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Abstract
Epistasis can be defined as the statistical interaction of genes during the expression 
of a phenotype. It is believed that it plays a fundamental role in gene expression, 
as individual genetic variants have reported a very small increase in disease risk 
in previous Genome-Wide Association Studies. The most successful approach to 
epistasis detection is the exhaustive method, although its exponential time complex-
ity requires a highly parallel implementation in order to be used. This work presents 
Fiuncho, a program that exploits all levels of parallelism present in x86_64 CPU 
clusters in order to mitigate the complexity of this approach. It supports epistasis 
interactions of any order, and when compared with other exhaustive methods, it is 
on average 358, 7 and 3 times faster than MDR, MPI3SNP and BitEpi, respectively.
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1  Introduction

With the proliferation of next-generation sequencing technologies, the cost of 
sequencing genomes has been reduced, and Genome-Wide Association Studies 
(GWAS) have become more popular. GWAS are observational studies that attempt 
to decipher the relationship between a particular trait or phenotype and a group of 
genetic variants from several individuals. Much of the early work in GWAS consid-
ered genetic variants in isolation, and the results of those studies were unsatisfac-
tory for the task at hand. The studies commonly reported associations with vari-
ants of unknown significance that increased disease risk at very low levels, and thus 
their usefulness in clinical applications was limited [1]. One hypothesis that explains 
this outcome is a phenomenon called epistasis: the statistical interaction of genes 
among themselves, or with the environment, during the expression of a phenotype 
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so that individual variants by themselves display little to no association with said 
phenotype. Nevertheless, looking for epistatic interactions instead of individually 
associated genetic markers is a much more complex task, and it is still an actively 
researched field.

A multitude of methods for detecting epistasis have been proposed in the litera-
ture. In essence, these methods seek to identify the combination(s) of variants that 
best explain the phenotype outcome observed in the data. This is a computationally 
intensive problem with a complexity that scales exponentially with the number of 
variants in combination considered (also known as the epistasis order) and the num-
ber of variants included in the input data. As a consequence of that, the methods 
developed followed two different approaches:

•	 Exhaustive methods: all genetic variant combinations from the input data (up to 
a certain size or interaction order) are tested for epistasis.

•	 Non-exhaustive methods: a fraction of the genetic variant combinations are 
tested, following a particular heuristic that reduces the search space. Non-
exhaustive methods reduce the computational complexity of exhaustive ones. 
Consequently, they allow for larger GWAS analysis at the cost of the possibility 
of not finding the target variant combination.

Prior to this work, the performance of exhaustive and non-exhaustive methods has 
been studied thoroughly in [2]. The paper concluded that exhaustive methods are 
the only ones capable of identifying epistasis interactions in the absence of marginal 
effects. Marginal effects refer to the association effect that subgroups of the com-
plete epistasis interaction display with the trait under study. If associated variants 
do not display marginal effects, non-exhaustive methods are ineffective and the only 
known alternative is to exhaustively search the combination space. In spite of that, 
due to implementation constraints, the majority of the proposed exhaustive methods 
limit the size of the epistasis interactions.

This work presents Fiuncho, an exhaustive epistasis detection tool that supports 
interactions of any given order, and exploits all levels of parallelism available in a 
homogeneous CPU cluster to accelerate the computation and make it more scalable 
with the size of the problem. To the best of our knowledge, the proposed implemen-
tation is faster than any other state-of-the-art CPU method.

The text is organized as follows: Sect. 2 covers related works and highlights the 
different trends in exhaustive epistasis detection. Section 3 describes the association 
algorithm used, and Sect. 4 details the parallel epistasis search implemented. Sec-
tion 5 includes the evaluation of Fiuncho. And lastly, Sect. 6 presents the conclu-
sions reached and highlights some future lines of work.

2 � Related work

There is abundant literature dedicated to epistasis detection methods. This work 
focuses specifically on the exhaustive approach to epistasis detection because it is 
the only one that obtains results in the absence of marginal effects in the data.
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All exhaustive methods follow the same principle: examining every combination 
of variants available in the data, and locating the most associated ones with the phe-
notype under study. As a consequence of that, all exhaustive methods present a com-
putational complexity of O

(

nk ⋅ Oat

)

 , with n being the number of variants in the 
search, k the order of epistasis explored and Oat the computational complexity of 
each individual association test. The expression assumes that the number of combi-

nations without repetition, 
(

n

k

)

 , is equivalent to nk , since the epistasis order k is 

smaller than n − k . This rigidity in the method itself has led to the development of 
proposals with more innovation in the different architectures used to tackle the prob-
lem than in the algorithmic approach to it.

Initially, exhaustive methods did not target a computer architecture in particular. 
They were written in languages such as Fortran, Java or C, and could be used in 
any computer. This is the case of MDR [3], one of the most recognized exhaus-
tive epistasis detection methods in the literature. MDR was written in Java, allows 
for epistasis interactions of any given order and supports multithreaded execution, 
although the performance achieved is not ideal in modern computers. Since then, 
improving performance has become the focal point of the exhaustive methods.

Currently, implementations are more tailored to a particular computer architec-
ture in order to exploit all the resources offered to speed up the search. MPI3SNP [4] 
and BitEpi [5] are two examples of exhaustive methods that use CPUs, or clusters 
of CPUs, to perform the search. MPI3SNP implements a 3-locus epistasis search 
using MPI, in combination with multithreading, to speed up the computation using 
multiple computing nodes. BitEpi, on the other hand, uses an alternative represen-
tation of the genotype information in memory, introducing a tradeoff between the 
complexity of the association test and the use of a more memory-intensive approach 
to the computation. BitEpi implements a 2, 3 and 4-locus epistasis search that also 
uses multithreading to speed up the search. Furthermore, for the x86_64 CPU archi-
tecture, there are some publications that discuss AVX vector implementations of the 
epistasis search [6, 7].

Aside from CPUs, GPUs and FPGAs are two architectures that have gained some 
interest from researchers in the field. GPUs are a great fit due to the high degree 
of parallelism that they offer and the embarrassingly parallel nature of the epistasis 
search. There are a multitude of methods that fall under this category, with SNPInt-
GPU [8] being one of the latest examples. Furthermore, with the introduction of ten-
sor cores in the most recent GPU microarchitectures there has been an effort made 
to exploit these new instructions in the epistasis detection problem [9]. FPGAs have 
also been employed, with methods that support exhaustive 2 and 3-locus epistasis 
detection [10, 11], and more recently, epistasis interactions of any given order [12].

Lastly, some authors have embraced this diversity in architectures with meth-
ods that support heterogeneous systems in order to complete the epistasis search. 
This includes methods written in architecture-agnostic languages so that the same 
implementation can be compiled for different hardware [13], as well as methods 
that exploit computing systems with different architectures simultaneously, and thus 
taking advantage of the benefits of each separate architecture, such as CPUs with 
iGPUs [6], CPUs with GPUs [14] and GPUs with FPGAs [15].
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This paper presents Fiuncho, a method targeting CPU architectures that combines 
explicit vector implementations for x86_64 CPUs with multithread and MPI mul-
tiprocess computing to exploit all resources offered by a x86_64 CPU cluster. Fur-
thermore, a portable implementation using standard C++ is also included to support 
other CPU architectures. The exhaustive search implemented contemplates epista-
sis interactions of any order which, to the best of our knowledge, makes it the only 
CPU method, besides MDR, that does not limit the size of the interactions, although 
Fiuncho is significantly faster.

3 � Background

All exhaustive epistasis detection methods follow the same approach: enumerate all 
combinations of variants for a particular order, test every combination for associa-
tion with the trait under study and report the relevant combinations. Figure 1 shows 
a flowchart of the process. Exhaustive methods differ from one another in the asso-
ciation test used. Fiuncho, as MPI3SNP [4], uses a Mutual Information (MI)-based 
association test. As can be seen in [2], MI obtains a very good detection power.

This section briefly describes how the MI test operates, starting with the con-
struction of genotype tables to represent the genotype information of the variants, 
followed by the computation of contingency tables to represent the frequency of 
the genotype combinations corresponding to the selected variant combination, and 

Fig. 1   Flowchart of a typical exhaustive epistasis search
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concluding with the MI test to assess the association between the genotype frequen-
cies and the phenotype.

3.1 � Constructing the genotype tables

Genotype tables represent, in binary format, the genotype information of all indi-
viduals under study for a particular variant or combination of variants. They are a 
generalization of the binary representation introduced in BOOST [16] to simplify 
the computation of contingency tables for second-order epistasis interactions. The 
tables contain as many columns as individuals in the data, segregated into cases and 
controls, and as many rows as genotype values a variant or combination of variants 
can show. Every individual has a value of 1 in the row corresponding to its genotype 
and a 0 in every other row. For a human population with biallelic markers, each 
individual can have three different genotypes, and thus genotypes tables contain 3k 
rows with k being the number of variants in combination represented.

Genotype tables are not only used to represent the information of a variant, but 
also to segment the individuals into different groups by their phenotype and geno-
type values and to represent the information of multiple variants in combination. 
This makes them extremely useful later when computing the frequencies of each 
genotype value. The construction of a genotype table for a combination of multiple 
variants implies: 

(a)	 the combination of the different rows of the tables corresponding to the indi-
vidual variants, and

(b)	 the computation of the intersection of each combination of rows (or genotype 
groups) via bitwise AND operations.

Figure 2 gives an example of two genotype tables for two variants a and b for 16 
individuals (eight cases and controls), and the table resulting from the combination 
of these two variants.

3.2 � Computing the contingency tables

A contingency table is a type of table that holds the frequency distribution of a num-
ber of variables, that is, the genotype and phenotype distributions for this domain of 
application. These frequencies can be directly obtained by counting the number of 
individuals in each of the phenotype and genotype groups created by the genotype 
table. This implies counting the number of bits set, an operation commonly known 
as a population count. Figure 3 shows the contingency tables of the example geno-
type tables included in Fig. 2.

3.3 � Mutual information test

Once the contingency table is calculated, the only step left to assess the association 
between the genotype distribution and the phenotype affliction is computing the MI 
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of the table. Considering two random variables X and Y  representing the genotype 
and phenotype variability, respectively, the MI can be obtained as:

where H(X) and H(Y) are the marginal entropies of the two variables, and H(X, Y) is 
the joint entropy. Marginal entropies of one and two variables are obtained as:

(1)MI(X;Y) = H(X) + H(Y) − H(X, Y)

(2)H(X) = −
∑

x∈X

p(x) log p(x)

Fig. 2   Example of two genotype tables of two different variants, a and b , for eight cases and controls, 
and the combined genotype table of the two variants

Fig. 3   Contingency table examples using the same variants as in Fig. 2
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The computational complexity of constructing the genotype and contingency tables, 
and applying the MI test is O(3k ⋅ m) , with k being the number of variants in combi-
nation tested, and m the number of individuals represented in the tables.

4 � Parallel method

Fiuncho implements a parallel exhaustive detection method using a static distribu-
tion strategy. Given a collection of genotype variants from two groups of samples 
(cases and controls), Fiuncho tests for association every combination of variants 
for a particular interaction order using the association test presented in Sect. 3, and 
reports the most associated combinations. To do this, Fiuncho combines three differ-
ent levels of parallelism:

•	 Task parallelism: the search method is divided into independent tasks that are 
distributed among the processing resources available in a cluster of CPUs. MPI 
multiprocessing and multithreading are used for the implementation.

•	 Data and bit-level parallelism: each task exploits the Vector Processing Units 
(VPUs) by using the Single Instruction Multiple Data (SIMD) algorithm pro-
posed in [7], including the explicit vector implementations for the x86_64 CPU 
architecture of the three stages of the association test presented in Sect. 3. Fur-
thermore, this algorithm uses 64-bit word arrays to represent each of the rows 
of the genotype tables, and as a consequence of that, each intersection operation 
(bitwise AND) works with 64 samples at once.

This section discusses the method used to exploit the task parallelism. It starts by 
describing the distribution strategy followed in order to divide and distribute the 
workload among the computational resources available, and concludes with an algo-
rithm that implements the epistasis search using the presented strategy.

4.1 � Distribution strategy

In the epistasis search, the workload is implicitly divided by the combinations them-
selves, and the association tests can be carried out in parallel using a pool of pro-
cessing units. Each association test involves the same computations. However, many 
of the combinations share sub-combinations with one another, and as such, many 
repeating computations concerning the construction of the genotype tables can be 
avoided attending to how the combinations are scheduled on the different units. For 
instance, when searching for fourth-order epistasis, the analysis of the combinations 
with variants (1,2,3,4), (1,2,3,5), (1,2,3,6), etc. requires the construction of the same 
genotype table corresponding to the pair (1,2) and the triplet (1,2,3). Therefore, 

(3)H(X, Y) = −
∑

x,y

p(x, y) log p(x, y)
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assigning all these combinations to the same unit will allow reusing the genotype 
tables of (1,2) and (1,2,3) for all fourth-order combinations that contain them.

Fiuncho implements a static distribution strategy in which the combinations of 
any given order k are distributed among homogeneous processing units using the 
combinations of size k − 1 , following a round-robin distribution of the combinations 
sorted by ascending numerical order. In other words, every combination of size k − 1 
is scheduled among units, and every unit computes all combinations of k variants 
starting with the given k − 1 prefix. This strategy finds a middle ground between a 
good workload balance among processing units and avoiding overlaps in computa-
tions between them. By distributing the workload using the k − 1 combination pre-
fixes we guarantee that every combination of size k reuses the genotype tables of its 
prefix of size k − 1 , but it introduces an overlap between units during the calculation 
of the tables of the k − 1 prefix. Nonetheless, repeating these calculations results in 
a negligible overhead due to the exponential growth of the combinatorial procedure, 
as the experimental evaluation included in Sect. 5 proves.

Figure 4 exemplifies this strategy, showing the distribution of the computations 
resulting from a fourth-order search ( k = 4 ) of eight variants using three processing 
units. The figure uses squares with dotted lines to represent all prefixes of k − 1 = 3 
variants derived from combining the eight inputs, displayed in sorted order from left 

Fig. 4   Example of the distribution strategy, arranging combinations of four variants among three pro-
cessing units. Each prefix of three variants (represented as large squares with dotted lines) is assigned to 
a unit (shown as different colors) following a round-robin distribution, and that unit tests for association 
every combination of four variants starting with the prefix (represented as small colored squares)
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to right and top to bottom. Each prefix square includes one or more colored squared 
in its interior, representing a combination of four variants to be tested for associa-
tion, and the colors indicate the unit which will carry out its test. Every combina-
tion under the same prefix is assigned to the same unit, guaranteeing that the geno-
type table of the prefix is computed only once, and every prefix is assigned to one 
of the three units following a round-robin distribution. At the same time, there are 
small overlaps between the computations corresponding to the different prefixes. For 
example, the prefix (1,2,3) and (1,2,4) require constructing the same genotype table 
for the combination (1,2), and since they were assigned to different units, the table 
will be constructed more than once. This strategy assigns twenty-five, twenty-six 
and nineteen combinations to the three processing units, respectively. Although it 
does not create the most balanced distribution possible, the strategy does not require 
synchronization or communication between units, takes the reuse of genotype tables 
into account and achieves very good results for a more realistic input size.

4.2 � Algorithmic implementation

With the previous distribution strategy in mind, Algorithm 1 presents the pseudoc-
ode for the parallel epistasis detection method. It follows the Single Program Multi-
ple Data (SPMD) paradigm in which all computing units execute the same function, 
while each unit analyzes a different set of variant combinations. The implementation 
combines MPI multiprocessing with multithreading to efficiently exploit the compu-
tational capabilities of CPU clusters. Every MPI process reads the input variants and 
stores each one in a genotype table, maintaining the individual variant information 
replicated in each process. After that, each MPI process spawns a number of threads 
that execute the function presented over a different set of variant combinations. The 
input data is provided to the different threads through shared memory, making an 
efficient use of the memory inside each node. This procedure allows the parallel 
strategy to be abstracted from the topology of the cluster, so that the workload is 
assigned to each core partaking in the computation regardless of its location.
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The input arguments to the function are the array A of n genotype tables repre-
senting the individual variants, the list of variant combinations L to analyze and the 
size B of the blocks in which the integer and floating-point vector operations will 
be segmented. The list of combinations L is provided as an iterator that traverses 
through the combinations assigned to each core without the need of storing the list 
in memory. In turn, it returns the list of combinations of k variants with the highest 
MI values.

Integer and floating-point vector operations are part of the vector functions 
implementing the association test as presented in [7]. The function combine imple-
ments the construction of a genotype table from two previous input genotype tables, 
and the function combine_and_popcount combines in one function the construction 
of a genotype table with the computation of the contingency table from the pre-
vious genotype table using a population count function as explained in Sect.  3.2. 
These two functions are implemented using boolean and integer vector arithmetic. 
The function mutual_information implements the MI test, and uses floating point 
vector arithmetic.

In addition, x86_64 processors are known to reduce the clock frequency attend-
ing to three factors: the number of active cores, the width of the VPU used and the 
type of operations used. For instance, the specification document [17] of the Intel 
Xeon processor (the processor used during the evaluation) defines different base fre-
quencies attending to the number of cores and width of the AVX operations used. 
Furthermore, this processor reduces its turbo frequencies if vector floating-point 
arithmetic is used. To mitigate the impact of this frequency reduction, the SIMD 
algorithm, previously referenced, segments the operations into blocks so that each 
block can operate at a different frequency [7], and the same technique is applied to 
Algorithm 1.

The algorithm primarily consists of a for loop that traverses the list of vari-
ant combinations provided to the function (Line 13). The loop begins by comput-
ing the genotype table for each combination prefix {i1,… , ik−1} . This is done in a 
progressive manner, starting with the table of the first variant of the prefix i1 , and 
adding one extra variant to the genotype table at a time using the function com-
bine, until the whole prefix is included in the table (Lines 14–Lines 17). Once this 
table is computed, every combination of k variants starting with the given prefix, 
{i1,… , ik−1, j} with j ∈ [ik−1, n − 1] , is examined using a for loop (Line  18). On 
each iteration, the genotype frequencies of the combination are obtained through 
the function combine_and_popcount, using the genotype table of the prefix and 
the table of the variant j (Line 26). The frequencies are stored in an array ct of 
contingency tables. Only when B contingency tables are available, the loop enters 
an if branch where the table array ct is processed altogether using a for loop 
(Lines 19–25), effectively25 separating the floating-point vector computations of 
the mutual_information function from the genotype table construction operations. 
On each iteration, a contingency table is processed by computing the MI of the 
table, and its result is stored in a list of S elements, sorted by its MI value using 
the auxiliary function defined in Lines 1–9.
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When the outermost for loop ends, the remaining contingency tables stored in the 
array ct are processed (Lines 30–33) and the algorithm returns the sorted list of the 
top-ranking S combinations (Line 34).

The beginning and the end are the only two points in the program requiring synchro-
nization among threads and MPI processes. Once all threads of a process terminate, the 
different lists of top-ranking combinations kept in the shared memory of the process 
are joined into one, then sorted by their MI value and truncated to S combinations. 
Analogously, once all MPI processes have assembled their joint lists, the results are 
gathered into a single joint list through the MPI collective MPI_Gatherv. This list 
is then sorted by MI and truncated to S combinations again. To conclude, the program 
writes the final list to a file and exits.

5 � Evaluation

This evaluation examines the proposed parallel method in terms of the balance 
achieved by the parallel distribution, the overhead introduced by the overlap in com-
putations among the different processing units, the parallel efficiency achieved for an 
increasing number of processing units and a comparison with state of the art exhaustive 
epistasis detection software. Table 1 describes the characteristics of each node from the 
SCAYLE cluster used throughout the evaluation.

5.1 � Parallel distribution balance

The distribution strategy presented in Sect. 4.1 does not assign the same exact number 
of combinations of k variants to test for association to every computing unit. Instead, 
the strategy makes a compromise between the balance in combinations assigned and 
the reuse of intermediate results.

In order to evaluate how good the designed strategy is, Fig. 5 plots the maximum 
percentual difference between the number of combinations assigned to a computing 
unit and the mean number of combinations assigned to any unit, relative to the latter. It 
can be defined as:

Table 1   Hardware and software 
description of the SCAYLE 
cluster nodes from the 
cascadelake partition

SCAYLE node (cascadelake partition)

CPUs 2x Intel 6240 (36 cores) @ 2.6GHz
Memory 192GB
Network Infiniband HDR @ 100Gbps
GPUs NVIDIA V100
OS CentOS 7.7
Kernel 3.10
Compiler GCC 11.2
Libraries glibc 2.34

OpenMPI 4.1.1
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with di being the number of combinations assigned to the unit i , n the number of 
variants, k the size of the combinations and p the number of processing units used. 
The figure represents the differences in workload distribution using combination 
sizes from 2 to 6 and a number of units from 18 to 522. In order to keep a similar 
number of k-combinations, and thus a similar distribution difficulty across combina-
tion orders, a number of variants of 48 828, 1928, 413, 172 and 100 were used for 
orders 2–6, respectively.

The results show that the proposed distribution keeps the differences under 3% 
for every scenario tested. For scenarios with a larger variant count, as is the case 
during the experimental evaluations of Sects. 5.3 and 5.4, the differences in assigned 
workload are even smaller.

5.2 � Parallel overhead

Although the distribution strategy takes into consideration the reuse of genotype 
tables to avoid repeating the same computations in different processing units, it cer-
tainly does repeat some operations during the construction of the genotype table 
corresponding to the combination prefix assigned by the distribution. In order to 
measure the overhead introduced, we compared the elapsed time of a single-thread 
execution of the proposed implementation with an alternative implementation of 
the same epistasis detection method that examines every combination of variants 
sequentially and avoids repeating any calculation pertaining to any genotype table.

Table  2 shows the overhead, measured as a percentage and calculated as 
100 ⋅

(

T − Talt
)

∕Talt , with T  being the elapsed time of the proposed implementation 

(4)100

max di −

(

n

k

)

∕p

(

n

k

)

∕p

Fig. 5   Maximum difference of assigned combinations to any processing unit from the average number of 
combinations assigned per unit, relative to the latter, for orders ranging from 2 to 6
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and Talt being the elapsed time of the alternative sequential implementation. The 
number of input variants selected is inversely proportional to the order of the inter-
action in order to maintain the runtime manageable, while the number of samples 
per variant was kept constant (2048). The table omits the second and third-order 
overheads because, for those combination sizes, the distribution strategy does not 
produce any overlap in the computations associated with the calculation of genotype 
tables. The results indicate that there is no significant difference between the two 
elapsed times.

5.3 � Speedup and efficiency

This subsection evaluates the speedup and efficiency of Fiuncho using one and mul-
tiple nodes. For both scenarios we selected a number of input variants inversely pro-
portional to the order of the interactions so that the elapsed times of the analysis are 
similar, while the number of samples per variant was kept constant at 2048.

Figure  6 represents the speedups obtained by Fiuncho using a whole node (36 
cores) when compared to single thread execution as seen in Table 3, for epistasis 
orders ranging between two and six. The figure shows two different metrics for the 
speedup: the observed and the frequency-adjusted speedup. The observed speedup 
is calculated as T1∕TN , with T1 being the elapsed time using a single CPU core and 
TN the elapsed time using N CPU cores. This metric is far from the ideal efficiency, 
and this is due to the frequency scaling present in modern processors. Intel CPUs, in 
particular, adjust their maximum core frequencies attending to the number of active 
cores, with a larger frequency disparity if AVX instructions are used [17], as is the 

Table 2   Overhead of the 
parallel algorithm (run using a 
single CPU core) compared to a 
sequential implementation of the 
same operation, for interaction 
orders between four and six

Order Variants Combinations T  (s) T
alt

(s) Overhead (%)

4 464 1906472876 1514.61 1526.48 − 0.78
5 152 632671880 1477.57 1453.21 1.68
6 76 218618940 1518.63 1506.17 0.83

(a) (b)

Fig. 6   Speedups of Fiuncho for multithread executions using 36 threads, compared to a single-thread 
run, representing both the observed and frequency-adjusted speedups
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case with Fiuncho. Therefore, to get a better grasp of the efficiency of the parallel 
implementation, an adjusted speedup compensating for the discrepancy in average 
CPU frequency is included in the figure, calculated as T1∕TN ⋅ F1∕FN , where F1 is 
the average single-core frequency when Fiuncho uses a single core and FN is the 
average multicore frequency when N cores are used. The results for a single-node 
(36 CPU cores) execution show very good efficiencies when the speedup is adjusted 
for the frequency differences between single-core and multicore executions.

Figure 7 shows the speedups obtained for multinode executions using one MPI 
process per node with 36 threads each, comparing the elapsed times obtained with 
a single-node run (36 cores) presented in Table 4. The datasets used in this second 
scenario are substantially larger than those from Table 3, in order to keep the elapsed 
times over an hour long when 14 nodes (504 CPU cores) are used. Here, in a multi-
node environment, there is no difference between the average CPU frequency of the 

Table 3   Elapsed times of single-
thread executions of Fiuncho for 
interaction orders between two 
and six

Order Variants Combinations Elapsed time (s)

2 184865 17087441680 2491.07
3 3246 5694987980 1612.47
4 464 1906472876 1514.61
5 152 632671880 1477.57
6 76 218618940 1518.63

(a) (b)

(d)(c)

Fig. 7   Speedups of Fiuncho using 2, 4, 8 and 14 nodes with 36 threads per node, compared to a single-
node execution
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different nodes since all of them use all the available CPU cores, and thus there is no 
need to include an adjusted measure of the speedup. Again, results show very good 
efficiencies except for the second-order interaction. This is due to the large input 
data for this interaction order, sizing over 29,386 MB and read sequentially, thus 
limiting the maximum speedup achievable.

5.4 � Comparison with other software

Lastly, the performance of Fiuncho was compared with other exhaustive epista-
sis detection tools from the literature: MPI3SNP [4], MDR [3] and BitEpi [5]. To 
do this, we compared the elapsed times of all programs when looking for epista-
sis interactions of orders two to four. In order to keep the elapsed time constrained, 
multiple data sets were used containing a number of variants inversely proportional 
to the order of the epistasis search and the hardware resources used. The number of 
samples per variant, however, is 2048 for all data sets. Since MDR is considerably 
slower than the rest of the programs included, smaller data sizes were used for its 
evaluation.

Table  5 compares the elapsed times of Fiuncho and MPI3SNP, the tool previ-
ously developed by us. This program is limited to third-order searches, thus the 
evaluation only considers this interaction order. It implements MPI multiprocessing, 
so different scenarios were considered which include single-thread, single-node and 
multinode configurations. Both MPI3SNP and Fiuncho assign one MPI process per 
node, and create as many threads per process as cores available in each node. The 
results show that Fiuncho is significantly faster than MPI3SNP in all the evaluated 
scenarios.

Table 4   Elapsed times of single-
node (36 cores) executions of 
Fiuncho for interaction orders 
between two and six

Order Variants Combinations Elapsed time (s)

2 3755572 7052158645806 56261.70
3 28576 3888727096800 42539.30
4 2409 1399760565126 43176.00
5 561 454852770372 42594.70
6 223 159602946217 43103.40

Table 5   Elapsed time, in seconds, to complete an epistasis search both with MPI3SNP and Fiuncho, 
using a different number of nodes and CPU cores

Order Variants Combinations Nodes Cores Fiuncho (s) MPI3SNP (s)

3 3246 5694987980 1 1 1612.47 12868.42
3 8505 102498733260 1 18 2240.87 15312.84
3 10716 205033710860 1 36 2269.89 16046.58
3 13501 410062497750 2 72 2260.79 16085.50
3 17010 820134519120 4 144 2291.31 16186.12
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Table 6 compares the results of BitEpi with Fiuncho. BitEpi is a very novel pro-
gram that only supports interaction orders between two and four, thus the evaluation 
is restricted to those orders. Additionally, BitEpi supports multithreading, therefore 
single-thread and multithread scenarios are used. BitEpi uses a substantially differ-
ent association test with a time-complexity of O(n) , while the association test used 
in Fiuncho has a time-complexity of O(3n) . This can be observed in the results as a 
shrinking difference between the elapsed times with the epistasis size. Despite this, 
Fiuncho is still faster in all configurations tested. Furthermore, BitEpi does not sup-
port multinode environments and can only exploit the hardware resources of a single 
node, while Fiuncho can use as many resources as available in order to reduce even 
further the elapsed time of the search.

Lastly, Table 7 compares the elapsed time of MDR with Fiuncho, using a more 
limited number of variants than previous comparisons. MDR is a relatively old 

Table 6   Elapsed time, in 
seconds, to complete an 
epistasis search both with BitEpi 
and Fiuncho, using different 
orders and number of CPU cores

The total workload between orders was kept as similar as possible

Order Variants Combinations Cores Fiuncho (s) BitEpi (s)

2 184865 17087441680 1 2491.07 18090.91
2 784314 307573833141 18 3582.01 22294.39
2 1109187 615147345891 36 3797.39 23365.74
3 3246 5694987980 1 1612.47 5417.15
3 8505 102498733260 18 2240.87 7474.48
3 10716 205033710860 36 2269.89 7564.48
4 464 1906472876 1 1514.61 2202.65
4 954 34296318126 18 2101.60 3239.25
4 1134 68539472001 36 2111.74 3246.72

Table 7   Elapsed time, in 
seconds, to complete an 
epistasis search both with MDR 
and Fiuncho, using different 
orders and number of CPU cores

The total workload between orders was kept as similar as possible

Order Variants Combinations Cores Fiuncho (s) MDR (s)

2 9300 43240350 1 6.26 3571.77
2 39455 778328785 18 13.16 8656.46
2 55797 1556624706 36 16.04 10285.10
3 580 32350660 1 9.22 3204.88
3 1518 581842316 18 12.94 4710.82
3 1913 1164963436 36 13.34 6598.97
4 160 26294360 1 20.97 3767.28
4 328 473490550 18 29.04 4710.03
4 390 949173615 36 29.37 6491.59
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program written in Java, but we decided to include it due to its relevance in the field. 
It implements an epistasis search supporting interactions of any order, although its 
elapsed time quickly becomes prohibiting even with a reduced input size, so we 
decided to keep the interaction orders between two and four. MDR supports multi-
threading, so single-thread and multithread scenarios were considered in this evalu-
ation. Results show a massive difference in elapsed times, with an average speedup 
of 358 of Fiuncho over MDR. This speedup could be increased even further if we 
considered multinode scenarios for larger data sets, something that MDR does not 
support, unlike Fiuncho.

6 � Conclusions

This paper presents Fiuncho, an epistasis detection program written in C++, with 
MPI directives and multithread support, that can be executed in CPU clusters. It 
supports any interaction order, and implements an association testing method based 
on the Mutual Information metric that has been proven to perform well in epistasis 
detection [2]. Fiuncho includes explicit SIMD implementations of the association 
test calculations to exploit the full computational capabilities of x86_64 processors.

Fiuncho exhibits exceptional performance, with a parallel strategy that balances 
the workload remarkably well, obtaining computational efficiencies close to an ideal 
growth with the hardware resources provided. When compared to existing epistasis 
detection software, Fiuncho offers support for a wider scope of application with no 
limit on the target epistasis size, and performs the fastest of all programs consid-
ered in this study. For example, on average, Fiuncho is seven times faster than its 
predecessor, MPI3SNP [4], three times faster than BitEpi [5] and 358 times faster 
than MDR [3]. Moreover, the speedups over BitEpi and MDR could be multiplied 
if larger experiments on multinode environments were considered, as they are 
restricted to the hardware resources available in a single node.

The main limitation of Fiuncho is its computational complexity, which makes its 
cost prohibitive for large-scale studies and high interaction orders. For this reason, 
future work should focus on improving the exhaustive strategy so that its computa-
tional complexity can be reduced while not losing the epistasis detection capabilities 
characteristic of these methods.

Fiuncho is distributed as open-source software, available to all the scientific com-
munity in its Github repository1.
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