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Abstrat

The main objetive of this paper is to solve the optimization problem that is assoiated with the

lassi�ation of DNA samples in PCR plates for Sanger sequening. To ahieve this goal, we design

an integer linear programming model. Given that the real instanes involve the lassi�ation of

thousands of samples and the linear model an only be solved for small instanes, the paper inludes

a heuristi to ope with bigger problems.

The heuristi algorithm is based on the simulated annealing tehnique. This algorithm obtains

satisfatory solutions to the problem in a short amount of time. It has been tested with real

data and yields improved results ompared to some ommerial software typially used in (linial)

laboratories. Moreover, the algorithm has already been implemented in the laboratory and is being

suessfully used.

Keywords: optimization, Sanger sequening, integer linear programming, simulated annealing

1. Introdution

Reent developments in the study of DNA will have a substantial impat on various �elds of

siene, suh as linial mediine and forensi studies. Inreasingly many ompanies and laboratories

are proessing DNA samples for various purposes and ompeting in terms of the time and ost that

are required for proessing the results. Beause optimization tehniques an be used to redue the

time or ost of any proess, these tehniques are of great interest for DNA sample proessing.
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In this artile, we will address a sheduling problem that arises within Health in Code (http:

//www.healthinode.om), whih is a ompany that speializes in the geneti diagnosis of inherited

ardiovasular diseases. Every day, thousands of DNA samples are proessed in their labs.

DNA sequening is the proess that is used to determine the order of the four nuleotides,

namely, Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), that make up the DNA

moleule. Currently, there are several methods for DNA sequening. Health in Code is a om-

pany that has extensive experiene with the Sanger method [7℄. The method, whih is also referred

to as dideoxynuleotide sequening and hain termination sequening, onsists of the following

steps:

� DNA extration (from samples of tissue, saliva, blood, et.) and dilution treatment;

� Polymerase hain reation (PCR): an e�etive proess for making opies of segments of DNA;

� PCR produt puri�ation: to remove elements that are used in the PCR proess to obtain

high-quality DNA samples for sequening;

� DNA sequening: to sort the DNA fragments by size in a sequening mahine so that the

original piee of DNA an be deoded.

Although all these steps are essential in the Sanger method, this paper fouses on the PCR

proess. The polymerase hain reation is a method for amplifying DNA to generate millions of

opies of one or several piees of DNA. To perform this reation, the DNA is deposited into PCR

plates. Then, the plates are plaed into thermoylers

1

to regulate temperature during ylial

programmes.

In this framework, we are interested in optimizing the organization of DNA samples in the plates

for performing the PCR proess, whih is not an easy task sine many aspets must be onsidered

to ahieve the optimal organization of DNA samples. Eah DNA sample is deposited into the well

of a plate; however, depending on the omponents that are used in the proedure, eah well from

a PCR plate an be used to obtain opies of a single piee of DNA or opies of a group of piees

of DNA. The omponents that are used with the DNA sample determine not only the piee or

1

A thermoyler, whih is also known as a thermal yler, is a laboratory mahine that allows several temperatures

to be set in a blok of a plate.
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piees to be opied but also the neessary temperature for proessing the well in the thermoyler.

However, due to the tehnologial harateristis of thermoylers, wells in the same plate should

satisfy several onditions. Aording to their harateristis, eah plate is divided into several strips

and all the wells in the same strip should be proessed at the same temperature. Moreover, the

temperatures of the onseutive strips in the same plate should belong to a spei�ed range.

Sine proessing eah plate in the laboratory is slow and expensive, the main objetive of our

optimization problem is to order the DNA samples suh that the number of plates is minimized

under the restritions that are imposed by the harateristis of the thermoyler. It is also desirable

to obtain plates that are as full as possible.

To the best of our knowledge, the optimization literature has not addressed this topi. Chara-

teristis of the problem remind us of a bin paking problem in whih samples must be paked in the

plates. The bin paking problem is a well-known NP-hard optimization problem (see, for instane,

Delorme et al. [3℄). For this reason, it is not always possible to obtain the optimal solution of this

problem in a reasonable omputational time. Some of the heuristi proposals for solving the bin

paking problem use strategies that minimize the slak of eah bin (see, for instane, Fleszar and

Hindi [5℄). However, in our setting, if we onsider various temperature ranges and the onstraints

that are assoiated with the reagent that is neessary for amplifying a spei�ed region of DNA, we

will be dealing with a di�erent optimization problem in the end.

Due to the harateristis of our problem, although we have developed an ILP model to solve

this problem, we have also implemented a heuristi algorithm based on the simulated annealing

proedure that provides satisfatory solutions in short omputational times. This algorithm is

being suessfully used in the laboratory.

The remainder of the paper is organized as follows: In Setion 2, the problem is desribed in

detail. Setion 3 addresses both the optimization model and the heuristi algorithm. In Setion 4,

we provide a detailed explanation of the numerial experiments that are neessary for justifying an

interest in the results. For this purpose, we have onsidered real instanes from the laboratory.

2. Problem

In this problem, the available DNA samples are organized in PCR plates to be proessed in

thermoylers. To perform this task properly, several details must be onsidered:
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The laboratory uses 96-well PCR plates and the wells are organized in 8 rows and 12 olumns.

Eah plate is omposed of six strips. Eah strip has 24 wells, whih are arranged in 8 rows and

2 olumns. Aording to the harateristis of the thermoylers, all the wells in the same strip

will be proessed at the same temperature. In addition, the di�erene in temperature between two

onseutive strips annot exeed 5 degrees entigrade. Although the strips in a plate must satisfy

these temperature onditions, the temperature in the strips is not �xed, but rather is seleted by

the user. The on�guration of a 96-well PCR plate is shown in Figure 1 (a).
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(b) plate with DNA samples

Figure 1: Example of a PCR plate

Eah DNA sample, together with all the hemial omponents that are neessary for amplifying

a spei�ed region of DNA, are deposited in a well. If we are interested in amplifying the same

region of DNA for multiple DNA samples, we must inlude the same hemial omponents in their

orresponding wells. In this ase, we say that these DNA samples belong to the same group. All

DNA samples in a group must be proessed at the same temperature, whih is �xed. However, it

is possible to have multiple groups with the same temperature.

For instane, let us suppose that the laboratory is interested in studying the risk of geneti

diseases. In this partiular ase, we an think of a group as being assoiated with a disease. Thus,

the laboratory must determine, using the DNA samples of the lients, whether the lients will

develop this disease. However, sine the disease will be deteted by evaluating a spei�ed region of

DNA, eah DNA sample will be mixed with a reagent and proessed at the neessary temperature

for amplifying this region.

In addition, one well of the plate should be reserved for the isolated reagent that is assoiated
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with a group, whih is neessary to verify that the experiment is performed orretly.

Figure 1 (b) shows an example of one �lled plate. The 12 groups are represented by olour.

We know the number of DNA samples in eah group and the temperatures that orrespond to

the groups. There are six temperatures for the groups. With this information, we an assign

the temperatures in inreasing order to the 6 strips of the plate beause the temperature di�erene

between any two onseutive strips does not exeed 50 C. With this on�guration, we have 6 groups

that have the same temperature in Strip 4. Moreover, for eah group, we have added the reagent,

whih is represented by a irle of the same olour (but with a blak border), as the group samples;

see, for instane, the �red� group, whih is plaed in two wells, one of whih ontains the DNA

sample mixed with the reagent, whereas the other ontains only the reagent.

In summary, the laboratory initially has multiple samples, eah of whih has its own ode. The

samples belong to groups that are determined by the region of DNA that will be ampli�ed. The

laboratory also knows the temperature assoiated with eah group. After solving the optimization

problem with this information and the restritions that are imposed by the harateristis of the

PCR plates, we obtain the number of samples of eah group in every strip of a plate and whether

the reagent of eah group is present in any strip. We will also know the temperature of every strip,

whih will be the only information provided by the optimization problem sine in the next phase,

the software will plae eah sample or reagent at random but aording to this distribution. Then,

for eah DNA sample or reagent, we will know the ode of the plate and the position where it will

be plaed, the type of analysis (the group to whih it belongs) and the temperature at whih it will

be proessed.

3. Solution methods

3.1. Model

We have designed an integer linear programming (ILP) problem that takes into aount all the

requirements that were disussed. The main objetive of this problem is to minimize the number of

oupied plates. We know the number of samples and the temperature for eah group. With this

information, the ILP problem will assign the samples and the temperature in eah strip. Below, we

list the parameters and the deision variables that are used in the model.

Parameters:
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� {1, . . . , p} is the set of available plates, with index q. Beause eah plate is divided into six

strips, the set of strips an be represented by {1, . . . , 6 · p}, with index l.

� wq is the weight assigned to eah plate q ∈ {1, . . . , p} in the objetive funtion.

� {1, . . . , n} is the set of groups with index i.

� Ni indiates the number of samples in eah group i ∈ {1, . . . , n}.

� Ti is the temperature used in the proess for eah group i ∈ {1, . . . , n}. Several groups an

be proessed at the same temperature. Then, we will onsider {T 1, . . . , Tm} ⊆ {T1, . . . , Tn}

as the set of temperatures that are used in the proess.

Deision variables:

For eah strip l ∈ {1, . . . , 6 · p}, we de�ne the following variables:

� tl is the temperature seleted for l.

� For eah group i ∈ {1, . . . , n},

⋆ nil represents the number of samples of group i that are plaed in strip l.

⋆ xil is a binary variable suh that

xil =







1, if the reagent of group i is in strip l;

0, otherwise.

� For eah j ∈ {1, . . . ,m},

⋆ yjl is a binary variable suh that

yjl =







1, if strip l has been assigned temperature T j
;

0, otherwise.

Objetive funtion and onstraints:

min z =

n
∑

i=1

p
∑

q=1

wq

6·q
∑

l=6·(q−1)+1

nil (1)
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subjet to

n
∑

i=1

(nil + xil) ≤ 16 ∀l ∈ {1, . . . , 6 · p} (2)

tl − tl+1 ≤ 5 ∀l ∈ {6 · (q − 1) + 1, . . . , 6 · q − 1},∀q ∈ {1, . . . , p} (3)

tl+1 − tl ≤ 5 ∀l ∈ {6 · (q − 1) + 1, . . . , 6 · q − 1},∀q ∈ {1, . . . , p} (4)

m
∑

j=1

yjl · T
j = tl ∀l ∈ {1, . . . , 6 · p} (5)

m
∑

j=1

yjl ≤ 1 ∀l ∈ {1, . . . , 6 · p} (6)

yjl ≥

∑

i:Ti=T j

nil

n
∑

i=1

Ni

∀l ∈ {1, . . . , 6 · p},∀j ∈ {1, . . . ,m} (7)

6·p
∑

l=1

nil = Ni ∀i ∈ {1, . . . , n} (8)

nil − xil ≥ 0 ∀l ∈ {1, . . . , 6 · p},∀i ∈ {1, . . . , n} (9)

6·q
∑

l′=6·(q−1)+1

Nixil′ − nil ≥ 0 ∀i ∈ {1, . . . , n},∀l ∈ {6 · (q − 1) + 1, . . . , 6 · q},

∀q ∈ {1, . . . , p} (10)

6·q
∑

l=6·(q−1)+1

xil ≤ 1 ∀i ∈ {1, . . . , n},∀q ∈ {1, . . . , p} (11)

The objetive funtion (1) minimizes the number of oupied plates. To attain this objetive,

the number of samples in eah plate is multiplied by a weight. Although the laboratory is mainly

interested in minimizing the number of plates, it would also be desirable to minimize the total

number of oupied ells

2

and maximize, aording to the lexiographial order

3

, the oupany

rate of the plates. The three objetives an be aomplished by penalizing the plates in the last

2

The total number of oupied ells is omposed of the number of ells that are oupied by all the samples, whih

is �xed, and the number of ells that are neessary for plaing the orresponding reagents, whih is variable.

3

The laboratory prefers to have the �rst plates oupied to the detriment of the last ones to be able to plae new

samples in the last plates while the �rst ones are being proessed. Note that those new samples are alloated one

the solution has been obtained and already the �rst plates have been proessed.
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positions using the weights. Then, the weights will be onsidered in inreasing order to �ll in the

ells of the �rst plates. In pratie, we use wq = q for all q ∈ {1, . . . , p}.

Constraint (2) sets the number of available ells in eah strip. Constraints (3) and (4) guarantee

that the absolute value of the di�erene in temperature between two onseutive strips does not

exeed 5 degrees entigrade. Constraints (5), (6) and (7) ensure that the temperature of eah strip

is the same as the temperature of the groups with samples in the strip. Therefore, if

m
∑

j=1

yjl = 0,

strip l is an empty strip and will not be proessed. Otherwise,

m
∑

j=1

yjl = 1 and all the ells in strip l

will be proessed at the same temperature. Constraint (8) is used to hek that all samples are in

the ells of the plates, whereas (9), (10) and (11) are assoiated with the reagent. These last three

onditions require that if one or more samples of group i is in plate q, the isolated reagent related to

this group should be deposited in exatly one well in the plate; otherwise,

6·q
∑

l=6·(q−1)+1

xil = 0 implies

that there are no samples of group i in plate q and the orresponding reagent will not appear in

the plate.

3.2. Heuristi algorithm

Beause it is neessary to provide feasible and reasonable solutions to the problem in a short

omputational time, we have designed a heuristi algorithm. The heuristi algorithm is based on the

simulated annealing method, whih was introdued by Kirkpatrik et al. [6℄. The main motivation

of the simulated annealing method omes from the analogy between the physial annealing of solids

and ombinatorial optimization problems. A thorough review of this method an be found in Aarts

et al. [1℄ or Eglese [4℄.

To implement this method, it is neessary to de�ne the problem in terms of a solution spae

with a de�ned neighbourhood and ost funtion. The algorithm starts with an initial solution

and moves randomly through the solution spae, seleting a neighbour of the urrent solution

and omparing the di�erene in ost between the two solutions. If the new solution provides a

better result in terms of the ost funtion, we hoose it as the new solution. Otherwise, although it

provides a poorer result, there is still a probability of aepting the new solution. The probability of

aepting a move is typially given by exp(−β/T ), where β is the ost inrement and T is a ontrol

parameter that orresponds to temperature in the analogy with physial annealing. Aording to

this probability funtion, small inreases in the ost funtion are more likely to be aepted than
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large inreases. Moreover, when T is high, most moves are aepted, whereas when T approahes

zero, the probability of aepting moves is very small. To avoid loal optima, the initial value of T

is relatively high and is gradually dereased when new movements are made.

3.2.1. Initial solution

The initial solution is obtained by sorting the groups in asending order aording to their

proessing temperature. The samples will be deposited by olumns in the wells aording to this

group order. In addition, we must reserve one well for the reagent of the group in all the plates

in whih at least one sample of the group is deposited. The reagent of a group in a plate will be

deposited immediately after the last sample of the group.

One the samples and reagent of a group have been deposited in the plate, we an deposit the

samples of the next group as lose as possible, under the restrition that samples of both groups

an only be in the same strip if both groups are going to be proessed at the same temperature;

otherwise, the samples of the two groups annot be in the same strip.

If the samples of two onseutive groups must be proessed at di�erent temperatures, one the

samples of the �rst group have been deposited in the last strip, we deposit the samples of the

next group in the onseutive strip if the di�erene in the proessing temperature between the two

groups does not exeed 50 C. Otherwise, we leave as many empty strips as neessary to satisfy the

onstraint on the di�erene in temperature between onseutive strips.

The pseudoode of the algorithm for obtaining the initial solution is presented as Algorithm 1.

The main body of the algorithm desribes the initial sorting method. Then, the proess of assigning

a sample to existing plates is performed aording to the onstraints that are spei�ed above. This

proess is re�eted in the pseudoode in Algorithm 2. If a sample annot be assigned to an existing

plate, a new one is reated.

3.2.2. Movements

To improve upon the initial solution and obtain the �nal positions of the samples in the plates,

the main algorithm explores the searh spae by reating new solutions from a urrent solution via

movements. We have devised two movements, from whih a neighbouring solution is generated:

1. Grouping movement. First, a group is randomly seleted. If there are samples of the same

group in di�erent plates, we randomly hoose two plates where at least one sample of the

group has been deposited. Then, we try to join all the samples of the group in one of the

9



Algorithm 1: Initial solution

1. Input: samples, list of samples to be proessed; maxTempDiff , maximum allowable temperature

di�erene between plate strips

Output: initialSol, initial solution (list of plates)

2. plates← ø

// Samples are sorted aording to their temperature (that is, to the temperature of the group

// eah of them belongs to)

3. sort(samples)
4. for i = 0 to samples.size do

5. posP late← 0
// Existing plates are traversed to alloate eah sample

6. while posP late < plates.size do

7. currentP late← plates(posP late)
8. isSampleAssigned← assignSample (samples(i), currentP late,maxTempDiff)
9. if ! isSampleAssigned then

10. posP late + = 1

11. else

12. break

// Whenever a sample annot be assigned to existing plates, a new plate is reated to ontain it

13. if ! isSampleAssigned then

14. newP late← new P late()
15. assignSample (samples(i), newP late,maxTempDiff)

16. addP late(newP late,plates)

17. initialSol ← plates

18. return initialSol

two plates. If the empty wells in the plate are not su�ient for this, it is possible to move

to the plate samples of other groups that have similar proessing temperatures. The groups

that have samples in the other plate are preferred to other groups. Moreover, we move the

minimum number of plates that are neessary to satisfy the feasibility onstraints. This

movement also allows all the samples of one group to be moved from one plate to another

plate where there is no sample in the group.

2. Strip-exhange movement. We selet two strips in two plates and exhange them. Although

the temperature onstraint between onseutive strips should be satis�ed for the movement

to be permitted, the temperatures of the strips an be di�erent.

The movements will be seleted aording to a �xed parameter that denotes the probability of

eah movement. If a movement is not feasible, a new movement will be made. If no movement is

feasible, the algorithm terminates and the solution that was obtained in the last iteration is seleted
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Algorithm 2: Sample assignment

1. Input: sample, sample to be assigned; plate, plate for holding the sample; maxTempDiff , maximum

allowable temperature di�erene between plate strips

Output: true if sample is �nally alloated in plate; false otherwise

2. isSampleAssigned← false

// First, we attempt to alloate the sample in some of the non-empty strips (that is, strips that already

// hold other samples)

3. nonEmptyStrips← plate.getNonEmptyStrips()
4. posStrip← 0
5. while (! isSampleAssigned && posStrip < nonEmptyStrips.size) do
6. currentStrip← nonEmptyStrips(posStrip)

// A sample an be assigned to a non-empty strip if their temperatures math. There must also be

// enough spae remaining to hold the sample and the reagent of the group (if needed)

7. . if (hekTemperature (sample, currentStrip) && hekSpae (sample, currentStrip)) then
8. addSample(sample, currentStrip)
9. isSampleAssigned← true

10. else

11. posStrip + = 1

// If none of the non-empty strips an hold the sample, we try to assign it to some of the

// empty strips (if any)

12. if ! isSampleAssigned then

13. emptyStrips← plate.getEmptyStrips()
14. posStrip← 0
15. while (! isSampleAssigned && posStrip < emptyStrips.size) do
16. currentStrip← emptyStrips(posStrip)

// To assign a sample to an empty strip, we must guarantee that the maximum allowable

// temperature di�erene between the plate strips is not exeeded

17. if validateTemperatureDi� (sample, currentStrip, plate,maxTempDiff) then
18. addSample(sample,currentStrip)
19. isSampleAssigned← true

20. else

21. posStrip + = 1

22. return isSampleAssigned

as the �nal solution of the algorithm

4

.

3.2.3. Cost funtion

The ost funtion for omparing the urrent and new solutions at eah iteration of the algorithm

is obtained by applying the lexiographial order to the following objetives:

� First objetive: minimize the number of non-empty plates.

� Seond objetive: minimize the number of non-empty wells.

4

This does not limit the searh apaity, as we are already onsidering an esape mehanism from loal optima

based on aepting solutions that may be worse than the urrent one. Instead, this seletion avoids repeated iterations

of the algorithm in a rare senario.
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We only used two objetives beause the de�nition of the implemented movements and the

seond objetive indiretly improve the oupany rate of the plates. Furthermore, we ould have

onsidered a single objetive, as in the ILP model. However, the use of a single aggregated objetive

often results in the heuristi algorithm �nding loal minima and in a high degree of variability in

the results. Thus, we have ruled out this strategy.

The pseudoode of the algorithm for obtaining the �nal solution is presented as Algorithm 3.

Algorithm 3: Simulated annealing

1. Input: initialSol, initial solution; maxIter, maximum number of algorithm iterations; Tmax, initial

temperature; Tmin, minimum temperature; α, ooling parameter; SEProb, probability of applying

a Strip− exchange movement (thus, a Grouping movement will be applied with probability

1− SEProb)

Output: bestSol, best global solution that has been found

2. bestSol← initialSol

3. currentSol← initialSol

4. for i = 0 to maxIter do

5. T ← Tmax

6. while T ≥ Tmin do

// A new solution is reated from the urrent one by applying a movement. If

// no movement an be applied, the algorithm terminates

7. newSol ← applyMovement (currentSol, SEProb)
8. if newSol = ø then

9. return bestSol

10. else

// We must always keep updated the best global solution that has been found so far

11. updateBestSol (newSol, bestSol)
// If newSol improves currentSol (that is, if it uses fewer plates or

// if it minimizes the number of non-empty wells), it will replae the urrent solution

// for the next iteration

12. ase numPlates (newSol) < numPlates (currentSol) do
13. currentSol ← newSol

14. ase numPlates (newSol) = numPlates (currentSol) do
15. if nonEmptyWells (newSol) ≤ nonEmptyWells (currentSol) then
16. currentSol ← newSol

17. else

18. threshold← e
nonEmptyWellsDiff(newSol,currentSol)

T

19. aeptWorseSolution (generateRandom(), threshold, newSol, currentSol)

// Even when newSol is worse than currentSol, it still may replae the urrent solution

20. otherwise do

21. threshold← e
numPlatesDiff(newSol,currentSol)

T

22. aeptWorseSolution (generateRandom(), threshold, newSol, currentSol)

23. T ← α ∗ T

24. return bestSol
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3.2.4. Example

To demonstrate how the algorithm operates, we onsider the following example: We must

distribute 69 samples that are organized in 14 groups (and the orresponding reagents) in the

plates. The initial solution of the algorithm is represented in the �rst part of Figure 2. The groups

are ordered aording to their temperatures in inreasing order. Aording to this order, we �x the

temperatures of the strips. To organize the samples under this riterion, we need two plates and

the number of oupied ells is 84 (69 samples and 15 reagents). There are several strips that have

the same temperature sine in these ases, one strip is not su�ient to hold all the samples that

are proessed at the orresponding temperature. Moreover, the samples of the �violet� group are

distributed in both plates. Then, the grouping movement ould onsist of joining all the samples

of the group in the �rst plate and moving the �pink� group to the �rst plate.

Both solutions (the initial solution and the solution obtained after 1 iteration of applying the

grouping movement of the algorithm) require two plates. However, whereas the number of oupied

ells in the initial solution is 84, this number is redued to 83 after 1 iteration sine the number of

reagents has been redued from 15 to 14. Thus, the solution has been improved after 1 iteration.
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Figure 2: Grouping movement

Suppose we aept this new solution and perform another iteration. Now, we ould apply the

13



strip-exhange movement on the fourth strip of the �rst plate and the seond strip of the seond

plate. After this movement, the number of oupied ells is again 83; however, the solution is

improved beause the oupany rates have hanged from (51.04,35.42) to (65.63,20.83). This

movement is illustrated in Figure 3.
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Figure 3: Strip-exhange movement

4. Experimental results

4.1. Data

The solution methods have been tested with real data. We have onsidered 36 �les, whih are

divided into two sets:

� The �rst set ontains 30 �les (Id 1-30), eah of whih ontains information on one working

session in the laboratory.

� The seond set ontains 6 �les (Id 31-36). Eah one of these �les orresponds to 2 or 3 plates

that have been randomly hosen from one working session.

Table 1 summarizes the main harateristis of the �les (numbers of samples, groups and group

temperatures). In both sets, the �les have been ordered aording to the number of samples.

The number of temperatures remains stable in all senarios. However, the number of groups and,
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espeially, the number of samples vary onsiderably. Hene, the harateristis of eah working

session are highly partiular.

Id 1 2 3 4 5 6 7 8 9 10 11 12

Samples 174 193 233 285 290 315 358 368 432 434 501 551

Groups 80 68 31 147 87 99 35 27 32 44 82 37

Temperatures 13 14 12 18 10 16 10 11 14 13 15 15

Id 13 14 15 16 17 18 19 20 21 22 23 24

Samples 612 647 747 797 876 918 963 1128 1270 1309 1398 1473

Groups 107 27 37 27 120 184 37 192 167 201 200 197

Temperatures 17 12 15 11 13 17 15 16 17 17 18 16

Id 25 26 27 28 29 30 31 32 33 34 35 36

Samples 1944 2071 2248 2496 2703 3783 40 44 50 65 77 84

Groups 151 162 165 179 200 171 24 31 45 34 43 68

Temperatures 15 15 17 17 17 17 11 11 14 15 13 16

Table 1: Desription of the �les that were obtained from real data

4.2. Comparison between LabWare, the ILP model and the heuristi algorithm

This setion is devoted to omparing the results that were obtained in the laboratory with

LabWare software

5

and the results that were obtained via our solution methods. Our solution

methods have been evaluated using a omputer with an Intel(R) Core(TM) i7-3770 CPU of 3.40

GHz and 16 GB of RAM. Moreover, the ILP problem was solved using Gurobi Optimizer (version

6.0.5), whereas the heuristi algorithm was implemented in Java.

Eah working session in the laboratory involves many samples and groups. Thus, the ILP

problem for Files 1-30, whih are related to real working sessions, will be large and annot be

solved in a reasonable amount of time. To demonstrate this, Table 2 lists the results that were

obtained with ten examples from the �rst set. The ILP problem solutions were obtained after 60

hours. Aording to Table 2, after this time, we annot guarantee the optimality of the solutions.

The table also indiates the best solution that was obtained and the size

6

of the ILP problem, the

gap of the solution

7

and the minimum time needed to obtain the solution. The results demonstrate

the neessity of developing a tool to identify satisfatory solutions in a reasonable omputational

time.

5

Sine LabWare is a omerial software, we do not know exatly how the optimization tool of this software works.

6

When we refer to the size of an ILP problem, we �rst indiate the number of onstraints, followed by the number

of variables.

7

The gap is omputed with the following formula: 100 ∗ |objective.lower.bound−incumbent.objective|
|incumbent.objective|

.

15



Id

ILP problem solution

Plates Oupany rates Size Gap (%) Minimal time

1 4 100/98.96/44.79/22.92 4664×4176 2.17 2.07 h

2 5 100/97.92/55.21/20.83/2.08 5048×4530 3.14 0.21 h

3 4 100/94.79/64.58/26.04 2043×1800 4.17 54.87 h

4 7 98.96/97.92/96.88/95.83/39.58/17.71/6.25 14476×13146 5.43 59.61 h

5 5 100/100/100/72.92/22.92 6182×5550 1.18 12.89 h

6 6 100/100/96.87/84.37/46.87/6.25 7989×7452 1.02 3.46 h

7 5 100/100/100/80.20/36.46 2750×2430 0.99 58.21 h

8 5 100/100/98.96/86.46/31.25 2252×1980 1.90 53.8 h

9 7 100/100/100/98.96/65.63/23.96/2.08 3364×3318 1.90 41.05 h

10 7 100/100/98.96/98.96/75.00/28.13/4.17 4790×4284 1.79 45.92 h

Table 2: Solutions for Files 1-10 that were obtained by solving the ILP problem

However, it is possible to �nd the optimal solutions in few seonds for problems that are asso-

iated with a small number of plates. For this reason, we have onsidered 6 small examples with 2

or 3 plates that are on�gured in the laboratory with LabWare. Despite not being representatives

of a typial working session, these examples will be useful for omparing optimal solutions with

the solutions that are provided by the heuristi algorithm. Thus, in Table 3 we an ompare the

oupany rates of the three methods: LabWare, the ILP model and the heuristi algorithm. The

table also lists the omputational times for the ILP model and the heuristi algorithm.

Id Oupany rates Computational times

LabWare ILP model Heuristi ILP model Heuristi

31 37.50/29.17 50.00/16.67 50.00/16.67 0.01 s 0.006 s

32 29.17/28.13/20.83 57.29/20.83 57.29/20.83 0.25 s 0.07 s

33 54.17/37.50/7.29 71.88/20.83/6.25 71.88/20.83/6.25 0.88 s 0.065 s

34 41.67/39.58/21.88 73.96/20.83/8.33 73.96/20.83/8.33 4.04 s 0.26 s

35 47.92/47.92/30.21 86.46/32.29/6.25 86.46/32.29/6.25 4.76 s 0.55 s

36 67.71/50.00/40.63 91.67/45.83/20.83 91.67/45.83/20.83 4.76 s 0.62 s

Table 3: Examples with 2 or 3 plates

We have obtained the optimal solutions of the ILP problem in Files 31-36. However, the

solution provided by LabWare never oinides with the optimal solution. In the seond example,

the LabWare solution requires an additional plate and in the other ases, the distribution of the

samples in the plates is worse. However, after determining the best values for the input parameters

in the algorithm (a study of the parameters of the algorithm will be performed next), we have

veri�ed that for these 2 and 3 plate �les, the heuristi algorithm reahes the optimal value provided
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by the ILP model in less time. Sine Files 31-36 have been randomly seleted from the same working

session, these results enable us to guarantee the satisfatory performane of the heuristi algorithm.

4.3. Study of the parameters in the heuristi algorithm

In this setion, we fous on obtaining the appropriate parameters for Algorithm 3 aording to

our experimental environment.

The algorithm depends on several input parameters, as disussed above. To ensure its proper

performane in our senario, it is neessary to adjust these parameters aording to our data. Next,

we justify the values of these input parameters:

� Initial temperature. The initial temperature was set to 100. Aording to Ben-Ameur [2℄,

this value ensures a low probability of aeptane of poor solutions with respet to the �rst

objetive and higher aeptane ratio with respet to the seond objetive. Thus, when the

number of plates is minimized, there is greater �exibility for �lling them in the best possible

way.

� Minimum temperature. The �nal temperature at eah simulated annealing iteration was set

to 1E − 10. This low value permits an exhaustive searh at eah iteration.

� Cooling parameter (α). Our annealing proedure initially onsiders a high temperature. Then,

the temperature is lowered inrementally by a onstant fator. It is important to onsider

su�iently many steps at eah temperature to keep the system lose to equilibrium until the

system approahes the minimum temperature. We have onsidered α = 0.9.

� Maximum number of iterations. One the above parameters were set, we performed an

exhaustive study of the exeution times by varying the number of iterations. Aording to

the results of this study, a value of 1000 iterations has been hosen to ensure a reasonable

exeution time in all senarios. In addition, the objetive funtion values of the problem do

not improve after 1000 iterations.

� Probability of the Strip-exchange movement, whih is the parameter that most in�uenes the

result of the algorithm. We have studied the results that were obtained for all �les by varying

the probability of hoosing this movement from 0 to 1 in inrements of 0.1. Aording to this

empirial study, this movement is the more e�etive of the two implemented movements as it

obtains only the best solutions if a high probability has been assigned to it.
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For simpliity, Table 4 lists the results for probability values of 0.8, 0.9 and 1. To summarize

the results for eah instane, Table 4 lists the minimum number of plates that are required

for plaing the samples, the total number of full plates and the �ll rate of the �rst plate that

is not �lled. The Grouping movement plays no role in small instanes, as poorer results are

always obtained when it is involved. However, for larger �les, it is important to apply it with

low probability to obtain the best results. For instane, in File 27, we an obtain 24 full plates

out of a total of 27 by assigning probability 0.2 to the Grouping movement and probability

0.8 to the Strip-exchange movement.
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Figure 4: Study of the Strip-exhange movement for small instanes (Files 1-10)
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Figure 5: Study of the Strip-exhange movement for medium instanes (Files 11-20)
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Figure 6: Study of the Strip-exhange movement for large instanes (Files 21-30)

Figures 4, 5 and 6 show the �ll rates that were obtained for various probabilities of the Strip-

exchange movement in small, medium and large instanes, respetively. Figures 4, 5 and

6 support the following observation from Table 4: the probabilities of 0.8 and 0.9 for the

Strip-exchange movement yield the best �lling rates for medium and large working sessions.

4.4. Final results

One the parameters of the algorithm have been hosen, we will ompare the results that were

obtained by applying the heuristi algorithm with those that were obtained in the laboratory using

the LabWare software for Files 1-30.

The �rst and most important objetive is the redution of the number of plates neessary to

proess the samples. Figure 7 shows the number of plates that are saved by the heuristi algorithm

ompared to the solution that was provided by the LabWare software. In view of Figure 7, it is

evident that the heuristi algorithm is able to provide better solutions in most of the �les. The

savings are more signi�ant in large instanes.

In addition, the heuristi algorithm ahieves the solutions in reasonable times for the laboratory,

as shown in Figure 8. It is also provided a omparison of the times neessary for the heuristi

algorithm to obtain the initial and �nal solutions. The initial solution is alulated in few seonds

for all working sessions, whereas the omputational time of the �nal solution depends to a large

extent on the number of samples of eah �le.

As it has been previously mentioned, it is also interesting for the laboratory to have a ertain

distribution of the plate oupany rates, so that the �rst plates are more oupied than the last

plates. This would allow new samples to be plaed on the most empty plates, whih have not

yet been proessed, as these are the ones that oupy the last positions. Figure 9 and Figure 10
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Id Plates

Full plates Perentage

0.8 0.9 1 0.8 0.9 1

1 4 1 1 1 96.88 97.92 98.96

2 5 1 1 1 91.67 86.46 95.83

3 4 0 1 1 97.92 80.21 80.21

4 7 1 1 2 97.92 97.92 97.92

5 5 2 2 3 91.67 91.67 75

6 6 3 2 2 85.42 93.75 98.96

7 5 3 3 3 80.21 80.21 81.25

8 5 3 3 3 85.42 84.38 86.46

9 7 3 3 4 94.79 96.88 39.58

10 7 3 3 4 95.83 95.83 63.54

11 8 5 5 5 54.17 79.17 76.04

12 8 5 5 5 84.38 79.17 73.96

13 9 4 4 5 98.96 98.96 91.67

14 9 6 6 6 83.33 85.42 78.12

15 10 6 6 6 98.96 98.96 91.67

16 10 7 7 6 94.79 89.58 97.92

17 12 8 8 8 98.96 98.96 97.92

18 13 8 8 8 95.83 98.96 95.83

19 12 9 9 8 89.58 94.79 93.75

20 15 12 12 10 86.46 96.88 96.88

21 17 13 13 11 85.42 93.75 97.92

22 18 12 13 12 98.96 98.96 98.96

23 19 13 13 13 95.83 97.92 88.54

24 19 14 15 14 97.92 82.29 97.92

25 23 20 19 19 93.75 98.96 83.33

26 25 21 21 21 98.96 98.96 93.75

27 27 24 23 21 76.04 97.92 85.42

28 30 26 25 25 98.96 94.79 93.75

29 32 29 28 28 87.5 96.88 86.46

30 44 39 38 37 98.96 86.46 96.98

Table 4: Results of applying the Strip-exchange movement with probabilities 0.8, 0.9 and 1
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Figure 7: Comparison between the total number of plates that were obtained via the LabWare software and the

heuristi algorithm

 0

 500

 1000

 1500

 2000

 2500

 3000

Id
1
Id
2
Id
3
Id
4
Id
5
Id
6
Id
7
Id
8
Id
9

Id
1
0

Id
1
1

Id
1
2

Id
1
3

Id
1
4

Id
1
5

Id
1
6

Id
1
7

Id
1
8

Id
1
9

Id
2
0

Id
2
1

Id
2
2

Id
2
3

Id
2
4

Id
2
5

Id
2
6

Id
2
7

Id
2
8

Id
2
9

Id
3
0

E
xe

cu
ti
o
n
 t

im
e
 (

in
 s

e
co

n
d
s)

Initial solution

Final Solution

Figure 8: Comparison of the times in whih the initial and �nal solutions of the algorithm are obtained

show the distribution of the plate oupany with the algorithm and Labware in small and medium

instanes, respetively.

In the ase of both �gures, eah row represents the best solution obtained for the orresponding

instane by the proposed algorithm and by LabWare. The oloured squares represent the oupied

plates and the oupany level (100%, [75,100)%, [50,75)%, [25,50)% and [0,25)%) is indiated by

the di�erent olours. It an be learly seen that both the number of plates used and the number of

full plates is worse in the solution obtained by LabWare.

To highlight the e�ieny of the heuristi algorithm against the solution that was obtained

with LabWare, Figure 11 ompares, by means of box-plots, the �ll rates that were obtained by
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Figure 9: Distribution of the plate oupany obtained with the algorithm and LabWare in small instanes

the initial and �nal solutions of the algorithm with the ones provided by LabWare for small and

medium instanes (Files 1-20). In the ase of the medium instanes, the solutions of the algorithm

yield muh higher �ll rates than LabWare's solution.

Finally, Figure 12 ompares the �lling distributions of initial and �nal solutions that were

obtained via the heuristi algorithm with the solution provided by LabWare for large instanes

(Files 21-30). As a summary of the obtained results, the number of plates that orrespond to eah

range of �lling perentages (100, [75,100), [50,75), [25,50) and [0,25)) is displayed for eah �le.

Thus, for instane, in the ase of the largest �le (Id 30), the heuristi algorithm �nds a sheme that

�lls 39 plates out of a total of 44 plates, while the LabWare solution �lls 11 plates out of a total of

90.

Conluding remarks

In this paper, a real problem that was proposed by Health in Code is studied. This ompany

speializes in geneti diagnosis servies for ardiovasular diseases. One of the diagnosis proedures

is based on the Sanger method. The Sanger method onsists of several phases. In one phase, DNA

samples are plaed into PCR plates to be proessed in thermoylers. The problem addressed in

this paper fousses on the organization of samples in plates suh that the minimum number of plates

are used sine plate proessing is expensive. Minimization of plate use would also enable Health in

Code to o�er more ompetitive pries in the market, as an inreasing number of laboratories are

dediated to DNA sequening.

The sheduling problem onsidered in this paper is di�ult to solve sine to organize the samples
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Figure 10: Distribution of the plate oupany obtained with the algorithm and LabWare in medium instanes

on the plates, a series of onstraints must be satis�ed in suh a way that this problem di�ers from

other problems that have been studied in the literature. The laboratory uses 96-well PCR plates

and the wells are organized into 8 rows and 12 olumns. Eah plate is omposed of six strips. Eah

strip has 24 wells, whih are arranged in 8 rows and 2 olumns. Aording to the harateristis

of the thermoylers, all the wells in the same strip will be proessed at the same temperature.

In addition, the di�erene in temperature between two onseutive strips annot exeed 5 degrees

entigrade and one well of the plate should be reserved for the isolated reagent that is assoiated

with a group. In addition, the laboratory faes work sessions in whih thousands of samples must

be proessed.

First, an integer linear programming model was developed. It has been shown that with the ILP

model, only small problems an be solved, whereas real problems are burdensome. To overome

this, a heuristi algorithm (based on the simulated annealing philosophy) has been designed. This

algorithm obtains satisfatory solutions in short amounts of time and, even in small problems

for whih the ILP model an be used, provides solutions of similar quality in a muh shorter

omputational time, as the ompany demands. Moreover, these solutions substantially outperform

the solutions that are obtained by the LabWare software, whih was used previously at Health in
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Figure 11: Comparison of the �ll rates that were obtained by LabWare, the initial solution, and the �nal solution of

the algorithm

Code. In most ases, it is possible to substantially redue the number of plates needed for the

samples.

The algorithm presented in this paper has been suessfully implemented in the laboratories of

Health in Code and orresponds to software registration 03/2017/560, whih is entitled "SimPCR:

librería para la optimizaión del proeso de llenado de plaas PCR en seueniaión Sanger".
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Figure 12: Distribution of the plate oupany obtained with the initial and �nal solutions of the algorithm and

LabWare in large instanes
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