last years to store and query RDF data, ranging
from relational solutions [4] to native approaches [5–7]. As the popularity of RDF
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has been increasing, so has the size of RDF repositories. To handle these larger
datasets, new approaches have been proposed: distributed stores [8, 9], and solutions
based on compact data structures. For instance, k2-triples [10] relies on vertical
partitioning combined with a compact representation of binary matrices, called k2-
tree [11]; RDFCSA [12] is based on compressed suffix arrays [13].

In this paper we introduce a new representation based on k2-trees, called BMatrix.
Instead of resorting to vertical partitioning like k2-triples, we aim at storing triples
in a few data structures, in order to improve performance in RDF collections with a
larger number of predicates. Particularly, BMatrix consists of two binary matrices,
one related to triples subjects and the other to objects, and a small additional data
structure; each matrix is stored using a k2-tree. Experimental results show that our
proposal beats k2-triples, the most compressed representation in the state of the art
up to now, in terms of space. We are also very competitive in query times, especially
in the most used queries. Particularly, we are very efficient in queries with unbound
predicate, where the k2-triples needs additional indexes to be competitive in query
times.

Related Work

In this section we present the basic data structures that are used in the k2-tree, as
well as the k2-tree itself, since they are necessary for understanding our proposal.

A bit sequence or bitmap is a sequence of n bits, B[1, n], that supports three basic
operations: rankc(B, i) counts the number of occurrences of bit c in B up to position
i; selectc(B, j) returns the position in B of the j-th bit set to c; and access(B, i)
gets the bit value at B[i]. These operations can be answered in constant time using
o(n) bits in addition to the bitmap [14]. Compressed representations [15] can answer
the same operations while compressing the bitmap. In this work we use a practical
implementation [16] that is based on single-level sampling. The default setup adds a
5% of space overhead and provides efficient query times.

Directly addressable codes [17], or DACs, is a technique that provides direct access
to sequences of variable-length codes, where each codeword can be regarded as a
sequence of chunks of b bits each, for any fixed b. DACs works by reorganizing these
chunks in several arrays, Li, and using additional bitmaps, Bi, to mark for each entry
in Li whether the corresponding word has a next chunk in Li+1 or not. In that way,
entries can be decompressed by accessing the first chunk directly and then using rank1
operations on the Bis to locate the corresponding position of the next chunk.

The k2-tree [11] is a compact representation of sparse binary matrices originally
devised for Web graphs. Given an n × n matrix, it is represented as a k2-ary tree,
for a fixed k. The root of the tree represents the complete matrix. The matrix is
subdivided in k2 submatrices of equal size. These submatrices are read in a left-to-
right and top-to-bottom order, and for each of them a child node is appended to the
tree root. Each node is marked with a single bit: 1 if the submatrix contains at least
a 1, and 0 otherwise. The decomposition process continues recursively for each 1-bit,
until we reach the cells of the original matrix. The conceptual k2-tree is traversed
levelwise, and its bits are stored using just two bitmaps: T stores the bits from all



Figure 1: Example of binary matrix and its associated k2-tree.

the levels except the last one; L stores the bits from the last level. Figure 1 shows a
conceptual matrix, its k2-tree for k = 2, and the corresponding T and L bitmaps.

Single cell, row/column, and bi-dimensional range queries can be answered by
means of traversals of the conceptual tree, starting at the root and traversing only
the submatrices intersecting the queried region. Top-down traversal of the tree can
be replicated in the bitmaps T and L using the following property: given an internal
node at position p (T [p] = 1), its k2 children are consecutive and start at position
p′ = rank1(T, p)× k2 in T :L (i.e. the concatenation of T and L).

Some modifications to the basic k2-tree have been presented by the original au-
thors. The most relevant one is the statistical compression of the lower levels of
the conceptual tree to exploit small-scale regularities in the binary matrix. This is
achieved by building a matrix vocabulary and representing each matrix by its identi-
fier; the sequence of encoded matrices is then stored using DACs.

The k2-triples [10] is a solution based on k2-trees to represent RDF datasets. It
applies vertical partitioning to the RDF dataset, creating |P | binary matrices that
correspond to the pairs (s, o) associated with each predicate. Each of those matrices
is represented with a k2-tree. In this solution, triple patterns can be easily translated
into k2-tree operations. For instance, an (s, p, o) query is solved by checking cell (s, o)
in the k2-tree associated to p. The query (s, ?, ?) is translated into |P | queries asking
for all the elements in row s in each k2-tree. Notice that, whenever the predicate of
a query is unbound, the k2-triples must query all the k2-trees, which may be costly
in datasets with a large number of predicates. An enhanced variant of the data
structure, called k2-triples+, uses additional indexes to cope with this problem.

Our proposal: BMatrix

As explained in previous sections, techniques based on k2-trees have shown good
compression capabilities over RDF data. However, the vertical partitioning used in
k2-triples makes the structure slow to answer queries with unbound predicates. Using
additional indexes partially solves the problem, but leads to significantly larger space



Figure 2: Example of RDF graph and its corresponding dictionary encoding.

requirements. Our proposal, that we call BMatrix, also uses the k2-tree as underlying
data structure, but we follow a different approach for organizing the RDF data.
Particularly, our goal is to use fewer structures, and keep all the predicates together.

Our representation is designed to store RDF triples encoded as integer identifiers.
Therefore, it requires a dictionary to encode/decode the original strings into integer
ids. We follow the same scheme for dictionary encoding used by state-of-the art
solutions based on compact data structures like k2-triples and RDFCSA. Figure 2
shows an example of RDF graph and the corresponding dictionary encoding. Strings
are divided in four categories: subject–objects (strings that appear as both subjects
and objects), subjects-only, objects-only and predicates. Consecutive ids are assigned
to each unique string in each category (notice that subject-only and object-only entries
start numbering after the last subject–object).

After dictionary encoding, we have a collection T of n triples ti = (si, pi, oi), where
each si, pi and oi is an integer. triples with the same predicate are grouped together.
We use p, o, s order since it leads to better compression in practice, but any other
ordering that groups triples with the same p could be used. After sorting, we build
two binary matrices ST and OT . ST has |S| rows and n = |T | columns, and a
cell (r, c) in ST is set to 1 iff sc = r. OT is similar, but has |O| rows, and a cell
(r, c) in OT is set to 1 iff oc = r. Notice that only a single 1 can appear in each
column of ST and OT . Figure 3 shows the matrices generated for the RDF dataset
of Figure 2. Note that the grayed out portions of the matrices do not belong to the
conceptual representation. However, each matrix will then be stored using a k2-tree,
that conceptually expands the matrix to the next power of k.

In order to recover the original triples, we also need to store an auxiliary structure
to know the column ranges corresponding to each predicate. We can use any bitmap
BP of length n, storing a 1 for the positions where the predicate changes; in this
representation, the predicate of a triple ti can be computed as rank1(BP, i), and the
starting position of a predicate pi as select1(BP, i). We use a custom representation
supporting those operations as follows: we set an array AP of size |P | storing the
initial position of each predicate. Additionally, we select a sampling period d and
build an array rankP , that stores the predicate that contains triple d · i for i ∈
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Figure 3: BMatrix conceptual representation.

[1..n/d]. In this representation, select1(BP, i) is computed as AP [i]. To answer
rank1(BP, i), we use rankP to identify the range of predicates that could contain
that triple [rankP [i/d], rankP [i/d + 1]], and binary search in AP for the rightmost
entry that is not greater than i. Assuming that |P | << n and for relatively large d,
the space required by this structure is much smaller than n.

Query operations

In this section we describe the implementation of triple pattern queries in our rep-
resentation. Essentially, we reduce triple patterns to operations on k2-trees ST and
OT and rank/select operations on bitmap BP .

(s, p, o) queries just require checking that the triple pattern exists in the collection.
First we find all the triples that have subject s and predicate p. To do this, we compute
the range of columns corresponding to p as [select1(BP, p), select1(BP, p + 1) − 1].
Then, we search for all the ones in SP in row s and in the given range of columns (this
operation is implemented in a k2-tree like a simple row search by adding filters at
each step that restrict search to branches inside the column range). For each result
ti found in ST , we perform a cell retrieval query in OT for cell (o, i), in order to
check if the triple had o as its object. We return immediately when a single result is
found. Notice that we could also perform the operation starting in OT and checking
in ST , but our results suggest that this alternative is slower due to the large number
of intermediate results generated in queries with very common objects.

(s, p, ?) queries start, like the previous ones, by finding in ST all the triples with
subject s and predicate p. Then, for each result obtained in ST , we need to perform
a column query in OT to obtain the object for that triple. Notice that, since our
matrices have a single 1 per column, column queries can return immediately when
they find a single result. (?, p, o) queries are symmetrical to (s, p, ?), starting queries
in OT and then extracting results in ST .



(s, ?, o) queries are implemented by first finding all the triples for object o, with
a row query in OT . Then, we continue depending on the number of partial results:
if the number of intermediate results is small, we simply check each result ti in ST
with a cell query for (s, i); if the number of intermediate results is large, we perform
a second row query, now in ST , to get all the triples for subject s, and intersect both
lists to obtain the final result (the intersection is very efficient since both lists are
already sorted). In practice, the threshold value tmerge−unsorted can be a small value
(e.g., 10), since column queries in k2-trees are roughly an order of magnitude slower
than cell retrieval queries.

(s, ?, ?) queries start again by finding all the triples for subject s with a row
query in ST . For each partial result ti, we run a column query in OT to get the
corresponding object. Additionally, we must compute the predicate for each tuple as
rank(BP, i). (?, ?, o) queries are symmetrical to (s, ?, ?), performing the row query in
OT and the column queries in ST .

(?, p, ?) queries involve finding all the cells for a given predicate. We start by
obtaining all the subjects for those triples: we compute the column range for predicate
p ([select1(BP, p), select1(BP, p+ 1)− 1]) and perform a range query in ST limiting
columns to the given range. This yields a list of (s, i) pairs that will be the results of
our query. In order to obtain the corresponding objects, we again check the number
of partial results: if it is small, we simply perform a column query in OT per result;
if it is larger, we perform a second range query in OT , to get a list of (o, i) pairs, and
intersect the resulting lists to obtain the final result (in this case, lists are not sorted by
column, so we sort them before merging). We use a different threshold tmerge−unsorted,
but again a relatively small threshold can be used in practice to guarantee the best
overall performance and more stable times in queries with many intermediate results.

Space improvements

Taking advantage of our setup, we can reduce significantly the size of the vocabulary
with simple representations. Consider a matrix vocabulary with m matrices of size
kL × kL. We view the same vocabulary as a set of mkL columns. We build a bitmap
C, of size mkL, so that C[i] = 1 if the corresponding column has a 1. Then, we use
a separate array R to store the rows containing the ones, requiring log2 kL bits per
entry (kL is assumed to be a power of two).

We can simply create an array R with mkL entries, and set to 0 columns without a
value. This means that we can store the complete vocabulary using mkL(1+ log2 kL)
bits. For any entry e in the vocabulary, we can recover the value at (r, c) in its
submatrix by checking C[ekL + c]); if it is 0, the value is 0; if it is 1, we check if
R[ekL + c] is equal to r. This solution provides minimum query overhead, replacing
the bit access of the plain vocabulary with a few array accesses and checks.

A more elaborate scheme can be built storing an entry in R only for columns that
have a 1. In this variant, to access position (r, c) in matrix e, we first check the bit
C[ekL + c], like in the previous alternative; if it is 0, the value is 0; if it is 1, we must
access R at position p′ = rank1(C, ekL + c); and check if R[p′] is equal to r. This
variant can save a significant amount of space compared to the previous one, but has
a significant overhead in practice due to the complexity of the rank operation.



Experimental Evaluation

Our proposal is designed to work well in datasets with a relatively large number of
predicates, where other alternatives like k2-triples require additional space to effi-
ciently answer queries. We evaluated the compression and query performance of our
solution using the DBPedia dataset1, a widely used, large and heterogeneous RDF
collection. The original size of DBPedia, considering triples storing string values, is
around 34 GB, and it contains 232M triples. After applying dictionary compression
to the dataset, the collection of triple identifiers can be stored in 2.6GB (i.e., 3 in-
tegers per triple). The dataset contains 18.4M different subjects, 39,672 predicates
and 65.2M different objects. We use an existing testbed 2 that includes 500 queries of
each triple pattern. For each pattern, we determine a minimum number of repetitions
necessary to obtain consistent times and measure the average query times per result.

We compare our representation with two state-of-the-art approaches based on
compact data structures: k2-triples and its extension k2-triples+, and the RDFCSA.
Both techniques have been shown to overcome alternative solutions in space, and
provide very efficient query times for most triple pattern queries. For RDFCSA
we use the default configuration, and test sampling values tΨ ∈ {16, 32, 64, 256};
among the query implementations provided by the authors, we show results in our
experiments for the binary search, that can be applied to all triple patterns and is
the most consistent in query times. For k2-triples, we use a hybrid representation
with k = 4 in the first 5 levels of decomposition and k = 2 in the remaining levels.
The bitmaps use the default rank structure, requiring an extra 5% space. The lower
levels of the tree are compressed using a matrix vocabulary of 8 × 8. In queries that
have unbound predicate, we show the tradeoff obtained by the basic version (smaller,
slower) and the k2-triples+ version with additional indexes (larger and faster).

To provide the fairest possible comparison with k2-triples, our k2-trees use the
same exact configuration, the only difference being the vocabulary representation: we
use the simplest representation of the vocabulary proposed in the previous section,
in order to obtain some space savings with minimal overhead. Additionally, we show
results for our representation with denser sampling in the k2-trees bitmaps, requiring
12.5% extra space; this leads to a larger solution with faster query times. This is
used just to outline the level of tradeoff that can be obtained tuning this parameter
in k2-trees; notice that a similar tradeoff can be achieved in k2-triples.

We run our experiments on an Intel Xeon E5-2470@2.3GHz (8 cores) CPU, with
64GB RAM. The operating system was Debian 9.8 (kernel 4.9.0-8-amd64). Our code
is implemented in C and compiled with gcc 6.3.0 with the -O9 optimization flag.

Results

We measure the compression and query efficiency of our proposal on the seven triple
patterns that compose the basis of SPARQL queries. We divide our experimentation
in two main groups of patterns: the four plots at the top of Figure 4 display results

1http://downloads.dbpedia.org/3.5.1/
2Available at http://dataweb.infor.uva.es/queries-k2triples.tgz, provided by the au-

thors of k2-triples.
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Figure 4: Space/time tradeoff for triple patterns. Space measured as percentage of the
input size. Query times in µs per result.

for triple patterns with fixed predicate, while the three at the bottom display results
for patterns with unbound predicate.

Results show that BMatrix significantly improves the compression of k2-triples.
With sampling similar to k2-trees, we require 10% less space. Even using the denser
sampling, we are still smaller than k2-triples. Furthermore, when k2-triples needs to
use additional indexes it becomes much larger than BMatrix. RDFCSA is significantly
larger than any of the other alternatives.

As shown in Figure 4 (top), query times for patterns with fixed predicate in BMa-
trix are quite consistent, but comparison results are significantly different depending
on the triple pattern: in (s, p, o) queries, k2-triples just needs to run a cell query in a
k2-tree, whereas our algorithm is more complex; this leads to our implementation be-
coming significantly slower. In (?, p, ?) queries, we are still slower than k2-triples but
much closer, since range operations are required in both cases; query times are also
comparable to those of RDFCSA using about half their space. In (s, p, ?) queries we
are comparable to k2-triples, but RDFCSA is very efficient and provides an interest-
ing tradeoff. In (?, p, o) queries BMatrix is again significantly slower than k2-triples,
that is clearly the best alternative. Notice that this query is essentially equivalent
to the previous one in complexity, both in k2-triples and BMatrix, but k2-triples is
much more efficient in (?, p, o), due to the usually much larger number of results per



query in (?, p, o) queries. In BMatrix, we have to extract the object individually for
each result, so having a few queries that yield many results has a significant impact
on our performance.

For triple patterns with unbound predicate, Figure 4 (bottom) displays two points
as space/time tradeoff for k2-triples; these correspond to the basic implementation
and the k2-triples+ variant with additional indexes. Results show that BMatrix sig-
nificantly improves the query times of the basic k2-triples implementation. In (s, ?, o)
queries, k2-triples is still the fastest technique when using extra indexes, but to do this
it requires 40% more space than BMatrix. In (s, ?, ?) and (?, ?, o) queries, we are an
order of magnitude faster than k2-triples without extra indexes, and even comparable
in query times to the k2-triples version that uses extra 40% space. RDFCSA is faster
than BMatrix, but almost twice as large, so our proposal is still the best option when
memory usage is an issue.

Taking into account the different comparison results obtained, BMatrix provides
a very reasonable space/time tradeoff depending on the types of queries to be ex-
ecuted: when a large percentage of triple patterns with unbound predicate are ex-
pected, BMatrix clearly overcomes k2-triples and provides a very compact alternative
to RDFCSA. Additionally, our experiments show that BMatrix is more competitive
in the triple patterns that are more frequently used: a previous analysis on the DB-
Pedia dataset [18] has shown that 90% of the triple patterns used in SPARQL queries
over DBPedia are (s, p, ?), where BMatrix is competitive with k2-triples, and (s, ?, ?),
where BMatrix is either much faster or much smaller than the alternatives.

Conclusions and Future Work

We have introduced BMatrix, a compact representation of RDF datasets based on k2-
trees. It aims mainly at improving the performance of previous solutions in datasets
with a relatively large number of predicates, where the vertical partitioning strategy
leads to poor query times in patterns with unbound predicate. As a side result,
we also propose some simple improvements on the k2-tree data structure that have
stand-alone interest and could be applied to other domains.

We experimentally evaluate our proposal on DBPedia, a widely used RDF dataset
containing around 40,000 predicates. We compare our proposal with k2-triples and
RDFCSA. Our results show that BMatrix achieves better compression, being 10%
smaller than k2-triples and 40–50% smaller than RDFCSA. BMatrix is also compet-
itive in query times in the most frequent query patterns. In query patterns with un-
bound predicate, BMatrix is faster than the basic k2-triples. For (s, ?, ?) and (?, ?, o)
queries, we obtain query times comparable to those of the most efficient k2-triples
version with extra indexes, that uses 40% more space than our proposal.

Currently, BMatrix supports all basic triple patterns. We plan to extend our eval-
uation to multi-pattern join queries, that can be supported by merging or chained
evaluation of individual triple patterns, as in state-of-the-art alternatives. Synchro-
nized traversal of multiple k2-trees, used in k2-triples, can also be applied to our
solution in order to improve query times. Finally, we believe that new tradeoffs can
be obtained in solutions based on k2-trees to speed up specific queries. BMatrix aims



at boosting queries with unbound predicate, that are relevant for many application
domains, but some other arrangements could benefit other application scenarios.
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