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A b s t r a c t

T h e R e s o u r c e D e s c ri p ti o n Fr a m e w o r k ( R D F ) h a s g ai n e d p o p ul a ri t y a s a
f o r m a t f o r t h e s t a n d a r di z e d p u bli c a ti o n a n d e x c h a n g e of i nf o r m a ti o n i n
t h e We b of D a t a. I n t hi s p a p e r w e i nt r o d u c e R D F C S A , a c o m p r e s s e d r e p-
r e s e nt a ti o n of R D F d a t a s e t s t h a t i n a d di ti o n s u p p o r t s e ffi ci e nt q u e r yi n g.
R D F C S A r e g a r d s t h e t ri pl e s of t h e R D F s t o r e a s s h o r t ci r c ul a r s t ri n g s
a n d a p pli e s s u ffi x s o r ti n g o n t h o s e s t ri n g s, s o t h a t t ri pl e- p a t t e r n q u e ri e s
r e d u c e t o p r e fi x s e a r c hi n g o n t h e s t ri n g s e t. T h e R D F s t o r e i s t h e n r e p-
r e s e nt e d c o m p a c tl y u si n g a C o m p r e s s e d S u ffi x A r r a y ( C S A ), a p r o v e d
t e c h n ol o g y i n t e x t i n d e xi n g t h a t e ffi ci e ntl y s u p p o r t s p r e fi x s e a r c h e s.
O u r e x p e ri m e nt s s h o w t h a t R D F C S A i s c o m p e ti ti v e wi t h s t a t e- of- t h e-
a r t al t e r n a ti v e s. I t c o m p r e s s e s t h e r a w d a t a t o 6 0 % of i t s si z e, cl o s e t o
t h e m o s t c o m p a c t al t e r n a ti v e s. W hil e m o s t al t e r n a ti v e s p e rf o r m b e t t e r
i n s o m e ki n d s of t ri pl e- p a t t e r n s t h a n i n o t h e r s, R D F C S A f e a t u r e s f a s t
a n d c o n si s t e nt q u e r y ti m e s, a f e w mi c r o s e c o n d s p e r r e s ul t i n all c a s e s.
T hi s e n a bl e s e ffi ci e ntl y s u p p o r ti n g j oi n q u e ri e s b y u si n g ei t h e r m e r g e-
o r c h ai ni n g-j oi n s t r a t e gi e s o v e r t h e t ri pl e p a t t e r n s c o u pl e d wi t h s o m e

A n e a rl y p a r ti al v e r si o n of t hi s a r ti cl e a p p e a r e d i n S P I R E 2 0 1 5 [ 1 1 ].
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speci�c optimizations such as variable �lling. Our experiments on binary
joins show that RDFCSA is faster than the alternatives in most cases.

Keywords: Compact data structures, RDF, CSA, Web of Data

1 Introduction

Since the advent of the World Wide Web a few decades ago, the volume of
publicly available data has been increasing at a fast pace and has become an
invaluable repository of information at global scale, scattered along a large
number of repositories from several sources. Since it was originally designed for
direct human use, most of such information is stored in the form of unstruc-
tured Web pages and hyperlinks between them, which limits our ability to
automatically access and process it. The Web of Data, which builds on top of
the concepts of the Semantic Web [8], is an e�ort to provide a formal structure
on the data, so that it can be published and processed in automatic form.

The Resource Description Framework (RDF) [27, 40] is a recommendation
of the World Wide Web Consortium (W3C) designed to publish and share
information in the Web of Data. It is based on a simple labeled-graph-like
conceptual structure, but it does not enforce a speci�c storage format. This
graph is usually regarded, for most practical purposes, as a collection of triples,
or 3-tuples (source, label, target), that represent the edges in the graph. Going
further in the standardization e�ort, a speci�c query language called SPARQL
has been de�ned [52] to query RDF collections. SPARQL is based on the
concept of triple pattern, a tuple that may contain some unbound elements
and that is matched against all the triples in the RDF dataset. Building on this
basic selection query, SPARQL enables matching of more complex subgraphs
by means of joins, which connect triples that share some component.

The ability of RDF to provide a simple format to publish information has
led to its rise in popularity [2]. The lack of an enforced physical represen-
tation format has also led to the emergence of many di�erent solutions to
e�ciently store the RDF data. These solutions, generally called RDF stores
or triple stores, aim at providing e�cient storage and querying of the RDF
dataset. Some RDF stores rely on adapting existing ideas from relational or
graph databases [55]. Tools such as Virtuoso [20] and Blazegraph [56], work
as fully-functional RDF stores and provide a wide range of query capabilities.
Other solutions are based on custom techniques devised speci�cally for RDF or
adapted from other areas. Some examples of these tools include RDF-3X [48],
Tentris [9], BITMAT [5], HEXASTORE [57], WaterFowl [18], and HDT [23].

The main issue for modern RDF stores, as the number and size of RDF
datasets increases, is the scalability of the solutions [36]. New approaches have
been proposed to tackle this problem. Most solutions based on databases or
custom indexes rely on caching to maintain good query performance even if
the full dataset is too large to �t in main memory. A number of proposals
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f a cilit a t e s c al a bilit y b y t a ki n g a d v a nt a g e of a d v a n c e d h a r d w a r e, p a r all eli s m o r
di stri b ut e d e n vir o n m e nts [ 1 9 , 3 1 , 3 2 , 3 5 ]. Fi n all y, o t h e r s ol uti o n s ai m a t a c hi e v-
i n g ve r y e ffi ci e nt c o m pr e s si o n s o t h a t e v e n l a r g e d a t a s ets c a n b e e ffi ci e ntl y
s t o r e d a n d q u e ri e d i n m ai n m e m o r y i n r e g ul a r m a c hi n e s, b a s e d o n c o m p a ct
d a t a str u ct ur e s; K 2 Tri pl e s [ 3 ] a n d p e r m ut e d tri e i n d e x e s [5 1 ] a r e e x a m pl e s of
pr o p o s al s t h a t w o r k i n t hi s w a y. B o t h K 2 Tri pl e s a n d p e r m ut e d tri e i n d e x e s
a s s u m e t h a t R D F tri pl e s a r e c o m p o s e d of n u m e ri c i d e nti fi e r s, s o t h e y r el y o n
a n e xt e r n al c o m p a ct di cti o n a r y t o m a p R D F stri n g s t o i d e nti fi e r s [ 4 2 , 4 3 ].

I n thi s p a p e r w e i ntr o d u c e R D F C S A , a s ol uti o n f o r t h e c o m p a ct r e pr e s e n-
t a ti o n of R D F d a t a t h a t ai m s a t c o m bi ni n g g o o d c o m pr e s si o n wit h c o n si st e ntl y
g o o d q u e r y p e rf o r m a n c e. R D F C S A i s b a s e d o n t h e c o m pr e s s e d s u ffi x a r r a y
(C S A ) [5 4 ], a d a t a str u ct ur e o ri gi n all y d e vi s e d f o r t e xt i n d e xi n g t h a t i s a bl e
t o s t o r e a s et of s e q u e n c e s i n c o m pr e s s e d s p a c e a n d e ffi ci e ntl y s u p p o r ts pr e fi x
s e a r c h e s. We m o dif y t h e C S A t o r e g a r d t h e tri pl e s of t h e R D F d a t a s et a s s h o r t
cir c ul a r stri n g s. All t h e tri pl e- p a tt e r n q u e ri e s c a n t h e n b e tr a n sf o r m e d i nt o
a p pr o pri a t e pr e fi x s e a r c h e s, w hi c h a r e e ffi ci e ntl y s ol v e d wit h t h e C S A . J oi n
q u e ri e s a r e al s o i m pl e m e nt e d b y e x pl oiti n g t h e q u e r y c a p a biliti e s of t h e C S A .
We f ur t h e r e n gi n e e r t h e C S A t o o pti mi z e its p e rf o r m a n c e i n t hi s s c e n a ri o.

T hi s w o r k e xt e n d s o ur pr eli mi n a r y p u bli c a ti o n [ 1 1 ]. T h e m ai n a d diti o n al
c o n tri b uti o n s of t hi s p a p e r a r e:

We pr o vi d e a d et ail e d d e s c ri pti o n of R D F C S A a n d di s c u s s s e v e r al i m pr o v e-
m e nts m a d e o n t o p of t h e pr eli mi n a r y w o r k [ 1 1 ]. T hi s i n cl u d e s g e n e r al
o pt i mi z a ti o n s wit hi n t h e i nt e r n al s of t h e u n d e rl yi n g C S A str u ct ur e a s w ell
a s e ffi ci e nt s u p p o r t of j oi n q u e ri e s.
We pr e s e nt t hr e e v a ri a nts of R D F C S A t h a t yi el d di ff e r e nt s p a c e / ti m e tr a d e-
o ffs: r e g ul a r ( R D F C S A), b e st s p a c e ( R D F C S A- r r r ), a n d b e st p e rf o r m a n c e
( R D F C S A- H y bri d). T h e r e g ul a r R D F C S A i s si mil a r t o t h e o n e i n [1 1 ]. Yet,
t h e n e w o pti mi z a ti o n s sli g htl y i m pr o v e s p a c e a n d c a n h al v e q u e r y ti m e s i n
s o m e c a s e s. R D F C S A- r r r r e d u c e s s p a c e b y a r o u n d 1 0 % a t t h e c o st of al m o st
d o u bli n g q u e r y ti m e s. R D F C S A- H y b ri d i s a r o u n d 2- 6 ti m e s f a st e r a t t h e
c o st of t y pi c all y u si n g 1 0- 2 0 % a d diti o n al s p a c e.
We i n cl u d e a c o m pr e h e n si v e e x p e ri m e nt al e v al u a ti o n, c o m p a ri n g R D F C S A
wit h st a t e- of- t h e- a r t s ol uti o n s b a s e d o n c o m p a ct d a t a str u ct ur e s a n d o t h e r
w ell- k n o w n R D F st o r e s. T hi s e v al u a ti o n e x p a n d s t h e pr eli mi n a r y v e r si o n
wit h t h e n e w v a ri a nts of R D F C S A , a d diti o n al q u e ri e s ( e. g., j oi n q u e ri e s) a n d
t o ol s ( e. g., Vir t u o s o, Bl a z e g r a p h).

O ur e x p e ri m e nt al r e s ults s h o w t h a t R D F C S A pr o vi d e s a n e x c ell e nt s p a c e /-
ti m e tr a d e o ff, a n d t h a t t h a n k s t o its u nif o r m tr e a t m e nt of all tri pl e p a tt e r n s,
its q u e r y ti m e s a r e v e r y c o n si st e nt a n d pr e di ct a bl e. W h e n c o m p a r e d wit h
o t h e r c o m p a ct s ol uti o n s, K 2 Tri pl e s o bt ai n s b ett e r c o m pr e s si o n b ut i s si g nif-
i c a ntl y sl o w e r t h a n R D F C S A , w h e r e a s p e r m ut e d tri e i n d e x e s a r e u nif o r ml y
f a st e r o nl y w h e n u si n g si g ni fi c a ntl y m o r e s p a c e. We h a v e al s o c o m p a r e d wit h
o t h e r p o p ul a r r e pr e s e nt a ti o n s, i n cl u di n g H D T, Vir t u o s o, Bl a z e g r a p h, M o n-
et D B, R D F- 3 X, a n d Te ntri s; all of t h e s e a r e s h o w n t o b e f a r fr o m c o m p etiti v e
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with RDFCSA, being in most cases several times larger and/or several orders
of magnitude slower.

The rest of this paper is organized as follows: Section 2 provides some
additional details about RDF, as well as some of the relevant state-of-the-art
alternatives, and explains the elements of the CSA data structure, necessary
to understand our solution. Section 3 describes the RDFCSA data structure,
and the basic algorithms for simple and advanced queries. Section 4 details
the experimental evaluation performed. Finally, Section 5 presents the main
conclusions of this work and outlines future work.

2 Previous concepts and related work

2.1 RDF, triple patterns, and SPARQL

The RDF data model is based on a graph-like representation of the data. Given
an entity (subject), that is associated with a node, each of its properties is
represented with an outgoing arc (labeled by a predicate) pointing to another
node (object) that represents the value of that property [40]. An RDF graph
can also be seen as a collection of triples: an RDF dataset is a set R of triples
(s; p; o) (i.e. subject, predicate, object), where each triple represents an arc of
the graph. Figure 1 displays an RDF dataset represented with both approaches.
Note that we are using simple strings, but in RDF subjects and predicates
are identi�ed with Universal Resource Identi�ers (URI), and an object may
be either a URI or a literal value.

Fig. 1 Example of RDF graph and its representation as a set of triples.

RDF collections can be queried using SPARQL. SPARQL is a complex
query language, which builds essentially on triple patterns. A triple pattern is
a tuple (subject; predicate; object) where each component may be either bound
or unbound. For instance, the pattern (s; p; o), where all three elements are
bound, asks whether subject s has a predicate (or \property") p with value o;
the pattern (s; ?p; ?o), where both predicate and object are unbound, asks for
all the pairs (p; o) corresponding to the properties of subject s.

SPARQL queries can express more complex conditions using multiple triple
patterns, combined using join variables, that is, elements of di�erent triple
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patterns that must take the same value. For instance, the join operation
(s1; p1; ?x) ./ (s2; p2; ?x) (where ?x is the join variable) asks for all the objects
that are associated to s1 by property p1 and to s2 by property p2. For instance,
to know the movies where both L. DiCaprio and J. Gordon appeared, we
could ask for (L: DiCaprio ; appears in ; ?x) ./ (J : Gordon ; appears in ; ?x), and
it would return the movie Inception, as highlighted in Figure 1.

Joins can be categorized depending on the position of the join variables.
The previous example (s1; p1; ?x) ./ (s2; s2; ?x) is an object-object join, because
the join variable plays the role of object in both triples; the equivalent
subject-object and subject-subject joins would be (s1; p1; ?x) ./ (?x; p2; o2) and
(?x; p1; o1) ./ (?x; p2; o2), respectively. We can also categorize joins accord-
ing to the unbound elements that appear in each pattern. For instance,
(?s1; ?p1; ?x) ./ (?s2; p2; ?x), and (?s1; p1; ?x) ./ (?s2; p2; ?x) are di�erent types
of joins because they di�er in the number of unbound elements.

A set of triple patterns such as the examples above is usually denoted
as a basic graph pattern (BGP). This key component appears in almost all
SPARQL queries. Even though a BGP may involve any number of join vari-
ables, in this paper we focus on binary-join queries involving just two triple
patterns. While the join techniques used in this paper can be easily extended
for joins of any number of patterns, the execution order of the joins and the
selection of join techniques become more challenging as the BGPs grow.

2.2 RDF stores

As stated before, multiple solutions have been developed to e�ciently store
and query RDF datasets. The most popular RDF stores are fully functional
systems that provide not only storage and query capabilities, but also update
mechanisms and integrated SPARQL query endpoints. Virtuoso [20] and
Blazegraph [56] are two representative examples of such database solutions.

In addition to those solutions, many other representations have been pro-
posed with varying capabilities and focus, regarding their query support,
update abilities, etc. In this paper, we focus on lower-level solutions, and tackle
the compact storage of the underlying data by means of compact data struc-
tures. We aim at providing fast response times for triple pattern and join
queries, without attempting to support all the capabilities of SPARQL and
the features of a full database engine. We we introduce next several RDF
stores based on di�erent compact data structures that are of special interest
to understand our work, as we share some common ideas. A brief summary
including the main characteristics of other alternatives can be found in Table 1,
in the appendix. A more comprehensive list of these and other state-of-the art
solutions for RDF processing can be found in a recent survey [2].

2.2.1 RDF stores based on compact data structures

HDT (from Header-Dictionary-Triples) [22, 23] was originally devised as a
serialization format exploiting the usual redundancy in RDF datasets. It gained
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popularity [23] thanks to its rather good compression, and its support for
basic SPARQL queries [41]. HDT separates the RDF dataset into three main
components: H eader, D ictionary, and T riples. The Header component stores
metadata, and is not relevant for this paper. The Dictionary stores the di�er-
ent strings appearing in the original RDF dataset, and is in charge of assigning
a numeric identi�er to each string and providing a bijective string-to-id trans-
lation. Finally, the Triples component stores the triples themselves, where each
triple is a tuple with three numeric identi�ers. This is relevant to our work
since RDFCSA essentially replaces the Triples component, and is compatible
with the dictionary solutions in HDT. HDT de�nes the decomposition format
and provides basic implementations for the dictionary and the triples. Basic
solutions for the triples rely on sorted lists that store their elements. HDT can
be used to query the data by enhancing the basic structure with additional
indexes.

Fig. 2 Dictionary encoding used in HDT for the set of triples in Figure 1.

Figure 2 displays the dictionary encoding used in HDT for the set of triples
from Figure 1. Strings are separated in four di�erent sets: set SO contains
strings that are both subjects and objects, and three other sets store subjects
S, predicates P , and objects O. Each set is sorted in lexicographic order.
Entries in SO and P are numbered starting at 1, and entries in S and O are
numbered starting at SO + 1. This guarantees that each subject, predicate,
and object has a unique identi�er.

K2Triples [3] is a solution for the compact representation of RDF triples.
Like RDFCSA, it only considers the structural part of RDF, assuming that
triples consist of integer identi�ers like those generated by HDT. K2Triples
is based on a vertical partitioning [1] of the data. Relying on the fact that
the number of predicates (i.e., the number of di�erent properties) is usually
very small in RDF datasets, it separates the set of (s; p; o) triples into one
set per distinct predicate p, each containing the (s; o) pairs connected by that
predicate. Each set of pairs (s; o) is regarded as a binary relation and stored
using a k2-tree [10]. The k2-tree e�ectively compresses each binary relation,
and its indexing capabilities are exploited to e�ciently solve most queries in
K2Triples by translating them into basic operations on the k2-trees.
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K2Triples provides speci�c query algorithms to e�ciently answer queries
involving joins of two triple patterns. A variant, called K2Triples+, uses two
additional indexes SP and OP that drastically improve performance in queries
with unbound predicate (the main weakness of vertical partitioning), at the
cost of up to 30% extra space. Even with these additional indexes, K2Triples
variants are, to the best of our knowledge, the most compact representations
of RDF datasets with e�cient query support. A more recent representation
called BMatrix [14] is also based on k2-trees. However, it is only competitive
in some scenarios and lacks support for join operations.

The permuted trie index is a recent RDF representation based on the use
of compressed tries [51]. The index relies on three permutations (SPO, POS,
and OSP ) of the triples. Triple-pattern queries are answered by accessing the
appropriate structure depending on the �xed variables in the triple pattern.
The authors store each permutation as a 3-level trie, and propose several com-
pression techniques based on Partitioned-Elias-Fano (PEF) [50] compression,
to obtain very good performance in comparison with other state-of-the-art
solutions. In addition to the basic proposal, based on three indexes (which we
refer to as trie-3t), they also propose solutions that aim at better compression
by removing one of the permutations from the index. This saves signi�cant
space at the cost of performance loss for queries that used the removed index.
Among their variants, the best choice [50, Sec. 4.1] is the one that removes the
permutation OSP . We refer to it as trie-2tp.

2.3 Rank and select on bitmaps

Bitmaps are fundamental components of many compact data structures. A
bitmap B[1; n] is stored in plain form using n bits, but additional structures
are required to e�ciently support rank and select operations. The operation
rankb(B; i) counts the number of times bit b appears in B[1; i]. The inverse
operation, selectb(B; j), �nds the position of the jth occurrence of bit b in
B. It is possible to compute in constant time both rank [17, 34] and select
operations [17, 44] using o(n) extra bits.

In RDFCSA, we only need rank1 and select1 operations, for which we
build on a variant that requires 0:375n extra bits [28]. It uses a two-level struc-
ture that, in the �rst level (superblocks), stores the cumulative values every
256 positions using (n=256) 32-bit integers, and in the second level (blocks)
keeps the cumulative counters relative to the beginning of the corresponding
superblock using (n=32) 8-bit integers. We compute rank1(B; i) by summing
the counters at the corresponding superblock and block, and �nally scanning
a single 32-bit integer to count the number of bits set up to position i0 = (i�1)
mod 32. This last step is solved with mask-and-shifting, and a small precom-
puted table to count the number of ones bytewise. This yields O(1) time
for rank1. For select1, whose constant-time solution is not so practical, our
variant [28] binary searches the values sampled for rank in the superblocks,
then sequentially scans the counters of the blocks. Therefore, select1 is solved
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in O(log n) time, using the same rank structures. We later describe some
improvements we make on top of this select1 algorithm.

2.4 Sadakane's Compressed Su�x Array

The su�x array [39] is a data structure widely used for text indexing. Given
a sequence T [1; n], built over an alphabet � = [1; �], its su�x array is an
array A[1; n] that contains a permutation of the integers in [1; n] such that
T [A[i]; n] < T [A[i + 1]; n] for all i, in lexicographic order. The su�x array
is built by sorting all the su�xes T [j; n] and storing in A[i] the o�set in the
sequence T of the ith su�x in lexicographical order. Note that all the su�xes
starting with the same string � are contiguous in A, and that any occurrence
of � in T is the pre�x of a su�x of T starting with �. We can then e�ciently
search for all the occurrences of a pattern �[1;m] in T by two binary searches
on its su�x array A, requiring time O(m log n), which locate the range A[l; r]
corresponding to all the positions where � occurs in T .

The original su�x array is useful for searching but requires a signi�cant
amount of space, n logn bits, in addition to the original sequence. Sadakane's
Compressed Su�x Array, or CSA [54], provides a compact representation that
uses at most n log �+O(n log log �) bits and replaces both T and A, while still
e�ciently supporting searches.

The CSA is composed of several data structures. The most important of
them is a new permutation 	[1; n] [29]. For any i in [1; n], assuming A[i] = p,
	[i] stores the position j in the su�x array that points to the next position in
the original sequence (i.e., A[j] = A[i] + 1 = p+1). A special case arises when
A[i] = n, where 	[i] is set to j such that A[j] = 1. Concisely, 	 is de�ned as
	[i] = A�1[(A[i] mod n) + 1].

In addition to 	, a bitmap D[1; n] contains a 1 at the positions in A where
the �rst symbol of the corresponding su�xes changes (i.e., D[i] = 1 i� i = 1
or T [A[i]] 6= T [A[i � 1]]). In order to know the symbol in T pointed by A[i],
we can count the number of 1s in D up to position i, that is, rank1(D; i).

Using 	 and D we can reproduce the same binary search of the su�x array,
without storing T or A. The �rst symbol of the su�x pointed by A[i] can be
computed as rank1(D; i). To extract the following symbols, we iterate using 	:
	[i] stores the position i0 in A that points to the next symbol of the text; there-
fore, we can extract subsequent symbols as rank1(D;	[i]), rank1(D;	[	[i]]),
and so on. Assuming that rank operations in D and accesses to 	 can be com-
puted in constant time, a binary search in the CSA still requires O(m logn)
time. After computing the range A[l; r] of the occurrences of �, a forward text
context for each can be extracted by iterating with 	 in the same way.

An uncompressed 	 array would still require the same space as A. How-
ever, 	 can be partitioned into at most � increasing contiguous subsequences,
which makes it highly compressible by encoding it di�erentially, i.e. by repre-
senting each 	[i] as 	[i] � 	[i � 1]. A run of t increasing values in [1; n] can
be represented in t log2(n=t) +O(t log log(n=t)) using �-codes. Overall, 	 can
be compressed to space proportional to the zero-order empirical entropy of
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the original sequence, or nH0(T ) + O(n logH0(T )) � n log � + O(n log log �)
bits [54]. Further improvements, combining the �-codes with run-length encod-
ing (RLE) for runs of consecutive di�erences equal to 1 (which tend to appear
in 	), reduced this space even more and achieved compression proportional to
the higher-order entropy of T , nHk(T ) [46].

The RDFCSA is based on the integer-based CSA (iCSA)1 [21]. The iCSA
is a variant optimized for large (integer-based) alphabets, with some di�er-
ences in implementation and compression techniques with the original CSA.
Particularly, in the iCSA the best compression is achieved by using di�eren-
tial encoding of the consecutive 	 values, followed by mixing Hu�man and
run-length encoding of the resulting gaps. To provide e�cient access (in time
O(t	)) to 	, absolute 	 values are stored at positions 	[1 + k � t	]; k � 0.

Note that both the CSA and the iCSA include additional structures to
support other text search functionalities. Particularly, they add samplings of
A and A�1, to be able to �nd the position in T of the occurrences of �, or to
extract arbitrary substrings. These additional data structures are not necessary
in our RDFCSA.

3 Our proposal: RDFCSA

The two compact approaches we reviewed in the previous section have issues
to support all the possible combinations of triple patterns. K2Triples and
K2Triples+ are weaker when the predicate is unbound, whereas the permuted
trie index favors the triple patterns where there is a trie starting with the bound
elements. The key idea of RDFCSA is that, if we regard the triples (s; p; o) as
circular strings (i.e., the s follows the o again), then for every possible triple
pattern there is a rotation of (s; p; o) where all the bound values precede all
the unbound ones. Thus, if we index the triples as circular strings, every possi-
ble triple pattern can be reduced to a search for the circular strings that start
with some pre�x. We use the CSA to simulate a set of circular strings corre-
sponding to all the triples of the RDF dataset. This approach yields a uniform
search approach that will translate into not only fast, but also consistent and
predictable, query times.

We follow the convention of treating an RDF dataset as a set R of triples
(s; p; o), where s, p, and o are a subject, a predicate, and an object, respectively.
Our solution works with integer identi�ers (ids) for each of them, so it requires
a separate dictionary to perform the translation between the original string
values and the corresponding integer ids. Particularly, we base our solution on
the same dictionary encoding proposed by HDT and also used by K2Triples,
which was described in Section 2. Therefore, we assume a dictionary encoding
in which subjects, predicates, and objects are integers in contiguous ranges:
s 2 [1; ns], p 2 [1; np], and o 2 [1; no] (note the overlapped identi�ers in
Figure 2). While any other dictionary encoding scheme could be used for our

1http://vios.dc.�.udc.es/indexing/wsi/

http://vios.dc.fi.udc.es/indexing/wsi/
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purposes without a�ecting our implementation, we do take advantage of this
particular encoding to perform some optimizations in join queries.

Our RDFCSA representation is a self-index, meaning that we can recover
the triples from it, and thus it replaces the RDF store. As explained, it orga-
nizes the triples in a way that can be represented with a modi�ed CSA data
structure that e�ciently answers relevant queries in the domain. We �rst
describe how the data structure is built from the set of triples, and then
how we e�ciently support the relevant query operations over our self-indexed
representation of the triples.

3.1 Data structure

Given an input set R of n triples, we sort them increasingly by subject, then
break ties using the predicate and further break ties using the object, to make
up a sequence Tsort[1; n] of triples. Then, we transform this sequence of tuples
into an integer sequence of identi�ers Tid[1; 3n], by placing the ids of the three
components of each entry Tsort[i] at consecutive positions Tid[1 + 3(i � 1)],
Tid[2+3(i�1)], and Tid[3+3(i�1)]. Hence, at the end of this step, Tid[1; 3n] =
hs1; p1; o1; s2; p2; o2; : : : ; sn; pn; oni stores all the ids for the sorted triples.

Next, we transform the identi�ers in order to obtain disjoint integer alpha-
bets �s, �p, and �o for the ns subjects, the np predicates, and the no objects.
This can be performed just by computing the displacements necessary for pred-
icates and objects: we set an array gaps[0; 2] = [0; ns; ns + np] and convert
sequence Tid[1; 3n] into T [1; 3n], where T [i] = Tid[i]+gaps[(i�1) mod 3]. After
this transformation, our sequence T [1; 3n] has an alphabet � = [1; ns+np+no],
where values in the range [1; ns] are reserved to subjects, those in the range
[ns + 1; ns + np] to predicates, and the remaining ones to objects.

After the previous transformations, which can be trivially reversed to
obtain the original set R of triples, we build an iCSA on T . However, some
key changes have to be performed over the underlying su�x array in order
to e�ciently answer queries. Those changes rely on speci�c properties of our
construction method.

In particular, we take advantage of the following property of the gener-
ated su�x array A: it contains three well-delimited sections As = A[1; n],
Ap = A[n + 1; 2n] and Ao = A[2n + 1; 3n], corresponding respectively to
subjects, predicates, and objects. This is a direct consequence of our con-
struction method, which generates integer identi�ers such that every subject
is smaller than every predicate, and this in turn is smaller than every object.
This ordering means that, when sorting su�xes, entries corresponding to sub-
jects, predicates, and objects end up clustered in di�erent sections. Therefore,
As contains entries pointing to subjects in T , Ap points to predicates, and
Ao points to objects. Accordingly, array 	 also contains three separate ranges
with special properties. Recall that 	[i] contains, for the position p such that
A[i] = p, the position in A that points to the next element p+ 1 in T . Due to
the division of A into three sections, entries in 	 also point to those delimited
intervals, so each region of 	 contains values in a di�erent range: values of



Springer Nature 2021 LATEX template

Space/time-e�cient RDF stores based on circular su�x sorting 11

	[1; n] are in the range [n+1; 2n] (pointing to the range of predicates); entries
in 	[n+ 1; 2n] are in the range [2n+ 1; 3n] (pointing to objects); and entries
in 	[2n+ 1; 3n] are in the range [1; n] (pointing to subjects).

Since our sequence T contains all the concatenated triples in SPO order,
the symbol following an object will always be the subject of the next triple.
Therefore, if we are at position i in the su�x array, such that A[i] points to
an object (i.e., A[i] for i 2 [2n + 1; 3n], or A[i] = 3k for some k), when we
iterate using 	 we reach a position j such that A[j] points to the subject of the
next triple. The original organization of 	 was useful in the CSA to allow full
extraction of the text. In our case, however, we only need to extract individual
triples and, further, regard them as circular. Thus, we make 	 cycle around
the components of the same triple, instead of advancing to the next one. Our
RDFCSA then uses a modi�ed array 	 in which values within 	[2n + 1; 3n]
point not to the subject of the next triple in T , but to the subject of the same
triple. Thanks to the way we ordered the triples before building T , and the
grouping of subjects in A, we can compute the modi�ed 	 very e�ciently from
the original array: we simply set 	[i]  	[i]�1 for all positions corresponding
to objects (i 2 [2n+ 1; 3n]), or 	[i]  n for the special case 	[i] = 1.

The modi�ed 	 provides a simpler way to recover and search triples. Since
	 cycles over the triples, we can start at any position in the su�x array A[i],
and apply 	 to recover the remaining components of the triple. For instance,
if A[i] points to a predicate (i 2 [n + 1; 2n]), we can �nd the object with an
iteration using 	, and the subject with a second iteration (p = rank1(D; i),
o = rank1(D;	[i]), s = rank1(D;	[	[i]])). Using the original 	 we would not
be able to iterate from objects to subjects. Note also that only two iterations
are necessary for any triple, and if we apply 	 a third time we return to
i = 	[	[	[i]]]. The same property allows us to reduce any triple pattern to a
search for a short string in T . We will further discuss this when describing the
query operations for RDFCSA.

We note that the modi�ed 	 used in RDFCSA, enforcing the property
	[	[	[i]]] = i, is similar to the permuterm index [25], which tackles a more
general case. They also index a set of strings as if they were circular, so that
queries involving patterns of the form � � � (where � stands for an arbitrary
string) can be answered by transforming it to the string pattern �$�, where $
is a special string terminator symbol. However, the permuterm index is built
on top of an FM-index [24], which uses a wavelet tree [26] as the underlying
data structure. The wavelet tree implementation requires time logarithmic in
the alphabet size, O(log(ns + np + no)) in our case, for each basic traversal
step, equivalent to a computation of 	 in our solution. This overhead renders
the FM-index inferior to the CSA on large alphabets [21]. We checked this by
comparing the best-performing such variant on integer alphabets [21] to index
our sequence T , and obtained times to answer (s; p; o) patterns around 2:5{4
times slower than those in RDFCSA. More recent implementations of wavelet
trees on large alphabets have shown only minor improvements for FM-indexes
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[7]. This is why we implemented our technique on top of the iCSA for the case
of RDF triples.
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Fig. 3 Structures involved in the creation of a RDFCSA for the triples in Figures 1 and 2.

Figure 3 displays the di�erent data structures involved in the creation of
a RDFCSA for a given set of triples. We use the same triples described in
Figure 1, following the dictionary encoding of Figure 2. The collection contains
n = 10 triples, with ns = 5 subjects, np = 6 predicates, and no = 5 objects.
The �rst step is sorting the triples in SPO order, and concatenating their
components in array Tid: the �rst triple is located in Tid[1; 3] = (1; 5; 2), the
second one in Tid[4; 6] = (2; 4; 5), and so on until the last triple, which is set
in Tid[28; 30] = (5; 3; 5). We compute gaps[0] = 0, gaps[1] = ns = 5, gaps[2] =
ns + np = 11, and then create T by adding the appropriate component of
gaps[0; 2] to the values in Tid. At the end of this step we obtain T [1; 30]. Note
that we add an extra entry at the end of T as an implementation trick: by
adding this value, larger than any entry in T , we ensure that su�x sorting
works properly when constructing the su�x array A, without having to change
the construction used by the original iCSA (similar results could be obtained
by adjusting the algorithm used for su�x comparison). The su�x array A is
then built on top of T [1; 30] (recall that the last element is added to T just
for sorting purposes, but it is not considered as a part of the array itself).
Our construction process continues by building the bitmap D and the array
	orig as in the original iCSA. Then, the �nal array 	 used by the RDFCSA
is created from 	orig by subtracting 1 to 	orig[i], for each position i in the
interval [21; 30] corresponding to objects, and �nally setting 	[30] = 10 for
the special case where 	orig[30] = 1 (as indicated above).

The main properties stated for A and 	 can be easily checked in the exam-
ple. For instance, entries in 	[1; 10] contain values in the interval [11; 20],
entries in 	[11; 20] contain values within [21; 30] and entries in 	[21; 30] con-
tain values within [1; 10]. The �gure also displays the general procedure to
traverse the sequence to recover the �rst triple: starting at i = 1, which cor-
responds to the subject of the triple, we compute 	[1] = 19 to locate the
predicate, and then compute 	[19] = 24 to locate its object. Note that if
we apply 	 once again, 	[24] = 1 takes us back to the subject location due



Springer Nature 2021 LATEX template

Space/time-e�cient RDF stores based on circular su�x sorting 13

to the cyclical 	. When performing binary search or extracting the triple,
we can get the corresponding values by computing s = rank1(D; 1) = 1,
p = rank1(D; 19) � gaps[1] = 10 � 5 = 5 and o = rank1(D; 24) � gaps[2] =
13� 11 = 2 to recover the original triple (1; 5; 2).

3.1.1 Data structure optimizations

The basic implementation described uses the same data structures as the
iCSA [21] to store 	 and D. Precisely, D uses the described structures to
support rank and select, whereas 	 uses di�erential encoding combined with
Hu�man and run-length encoding, which performed best.

On this basic structure, we apply a couple of simple improvements that are
speci�c of the kind of data we are representing. Basically, since the su�x array
is separated into three areas of size n, for subjects, predicates, and objects, and
these have di�erent characteristics, it pays o� to separate D and 	 into three
arrays of length n each: Ds[1; n], Dp[1; n], and Do[1; n], and 	s[1; n], 	p[1; n],
and 	o[1; n]. We can then encode each array in di�erent form.

In most RDF datasets, the number P of di�erent predicates is very small.
Since Dp has only P 1s, we can avoid the computation of select1(Dp; �) by
directly storing a small array of P entries with the results of the P distinct
select1(Dp; �) queries; the select1 operations on Ds and Do are still carried out
as described. The e�ect in the overall space is negligible.

Further, we add a small structure to speed up select1 queries on Ds and
Do: being n0 � n the number of 1s in D�, we add an array (sOnes) of n0=256
entries where we store the position where every 256th 1 appears in the bitmap.
Given a query select1(D�; i), the answer can be either stored in our array (if i
is a multiple of 256), or it can be between the samples bi=256c and bi=256c+1.
We then start the binary search on the range of the corresponding superblocks,
which saves in practice most of the binary search cost. The total space for
rank1 and select1 queries is 0:5n bits for each of Ds and Do.

The values in 	s, which are in [n+ 1; 2n], are decreased by n so that they
point inside 	p, and those of 	p, which are in [2n + 1; 3n], are decreased by
2n, so that they point inside 	o. These reductions do not a�ect the di�erential
encodings, but they yield a slight gain of space in the absolute samples, which
require dlog2 ne instead of dlog2 3ne bits.

More importantly, we can represent each partition of 	 in di�erent form.
We de�ne a variant of our data structure that we call Hybrid, which slightly
increases the space to obtain better access time to 	. Concretely, Hybrid stores
	s and 	o in plain form, and keeps 	p di�erentially compressed as described.
For 	s and 	o, we use a simple array requiring dlog2 ne bits per entry. Keeping
	s and 	o uncompressed means that accessing 	 will be much faster, in time
O(1) instead of O(t	), in these regions. This will be most noticeable on queries
that only use those ranges of 	.

Choosing a plain representation for 	s and 	o is reasonable because of the
characteristics of the iCSA and RDF datasets: the numbers S and O of di�erent
subjects and objects are relatively large, and therefore we take little advantage
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of the fact that 	s[1; n] and 	o[1; n] are formed by S and O increasing runs,
respectively: this leads to using log2 S + O(log log S) or log2 O + O(log logO)
bits to encode each di�erence, instead of log2 n bits to encode an absolute
value. For example, using t	 = 32, the di�erential encoding of 	s reduces
its size to 93% of the plain size using dlog2 ne bits, and that of 	o reduces
it to around 75%. Instead, because there are few predicates, the di�erential
encoding reduces 	p to around 15% of its uncompressed size. This scheme
could be easily generalized so as to apply compression only if a given space
reduction is achieved.

For simplicity, we will keep speaking of D and 	, ignoring the implemen-
tation detail that they are stored in partitioned form.

3.2 Query operations

In this section we describe how to use RDFCSA to answer triple-pattern
queries, which constitute the main building block to support SPARQL queries.
We describe how to solve the 7 triple-pattern queries (s; p; o), (?s; p; o),
(s; ?p; o), (s; p; ?o), (?s; ?p; o), (s; ?p; ?o), (?s; p; ?o). The basic operatory for
all of these patterns is to locate the range of entries corresponding to their
bound components, and then extracting the corresponding triples. We will also
describe various RDF-speci�c optimizations.

We disregard the triple pattern (?s; ?p; ?o), because it retrieves all the
triples in the dataset and is not really useful as a query. Nevertheless, we note
that it can be easily solved by omitting the search phase and simply extracting
the full set of triples using 	.

3.2.1 Solving triple patterns using the regular binary search

on the iCSA

The iCSA can locate all the occurrences of a pattern, by binary searching the
range A[l; r] of the su�xes that start with the given pattern. Given a query
pattern �[1;m], the range of positions [l; r] in the su�x array A will contain
pointers to all the positions in the text where the pattern � occurs. After
computing [l; r], 	 is used to recover the corresponding symbols.

In our case, we are interested in answering a triple-pattern query, where
some components can be bound and others unbound. As discussed previously,
our modi�ed 	 allows us to treat all cases similarly, by searching for a sub-
sequence corresponding to the �xed components in the triple pattern. For
instance, to answer an (s; p; o) query we build a sequence �[1; 3] = spo, and
use that as our pattern for the binary search in the iCSA. To answer (s; p; ?o)
and (?s; p; o) queries, we search for �[1; 2] = sp or �[1; 2] = po, respectively.
We can also answer (s; ?p; o) queries by searching for �[1; 2] = os, thanks to
the cyclical traversal of our modi�ed 	. Similarly, for query patterns where
only one of the elements is �xed, we simply search for �[1; 1] = s, �[1; 1] = p,
or �[1; 1] = o. Next we detail the solution for each group of triple patterns,
depending on the number of unbound variables.
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For (s; p; o) queries, we actually set �[1; 3] = [s + gaps[0]; p+ gaps[1]; o +
gaps[2]], containing all the elements of the triple pattern. We then perform a
binary search for � in the iCSA. If l = r then (s; p; o) is an existing triple,
otherwise it is not in the dataset.

For queries with a single unbound variable, we proceed similarly with a
binary search. Yet, we now have to recover the original triples afterwards.
For instance, for (s; p; ?o) queries we set �[1; 2] = [s + gaps[0]; p + gaps[1]].
Binary searching for � in the iCSA, we �nd the interval [l; r] corresponding
to the result set. The number of answers is r � l + 1. For each i 2 [l; r], we
return the triple (s; p; rank1(D;	[	[i]])� gaps[2]). Similarly, for (s; ?p; o), we
set �[1; 2] = [o + gaps[2]; s + gaps[0]], then we binary search for pattern �,
and return all triples (s; rank1(D;	[	[i]]) � gaps[1]; o). For (?s; p; o), we set
�[1; 2] = [p+gaps[1]; o+gaps[2]], we binary search for �, and return the triples
(rank1(D;	[	[i]])� gaps[0]; p; o).

For queries with two unbound variables, we can still perform a binary search
to locate the occurrences of the bound variable. For instance, for (?s; p; ?o)
triple patterns we set �[1; 1] = [p + gaps[1]], and �nd the interval [l; r] with
the iCSA. The number of results is again r � l + 1, and for each i 2 [l; r], the
triple (rank1(D;	[	[i]]) � gaps[0]; p; rank1(D;	[i]) � gaps[2]) is recovered.
Note that, in this case, the binary search in the iCSA does not require a binary
search operation on 	, since we can compute l = select1(D;�[1]) and r =
select1(D;�[1] + 1)� 1. As in the previous examples, (?s; ?p; o) and (s; ?p; ?o)
can be answered using exactly the same operation but adjusting � and the
computation to return the result triples.

Since we are using a binary search on the iCSA, all the triple-pattern
queries require O(r � l + logn) time, where r � l + 1 is the number of query
results. In addition to this, for most query patterns we need to perform a
number of accesses to 	 per query result in order to return the complete triples.
In practice, e�cient access to 	 must be balanced with e�cient compression;
the compression of 	 introduces a signi�cant space/time tradeo� that can be
tuned in our representation. Note that the space/time tradeo� also depends
on the type of query pattern involved: if a query returns a large number of
results, the cost of the binary search becomes negligible and the time required
to perform accesses to 	 dominates the cost of the query. However, the binary
search cost becomes relevant when only one or a few triples are returned, as
well as in (s; p; o) queries, where no triple-pattern retrieval is necessary.

3.2.2 Query optimizations

We now describe a number of optimizations and algorithmic variants that
improve our performance.

One enhancement improves query patterns with two unbound terms, in
which we always need to perform two select operations on D over two consec-
utive values, i and i + 1. Once we compute j = select1(D; i), we can replace
select1(D; i + 1) by a new operation selectnext(D; j), which �nds the next 1
after D[j]. We implement selectnext by scanning D bytewise from position
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j + 1 to the end of its block. If we �nd no 1 up to then, we scan the following
32-bit words looking for a nonzero block. If we �nd no 1 up to then, we check
if the next superblock has a 1, and if not, we binary search for the next one
that has. On that superblock, which contains the answer, we restart the word-
wise scan, then the bytewise scan, and �nally use the same table of select to
�nd the desired 1. This is in practice faster than a second binary search.

Our next optimization improves the performance of accesses to 	, partic-
ularly taking into account that in most cases we need to compute values of 	
for a relatively large range of consecutive positions. In the original algorithm,
once [l; r] is determined through binary search, we have to compute 	[i] and
	[	[i]] for all i 2 [l; r] to retrieve the missing elements in each triple (except
on the pattern (s; p; o)). Since 	 is di�erentially encoded, each access takes
time O(t	), where we spend (n logn)=t	 bits to store the absolute samples.
In order to improve the speed of these accesses, we sequentially decompress
the whole range 	[l; r]. This means that, once we decode 	[l] in O(t	) time,
all the subsequent values are decoded in constant time. This variant is par-
ticularly e�cient if we are inside a run of di�erences equal to 1, as these are
encoded using run-length encoding. Note that this only works for the initial
range [l; r], since the remaining accesses to 	 are expected to be located at
random and therefore they cannot be improved with this technique.

We also improve the strategy to binary search for [l; r]. We describe two
alternative strategies, called D-select+forward-check and D-select+backward-
check, which apply to patterns with 2 or 3 bound elements.

D-select+forward-check strategy

During a binary search in the iCSA, we compare the query pattern � with
the string pointed by the current position in the su�x array, T [A[i]; n]. The
�rst steps of the binary search will be faster because the strings will di�er in
their �rst character, so the comparison will be decided with the �rst integer
comparison without the need to compute 	, just T [A[i]] = rank1(D; i). At
some step of the binary search, however, we will start to have T [A[i]] = �[1]
and will have to compute 	[i] in order to compare �[2] with rank1(D;	[i]);
this access to 	 can be relatively expensive if di�erentially compressed. Instead
of performing all those isolated 	 computations, in this strategy we perform
all the checks for the complete range in order to �lter the candidate positions.

Consider for instance the triple pattern (s; p; o), in which we would search
for � = spo. We �rst �nd the intervals that correspond to the subject, pred-
icate, and object of the triple pattern: Rs = [ls+gaps[0]; rs+gaps[0]], Rp =
[lp+gaps[1]; rp+gaps[1]], and Ro = [lo+gaps[2]; ro+gaps[2]], using select operations
on D: lc = select1(D; c) and rc = selectnext(D; lc) � 1. Since 	 is increasing
within each of those intervals, we use these ranges to check, for each i in Rs,
whether 	[i] 2 Rp. Only a smaller range Rsp � Rs will pass this �lter, and
the 	 values in that range form in turn a range Rps � Rp. On this range Rps

we compute all the 	 values to �nally �nd the range Rpso � Rps of the values
that map inside Ro by 	. Those are the �nal answer.



Springer Nature 2021 LATEX template

Space/time-e�cient RDF stores based on circular su�x sorting 17

180 231 301 550 600 602

10 11 12 180 200 230 231 232 300 301 550 600 601 602

S=8 P=4 O=261

SP SPO

Fig. 4 D-select+forward-check strategy for pattern (s; p; o) = (8; 4; 261).

Figure 4 shows an example of this operation. In this example, Rs = [10; 12],
Rp = [200; 300], and Ro = [600; 601]. Checking the values of 	 for the rangeRs,
we �nd that 	[10] and 	[12] do not map into range [200; 300], but 	[11] does.
Therefore, we need to check if 	[	[11]] maps into the range Ro = [600; 601],
corresponding to object 261. Since it matches, we can report an occurrence of
the triple (8; 4; 261), i.e., con�rm that the triple is in the collection.

In practice, this technique may be faster than a standard binary search if
the initial interval (Rs in our example) is small enough. Note that, since our
	 is cyclic, we can use any of the three intervals Rs, Rp, or Ro to begin our
check. Typically, the number of objects is higher than that of subjects, so we
expect that jRoj < jRsj � jRpj. We may, however, choose on the y the one
that is actually shortest.

This strategy can also be applied to triple patterns with one unbound
term. In this case, we perform the same operations but restricted to the bound
terms. Assuming our bound variables are x and y, we compute Rx and Ry and
perform the same range check to verify if, when applying 	 to the positions in
Rx, we end up in range Ry. Again, the cyclic nature of 	 allows us to perform
the range check independently of the position of the bound variables in the
triple pattern. For example, for (?s; p; o) triple patterns we set x = p, y = o;
for pattern (s; ?p; o), we set x = o, y = s; and for pattern (s; p; ?o) we set
x = s, y = p.

D-select+backward-check strategy

This strategy is based on the same ideas of the previous forward-check strategy.
It relies on the fact that all positions i in Rs that pass the forward-check in
the previous strategy necessarily form a subinterval of Rs. This means that,
in order to discard candidate positions, we do not need to verify every i 2 Rs;
instead, we can binary search for the subrange of positions that map to a valid
range in Rp.

To take advantage of the previous property, we follow a similar idea to the
well-known backward-search strategy [54]. Assume that we are searching for a
triple pattern (s; p; o). We start our search now in interval Ro = [lo; ro]; since
	 must be increasing within interval Rp = [lp; rp], we binary search inside Rp

in order to locate the subinterval Rpo = [lpo; rpo] � Rp that contains all the
positions i such that 	[i] 2 Ro. If the subinterval is empty, no result exists for
the query and we return immediately. Otherwise, we continue the backward-
search process, binary searching in Rs in order to locate the subinterval Rspo =
[lspo; rspo] � Rs that contains all the entries i 2 Rs such that 	[i] 2 Rpo. At



Springer Nature 2021 LATEX template

18 Space/time-e�cient RDF stores based on circular su�x sorting

the end of this step, the range Rspo contains all the results for our query. Note
that, when using an (s; p; o) pattern, either 0 or 1 results may arise, but we
generalize this strategy to other triple patterns below.

180 231 301 550 600 602

10 11 12 180 200 230 231 232 300 301 550 600 601 602

S=8 P=4 O=261

SPO PO

Fig. 5 D-select+backward-check strategy for pattern (s; p; o) = (8; 4; 261).

Figure 5 displays an example of this strategy for a sample (s; p; o) query
pattern. We start the backward search in range Ro = [600; 601]. Then we
perform a binary search in the interval 	[200; 300], in order to locate the
subinterval that contains values that map into Ro; in our example, only the
entry 	[231] maps into [600; 601], so we obtain a subinterval Rpo = [231; 231].
Next, we continue the backward-search in Rs. We binary search inside the
range 	[10; 12] and locate the subinterval that maps to 231; in the example,
only 	[11] = 231 maps. Consequently, the �nal interval is Rspo = [11; 11], that
contains the single occurrence for the given pattern.

This strategy can be easily adapted to work with all the query patterns
that contain a single unbound variable. In (s; p; ?o) queries, we locate the
subinterval Rsp � Rs that maps into Rp after applying 	. In (s; ?p; o) queries,
we locate the subinterval Ros � Ro whose 	 entries map into Rs. In (?s; p; o)
queries, we locate the subinterval Rpo � Rp whose entries map into Ro.

3.3 Supporting join operations

RDFCSA can be extended to support join operations by implementing di�erent
join techniques on top of the basic triple pattern query algorithms. We �rst
describe the general technique, which can be used with any number of unbound
elements in the triple patterns and for subject-subject, subject-object, and
object-object join operations. We then briey explain particular optimizations
that are applied on top of the general technique.

Join operations in RDFCSA are essentially performed by following either
a merge-join strategy or a chaining strategy.

The merge-join strategy considers each triple pattern separately. The join
variable is treated as an unbound variable in both triple patterns. The two cor-
responding triple patterns are solved independently, therefore obtaining two
lists of results. The �nal step scans the resulting lists to compute their inter-
section.2 For instance, to compute (s1; p1; ?x) ./ (s2; p2; ?x), we �rst compute
the two triple-pattern queries Q1 = (s1; p1; ?o1) and Q2 = (s2; p2; ?o2). The
results of Q1 and Q2 are then intersected by the O component to retrieve only

2Since the results returned by the RDFCSA for some triple patterns are not necessarily sorted
by the desired element, a sorting step may be required prior to the intersection.
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the values where o1 = o2. The same strategy can be applied to any combina-
tion of triple patterns, with simple adjustments depending on the number of
unbound variables in each side.

The chaining strategy, instead, solves one of the triple patterns �rst, consid-
ering the join variable as unbound. Then, for each result obtained in this query,
the second pattern is executed with the corresponding value of the join vari-
able, which is now bound. The previous example, (s1; p1; ?x) ./ (s2; p2; ?x), is
executed following this strategy by �rst querying (s1; p1; ?o1), and then replac-
ing each value o1 obtained for ?o1 in the second pattern as (s2; p2; o1). We speak
of left-chaining if we start with the left triple pattern and apply each result
as bound variables in the right one (as in the previous example), and of right-
chaining if we start executing the right triple pattern and replace the results in
the left one. The selection of the �rst pattern for chaining is important when
the triple patterns have a di�erent number of unbound variables.

In RDFCSA we have implemented a general mechanism to perform joins
following the merge strategy as well as a left- or right-chaining strategy.
Depending on the characteristics of the join, and particularly the location of
the unbound variables, the strategy selected leads to signi�cantly di�erent
triple-pattern queries, and therefore to important di�erences in query perfor-
mance. The selection of the optimal strategy is a signi�cant problem by itself.
We test all possible strategies in our experimental evaluation, with one excep-
tion: strategies that would lead to the evaluation of an (?s; ?p; ?o) pattern as a
�rst step are not considered in any case, since decompressing the full dataset
as an intermediate result would be very ine�cient in terms of time and space.

3.3.1 Optimization of join operations

Some optimizations are added on top of the general join strategy, to take
advantage of the characteristics of our technique and speci�c join patterns.
These optimizations have a signi�cant e�ect on the amount of computation
performed by RDFCSA in most join operations.

The �rst enhancement to the basic algorithms is related to the dictionary
encoding used. Recall that in the dictionary encoding used by HDT, all ele-
ments that are both subject and object are assigned an id lower than that of
any element that only appears as a subject or as an object. This can be used to
�lter out results when performing subject-object joins. For example, to answer
a query (s1; p1; ?x) ./ (?x; p2; o2) using left-chaining, we would �rst obtain all
the objects that match the triple pattern (s1; p1; ?x); then, we have to check
that each result matches the right triple pattern. However, with the dictio-
nary encoding we use, we can immediately discard any result of the �rst query
with an id higher than SO, since we know that it only appears as an object
and therefore it will not match the overall join query. Note that this improve-
ment is speci�c to this dictionary encoding, and is not speci�c to RDFCSA;
the same optimization is also used, for instance, in K2Triples.

Another simple optimization that is applied to the merge strategy consists
in taking into account the characteristics of the result list returned. In some
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join patterns, we must sort both lists to compute their intersection; however,
due to the evaluation mechanisms of RDFCSA, in some triple patterns the list
of results is already sorted. For instance, the (s; p; ?o) triple pattern returns
a sorted list of objects as a result; therefore, to answer a query (s1; p1; ?x) ./
(s2; p2; ?x), we can execute the two triple-pattern queries and then simply
intersect the corresponding sorted lists. A similar idea is also applied to the
chaining strategy: we can avoid some computation in the chaining phase by
identifying repeated results. In order to do this, we sort the results of the �rst
triple pattern and skip the computation of the second triple pattern on the
repeated results of the �rst query. Therefore, we build the results of the �nal
join only from the non-repeated results of the �rst triple pattern.

An additional improvement we include in all our join operations, when
possible, is variable �lling. As explained before, when running most triple-
pattern queries, we �rst obtain the location of the set of triples and then use 	
to retrieve the missing variables in the triple. This cost is necessary to return
the complete result in a triple-pattern query. However, in join queries that
follow the merge or chaining strategy, many of the matches found in the �rst
pattern may not correspond to valid results of the overall join operation, since
they do not have a match for the join variable in the second pattern. Our
algorithms identify, depending on the type of join and the evaluation strategy,
which variables in a triple pattern are necessary to solve the join and which ones
are only necessary to make up the �nal result. The latter variables are �lled in
only after the complete join has been evaluated. We then use slightly modi�ed
versions of each triple-pattern query, customized according to which of the
elements in the resulting triple have to be computed. The general algorithms
solve the join using the incomplete triples (hence avoiding the rather costly 	
computations on non-sampled positions, and rank operations), and then take
care of re�lling the missing variables once the join has been completed.

For instance, to perform the join (?s1; p1; ?x) ./ (?x; p2; o2) with left-
chaining, the �rst step is to compute the left triple pattern (?s1; p1; ?o1). This
is usually done by �rst locating the range of p1, and then using 	 to locate the
corresponding objects, and 	 again to get the subjects. However, for the join
operation we do not need the subjects, only the objects, so we do not compute
the subjects yet: we �rst complete the join query, and then �ll in the missing
subjects for the resulting tuples.

4 Experimental evaluation

4.1 Experimental framework

We tested the compression and query performance of our proposal using the
DBPedia dataset,3 \the nucleus for a Web of Data" [6]. The original size of
the dataset is around 34GB. It contains 232,542,405 triples in total, 18,425,128
di�erent subjects, 39,672 di�erent predicates, and 65,200,769 di�erent objects.

3http://downloads.dbpedia.org/3.5.1/

http://downloads.dbpedia.org/3.5.1/
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After applying dictionary encoding to the triples, the structural part of the
dataset can be stored in 2,790,508,860 bytes, using three 32-bit integers per
triple.

We compare RDFCSA with K2Triples and permuted trie indexes, as good
examples of other well-known state-of-the-art solutions that are similar to
RDFCSA, in the sense that they are based on compact data structures and
designed to work with triples composed of integer identi�ers. We also compare
our proposal with a number of alternative solutions following other approaches:
HDT, Tentris, Virtuoso (open source edition, version 7.2.5.1), Blazegraph (ver-
sion 2.1.4), MonetDB (version 1.7), and RDF-3X (version 0.3.7). Note that all
of the latter can handle the RDF datasets in their original form as string triples.
For HDT, we display in the plots the space required only for the Triples com-
ponent, so it is directly comparable to RDFCSA, K2Triples, and permuted trie
indexes. The same occurs for MonetDB, where we also store and query integer
identi�ers instead of strings. For Tentris, Virtuoso, Blazegraph, and RDF-3X
we display the full size of the structure, after loading the original RDF dataset.
The e�ect of the dictionary in space and query times will be discussed later.

Regarding query times, measurements are also taken di�erently in each
family of solutions. For Virtuoso, Blazegraph, Tentris, MonetDB, and RDF-
3X we measure query times using the utilities provided by each tool, which
includes, in general, the cost of parsing the query. For RDFCSA, K2Triples,
permuted trie indexes, and HDT, we measure the performance of queries on
the integer ids, therefore ignoring any additional costs associated to the query
tool and the SPARQL query parsing necessary in the other solutions. Query
times are always displayed in �s/result to reduce the e�ect of the overhead
required by the more complex tools.

For RDFCSA, we test the di�erent algorithms and variants using di�erent
sampling intervals on 	, t	 2 f4; 8; 16; 32; 64; 512g, so as to obtain a wide
space/time tradeo�. Additional details on the variants and con�gurations will
be given later.

For K2Triples we use the settings recommended by the authors. We use
both the original K2Triples and the improved K2Triples+ that includes extra
indexes to speed up queries with unbound predicate.

We test two con�gurations of the permuted trie index:4 trie-3t and trie-
2tp. The former has better performance and o�ers more stable query times
because it is e�cient over all triple patterns. Instead, trie-2tp uses only two of
the three permutations, so as to reduce space while maintaining query times in
most triple patterns. The main drawback of trie-2tp is that it performs much
worse on (?s; ?p; o) queries. There are other con�gurations of the permuted trie
index, but we have chosen the best performing ones according to its authors.

For HDT, we use the original implementation by the authors.5 To provide
comparable query times, we performed minimal changes to the source code in

4https://github.com/jermp/rdf indexes
5http://www.rdfhdt.org/

https://github.com/jermp/rdf_indexes
http://www.rdfhdt.org/
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order to measure only the structural part of the query. To do this, we precom-
pute the string-to-id translation for all queries, and then measure query times
to return all results as identi�ers, omitting the �nal id-to-string translation
that is usually performed to return the �nal results. Therefore, our plots reect
the space and time required to solve the query on ids, omitting the space and
time required for the HDT dictionary.

For MonetDB,6 we store the integer ids corresponding to the triples to make
its results directly comparable to the previous solutions. We executed queries
using the mclient command-line tool, and use the query times it reported.

For Virtuoso,7 we use the ingestion and query tools provided with the
software. Particularly, we choose the interactive command-line query tool isql
to execute queries, and use the query times it reported. Note that Virtuoso
includes a server that provides an HTTP endpoint that can be used to run
SPARQL queries. We have also tested query times in this interface, but the
overhead caused by this endpoint was very signi�cant (query times were 1.3{3
times larger than in the command-line tool); additionally, the HTTP endpoint
limits the number of results returned, making it impractical for our purposes.

For Blazegraph,8 we use a custom Java program that connects to Blaze-
graph in embedded mode. Query times are measured using System.nanoTime.
The SPARQL endpoint provided by Blazegraph was also tested, but the
overhead caused by it was also signi�cant.

For Tentris, we use the query tool tentris terminal,9 provided by the
authors. We display query times as measured by the tool. Since parsing times
are disgregated by the tool, we display two di�erent times for Tentris: Tentris
represent total times, whereas Tentris-noparse exclude the parsing time from
the total. Again, we have tested the HTTP endpoint provided, but we omit
these results in our plots because they were up to 10 times worse than the
command-line results in some queries.

In RDF-3X,10 we use the command-line query tool provided to run the
queries and measure query times.

We use an existing testbed for the DBPedia dataset.11 This query set pro-
vides 500 queries for each of the 7 basic triple patterns, and 25 queries for each
join pattern considered (additional details on the join variants and their classi-
�cation will be provided in Section 4.4). For a fair comparison with tools that
require access to disk, we execute a warm-up phase before running each query
set. The warm-up includes performing the full set of triple pattern queries.
After that, we execute each query set, measuring query times. Additionally,
we set a number of repetitions of the full query set for triple pattern queries
to guarantee accurate average time measurements.

6https://www.monetdb.org/
7https://virtuoso.openlinksw.com/
8https://blazegraph.com/
9https://github.com/dice-group/tentris

10https://code.google.com/archive/p/rdf3x
11Provided by the authors of K2Triples, available at http://dataweb.infor.uva.es/queries-

k2triples.tgz

https://www.monetdb.org/
https://virtuoso.openlinksw.com/
https://blazegraph.com/
https://github.com/dice-group/tentris
https://code.google.com/archive/p/rdf3x
http://dataweb.infor.uva.es/queries-k2triples.tgz
http://dataweb.infor.uva.es/queries-k2triples.tgz
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Fig. 6 Query times of the search variants on query patterns with zero or one unbound
variable. Times in microseconds per result returned and in log scale.

We ran our experiments on an Intel Xeon E5-2470@2.3GHz (8 cores) CPU,
with 64GB of RAM. The operating system was Debian 9.8 (kernel 4.9.0-8-
amd64). The version of GCC was 6.3.0, and the version of Java (used to run
Blazegraph) was 1.8. Our code, as well as the source code for RDF-3X and
HDT, were compiled using GCC, with full optimizations. The remaining tools
were installed using the packages/binaries provided by the authors. We have
made our source code available at https://lbd.udc.es/research/rdf/.

4.2 Comparison of the query algorithms of RDFCSA

First we analyze the relative performance of the query algorithms developed for
our structure, discussed in Section 3.2. We measure space and query times for
the di�erent triple patterns using the basic binary search algorithm (base in the
plots), the D-select-forward-check strategy (forward), and D-select-backward-
check (backward).

Figure 6 displays the space and query times for the di�erent search algo-
rithms.12 We only show results for query patterns with zero or one unbound
variable, because triple patterns with a single �xed variable lead to patterns
� of length 1, where backward- or forward-check strategies cannot be applied.
For the backward- and forward- strategies we use our selectnext optimiza-
tion.13 As shown in the �gure, the baseline binary search is in general slower
than the other alternatives. A notable exception occurs in (?s; p; o) queries,
where the forward-check strategy is very ine�cient. This di�erence is due to
the large number of occurrences that may have to be sequentially checked in
Rp. Therefore, even though D-select+forward-check is faster in most cases, D-
select+backward-check is in general more consistent. Note, nevertheless, that

12The space is given as a percentage of the size of the raw data, which for this purpose is taken
as a binary representation of the triple patterns with each triple stored using three 32-bit integers.

13Further details comparing select implementations will be given in Figure 7.

https://lbd.udc.es/research/rdf/
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Fig. 7 Comparison between basic binary search in the iCSA and dual select for patterns
with one �xed term. Times in microseconds per result and in log scale.

we can easily select the best algorithm for each triple pattern, and we can
even perform on-the-y selection of the best query algorithm using a simple
heuristic depending on the length of the ranges involved. For simplicity, in
the following experiments we only display the query time of the most e�cient
search technique in each query pattern (i.e., D-select+forward-check in most
cases, D-select+backward-check in (?s; p; o) queries). Note also that the results
presented in this section are those of the basic implementation of RDFCSA.
Additional plots are omitted for simplicity, but we have obtained similar results
for other implementation variants, with D-select+backward-check being the
most consistent search strategy overall.

Next, we analyze the impact of our improvements on select1 queries on
triple patterns with two unbound variables. In these queries, we must search
for a pattern � of length 1, so we can replace the standard binary search of
the iCSA by two select operations in 	 to locate the appropriate interval
[l; r]. Further, the second select can be replaced with the selectnext algorithm,
which is faster (see Section 3.2.2).

Figure 7 displays the performance of the binary search on 	 (binsearch),
of replacing it with two select1 operations on D implemented with binary
searches (2 selects), of improving those select1 operations with sampling (2
selects + samples), and of replacing the second such select1 with a selectnext
operation (selectnext). The results show that each improvement makes a sig-
ni�cant di�erence with the previous version, except for the use of selectnext,
whose improvement is marginal but still always positive. Recall that we store
the select1 answers directly on Dp, thus in the triple pattern (?s; p; ?o) there is
no di�erence between binsearch and the various select1 variants. Considering
these results, in the remaining experiments we will always use the selectnext
algorithm when applicable.

4.3 Comparison with other RDF representations

In this section we compare RDFCSA with state-of-the-art alternatives. We
start by measuring their space requirements and query performance on simple
triple patterns. We show compression as a percentage of the original size of the
collection (considering an integer-base representation). We test three imple-
mentation variants of RDFCSA. In all of them, we use the algorithms that
obtained the best results in previous tests: selectnext to obtain ranges using
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D, D-select+forward-check for most patterns that require search on 	, and D-
select+backward-check for (?s; p; o) patterns. The three variants of RDFCSA
tested are the following:

� RDFCSA is the basic implementation14, withD and 	 partitioned into three
arrays. Those for D are bitmaps in plain form with rank1 [28] and our faster
select1 structures, yet Dp stores the select1 answers in plain form. The 	
arrays are compressed with Hu�man and run-length encoding (RLE) [21].

� RDFCSA-rrr is like the basic variant but the bitmaps of D are compressed
using the RRR technique [53] with sampling parameter 128.

� RDFCSA-Hybrid is the hybrid variant, with 	s and 	o stored as plain arrays
where entries use dlog2 ne bits, and 	p compressed as usual with Hu�man
and RLE.

Figure 8 shows the space/time tradeo�s obtained by all the solutions in
the core triple-pattern queries. We display a plot per triple pattern, including
the values for each alternative.

Let us �rst focus in the comparison among our RDFCSA variants. The
RDFCSA-rrr variant, which aims at reducing the space of RDFCSA, is moder-
ately successful in that sense, with little impact in the time when the structures
use little space (i.e., nearly 50% of space thanks to a sparse sampling of 	).
Thus, it is an interesting alternative to reduce space. However, when we aim
at improving the query performance by using a denser sampling of 	, the
RDFCSA-rrr becomes much slower than the basic RDFCSA. The RDFCSA-
Hybrid variant, instead, uses at least 65% of space, but it is signi�cantly
faster than the basic RDFCSA. This variant improves its times with a denser
sampling of 	 only in query patterns where the subarray 	p is involved.

We next focus on the comparison with other solutions. The results show
that RDFCSA requires more space than K2Triples, and even than the faster
K2Triples+. The trie-based solutions achieve signi�cantly di�erent compres-
sion rates: trie-2tp is comparable in space to RDFCSA, whereas trie-3t is up
to 60% larger. MonetDB and HDT are also close to the compression ratio of
RDFCSA, whereas the remaining alternatives require signi�cantly more space:
Virtuoso and RDF-3X require 7{8 times the space of RDFCSA, Blazegraph is
10 times larger and Tentris is 20 times larger (note that a triple break is added
to the x axis, to display all results together, distorting the huge di�erences in
space between these techniques).

In addition to being much larger, Virtuoso, Blazegraph, and RDF-3X are
much slower in general than the alternatives based on compact data structures.
Note, however, that query parsing time is included in the measurements for
these tools. In the case of Tentris, we display query times both including pars-
ing time and excluding it, as this information is segregated by the query tool.

14The preliminary version of RDFCSA presented in [11] is essentially the new variant RDFCSA

discussed here, yet it had non-partitioned D and 	 arrays and did not include the selectnext opti-
mization. In practice, the new RDFCSA improves the space of the former counterpart by around
1-2% and yields a similar performance, except for operations (S,P,O), (S,P,?O), and (S,?P,O)
where our selectnext optimization leads to 1:1-1:9x faster query times.
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Fig. 8 Space/time tradeo� on the triple-pattern queries. Note the log scale in the y axis.
The x axis uses linear scale but includes three breaks to include all results. Query times
in microseconds per result reported. MonetDB did not completed in reasonable time for
(s; ?p; o) triple patterns.

Results show that parsing time causes a signi�cant overhead in these queries,
and ignoring this parsing time makes Tentris competitive in query times with
our solutions, although using much more memory. Among the more compact
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solutions, the hybrid RDFCSA yields the fastest query times in most pat-
terns, improving on the performance of K2Triples and achieving query times
competitive with permuted trie indexes: RDFCSA is competitive with trie-
3t, requiring less space, and is more consistent than trie-2tp. HDT is easily
dominated by RDFCSA variants in all query patterns.

Recall that we display the space and query times required to store and
query triples of integers for the approaches based on compact data structures,
but RDF-3X, Virtuoso, Blazegraph, and Tentris process the original RDF
data. Space results are therefore not directly comparable, but these techniques
are still a relevant baseline as SPARQL query tools. Note that RDFCSA,
K2Triples, and permuted trie indexes could be complemented with a compact
string dictionary that follows the encoding proposed for HDT. Solutions like
HashDAC-RP [43] can answer string-to-id and id-to-string translations in a few
microseconds per operation (typically requiring 1{4 microseconds per opera-
tion in URI and literal dictionaries such as those required in DBpedia [13, 43]).
This dictionary would increase the size of the structure by an extra 60% of
the collections in our plots, keeping them in roughly 90{150% of the origi-
nal collection (still 4 times smaller than Virtuoso, the most compact of the
alternatives). This means that, even adding the space required for such a dic-
tionary, RDFCSA would still easily overcome Virtuoso, RDF-3X, Blazegraph,
and Tentris in space. Additionally, since each triple-pattern query requires at
most 3 string-to-id translations per query, and at most 3 id-to-string oper-
ations per returned result (at most 2 translations in practice, ignoring the
(?s; ?p; ?o) triple pattern), query times would be increased by less than 10�s
per result in most cases when adding this dictionary. Note, however, that query
times for Tentris ignoring parsing time (Tentris-noparse) are also below this
limit, making it competitive in practice with RDFCSA. Virtuoso and Blaze-
graph are probably a�ected in similar amounts by parsing overheads in these
queries, making them look less competitive than they could be in practice. In
Section 4.4 we will show results for the more complex join operations, where
the e�ect of the dictionary and query parsing overheads is less signi�cant in
general, and query times comparisons will be fairer.

We now discuss speci�c results for each triple pattern, though overall
trends can be easily detected: K2Triples and K2Triples+ are the most space-
e�cient solutions, but their performance is di�cult to assess, since it varies
signi�cantly among triple patterns. In turn, RDFCSA obtains consistently low
query times, never exceeding 10 microseconds per result in any triple pattern
for reasonable sampling intervals. Trie-2tp obtains compression comparable
with that of RDFCSA and better query times in most triple patterns, yet as
explained before it has a major drawback: the (?s; ?p; o) pattern is up to 10,000
times slower than the others, and roughly 1000 times slower than RDFCSA,
e�ectively limiting the application of this solution. The strongest counterpart,
trie-3t, on the other hand, achieves the best query times in some cases, yet
at the cost of much worse compression (RDFCSA-Hybrid outperforms it in
the others, using less space). HDT is consistent in query times, but slower
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and larger in general than RDFCSA. MonetDB is several orders of magni-
tude slower than RDFCSA, using similar space, whereas Virtuoso, Blazegraph,
RDF-3X, and Tentris are much larger than our technique. Query times for Vir-
tuoso, Blazegraph, and RDF-3X are still much higher than those ofRDFCSA in
general. Results for Tentris, however, show that for most of the triple patterns
the cost of query parsing is much larger than the query execution itself, that
only requires a few microseconds per result. This is comparable to RDFCSA,
that would still have to be augmented with a dictionary to transform integer
IDs in the result to the original strings. Nevertheless, Tentris requires over 20
times the RAM of RDFCSA (even augmenting RDFCSA with the string dic-
tionary, Tentris would still be 10 times larger), so we do not consider it to be
a fair competitor for RDFCSA and the other compact solutions.

Therefore, in what follows we focus on the comparison between RDFCSA,
K2Triples, and trie variants. We will resume the comparison with the remain-
ing triple stores when testing join queries, in which the relative overhead
of query parsing should be much smaller, and solutions like Virtuoso and
Blazegraph become more competitive.

The simplest triple pattern, (s; p; o), is the best case for K2Triples, since
it performs a single-cell retrieval query at (s; o) in the k2-tree associated with
predicate p. In terms of time per result, this query is the worst for RDFCSA,
since it searches for a pattern of length 3 to return at most one occurrence. Still,
RDFCSA outperforms K2Triples with a reasonable sampling for 	 (i.e., using
over 55% space). The variant RDFCSA-Hybrid is the fastest, together with
the trie variants. The situation is very similar for the triple pattern (?s; p; o),
where K2Triples has to scan a short column for �xed coordinate o in the grid.

K2Triples worsens by orders of magnitude in triple patterns (s; p; ?o),
because it has to scan all the objects in a long row (�xed s coordinate) of the
k2-tree associated with predicate p. Instead, RDFCSA and trie variants are
almost unchanged. In fact, RDFCSA-Hybrid becomes slightly faster than the
trie variants when using 70% space.

In the triple pattern (?s; p; ?o), K2Triples simply retrieves all the points
in the k2-tree of predicate p, so its time per result is good (but still out-
performed by RDFCSA). This time, the trie variants sharply outperform our
fastest variant, RDFCSA-Hybrid.

The lower half of Figure 8 displays the three triple patterns where the
predicate is unbound. In these patterns, K2Triples is very ine�cient, so we
compare with K2Triples+, which uses signi�cantly more space (yet still less
than RDFCSA). As before, even the basic RDFCSA outperforms K2Triples+
once using over 55% of space, by orders of magnitude on (?s; ?p; o). Our
fastest variant, RDFCSA-Hybrid, also outperforms the trie variants, except on
(s; ?p; ?o), where the latter are clearly faster. Note that the main drawback of
trie-2tp shows on (?s; ?p; o), where it is several orders of magnitude slower.

Overall, the results show that RDFCSA is an intermediate spot between
K2Triples, which achieves by far the best compression among the tested solu-
tions (but is outperformed in time by RDFCSA), and trie-3t, which disputes
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the best query times with our variant RDFCSA-Hybrid (but uses more space).
RDFCSA stands out as a very relevant space/time tradeo�, while o�ering sta-
ble and predictable times across all triple-pattern queries. This consistency is
particularly signi�cant taking into account that triple patterns are the basis
for more complex SPARQL queries, which perform joins involving a number
of triple patterns. An ine�ciency in one triple pattern may sharply degrade
the performance of the whole complex query. This is a problem in variants
like trie-2tp and K2Triples+, which are several orders of magnitudes slower
on some triple patterns, and makes them less appealing for a general-purpose
SPARQL query engine.

4.4 Join queries

After analyzing RDFCSA on basic triple patterns, we study the performance
of the di�erent solutions in join queries involving two triple patterns. In
this section we only display results for some of the relevant state-of-the-art
alternatives used previously. Particularly, we keep K2Triples and K2Triples+,
MonetDB, RDF-3X, Virtuoso, and Blazegraph. We exclude from this compar-
ison HDT and permuted trie indexes, that have no speci�c mechanisms for
joins, and implementing merging or chaining evaluation on top of their triple
pattern queries would yield the same relative performance with respect to
RDFCSA we observed in Figure 8. We also omit results for Tentris, since pars-
ing errors were returned for most of the join queries in our query sets. Further,
for simplicity we only display results for the basic implementation (RDFCSA)
and the Hybrid version (RDFCSA-Hybrid). Finally, even though RDFCSA
can still obtain space/time tradeo�s for join queries, for the sake of clarity we
focus the analysis in this section on query times, and display results only for
one sampling period of 	 (t	 = 32, the third point left-to-right in Figure 8).

We analyze the results for all the di�erent binary join queries that can arise
in practice, involving two triples, using an existing testbed [3]. Figure 9 dis-
plays the di�erent query types included in the testbed and their characteristics.
This testbed categorizes the joins by the number of unbound predicates, and
the number of unbound subject/objects. For instance, join A has no unbound
predicates, and no unbound subject/object. Therefore, a pattern for this join is
(s; p1; ?x) ./ (?x; p2; o). This is the subject-object variant of this join, since the
join variable ?x is subject in one triple and object in the other. Two other vari-
ants of the same join can be created: (?x; p1; o1) ./ (?x; p2; o2) (subject-subject
join), and (s1; p1; ?x) ./ (s2; p2; ?x) (object-object join). Figure 9 details the
speci�c bindings for subject-object joins, but the remaining con�gurations can
be easily inferred.

In the following sections we will display results categorized according to
the number of unbound predicates in the join patterns. This has little e�ect
on performance for RDFCSA, but severely a�ects tools based on vertical par-
titioning like MonetDB and K2Triples (although the K2Triples+ variant of
K2Triples mitigates this problem with its extra indexes). In each category,
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Fig. 9 Join variants included in the testbed. Joins are classi�ed by number of unbound
predicates, and number of unbound variables.

queries are listed in order of increasing \complexity", in the sense that addi-
tional unbound variables generally lead to a larger number of intermediate
results, and therefore additional computation is required. For instance, joins
A, B, and C have no unbound predicates, and have 0, 1, and 2 unbound sub-
ject/objects respectively, so join C should be more complex in general than
join A.

The di�erent con�gurations yield 9 join patterns (A, B, C, D, E.1, E.2, F,
G, H), each with 3 variants: subject-subject (SS), subject-object (SO), object-
object (OO). Following the original testbed, for each join type and variant
we use two di�erent query sets (-big and -small), which di�er in the average
number of results returned by the queries. This yields a total of 54 query sets.

Finally, for each join type, we display query times for the di�erent join
strategies applied in each case: merge-join (-merge), and left- (-left) and right-
chaining (-right), as well as interactive evaluation in K2Triples (-int) [3]. Note
that in some joins, speci�c strategies are inherently less e�cient; we display
all of them for RDFCSA in our results for completeness, excluding only the
alternatives that would cause a full database query (?s; ?p; ?o). Because of the
inherent ine�ciency of some techniques depending on the type of join, we will
focus our discussion mainly on the most e�cient strategies for each join type.
Moreover, for some query patterns and con�gurations we were not able to
obtain results in reasonable time with some tools: multiple query sets could
not run in MonetDB, including all variants of join G and H, due to the two
unbound predicates; several query sets are also omitted for RDF-3X, Virtuoso,
and Blazegraph; a few query sets also failed with K2Triples or K2Triples+.
When no time could be obtained, the corresponding bar will appear empty in
the plots that display the results.
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As discussed before, space and time comparisons between the more compact
solutions (RDFCSA and K2Triples) and the remaining alternatives may be
a�ected by SPARQL query parsing and other overheads that are not considered
in the former. Therefore, the direct comparison of the results could be unfair to
SPARQL-compliant stores, especially in the simpler joins that return a smaller
number of results. In more complex joins, in which the number of unbound
variables is large, and especially in -big query sets, the overhead of query
parsing should be smaller and time comparisons should more accurately reect
the actual query performance. Taking all of this into consideration, we will
focus most of our analysis on the comparison between RDFCSA and K2Triples
(or K2Triples+), highlighting only particular cases where the performance of
the other systems should be noted.

4.4.1 Joins with no unbound predicates

For these joins, we display results for K2Triples, since the additional indexes
used by K2Triples+ do not yield any improvement in performance for �xed-
predicate queries. The top plot of Figure 10 displays the results for join A (e.g.,
(s; p1; ?x) ./ (?x; p2; o), with no unbound variables). In this join, RDFCSA with
left chaining obtains the best results in all cases. This technique, for subject-
object joins, essentially executes each join as an (s; p1; ?x) query chained with
(xi; p2; o) queries for each xi that results from the �rst query. The results
are similar for object-object joins, but for subject-subject joins, K2Triples
obtains better query times. This di�erence, depending on the position of the
join variable, is consistent with our previous results on triple patterns: when
executing an object-object or subject-object join with left chaining, the �rst
query executed involves an (s; p; ?o) pattern, where RDFCSA was two orders of
magnitude faster than K2Triples. However, on subject-subject joins, the �rst
query is an (?s; p; o) pattern, where query times were similar. MonetDB, RDF-
3X, Virtuoso, and Blazegraph are typically much slower than the best variant
of RDFCSA by at least one order of magnitude. Note, however, that query
parsing and other �xed overheads in these tools may be especially signi�cant
in these joins, that return a very small set of results.

The middle plot of Figure 10 displays results for join B (e.g., (?s; p1; ?x) ./
(?x; p2; o), with one unbound variable). Several times, K2Triples obtains the
best query times with its interactive evaluation strategy, but RDFCSA-Hybrid
is the best in the other cases. The nature of this join, where one pattern has
an extra unbound variable, leads to uncertainty in the complexity of the best
operation order. Because of this, the interactive evaluation in K2Triples is a
good approach, even though di�erences are usually small. MonetDB, RDF-3X,
Virtuoso, and Blazegraph are competitive in some cases, especially in the -big

executions in which the query parsing overhead is reduced and their ability to
extract larger results sets is highlighted.

The bottom plot of Figure 10 displays results for join C (e.g., (?s; p1; ?x) ./
(?x; p2; ?o), with two unbound variables). In this type of join, RDFCSA again
obtains the best query times, usually with left-chaining evaluation. This is
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Fig. 10 Results for join A (top), B (middle), and C (bottom).
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clearly the most e�cient technique for this join, with results similar to those
of join A. When both triple patterns have a similar structure (i.e., the same
number of �xed and bound variables), RDFCSA tends to be more e�cient with
left-chaining, due to the performance of the triple-pattern queries that are gen-
erated: in subject-object joins, with left-chaining, we run an (?s; p1; ?o1) query
followed by many (si; p2; ?o2) queries, which are very e�cient in RDFCSA.
However, in object-object joins the merge strategy is better. Regarding Mon-
etDB, Blazegraph, and Virtuoso, we obtain similar results as for Join B (i.e.
they are at least one order of magnitude slower than the best choice), yet we
can see that in most cases we could not get results for those techniques.

4.4.2 Joins with one unbound predicate

Figures 11 and 12 display the query times for joins D, E, and F. In these
experiments we compareRDFCSA with K2Triples+ instead of K2Triples, since
the latter is typically orders of magnitude slower.

Considering the results across all the joins, RDFCSA achieves better query
times. Yet, results are signi�cantly di�erent depending on the join type and
query set. MonetDB is far from competitive as long as an unbound predicate
appears, as expected, and it is up to 5 orders of magnitude slower than the
other techniques. RDF-3X, Virtuoso, and Blazegraph are also 1{2 orders of
magnitude slower than the fastest RDFCSA variant in most cases. Hence, we
will focus on the comparison between RDFCSA and K2Triples+.

In join D, RDFCSA obtains the best overall results for object-object joins,
but K2Triples+ is also competitive. K2Triples+ is faster in subject-subject
joins and in some cases for subject-object joins. Left-chaining is the best strat-
egy in most cases, both in K2Triples+ and RDFCSA, since it evaluates the
triple pattern with bound predicate �rst, therefore saving a signi�cant e�ort
on the right triple pattern.

Regarding join F, RDFCSA is signi�cantly faster in all cases, again with
left-chaining, as this reduces the cost of processing the pattern with unbound
predicate. Note that, for this join, most alternatives failed to yield results for
the object-object joins in our setup. Finally, note that when comparing joins
D and F, we �nd the same trend existing between joins A and C: K2Triples
and K2Triples+ are more competitive with few unbound variables. In more
complex queries, instead, RDFCSA is much more e�cient.

Figure 12 shows signi�cant di�erences between joins E1 and E2, because
the di�erent location of the unbound predicate leads to very di�erent triple
patterns in each side of the join. The join E1 (e.g., (?s; p1; ?x) ./ (?x; ?p2; o))
requires much more computation with any of the basic strategies, since both
triple patterns contain an unbound variable. The best evaluation strategy is
unclear: the merge and right-chaining techniques are competitive in RDFCSA,
but K2Triples+ is slightly faster in most cases with its interactive evaluation.
However, in join E2, the left pattern is much simpler than the right one, leading
to a clearer evaluation path: left-chaining is the best strategy, and RDFCSA
is an order of magnitude faster than K2Triples+ in most joins.



Springer Nature 2021 LATEX template

34 Space/time-e�cient RDF stores based on circular su�x sorting

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

SO-small SO-big SS-small SS-big OO-small OO-big

Q
u
e
r
y
 
t
i
m
e
s
 
(

µs
/
r
e
s
u
l
t
)

K2Triples+-merge
K2Triples+-int
K2Triples+-left

RDFCSA-merge
RDFCSA-left

RDFCSA-right
RDFCSA-Hybrid-merge
RDFCSA-Hybrid-left
RDFCSA-Hybrid-right

MonetDB

RDF-3X
Virtuoso

Blazegraph

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x10
6

SO-small SO-big SS-small SS-big OO-small OO-big

Q
u
e
r
y
 
t
i
m
e
s
 
(

µs
/
r
e
s
u
l
t
)

K2Triples+-left
K2Triples+-int

RDFCSA-left
RDFCSA-Hybrid-left

MonetDB
RDF-3X

Virtuoso
Blazegraph

Fig. 11 Results for join D (top) and F (bottom).

4.4.3 Two unbound predicates

Figure 13 displays the query times for joins G (e.g., (s; ?p1; ?x) ./ (?x; ?p2; o))
and H (e.g., (?s; ?p1; ?x) ./ (?x; ?p2; o)). We omit MonetDB in these joins
because the combination of two unbound predicates makes those queries
extremely ine�cient in its vertical partitioning model.

Like in previous cases, the results vary signi�cantly depending on the join
and query set. For join G, RDFCSA is the fastest technique in almost all cases,
using merging or left-chaining depending on the case. For join H, RDFCSA
with right-chaining is also orders of magnitude faster than K2Triples+ in gen-
eral. These results are again consistent with the trend in previous sections that
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Fig. 12 Results for joins E1 (top) and E2 (bottom).

suggests that RDFCSA is especially competitive in the more complex join pat-
terns. The subject-subject joins with many results are the only observed case
where RDF-3X, Virtuoso or K2Triples are faster than RDFCSA. In most other
query sets, however, the fastest RDFCSA variant is 1{2 orders of magnitude
faster than the other alternatives.
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Fig. 13 Results for joins G (top) and H (bottom).

5 Conclusions

We have introduced RDFCSA, a compact data structure for the e�cient stor-
age and querying of RDF datasets. It is based on a compressed text index,
the CSA [54], which is adjusted so that the triples that compose the RDF
dataset are regarded as circular strings of length 3. We demonstrate that all
the SPARQL triple patterns boil down to text searches in this particular col-
lection of cyclic strings. The basic capabilities of RDFCSA are then based
on the CSA search algorithms, which we have adapted and optimized for our
scenario. We also design algorithms to solve queries involving joins.
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RDFCSA is able to compress a set of RDF triples to around 60% of their
raw size. Within this space, it o�ers fast and very consistent query times for
all the basic triple-pattern queries, which are the basis for SPARQL support.
In our experiments, RDFCSA answers any triple-pattern query within a few
microseconds per result. It is also able to e�ciently answer queries involving
binary joins, being faster in most cases than the alternatives. Our experimen-
tal evaluation shows that state-of-the art solutions like RDF-3X, Virtuoso or
Blazegraph are much larger, and in many cases slower than RDFCSA, even
considering e�ects such as query parsing and dictionary encoding. We also
clearly outperform HDT [23] in both space and time. Modern in-memory alter-
natives such as Tentris can achieve competitive query times with our solution,
but their memory requirements are an order of magnitude higher than ours.

While K2Triples [3] obtains better compression than RDFCSA, its query
times are much less consistent, being several orders of magnitude slower in
some triple-pattern queries. The recent permuted trie indexes [51], on the
other hand, are able to outperform RDFCSA in time, but in order to achieve
consistent performance for all triple patterns they need to use around 50%more
space. Our implementation variants also provide a wide space/time tradeo�,
that can be easily tuned by adjusting the sampling interval on 	.

Overall, RDFCSA provides a very appealing space/time tradeo� for the
storage of RDF data, combining low space with fast and consistent query
times. Such predictability is very important when building up more complex
SPARQL queries on top of simple triple patterns and joins.

Our current implementation is designed to handle integer-based triples, so
it requires an external dictionary to handle the mapping between strings and
ids. As future work, we plan to integrate RDFCSA with some compressed
dictionary [13, 42, 43] in order to provide e�cient mappings. Another choice is
to integrate it in the HDT library (http://rdfhdt.org), which already provides
the needed string dictionaries. Another future challenge is to make RDFCSA
dynamic, that is, allow adding and removing triples from the database. This
is already supported by indexes like RDF-3X and solutions like Virtuoso and
Blazegraph; a dynamic implementation of K2Triples also exists [12]. We believe
that it is possible to build on dynamic variants of the CSA [15, 38, 45] to
obtain an e�cient dynamic RDFCSA. Finally, compressed indexes inspired in
the RDFCSA have been used to implement multi-join algorithms in worst-
case-optimal time [4, 33], which for complex queries using the same variables
several times are more e�cient than query plans based on binary joins.
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g r a p h d a t a b a s e. I n: H a r t h A, H o s e K, S c h e n k el R ( e d s) Li n k e d D a t a M a n-
a g e m e nt. C h a p m a n a n d H all / C R C, c h a p 8, p 1 – 4 6, htt p s: / / d oi. o r g / 1 0.
1 2 0 1 / b 1 6 8 5 9

[ 5 7] Wei s s C, K a r r a s P, B e r n st ei n A ( 2 0 0 8 ) H e x a st o r e: S e xt u pl e i n d e xi ng f o r
s e m a nti c w e b d a t a m a n a g e m e nt. P r o c V L D B E n d o w m e nt 1 ( 1 ): 1 0 0 8 – 1 0 1 9.
htt p s: / / d oi. o r g / 1 0. 1 4 7 7 8 / 1 4 5 3 8 5 6. 1 4 5 3 9 6 5

[ 5 8] Y u a n P, Li u P, W u B, et al ( 2 0 1 3 ) Tri pl e Bit: A f a st a n d c o m p a ct s y st em
f o r l a r g e s c al e R D F d a t a. P r o c V L D B E n d o w m e nt 6 ( 7 ): 5 1 7 – 5 2 8. htt p s: / /
d oi. o r g / 1 0. 1 4 7 7 8 / 2 5 3 6 3 4 9. 2 5 3 6 3 5 2

A p p e n di x A: S u m m a r y of al t e r n a ti v e s

T a b l e 1 di s pl a y s a bri ef s u m m a r y of t h e m ai n alt e r n a ti v e s i n t h e st a t e of
t h e a r t c o n si d e r e d i n t hi s w o r k. N o t e t h a t all t h e s e t o ol s h a v e b e e n t e st e d i n
o ur e x p e ri m e nts, e x c e pt W a t e rf o wl, f o r w hi c h t h e r e i s n o p u bli cl y a v ail a bl e
s o ur c e c o d e. T h e fir st g r o u p of s ol uti o n s i n cl u d e s c o m pl e x t o ol s li k e Vir t u o s o
o r Bl a z e g r a p h, t h a t a r e wi d el y u s e d i n a c a d e mi a a n d i n d u str y, a s w ell a s o t h e r
s ol uti o n s t h a t pr o vi d e a wi d e r a n g e of c a p a biliti e s. T h e s e c o n d g r o u p, w h e r e
o ur pr o p o s al f all s, i n cl u d e s t o ol s d e si g n e d f o r m a xi m u m c o m pr e s si o n of t h e
R D F d a t a, ai mi n g a t a f ull i n- m e m o r y r e pr e s e nt a ti o n of t h e f ull d a t a s et f o r
e ffi ci e nt q u e r yi n g.

We o mit s ol uti o n s e x pl oiti n g s p e ci fi c h a r d w a r e, p a r all eli s m o r d e si g n e d
f o r di stri b ut e d e n vir o n m e nts, li k e WI S E [3 0 ], H a d o o p R D F [1 9 ], A d P a r t [3 2 ],
Tr i pl eI D- Q [1 6 ], a n d M A Gi Q [3 5 ]. A d diti o n all y, w e o mit s ol uti o n s li k e B M a-
tri x [1 4 ], t h a t i s c o m p a r a bl e t o K 2 Tri pl e s + b ut l a c k s j oi n s u p p o r t, a s w ell a s
o t h e r alt e r n a ti v e s li k e Tri pl e bit [ 5 8 ] t h a t h a v e b e e n pr e vi o u sl y s h o w n t o b e
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less e�cient than the alternatives tested [9]. Finally, several existing solutions
for which no publicly available code could be located, like HTStore [37] or
RDFox [47], are also omitted.

Table 1 Summary of representative RDF stores and their main characteristics.

Tool Year
Storage Query capabilities

Format Compr. Joins Updates SPARQL Endpoint

Virtuoso [20] 20121 Tables Low Yes Yes Yes Yes
Blazegraph [56] 20141 Tables Low Yes Yes Yes Yes
Tentris [9] 2020 Tensor Low Yes No Partial Yes
MonetDB 2010 RDBMS Low Yes Yes No No
RDF-3X [48] 2010 Multiple Low Yes No2 Partial2 No2

HDT [23] 2013 CDS High No3 No No3 No3

Waterfowl [18] 2014 CDS High4 Yes4 No4 Yes4 No4

K2Triples [3] 2015 CDS High Yes No No No
Perm. tries [51] 2020 CDS High No No No No
RDFCSA 2022 CDS High Yes No No No

1 These are actively maintained and widely used tools. Years correspond to original publications.
2 Later tools based on RDF-3X include updates, parallel processing and other capabilities [31, 49].
3 Not considered in the C++ implementation. Supported in the (less e�cient) Java library.
4 Tool not publicly available. Data obtained from the cited publication.
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