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Abstract
The simulation of complex engineering applications often requires the consideration of
component-level dynamics whose nature and time-scale differ across the elements of which
the system is composed. Co-simulation offers an effective approach to deal with the mod-
elling and numerical integration of such assemblies by assigning adequate description and
solution methods to each component. Explicit co-simulation, in particular, is frequently used
when efficient code execution is a requirement, for instance in real-time setups. Using ex-
plicit schemes, however, can lead to the introduction of energy artifacts at the discrete-time
interface between subsystems. The resulting energy errors deteriorate the accuracy of the
co-simulation results and may in some cases develop into the instability of the numerical
integration process. This paper discusses the factors that influence the severity of the en-
ergy errors generated at the interface in explicit co-simulation applications, and presents a
monitoring and correction methodology to detect and remove them. The method uses only
the information carried by the variables exchanged between the subsystems and the co-
simulation manager. The performance of this energy-correction technique was evaluated in
multi-rate co-simulation of mechanical and multiphysics benchmark examples.
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1 Introduction

Simulation has proven to be a valuable tool for the design, development and operation of en-
gineering applications. Recent improvements in computing power and software tools have
expanded its capabilities considerably, but expectations for its efficiency, the precision of
the results that it delivers, and the complexity of the systems that it can successfully handle
continue to grow as well. In the case of complex engineering applications such as auto-
mobiles, system-level simulation now needs to consider not only mechanical phenomena
like suspension dynamics, but also processes of a different nature, such as hydraulics [5] or
electronics [29], as well as the interactions between them. In many cases, it is possible to
carry out the numerical integration of the dynamics of all these subsystems with a single,
all-encompassing solver, e.g., [32], following a monolithic approach. Co-simulation [12], or
solver coupling, is an alternative solution that features a number of advantages.

In a co-simulation setup, the overall system is divided into subsystems and a dedicated
simulation tool, or solver, is assigned to each of them. Each solver takes care of the numer-
ical integration of its subsystem, which enables the use of tailored modelling and solution
methods. It is also possible to use different computing platforms, both in terms of hardware
and software, to run each integration process [18]. The exchange of information between
subsystems is limited to discrete instants in time known as communication points; the inter-
val between two consecutive communication points is a macro-step. Often, only a reduced
set of coupling variables, i.e., inputs and outputs, is transferred at these instants. Between the
communication points, the integration of the dynamics of each subsystem proceeds without
additional data from its environment. The information about the subsystem internals is thus
not disclosed to third-party software, which is an attractive feature from the point of view of
preserving intellectual property rights in collaborative projects. In this regard, the seamless
coupling of software tools from different vendors has been simplified by the introduction
of interface standards like FMI [1]; in fact, in many industrial applications co-simulation
subsystems can effectively be considered to behave as black boxes. Moreover, certain co-
simulation schemes allow the distribution of the computational workload between several
processing units, which can be used to parallelize code execution and improve efficiency
[20].

Co-simulation setups can be built according to a wide variety of schemes and config-
uration options; the computational performance and accuracy of the results are consider-
ably affected by this selection [24, 27]. Two major groups of coupling schedules can be
identified: implicit and explicit ones. In implicit co-simulation schemes, macro-steps are re-
peated to improve the convergence of results. Explicit methods, conversely, do not perform
rollback and macro-steps cannot be retaken once their integration has finalized. Implicit
co-simulation methods are typically more stable and accurate than their explicit counter-
parts [17, 33]; nonetheless, noniterative algorithms are the option of choice in some cases.
Efficient execution may be incompatible with iteration over macro-steps, for instance in ap-
plications in which the available time for computations is limited. In other cases, one or
more subsystems do not allow rollback. Cyber-physical systems, in which physical compo-
nents interact with virtual environments, are an example of an application subjected to these
two constraints. On the one hand, all the subsystems in the setup must deliver real-time
performance; depending on the complexity of the computational models used, some vir-
tual components may not be able to meet this requirement if they have to iterate over their
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macro-steps. Besides, it is generally not possible to revert the state of a physical component
to a previous instant in time.

Discrete-time communication at the co-simulation interface has been identified as a
source of discontinuities [10] and delays [7] in the inputs that the subsystems receive at
the start of their macro-steps. These issues cause the co-simulation results to deviate from
theoretically correct solutions [19], which translates into violations of the energy balance of
the system [14], particularly when explicit schemes are used. This can make the simulation
results unreliable and, in extreme cases, render the numerical integration unstable. Tech-
niques like input extrapolation [23] are commonly used to alleviate this problem. Subsystem
inputs can also be evaluated employing physics-based predictions delivered by reduced sub-
system models [25, 26], or approximated using directional derivatives that relate coupling
variables and subsystem states [15, 16, 35]. Input prediction can deliver significant improve-
ments with regard to co-simulation quality. It is, however, difficult to remove coupling errors
completely, or even quantify them using this technique alone with explicit schemes.

Input correction is an alternative means of preventing the degradation of co-simulation
results, based on modifying the subsystem inputs so that they comply with certain physics-
based criteria. This is the strategy followed in [8], which introduces a compensation sig-
nal to remove energy inconsistencies derived from input extrapolation. Another correction
method was presented in [13], that enforces the conservation of the energy balance of the
whole system by means of passivity-based control, assuming that information about the in-
ternal energy state of each subsystem is available. Control criteria can also be used to define
similar correction algorithms [11]. An advantage of this strategy is that corrections are per-
formed based on information about the system that can be used to evaluate co-simulation
quality. Energy-based indicators can be used to gather this information: The concepts of
power residual and energy residual were introduced in [30]. They were initially used to
define algorithms to control the macro-step size, but can also serve as a basis to develop
methods to correct the system energy [31].

This paper puts forward an energy-monitoring and input-correction method for explicit
co-simulation that uses the information conveyed by the coupling variables exchanged be-
tween the subsystems. This algorithm can be used with Jacobi schemes in which the product
of input and output variables has power units, e.g., in force-displacement coupling applica-
tions. The ability of the proposed approach to keep the co-simulation stable and accurate
was evaluated by means of a set of benchmark problems, which included mechanical and
multiphysics systems, both linear and nonlinear.

Sect. 2 in this paper provides an overview of the features and issues of explicit Jacobi co-
simulation schemes. A discussion of the problems with energy conservation derived from
the use of discrete co-simulation interfaces in these cases, together with the indicators used
to monitor them, can be found in Sect. 3. A correction method for removing energy artifacts
is presented here as well. Section 4 shows the application of the indicators and the energy
correction algorithm to several explicit co-simulation scenarios. The results are discussed in
Sect. 5; Sect. 6 summarizes the conclusions of the research.

2 Explicit Jacobi co-simulation schemes

Jacobi schemes are commonly used in explicit co-simulation. This arrangement allows
for simultaneous integration of subsystems, a convenient feature for the parallelization of
code execution, which becomes more complicated if sequential Gauss-Seidel schemes are
adopted. Figure 1 illustrates the way in which the numerical integration proceeds between
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Fig. 1 Diagram of an explicit, single-rate Jacobi coupling scheme with two subsystems

two communication points according to this scheme, for an application with two subsystems.
At time t = tk , the subsystems submit their outputs y1k and y2k to the co-simulation manager
(step 1), which in turn evaluates and sends back the inputs u1

k and u2
k to them (step 2). At

this point, both subsystems can independently carry out their integration from time tk to
tk+1 (step 3). The process is restarted at time tk+1 when the new outputs y1k+1 and y2k+1 are
forwarded to the manager (step 4).

Jacobi schemes can be single-rate if the communication step-size is the same for all
subsystems, or multi-rate if different step-sizes are used instead. The energy correction pre-
sented in this paper is evaluated differently in each case; direct feedthrough is another factor
that needs to be taken into consideration as well.

The concept of direct feedthrough denotes the explicit dependence of the subsystem out-
put from its input. Its presence in a co-simulation scheme may lead to the existence of
algebraic loops, which often motivates the necessity to perform the initialization stage in an
iterative way [2]. Besides, during runtime, direct feedthrough is associated with a deteriora-
tion of the convergence and stability properties of numerical integration [4].

Direct feedthrough motivates the need to extrapolate subsystem inputs in explicit single-
rate Jacobi schemes, even when single step integrator formulas are used inside the subsys-
tems. This extrapolation often becomes a source of coupling errors. The issue can be illus-
trated assuming that the dynamics of a given subsystem can be expressed using the discrete
state-space notation as follows

[
xk+1

yk

]
=

[
A B
C D

][
xk

uk

]
(1)
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where x is the subsystem state, and A, B, C, and D are the state, input, output and
feedthrough matrices, respectively. In a single-rate Jacobi scheme like the one in Fig. 1,
if explicit integration formulas are used in the subsystems, the evaluation of the state deriva-
tives ẋ in the macro-step [tk, tk+1] only needs to be performed at instant tk to evaluate xk+1.
At this time, both the state xk and the input uk are known, and so the discrete-time interface
does not introduce any error in the computation of the system derivatives.

The subsystem output y, on the other hand, must be evaluated and returned at time tk+1

as

yk+1 = Cxk+1 +Duk+1 (2)

and this in principle requires input uk+1, which is not available yet. If the subsystem has no
direct feedthrough, i.e., D= 0, the output yk+1 can be directly evaluated as

yk+1 = Cxk+1 (3)

The outputs delivered by Eq. (3) only include the numerical error caused by the integration
formula used to update the state between tk and tk+1. On the contrary, a subsystem with
direct feedthrough will feature D �= 0 and an approximation ũk+1 of the inputs at tk+1 is
necessary during output evaluation,

yk+1 = Cxk+1 +Dũk+1 (4)

The approximated input ũk+1 can be obtained in different ways, e.g., via polynomial ex-
trapolation, but will generally not equal uk+1. This approximation introduces an additional
error in the evaluation of the system dynamics, which deteriorates the accuracy of the co-
simulation results.

However, there exist several scenarios in which input extrapolation introduces additional
sources of error into the co-simulation process, even if the subsystems are not subjected to
direct feedthrough:

– Implicit integration formulas require the derivative ẋk+1 in the evaluation of xk+1. Input
approximation is necessary for this, as evidenced by Eq. (1).

– Multi-rate co-simulation schemes make it necessary to evaluate the derivatives of the
subsystem state at intermediate points between the communication points tk and tk+1,
giving rise to the need for input extrapolation as well, except in the rather infrequent case
in which B= 0.

– In the case of nonlinear systems, matrices A, B, C, and D may be functions of the state x
and the input u.

The above-mentioned circumstances have to be taken into account for a correct evalua-
tion of the energy imbalance at the coupling interface, besides other errors, e.g., those that
stem from the integration process, which also introduce inaccuracies in the results, although
their impact is frequently less critical than that of input extrapolation [11]. These issues will
be addressed in Sect. 3, which discusses how to calculate the energy errors introduced by co-
simulation and puts forward a method to eliminate this artificial modification of the system
energy.

3 Energy-based indicators for explicit co-simulation

Determining the stability of generic co-simulation applications is a complicated task. Quan-
tifying how much they deviate from theoretically correct results is even more challenging.
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Fig. 2 Power flows within a
three-component monolithic
solver

Because such reference solutions are often not available for comparison, indicators have
been proposed and employed to convey this information.

If the integration formulas used inside the subsystems are known, it is possible to eval-
uate the stability of the coupling scheme by its spectral radius [10, 33, 36]. A measure of
stability, however, does not include all relevant information about the accuracy of the results.
The convergence of particular coupling methods and schemes can be evaluated, e.g., [4, 35],
but it is not straightforward to use these to quantify the actual error introduced by a par-
ticular simulation case, although error bounds can be defined in particular cases [3]. Some
methods to quantify the errors introduced in the co-simulation results have been put forward
nonetheless. In general, these require some information about the subsystem internals, either
directly obtained [20] or provided by the directional derivatives of the subsystems [15].

In many explicit co-simulation applications, the subsystems behave as black-boxes and
so the information about their internals is not accessible to the manager. In these cases, it
is useful to introduce indicators that can be evaluated using only the information carried
by the coupling variables. This is the case of the residual power and energy introduced in
[30], defined for co-simulated systems in which the product of input and output variables
has units of power. A method to adjust the macro step-size of the setup was developed based
on these, which was later [31] combined with an energy removal method similar to the one
in [8] to improve the accuracy of the results. A similar energy-correction algorithm can be
found in [13]; this one, however, requires information about the energy balance of the overall
co-simulated system.

The power and energy residuals are used next as indicators for co-simulation quality and
an interpretation of their physical meaning is provided. Then, an energy-correction method
is developed and its performance is shown with a set of co-simulation benchmark problems.

3.1 Energy-based indicators for co-simulation

The schematic of a monolithic solver for a system with three components is depicted in
Fig. 2.

If the numerical integration errors are neglected, the overall energy balance for a me-
chanical system at any instant in time t is given by

E (t) − E0 − Wnc (t) = 0 (5)
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Fig. 3 Power balance of a three-subsystem co-simulation environment

where E is the mechanical energy, E0 is the initial energy level, and Wnc is the work of
nonconservative forces. Ideally, Eq. (5) must hold at all times. Thus, the power exchange
between the three components in Fig. 2 must satisfy the conservation of energy, which is
expressed as

nco∑
i=1

PCoi = PCo1 + PCo2 + · · · + PConco = 0 (6)

where PCoi , i = 1,2, . . . , nco, is the power exchanged between each component and the rest
of the system, and nco is the number of components in the system. Equation (6) means that,
in the absence of external sources or sinks of energy, all the power flows without losses at
the interface between the components. This monolithic scheme contains a single integrator,
which takes care of the complete system and is allowed to access the internal information,
e.g., the state, of each component at any point in time.

If a co-simulation scheme is used instead, as illustrated in Fig. 3, the power exchanged
at the interface should also verify Eq. (6). Again, even if numerical integration errors are
neglected, the system energy is modified by the co-simulation scheme due to the discrete-
time communication between the manager and the subsystems [13, 30]. The violation of the
power conservation can be expressed by means of the residual power δP as

nss∑
i=1

PSSi = PSS1 + PSS2 + · · · + PSSnss = −δP �= 0 (7)

where PSSi , i = 1,2, . . . , nss, is the power exchanged between a subsystem and the co-
simulation manager through the interface, and nss is the number of subsystems.

The residual power δP can be used to assess co-simulation quality when the product of
subsystem inputs and outputs has units of power. Its evaluation does not require access to
the subsystem internals, but only the information carried by the coupling variables. This is
the case for a wide range of practical co-simulation setups, for instance, force-displacement
or torque-angular speed couplings in mechanical systems or voltage-current exchanges in
electric or electronic circuits.
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Fig. 4 Evaluation of the residual power δP in a single-rate, explicit Jacobi scheme

For some selections of coupling variables, the input-output product could also deliver
other units related to power exchange, e.g., W/m2 s. In these situations, it would also be pos-
sible to evaluate the residual power, with the additional requirement that the co-simulation
manager would need to know some physical properties of the subsystems.

Assuming that the product of the coupling variables in a certain co-simulation configu-
ration has power units, it is possible to evaluate the residual power δP for single-rate Jacobi
schemes with two subsystems as [30]

δPk+1 = − (uk+1)
T yk+1 (8)

where u and y are the arrays of inputs and outputs handled by the co-simulation manager.
Ideally, Eq. (8) should equal zero if no errors existed at the coupling interface.

Figure 4 shows power exchanges in a single-rate explicit Jacobi schedule. The super-
scripts ()1 and ()2 denote the first and second subsystems, whereas subscripts ()k and ()k+1

refer to the time-step indexes tk and tk+1, respectively. This figure also illustrates the issue
with the evaluation of subsystem outputs at time tk+1. As already discussed in Sect. 2, the
input uk+1 is necessary to determine outputs yk+1 in subsystems with direct feedthrough. In
fact, uk+1 is also needed to complete the integration of the dynamics from tk to tk+1 if im-
plicit integrators like the Newmark family [22] are employed. For simplicity, the discussion
here is limited to subsystems with explicit integrators, e.g., the symplectic Euler formula.

Several ways to approximate uk+1 can be used; polynomial extrapolation is widely used
for this purpose [9, 23, 27], especially low-order methods such as constant or zero-order
hold (ZOH), linear or first-order hold (FOH), and quadratic or second-order hold (SOH), as
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Fig. 5 Effect of ZOH, FOH and SOH extrapolation on the prediction of a subsystem input u between tk and
tk+1, where β ∈ [0,1]

shown in Fig. 5. Accordingly, outputs yk+1 are evaluated with an approximation ũk+1 instead
of the input value uk+1 and the residual power becomes

δPk+1 = − (
ũk+1

)T
yk+1 (9)

which, in general, will no longer satisfy δP = 0.
The evaluation of residual power corresponds to the co-simulation manager; in general,

it cannot be assumed that all subsystems evaluate their residual power and include it among
their coupling variables. This means that some assumption has to be made about the method
that each subsystem uses to approximate its inputs uk+1. Here we consider that ũk+1 = uk in
the evaluation of δP in Eq. (9).

The definition of the indicator in Eq. (9) can be generalized to Jacobi multi-rate coupling
schemes as well [30].

The residual power δP can be used to keep track of the stability and accuracy of the
integration process as the simulation proceeds. The indicator values can, for example, oscil-
late within an admissible range, which will be dependent on the application. In such cases,
the co-simulated dynamics can be considered reasonably accurate. Conversely, the presence
of sudden changes in the indicator can be a symptom of unstable behaviour and degraded
accuracy of the results.

Moreover, the residual power δP is related to the accumulation of errors in the energy
balance of the system. The deviations from the exact solution caused by input extrapolation
will introduce an error in the balance in Eq. (5),

E (t) − E0 − Wnc (t) = ς (t) (10)

where ς (t) is the energy deviation at time t caused by the discrete-time interface.
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The existence of a relation between the energy error ς and the residual power δP was
confirmed in [27]. The error ς , however, cannot be directly obtained by integrating the δP

over time. As a matter of fact, depending on the selected coupling scheme and the properties
of the subsystems, it is possible to approximate it with a fraction μ ∈ [0,1] of this integral.
For example, for the first co-simulation step, the violation of the energy balance is given by

ς (t1) ≈ μ

∫ t1

t0

δP dt ≈ μ H δP1 ≈ −μ H uT
0 y1 (11)

As integration proceeds over time, however, the relation given by μ may lose accuracy
because the accumulation and propagation of errors brings the numerical integration further
away from the theoretical solution. For this reason, the integral over time of the residual
power, i.e., the residual energy δE (t), does not directly provide the value of the energy
error ς (t) in the system,

δE (t) =
∫ t

t0

δP (t) dt �= ς (t) (12)

and the use of expression (11) must be limited to the calculation of the energy error intro-
duced by the co-simulation environment between two consecutive communication points. A
method for determining the value of μ is discussed in Sect. 3.3.

3.2 Energy correction

The information conveyed by the residual power δP can be used to develop an energy-
correction method aimed at removing the energy deviations derived from input extrapola-
tion. The presented method is similar to the energy correction solution described in [13], in
the sense that its objective is enforcing the satisfaction of the energy balance of the com-
plete system, dissipating excess energy or introducing it back into the system if it has been
lost, as an adaptive damping element would do. A major difference is that this method does
not require the subsystems to provide information about their internal energy state, which is
not possible in a number of practical applications. The co-simulation macro step-size is not
modified.

As mentioned in Sect. 3.1, the integral of the residual power δP over time does not cor-
respond exactly to the accumulated energy error ς of the overall system and needs to be
corrected by means of a coefficient μ. The energy error between two consecutive commu-
nication points can then be approximated as

ςk+1 ≈ μ δEk+1 = μ

∫ tk+1

tk

δP (t)dt (13)

where ςk+1 denotes the energy error added to the system between communication points tk
and tk+1, and δEk+1 is the residual energy evaluated at time tk+1. Ideally, the energy error
in Eq. (13) should be removed by the corrective action acting during the following macro
step-size, from tk+1 to tk+2, in order to readjust the energy level of the system. The nature of
this action depends on the kinds of coupling variables being exchanged at the interface; in a
force-displacement configuration, for instance, it is a force.

Figure 6 conceptually illustrates the correction scheme used. In this co-simulation graph,
the output of subsystem 1, f, is an action, e.g., a force or torque. The output of subsystem
2, v, in turn, represents a kinematic quantity such as a velocity. It will be assumed in the
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Fig. 6 Energy correction via modification of the coupling variables

following that the product fTv has power units. In general, subsystems that return actions are
more likely to present direct feedthrough, as they often need to know the position or velocity
of other subsystems to evaluate their outputs. The proposed correction method modifies the
action f sent to the second subsystem with an additional term fcorr that corrects the energy
error from the previous macro step,

−ςk+1 = fcorrk+1 vk+1 H → fcorrk+1 = − ςk+1

vk+1 H
(14)

The action correction in Eq. (14) can be compared to the introduction of adaptive damping
at the co-simulation interface. The applicability of Eq. (14) is limited by several facts. First,
values of the coupling variable v that approach zero will result in large values of the correc-
tion term fcorr, which can cause impulsive behaviour and destabilize the system dynamics.
The maximum admissible correction must be limited in practical applications. As a conse-
quence, the possibility of removing energy errors is limited at these points. It must be noted
that the force limit used is problem-dependent and depends on the nature and time-scale of
the subsystem dynamics. In this work it was set to a percentage of the uncorrected coupling
force.

Additionally, the correction term fcorr is calculated using the values of energy and velocity
obtained at the end of the macro step [tk, tk+1], but the correction action fcorrk+1 has to be
applied during the next macro step [tk+1, tk+2], at which the value vk+1 used to evaluate the
correction is unlikely to remain constant. For this reason, the energy correction resulting
from the introduction of fcorrk+1 will not match exactly the value of ςk+1 that it intended to
remove, but a difference Uk+1 will exist between them. A possible way to approximate this
value is to evaluate the difference between the intended correction and the one that would
result if the coupling velocity at time tk+2 were used

Uk+1 ≈ ςk+1 + fcorrk+1 vk+2 H (15)

The term Uk+1 in Eq. (15) can be seen as the energy deviation that the method has been
unable to correct during the last macro step. The accumulation of these terms over time
leads to an uncorrected energy deviation U in the overall system dynamics

Uk+1 = Uk + Uk+1 ; where U0 = 0 J (16)

An extra term can be introduced in the correction algorithm in Eq. (14), to remove the
accumulated energy difference Uk

fcorrk+1 = −ςk+1 + ν Uk

vk+1 H
(17)

where ν is a weight coefficient similar to an integral gain in the range [0,1], where 0 stands
for no integral correction and 1 would enforce the removal, in theory, of all the accumulated
energy error Uk in the next macro step.
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Fig. 7 A generic
two-degree-of-freedom oscillator

Table 1 Combinations of system parameters used in double linear oscillator benchmarks

Case m1
[kg]

m2
[kg]

κ1
[N/m]

κc
[N/m]

κ2
[N/m]

c1
[Ns/m]

cc
[Ns/m]

c2
[Ns/m]

1 1 1 10 100 1000 0 0 0

2 1 1 10 100 1000 0.1 0.1 0.1

3 1 1 10 1000 100 0 0 0

4 1 1 10 1000 100 0.1 0.1 0.1

5 1 1 1000 100 10 0 0 0

6 1 1 1000 100 10 0.1 0.1 0.1

7 10 1 10 100 1000 0 0 0

8 1 10 10 100 1000 0 0 0

It is also worth mentioning that in co-simulation environments that include physical com-
ponents, the introduction of a correction term fcorr has to be compatible with the nature of
actuators used in the system. Additional improvements could be performed on the method,
such as using other integration formulas in Eq. (13) or conducting some prediction of the ve-
locity during the next communication step when calculating the correction action in Eq. (14).

3.3 Evaluation of correction coefficients

The indicators and the correction method presented in Sects. 3.1 and 3.2 require the de-
termination of the fraction μ of the residual power δP that indicates the spurious energy
introduced into the system at the co-simulation interface.

The preliminary evaluation of the μ coefficient was performed with the help of a two-
degree-of-freedom linear oscillator, shown in Fig. 7, a system widely used in the co-
simulation literature as benchmark problem, e.g., [12–14, 33].

The double linear oscillator is a mechanical system composed of two masses (m1 and
m2) connected to each other and to the ground by means of dampers (c1, c2 and cc) and
springs (κ1, κ2, and κc) with constant coefficients. The initial system displacements were set
to η1(0) = η2(0) = 0 m; the spring forces are zero in this configuration. The initial system
velocities were η̇1(0) = 100 m/s and η̇2(0) = −100 m/s, a set of values previously used
in the literature, e.g., [13, 34, 35]. Several simulation cases, summarized in Table 1, were
defined to verify the system behaviour for different sets of physical parameters.

Figure 8 shows the linear oscillator split into two subsystems in a force-displacement co-
simulation configuration. The subsystem M1 includes the coupling spring-damper system
and returns the force f that it exerts on the second subsystem,M2. This, in turn, takes care of
the integration of the motion of m2 and delivers its displacement η2 and velocity η̇2, denoted
here as the array x2.
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Fig. 8 The generic two-degree-of-freedom oscillator arranged following a force-displacement coupling
scheme

Only the subsystem M1 is subjected to direct feedthrough (DM1 �= 0), and requires to
know its inputs to evaluate its outputs at any given instant in time. In this scheme, the inputs
u and outputs y for each subsystem are given by

uM1 = [
x∗
2

] = [
η∗
2 η̇∗

2

]T
uM2 = [

f∗
] = [

f ∗ ]
yM1 = [

f
] = [

f
]

yM2 = [
x2

] = [
η2 η̇2

]T
(18)

where the superscript ()∗ points out that the input of a subsystem might not necessarily
be equal to the output of the other one, because the co-simulation manager may perform
modifications in their values, e.g., by extrapolation.

The double linear oscillator can be used to illustrate the relation between the residual
energy, δE, and the actual energy error ς accumulated during the co-simulation. Figures 9
and 10 compare the mechanical energy E of the double linear oscillator co-simulated fol-
lowing an explicit, single-rate Jacobi scheme with the mechanical energy obtained with its
analytical solution, Eref. The shown results correspond to cases 1 and 2 in Table 1.

These figures confirm that the residual power δP and its integral δE indicate the devia-
tion of the co-simulated system dynamics from its theoretical energy balance. In conserva-
tive systems, this results into an increase in mechanical energy. In systems with dissipation,
part of the energy error modifies the mechanical energy, and part affects the work exerted
by nonconservative forces. Figure 10 highlights two interesting facts. First, the results show
that the co-simulation is stable, in the sense that the system energy decreases with time;
however, they also evidence that it is not accurate, because the system energy does not fol-
low that of the reference solution. Second, the presence of dissipation within the subsystems
decreases the severity of the energy errors introduced by the time-discrete coupling inter-
face, bringing the co-simulated solution closer to its theoretically correct counterpart than
in the conservative case.

The linear oscillator example was used to determine the value of the fraction μ required
to satisfy Eq. (11) and, thus, achieve an accurate correction of the system energy by means
of Eq. (14). This was carried out through the simulation of case 1 in Table 1. Different
integration and communication step-sizes were used; in multi-rate co-simulation scenarios,
ZOH, FOH and SOH input extrapolation orders were tested. The symplectic Euler formula
was used as the integration method in all the tests. The values of μ obtained this way were
used as a reference for the simulation of the nonlinear benchmark examples presented in
Sect. 4 and the rest of cases described in Table 1. For the linear oscillator, this coefficient
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Fig. 9 Comparison of the residual energy δE, the co-simulated system energy E, and the reference solution
energy Eref in a force-displacement, single-rate Jacobi coupling scheme for a mechanical system without
damping

Fig. 10 Comparison of the residual energy δE, the co-simulated system energy E, and the reference solution
energy Eref in a force-displacement, single-rate Jacobi coupling scheme for a mechanical system that features
damping

was found to depend on the existence of direct feedthrough in the subsystems. In single-
rate schemes, the coefficient μ equals 0.5 if one of the subsystems is subjected to direct
feedthrough [30]; its value is zero if both subsystems are free from this issue, because input
extrapolation at the interface does not take place and energy correction is not necessary.
On the other hand, in multi-rate co-simulation schemes, the ratio between the macro step-
sizes and the extrapolation order at the co-simulation manager also needs to be considered.
In these schemes, however, the evaluation of the coefficient μ becomes more complicated
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Fig. 11 Selection of the correction factor μ in a two-subsystem co-simulation, as a function of the step-size
ratio and the extrapolation order when the subsystem with the largest step-size has direct feedthrough

and it is necessary to consider the extrapolation order and the ratio R between subsystem
step-sizes

R = hdf

hndf
(19)

where hdf and hndf are the macro step-sizes of the subsystems with and without direct-
feedthrough, respectively. The value of the coefficient μ can then be calculated using the
following expressions for a two-subsystem co-simulation:

– The subsystem with direct feedthrough has the largest step-size: the corrective coefficient
is obtained as

μZOH = μSR (1.5− 0.5

R
)

μFOH = μSR (20)

– The subsystem with direct feedthrough has the smallest step-size: the corrective coefficient
is obtained as

μZOH = μSR

μFOH = μSR R (21)

Subscripts ZOH (zero-order hold) and FOH (first-order hold) denote the input extrapolation
order used in the subsystem with the smallest step-size.

Figures 11 and 12 show the values of μ calculated with Eqs. (20) and (21) for different
values of the step-size ratio R and the two mentioned input extrapolation methods. Although
it is not represented in the figure, theμ for higher order extrapolation, e.g., quadratic or SOH,
is the same as the one used for FOH.
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Fig. 12 Selection of the correction factor μ in a two-subsystem co-simulation, as a function of the step-size
ratio and the extrapolation order when the subsystem with the smallest step-size has direct feedthrough

Fig. 13 A generic n-degree-of-freedom linear oscillator

4 Benchmark problems

The general validity of the correction coefficients μ and the applicability of the energy
monitoring and correction methods put forward in Sect. 3 were verified with a set of co-
simulation benchmark problems, which included nonlinear and multiphysics examples. In
all cases, it was required that the product of their coupling variables delivered power units.
The benchmarks were tested using single- and multi-rate co-simulation schemes.
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Table 2 Combinations of system parameters used for the multiple linear oscillator

Case n

[-]
m1...n−1
[kg]

mn

[kg]
κ1...n−1
[N/m]

κc1...n−1
[N/m]

κn

[N/m]
c1...n−1
[Ns/m]

cc1...n−1
[Ns/m]

cn

[Ns/m]

1 3 1 1 10 100 1000 0 0 0

2 3 1 1 10 100 1000 0.1 0.1 0.1

3 5 1 1 10 100 1000 0 0 0

4 5 1 1 10 100 1000 0.1 0.1 0.1

Fig. 14 The n-degree-of-freedom oscillator arranged following a force-displacement coupling scheme

4.1 Multiple linear oscillator

The first system used as a benchmark is a modification of the double linear oscillator de-
scribed in Sect. 3.3, in which the first mass m1 has been divided into n − 1 masses, thus
turning the system into the n-degree-of-freedom linear oscillator shown in Fig. 13.

The initial system displacements were set to 0 m for all masses. The velocities of the
first n − 1 masses were set to 100 m/s, whereas the velocity of the n-th mass was set to
−100 m/s. Table 2 summarizes the system properties for all tested scenarios.

Figure 14 shows the oscillator arranged according to a force-displacement coupling
scheme in which the subsystems M1 to Mn−1 contain the information about their coupling
spring-damper systems and evaluate the force at the interface. The algebraic sum of these
coupling forces, here denoted as f, is passed as input to the subsystem Mn, which handles
the integration of the dynamics equations of mass mn. This subsystem returns as output its
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Table 3 Combinations of system parameters used for the double nonlinear oscillator benchmark

Case m1
[kg]

m2
[kg]

κ1
[N/m]

κc
[N/m]

κ2
[N/m]

c1
[Ns/m]

cc
[Ns/m]

c2
[Ns/m]

1 1 1 10 100 1000 0 0 0

2 1 1 10 100 1000 0.001 0.001 0.001

position ηn and velocity η̇n, denoted here as xn. Direct feedthrough is found here in the first
n − 1 subsystems, which need their input xn to evaluate their coupling forces.

4.2 Double nonlinear oscillator

The second benchmark example is another variation of the linear oscillator described in
Sect. 3.3, in which the three springs and dampers can be replaced by nonlinear counter-
parts, thus transforming it into a double nonlinear oscillator. The nonlinear forces that are
considered in this benchmark include

– Nonlinear spring forces that follow a square root function of spring elongation as

f = −κ sgn(η)
√|η| (22)

where sgn() is the sign function, η is the elongation of the spring, and κ is a constant
stiffness coefficient.

– Nonlinear damping forces that follow a quadratic function of the damper elongation rate
η̇ as

f = −c sgn(η̇) |η̇|2 (23)

where c is a constant damping coefficient.

This nonlinear oscillator was tested in two different scenarios. In the first case, it is consid-
ered that all spring forces are nonlinear, as described in Eq. (22), and that damping is not
present. The second case uses the nonlinear damping from Eq. (23) and linear spring forces.
Table 3 summarizes the parameters used in the two scenarios proposed for this benchmark.
The initial mass displacements and velocities were the same as those used for the linear
oscillator: η1(0) = η2(0) = 0 m, η̇1(0) = 100 m/s and η̇2(0) = −100 m/s.

4.3 Coupled pendula

The third benchmark problem is a two-degree-of-freedom mechanical system comprised of
two rigid pendula connected to each other at their free tips by a spring and a damper, as
shown in Fig. 15.

The pendula consist of point masses m1 and m2, located at points 1 and 2, connected to
two massless rods of lengths l1 and l2 and pinned to the ground at points A and B, respec-
tively. Revolute joints exist at points A, B, 1, and 2, so that the rods and the spring-damper
system can rotate freely around them. Gravity acts along the negative y axis, g = 9.81 m/s2.
The system parameters used in the simulations are detailed in Table 4. The initial angles be-
tween the rods and the negative y axis were set to θ1(0) = π/4 rad and θ2(0) = π/18 rad; the
initial velocities were set to zero. In this initial configuration, the spring-damper is unloaded,
thus its natural length l0 is approximately 8.756 m.
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Fig. 15 Two simple pendula
coupled by a spring-damper
system

Table 4 Combinations of parameters used for the coupled pendula benchmark

Case m1
[kg]

m2
[kg]

l1
[m]

l2
[m]

κ

[N/m]
c

[Ns/m]
A
[m]

B
[m]

1 1 2 2.5 3.5 6 0 (0,0) (7,0)

2 1 2 2.5 3.5 50 0 (0,0) (7,0)

Fig. 16 A two-degree-of-freedom two pendula connected by a spring-damper at their tips arranged following
a force-displacement coupling scheme

The system was divided following a force-displacement arrangement, shown in Fig. 16,
for the co-simulation tests. The subsystemM1 integrates the dynamics of the first pendulum
and evaluates the coupling force f, which is passed on as input to the second subsystem. The
subsystemM2 in turn solves the motion of the second pendulum and delivers the global po-
sitions (x2, y2) and velocities (ẋ2, ẏ2) of its free tip 2, grouped in the array x2. The subsystem
M1 is subjected to direct feedthrough. The corresponding coupling variables are

uM1 = [
x∗
2

] = [
x∗
2 y∗

2 ẋ∗
2 ẏ∗

2

]T
uM2 = [

f∗
] = [

f ∗
x f ∗

y

]
yM1 = [

f
] = [

fx fy

]
yM2 = [

η2 η̇2
]T = [

x2 y2 ẋ2 ẏ2
]T

(24)
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Fig. 17 A
two-degree-of-freedom planar
manipulator actuated by a
hydraulic cylinder

Fig. 18 Schematic of the hydraulic actuator

where again the superscript ()∗ denotes the modifications applied to the coupling variables
by the co-simulation manager. The term f contains the x and y components of the coupling
force exerted by the spring-damper.

In order to solve the equations of motion of the pendulum within each subsystem, differ-
ent multibody system dynamics formulations could be used. Here, an augmented Lagrangian
algorithm [6] was used in combination with the symplectic Euler integration formula. The
dynamics of each subsystem is formulated as a system of differential algebraic equations
(DAEs), which introduces a difference with respect to the oscillators presented so far, in
which the dynamics was described by ordinary differential equations (ODEs).

4.4 Hydraulic crane

The last benchmark is a hydraulic crane that consists of a two-degree-of-freedom multi-
physics system composed of a two-link robotic arm actuated by a hydraulic cylinder, as
shown in Fig. 17. A similar system was initially described in [21], and modified versions
were later included as benchmarks in [25] and [28]. The example here is the same as used
in [25], although a different manoeuvre is performed in the numerical tests.

This example is a multiphysics assembly composed of two parts: a planar multibody
system and a hydraulic circuit. The mechanical part consists of two rigid rods, connected to
each other and to the ground by revolute joints, of lengths l1 and l2, respectively. Link 1 is
pinned to the ground at point A and has a uniformly distributed mass m1, whereas link 2 is
massless. Two additional point masses m2 and m3 are located at Q and P, respectively.
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The system is actuated with a hydraulic piston, shown in Fig. 18, and moves under gravity
effects (g = 9.81 m/s2 along the negative y axis). The internal pressures in the cylinder
chambers are p1 and p2; the force exerted by the actuator is

f = ap (p2 − p1) − cṡc (25)

where ap is the cross section of the piston, c is the dissipation coefficient of the actuator, and
sc is the actuator length, which varies during motion. The dynamics of the hydraulic system
can be described by the following system of differential equations

ṗ1 = β1

apl4

[
apṡc + aicd

√
2 (pP − p1)

ρ
δP1 − aocd

√
2 (p1 − pT)

ρ
δT1

]
(26)

ṗ2 = β2

apl5

[
−apṡc + aocd

√
2 (pP − p2)

ρ
δP2 − aicd

√
2 (p2 − pT)

ρ
δT2

]
(27)

where l3 is the cylinder length, l4 and l5 are the lengths of the chambers on each side of
the piston, ai and ao are the areas of the valves that connect the cylinder chambers to the
pump and the tank in the hydraulic system (not represented for simplicity), ρ represents the
density of the fluid, and cd stands for the discharge coefficient of the valves. The quantities
pP and pT are the hydraulic pressures at the pump and tank, respectively. The coefficients
δP1, δP2, δT1, and δT2 are zero when the quantity inside the square root that precedes them is
negative, otherwise they are equal to one. The terms β1 and β2 stand for the bulk modulus
in each cylinder chamber and are evaluated as a function of fluid pressure as

βi = 1+ api + bp2
i

a + 2bpi

, i = 1,2 (28)

where a and b are scalar constants that are fluid properties. Assuming that the two cylinder
chambers have equal volume at the starting time of the simulation, the chamber lengths l4
and l5 are given by

l4 = 0.5l3 + s0c − sc (29)

l5 = 0.5l3 + sc − s0c (30)

where s0c is the initial length of the actuator. The valve areas ai and ao are obtained as a
function of the externally controlled displacement γ of a spool, which is an input of the
system

ai = 5 · 10−4γ (31)

ao = 5 · 10−4 (1− γ ) (32)

where γ ∈ [0,1]. A more detailed description of the components of the hydraulic system, as
well as the formulation used to model its behaviour can be found in [25]. The mechanical
parameters used for this benchmark problem are summarized in Table 5.

At time t = 0, the initial angles of links 1 and 2 are θ1(0) = π/6 rad and θ2(0) =
3π/2 rad. The system is initially in a state of static equilibrium. The force exerted by the
actuator during the manoeuvre under study is regulated by the controlled valve, whose spool
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Table 5 System parameters for
the hydraulic crane benchmark Length of link 1 l1 1.0 m

Length of link 2 l2 0.5 m

Cylinder length l3 0.442 m

Mass of link 1 m1 200 kg

Point mass at Q m2 250 kg

Point mass at P m3 100 kg

Coordinates of fixed point B (xB, yB)
(√

3/2,0
)
m

Friction coefficient c 105 Ns/m

Piston area ap 65 · 10−4 m2

Compressibility coefficient a 6.53 · 10−10 Pa

Compressibility coefficient b −1.19 · 10−18

Discharge coefficient cd 0.67

Fluid density ρ 850 kgm−3

Hydraulic pressure at the pump pP 7.6MPa

Hydraulic pressure at the tank pT 100 kPa

Fig. 19 A two-degree-of-freedom planar manipulator with a single hydraulic actuator arranged following a
force-displacement coupling scheme

displacement γ follows a sinusoidal law with variable amplitude A and constant frequency
ω = 2 rad/s,

γ = γ0 (1− A sin (2πωt)) , whereA =

⎧⎪⎪⎨
⎪⎪⎩

0.1t , 0 s ≤ t < 1 s
0.1 , 1 s ≤ t < 8 s
0.1 (9− t) , 8 s ≤ t < 9 s
0 , t ≥ 9 s

(33)

The spool displacement can vary between a completely closed (γ = 0) and a completely
open (γ = 1) valve. Initially, the spool displacement was set to γ0 ≈ 0.45435, which corre-
sponds to the static equilibrium of the system.

The different time scales required for the accurate solution of the multibody and hy-
draulic dynamics make it convenient to use multi-rate schemes in the co-simulation of this
system. The integration step-size required for the mechanical subsystem is of the order of
hM = 1 ms, while the hydraulic commonly requires steps around hH = 0.1 ms. The force-
displacement coupling arrangement of the mechanical (M) and hydraulic (H) subsystems
is shown in Fig. 19. The subsystem M integrates the multibody system dynamics using as
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Fig. 20 Double linear oscillator: Mechanical energy in the multi-rate co-simulation of case 1 with ZOH
extrapolation: H = hM1 = 1 ms, hM2 = 0.1 ms, μ = 0.725, the correction force was limited to 100 % of
the original coupling force

input the force f exerted by the piston and returns as output xM the displacement sc and rate
ṡc of the cylinder. The hydraulic subsystem H, in turn, integrates its dynamics to obtain the
pressures in the cylinder and evaluates the hydraulic force using Eq. (25). In this configu-
ration, the hydraulic subsystem H features direct feedthrough. Thus, the coupling variables
for this example are

uH = [
x∗
M

] = [
sc

∗ ṡ∗
c

]T
uM = [

f∗
] = [

f ∗ ]
yH = [

f
] = [

f
]

yM = [
xM

] = [
sc ṡc

]T
(34)

5 Results

The explicit co-simulation of the linear oscillator described in Sect. 3, as well as the rest of
benchmark problems introduced in Sect. 4, were used to assess the ability of the residual
power δP to indicate co-simulation quality. The numerical experiments were also used to
verify the energy correction method discussed in Sect. 3.2. Both single-rate and multi-rate
Jacobi schemes were evaluated, using the different sets of physical parameters referred in
Tables 1–5. In all cases, the integration step-sizes of the subsystems matched the size of their
communication step with the manager.

For each example, the residual power δP was monitored first during a co-simulation run
without corrective actions. In a second round of simulations, the energy correction method
was evaluated; in these, the coefficient μ was adjusted using the relations obtained for the
linear oscillator shown in Eqs. (20) and (21). In most examples it was necessary to introduce
an additional correction by means of the removal of the accumulated energy difference, as
done in Eq. (17), in order to deliver optimal results.

The results obtained with the double oscillator in Sect. 3.3 have confirmed that an almost
exact removal of the excess energy is possible for this linear system. Figure 20 illustrates
the effect of the energy correction in the multi-rate co-simulation of case 1 in Table 1. A
correction coefficient μ = 0.725 was used, determined with Eq. (20) for a step-size ratioR =
10 and ZOH extrapolation. The effect of the energy correction is reflected in the predicted
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Fig. 21 Double linear oscillator: Displacement η2 of mass m2 in the multi-rate co-simulation of case 1 with
ZOH extrapolation: H = hM1

= 1 ms, hM2
= 0.1 ms, μ = 0.725, the correction force was limited to 100 %

of the original coupling force

Fig. 22 Double linear oscillator: Displacement η2 of mass m2 in the single-rate co-simulation of case 7:
H = hM1

= hM2
= 1 ms, μ = 0.5, the correction force was limited to 100 % of the original coupling force

system motion, shown in Fig. 21 for the same scenario. The increase in motion amplitude
that resulted from the accumulation of spurious energy has been removed and the corrected
solution matches with the analytical reference. It must be noted that a small delay with
respect to the reference remained in the results; this effect has already been observed with
other energy-based correction algorithms [13].

The values of μ calculated with Eqs. (20) and (21) were used as reference for the co-
simulation of the rest of cases in Table 1 and the benchmark examples. Figure 22 shows the
effect of the energy correction on the position η2 of the mass m2 of the double linear oscil-
lator in case 7 with a corrective factor μ = 0.5, corresponding to single-rate co-simulation.
Again, the motion amplitude matches that of the reference and a small delay can be ob-
served in the results. Figure 23 compares the mechanical energy of the system with and
without corrections. In this case, the mass m2 in the subsystem that receives the corrected
force is an order of magnitude smaller than the one in the other subsystem m1. This affects
negatively the ability of the method to bring the energy level down to that of the reference.
More effective removal of the excess energy can be achieved by introducing the integral
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Fig. 23 Double linear oscillator: Energy in the single-rate co-simulation of case 7:
H = hM1 = hM2 = 1 ms, μ = 0.5, the correction force was limited to 100 % of the original cou-
pling force

Fig. 24 Double linear oscillator: Effect of the limit to the correction force on mechanical energy in single-
rate co-simulation of case 7: H = hM1 = hM2 = 1 ms, μ = 0.5, ν = 0.25. The force limit is expressed as a
percentage of the original coupling force

term in Eq. (17). Fig. 24 illustrates the need to set a limit on the maximum correction force
exerted at the interface. Large values of correction can be detrimental to simulation accu-
racy, whereas insufficient modifications can fail to remove completely energy errors. In all
problems used in this paper, the maximum admissible correction force has not exceeded
100% of the uncorrected coupling force. The combination of an appropriate integral factor
ν and a force limit is problem-dependent, and the development of an approach to select both
systematically remains an open task within this research.

The proposed correction approach can also be used when the co-simulation environ-
ment includes more than two systems. This is the case with the multiple linear oscillator in
Sect. 4.1, in which the left-hand side consists of a set of n − 1 subsystems that pass their
coupling force to the manager. This example was simulated using n = 3 and n = 5 subsys-
tems. Figures 25 and 26 confirm that it is possible to extend the use of the correction method
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Fig. 25 Multiple linear oscillator: Mechanical energy in single-rate co-simulation of case 1: n = 3,
H = hM1

= hM2
= hM3

= 1 ms, μ1 = μ2 = 0.5, the correction force was limited to 25 % of the original
coupling force

Fig. 26 Multiple linear oscillator: Displacement η3 in single-rate co-simulation of case 1: n = 3,
H = hM1

= hM2
= hM3

= 1 ms, μ1 = μ2 = 0.5, the correction force was limited to 25 % of the original
coupling force

to systems composed of more than two subsystems, taking into account the structure of the
power bonds present between the subsystems. In this example, a single correction force was
applied to subsystem n, as shown in Fig. 14.

The co-simulation of the nonlinear systems in Sect. 4 required the use of an integral
correction in most cases. Figure 27 shows the mechanical energy of the double nonlinear
oscillator in Sect. 4.2 that results from the use of different correction factors μ in the absence
of the integral term ν. The energy of the uncorrected system (μ = 0) grows consistently with
time. The factor that corresponds to single-rate co-simulation, μ = 0.5, initially performs an
acceptable control of the system energy, but eventually is not able to appropriately handle
the nonlinear behaviour of the benchmark. Raising μ above 0.5 results in over-corrections,
rendering the system stable at the cost of dissipating too much energy.

The introduction of an integral term ν resulted in the ability to remove energy deviations
in spite of the nonlinear behaviour of the test problem, as confirmed by Fig. 28. Different
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Fig. 27 Double nonlinear oscillator: Effect of the correction coefficient on system energy in a single-rate
co-simulation of the case 1: H = hM1

= hM2
= 1 ms, ν = 0, the correction force was limited to 100 % of

the original coupling force

Fig. 28 Double nonlinear oscillator: Energy in single-rate co-simulation of case 1:
H = hM1

= hM2
= 1 ms, μ = 0.5, ν = 0.25, the correction force was limited to 100 % of the

original coupling force

values of the integral term were tested, with ν = 0.25 being the optimal value to keep the co-
simulation stable and accurate. The displacement η2 with this configuration is represented
in Fig. 29. In case 2, in which nonlinear damping was present, the severity of the energy
deviations with respect to the reference solution was reduced and it was possible to correct
the motion without including integral terms, as shown in Fig. 30.

Numerical experiments with the nonlinear oscillator also confirmed the role of the resid-
ual power, δP , as an indicator of co-simulation quality with nonlinear systems. Figure 31
shows the time-history of the residual power during the uncorrected co-simulation of case 1.
Although the values vary over time, the average of the signal is above zero, which indicates
the consistent growth of the energy stored in the system that can be observed in Figs. 27
and 28.
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Fig. 29 Double nonlinear oscillator: Displacement η2 in the single-rate co-simulation of case 1:
H = hM1

= hM2
= 1 ms, μ = 0.5, ν = 0.25, the correction force was limited to 100 % of the original

coupling force

Fig. 30 Double nonlinear oscillator: Energy in the single-rate co-simulation of case 2:
H = hM1

= hM2
= 1 ms, μ = 0.5, the correction force was limited to 100 % of the original cou-

pling force

Similar results regarding the ability of the proposed method to correct energy deviations
in the system were obtained with the rest of co-simulation benchmarks. Figure 32 compares
the x2 coordinate during the simulation of the coupled pendulum example with and without
energy correction. Even though the deviation from the reference solution introduced by the
co-simulation scheme was relatively small, the correction method was able to bring the
results closer to the reference motion. Figure 33 illustrates the relevance of correction: the
spurious energy introduced at the interface is small, but it accumulates steadily over time,
degrading the quality of the results as the simulation proceeds. The residual power, shown
in Fig. 34, indicates this energy behaviour: Its value, albeit small, remains above zero during
motion, which corresponds to a slow but steady increase of the system energy. The proposed
correction method removed this excess energy; it must be noted that an integral term was
necessary to achieve adequate results.
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Fig. 31 Double nonlinear oscillator: Residual power δP in the uncorrected single-rate co-simulation of case
1: H = hM1

= hM2
= 1 ms

Fig. 32 Coupled pendulum: Coordinate x2 in the single-rate co-simulation of case 1.
H = hM1 = hM2 = 1 ms, μ = 0.5, ν = 1.0, the correction force was limited to 100 % of the origi-
nal coupling force

The last benchmark example, the hydraulic crane, is a multi-physics system in which
the mechanical and hydraulic subsystems present very different time scales. Such a prob-
lem benefits in terms of efficiency from the use of multi-rate co-simulation schemes. In this
example, due to the significant dissipation present at the hydraulic cylinder, the deviations
of the uncorrected co-simulated dynamics from the reference solution remained relatively
small in terms of both motion and energy, as long as the macro-steps for each subsystems,
hM and hH, were kept small enough to ensure the stability of the integration. Figure 35
shows the results obtained with FOH extrapolation and hM = 10 ms and hH = 0.25 ms,
which correspond to a step-size ratio R = 1/40. In this configuration, the actuator displace-
ment follows closely, within a 2- mm margin, the reference motion. Unlike in the previous
examples, the coupling errors at the discrete-time interface have removed energy from the
system, instead of increasing the energy level. The energy correction, nonetheless, improves
again the accuracy of the results.
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Fig. 33 Coupled pendulum: Energy in the single-rate co-simulation of case 1. H = hM1 = hM2 = 1 ms,
μ = 0.5, ν = 1.0, the correction force was limited to 100 % of the original coupling force

Fig. 34 Coupled pendulum: Residual power δP in the uncorrected single-rate co-simulation of case 1:
H = hM1

= hM2
= 1 ms

This example confirmed as well the usefulness of the residual power δP as an indicator of
the co-simulation quality. Figure 36 shows the actuator length sc during the uncorrected co-
simulation of the manoeuvre described by Eq. (33), using hM = 11.5 ms, hH = 0.1 ms and
FOH extrapolation. The co-simulated solution shows an oscillation between t = 3 s and t =
5 s, approximately, which does not correspond to the actual system motion, as evidenced by
the comparison with the reference solution. In a practical application, however, a reference
solution will not be available in most cases and such a comparison would not be feasible,
so that it would be unclear whether the oscillation is caused by a numerical artifact or if it
actually corresponds to the true system behaviour. In fact, the co-simulation recovers from
the oscillation and remains stable, partly because of the dissipative behaviour of the cylinder.
However, the time-history of the residual power contains a clear spike at the time during
which the oscillation occurs, as can be seen in Fig. 37, which permits the identification of
the oscillations as a result of numerical errors and thus labelling the simulation as unreliable.

It is important to mention that in all simulated examples, it was necessary to select an
upper limit for the magnitude of the correction force that was applied to the subsystems via
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Fig. 35 Hydraulic crane: Cylinder displacement sc in multi-rate co-simulation. H = hM = 10 ms,
hH = 0.25 ms, μ = 0.0125, ν = 0, FOH extrapolation, the correction force was limited to 10 % of the origi-
nal coupling force or 100 N

Fig. 36 Hydraulic crane: Cylinder displacement sc in the multi-rate co-simulation of the system motion:
H = hM = 11.5 ms and hH = 0.1 ms with FOH extrapolation for the inputs of the hydraulic subsystem, the
correction force was limited to 10 % of the original coupling force or 100 N

Eq. (14) or Eq. (17). Using these equations, the theoretical correction force fcorr can grow
indefinitely at points when the velocity used as the coupling variable, v, approaches zero.
In all tested cases, the magnitude of the correction force fcorr was kept below that of its
uncorrected counterpart f at each instant in time, although the stability and accuracy of the
results could be improved in some scenarios by lowering this limit. The development of an
automated way to tune beforehand these force caps, as well as the integral term gain ν, for
each particular simulation scenario, remains a currently open line of research.

6 Conclusions

Explicit schemes are frequently used in co-simulation applications when efficient perfor-
mance is a requirement. Among these, fixed-step Jacobi schedules enable the parallelization
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Fig. 37 Hydraulic crane: Residual power δP in the multi-rate co-simulation of the system motion:
H = hM = 11.5 ms and hH = 0.1 ms with FOH extrapolation for the inputs of the hydraulic subsystem

of solver execution and are particularly suitable for their integration in demanding environ-
ments, such as those that demand real-time behaviour. These explicit schemes, however, are
known to suffer from stability and accuracy issues, especially when the subsystem dynam-
ics are subjected to direct feedthrough. In these cases, it is necessary to assess co-simulation
quality during runtime to ensure the reliability of the obtained results.

Residual power, an indicator that can be evaluated from the coupling variables in force-
displacement co-simulation configurations, can be used to monitor the quality of numerical
integration and enable actions to prevent the simulation from delivering incorrect results and
becoming unstable in extreme cases. This magnitude was also used to develop an energy-
correction method to remove the energy inconsistencies caused by the discrete-time co-
simulation interface. The method introduces a corrective action in the coupling variables
and requires limited knowledge of the subsystem internals. Its behaviour was demonstrated
in the numerical integration of a linear oscillator, a commonly used benchmark problem
in the co-simulation literature, and further verified with a set of additional test examples.
These included nonlinear and multiphysics systems; multi-rate co-simulation schemes were
tested beside single-rate ones. The results showed that residual power can be used to gain
insight into the co-simulation quality, and that the proposed energy correction method can
be employed to remove the spurious variations in system energy caused by discontinuities
and delays at discrete co-simulation interfaces.
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