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Abstra
t

The main obje
tive of this paper is to solve the optimization problem that is asso
iated with the


lassi�
ation of DNA samples in PCR plates for Sanger sequen
ing. To a
hieve this goal, we design

an integer linear programming model. Given that the real instan
es involve the 
lassi�
ation of

thousands of samples and the linear model 
an only be solved for small instan
es, the paper in
ludes

a heuristi
 to 
ope with bigger problems.

The heuristi
 algorithm is based on the simulated annealing te
hnique. This algorithm obtains

satisfa
tory solutions to the problem in a short amount of time. It has been tested with real

data and yields improved results 
ompared to some 
ommer
ial software typi
ally used in (
lini
al)

laboratories. Moreover, the algorithm has already been implemented in the laboratory and is being

su

essfully used.

Keywords: optimization, Sanger sequen
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1. Introdu
tion

Re
ent developments in the study of DNA will have a substantial impa
t on various �elds of

s
ien
e, su
h as 
lini
al medi
ine and forensi
 studies. In
reasingly many 
ompanies and laboratories

are pro
essing DNA samples for various purposes and 
ompeting in terms of the time and 
ost that

are required for pro
essing the results. Be
ause optimization te
hniques 
an be used to redu
e the

time or 
ost of any pro
ess, these te
hniques are of great interest for DNA sample pro
essing.
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In this arti
le, we will address a s
heduling problem that arises within Health in Code (http:

//www.healthin
ode.
om), whi
h is a 
ompany that spe
ializes in the geneti
 diagnosis of inherited


ardiovas
ular diseases. Every day, thousands of DNA samples are pro
essed in their labs.

DNA sequen
ing is the pro
ess that is used to determine the order of the four nu
leotides,

namely, Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), that make up the DNA

mole
ule. Currently, there are several methods for DNA sequen
ing. Health in Code is a 
om-

pany that has extensive experien
e with the Sanger method [7℄. The method, whi
h is also referred

to as dideoxynu
leotide sequen
ing and 
hain termination sequen
ing, 
onsists of the following

steps:

� DNA extra
tion (from samples of tissue, saliva, blood, et
.) and dilution treatment;

� Polymerase 
hain rea
tion (PCR): an e�e
tive pro
ess for making 
opies of segments of DNA;

� PCR produ
t puri�
ation: to remove elements that are used in the PCR pro
ess to obtain

high-quality DNA samples for sequen
ing;

� DNA sequen
ing: to sort the DNA fragments by size in a sequen
ing ma
hine so that the

original pie
e of DNA 
an be de
oded.

Although all these steps are essential in the Sanger method, this paper fo
uses on the PCR

pro
ess. The polymerase 
hain rea
tion is a method for amplifying DNA to generate millions of


opies of one or several pie
es of DNA. To perform this rea
tion, the DNA is deposited into PCR

plates. Then, the plates are pla
ed into thermo
y
lers

1

to regulate temperature during 
y
li
al

programmes.

In this framework, we are interested in optimizing the organization of DNA samples in the plates

for performing the PCR pro
ess, whi
h is not an easy task sin
e many aspe
ts must be 
onsidered

to a
hieve the optimal organization of DNA samples. Ea
h DNA sample is deposited into the well

of a plate; however, depending on the 
omponents that are used in the pro
edure, ea
h well from

a PCR plate 
an be used to obtain 
opies of a single pie
e of DNA or 
opies of a group of pie
es

of DNA. The 
omponents that are used with the DNA sample determine not only the pie
e or

1

A thermo
y
ler, whi
h is also known as a thermal 
y
ler, is a laboratory ma
hine that allows several temperatures

to be set in a blo
k of a plate.
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pie
es to be 
opied but also the ne
essary temperature for pro
essing the well in the thermo
y
ler.

However, due to the te
hnologi
al 
hara
teristi
s of thermo
y
lers, wells in the same plate should

satisfy several 
onditions. A

ording to their 
hara
teristi
s, ea
h plate is divided into several strips

and all the wells in the same strip should be pro
essed at the same temperature. Moreover, the

temperatures of the 
onse
utive strips in the same plate should belong to a spe
i�ed range.

Sin
e pro
essing ea
h plate in the laboratory is slow and expensive, the main obje
tive of our

optimization problem is to order the DNA samples su
h that the number of plates is minimized

under the restri
tions that are imposed by the 
hara
teristi
s of the thermo
y
ler. It is also desirable

to obtain plates that are as full as possible.

To the best of our knowledge, the optimization literature has not addressed this topi
. Chara
-

teristi
s of the problem remind us of a bin pa
king problem in whi
h samples must be pa
ked in the

plates. The bin pa
king problem is a well-known NP-hard optimization problem (see, for instan
e,

Delorme et al. [3℄). For this reason, it is not always possible to obtain the optimal solution of this

problem in a reasonable 
omputational time. Some of the heuristi
 proposals for solving the bin

pa
king problem use strategies that minimize the sla
k of ea
h bin (see, for instan
e, Fleszar and

Hindi [5℄). However, in our setting, if we 
onsider various temperature ranges and the 
onstraints

that are asso
iated with the reagent that is ne
essary for amplifying a spe
i�ed region of DNA, we

will be dealing with a di�erent optimization problem in the end.

Due to the 
hara
teristi
s of our problem, although we have developed an ILP model to solve

this problem, we have also implemented a heuristi
 algorithm based on the simulated annealing

pro
edure that provides satisfa
tory solutions in short 
omputational times. This algorithm is

being su

essfully used in the laboratory.

The remainder of the paper is organized as follows: In Se
tion 2, the problem is des
ribed in

detail. Se
tion 3 addresses both the optimization model and the heuristi
 algorithm. In Se
tion 4,

we provide a detailed explanation of the numeri
al experiments that are ne
essary for justifying an

interest in the results. For this purpose, we have 
onsidered real instan
es from the laboratory.

2. Problem

In this problem, the available DNA samples are organized in PCR plates to be pro
essed in

thermo
y
lers. To perform this task properly, several details must be 
onsidered:

3



The laboratory uses 96-well PCR plates and the wells are organized in 8 rows and 12 
olumns.

Ea
h plate is 
omposed of six strips. Ea
h strip has 24 wells, whi
h are arranged in 8 rows and

2 
olumns. A

ording to the 
hara
teristi
s of the thermo
y
lers, all the wells in the same strip

will be pro
essed at the same temperature. In addition, the di�eren
e in temperature between two


onse
utive strips 
annot ex
eed 5 degrees 
entigrade. Although the strips in a plate must satisfy

these temperature 
onditions, the temperature in the strips is not �xed, but rather is sele
ted by

the user. The 
on�guration of a 96-well PCR plate is shown in Figure 1 (a).
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(b) plate with DNA samples

Figure 1: Example of a PCR plate

Ea
h DNA sample, together with all the 
hemi
al 
omponents that are ne
essary for amplifying

a spe
i�ed region of DNA, are deposited in a well. If we are interested in amplifying the same

region of DNA for multiple DNA samples, we must in
lude the same 
hemi
al 
omponents in their


orresponding wells. In this 
ase, we say that these DNA samples belong to the same group. All

DNA samples in a group must be pro
essed at the same temperature, whi
h is �xed. However, it

is possible to have multiple groups with the same temperature.

For instan
e, let us suppose that the laboratory is interested in studying the risk of geneti


diseases. In this parti
ular 
ase, we 
an think of a group as being asso
iated with a disease. Thus,

the laboratory must determine, using the DNA samples of the 
lients, whether the 
lients will

develop this disease. However, sin
e the disease will be dete
ted by evaluating a spe
i�ed region of

DNA, ea
h DNA sample will be mixed with a reagent and pro
essed at the ne
essary temperature

for amplifying this region.

In addition, one well of the plate should be reserved for the isolated reagent that is asso
iated

4



with a group, whi
h is ne
essary to verify that the experiment is performed 
orre
tly.

Figure 1 (b) shows an example of one �lled plate. The 12 groups are represented by 
olour.

We know the number of DNA samples in ea
h group and the temperatures that 
orrespond to

the groups. There are six temperatures for the groups. With this information, we 
an assign

the temperatures in in
reasing order to the 6 strips of the plate be
ause the temperature di�eren
e

between any two 
onse
utive strips does not ex
eed 50 C. With this 
on�guration, we have 6 groups

that have the same temperature in Strip 4. Moreover, for ea
h group, we have added the reagent,

whi
h is represented by a 
ir
le of the same 
olour (but with a bla
k border), as the group samples;

see, for instan
e, the �red� group, whi
h is pla
ed in two wells, one of whi
h 
ontains the DNA

sample mixed with the reagent, whereas the other 
ontains only the reagent.

In summary, the laboratory initially has multiple samples, ea
h of whi
h has its own 
ode. The

samples belong to groups that are determined by the region of DNA that will be ampli�ed. The

laboratory also knows the temperature asso
iated with ea
h group. After solving the optimization

problem with this information and the restri
tions that are imposed by the 
hara
teristi
s of the

PCR plates, we obtain the number of samples of ea
h group in every strip of a plate and whether

the reagent of ea
h group is present in any strip. We will also know the temperature of every strip,

whi
h will be the only information provided by the optimization problem sin
e in the next phase,

the software will pla
e ea
h sample or reagent at random but a

ording to this distribution. Then,

for ea
h DNA sample or reagent, we will know the 
ode of the plate and the position where it will

be pla
ed, the type of analysis (the group to whi
h it belongs) and the temperature at whi
h it will

be pro
essed.

3. Solution methods

3.1. Model

We have designed an integer linear programming (ILP) problem that takes into a

ount all the

requirements that were dis
ussed. The main obje
tive of this problem is to minimize the number of

o

upied plates. We know the number of samples and the temperature for ea
h group. With this

information, the ILP problem will assign the samples and the temperature in ea
h strip. Below, we

list the parameters and the de
ision variables that are used in the model.

Parameters:
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� {1, . . . , p} is the set of available plates, with index q. Be
ause ea
h plate is divided into six

strips, the set of strips 
an be represented by {1, . . . , 6 · p}, with index l.

� wq is the weight assigned to ea
h plate q ∈ {1, . . . , p} in the obje
tive fun
tion.

� {1, . . . , n} is the set of groups with index i.

� Ni indi
ates the number of samples in ea
h group i ∈ {1, . . . , n}.

� Ti is the temperature used in the pro
ess for ea
h group i ∈ {1, . . . , n}. Several groups 
an

be pro
essed at the same temperature. Then, we will 
onsider {T 1, . . . , Tm} ⊆ {T1, . . . , Tn}

as the set of temperatures that are used in the pro
ess.

De
ision variables:

For ea
h strip l ∈ {1, . . . , 6 · p}, we de�ne the following variables:

� tl is the temperature sele
ted for l.

� For ea
h group i ∈ {1, . . . , n},

⋆ nil represents the number of samples of group i that are pla
ed in strip l.

⋆ xil is a binary variable su
h that

xil =







1, if the reagent of group i is in strip l;

0, otherwise.

� For ea
h j ∈ {1, . . . ,m},

⋆ yjl is a binary variable su
h that

yjl =







1, if strip l has been assigned temperature T j
;

0, otherwise.

Obje
tive fun
tion and 
onstraints:

min z =

n
∑

i=1

p
∑

q=1

wq

6·q
∑

l=6·(q−1)+1

nil (1)

6



subje
t to

n
∑

i=1

(nil + xil) ≤ 16 ∀l ∈ {1, . . . , 6 · p} (2)

tl − tl+1 ≤ 5 ∀l ∈ {6 · (q − 1) + 1, . . . , 6 · q − 1},∀q ∈ {1, . . . , p} (3)

tl+1 − tl ≤ 5 ∀l ∈ {6 · (q − 1) + 1, . . . , 6 · q − 1},∀q ∈ {1, . . . , p} (4)

m
∑

j=1

yjl · T
j = tl ∀l ∈ {1, . . . , 6 · p} (5)

m
∑

j=1

yjl ≤ 1 ∀l ∈ {1, . . . , 6 · p} (6)

yjl ≥

∑

i:Ti=T j

nil

n
∑

i=1

Ni

∀l ∈ {1, . . . , 6 · p},∀j ∈ {1, . . . ,m} (7)

6·p
∑

l=1

nil = Ni ∀i ∈ {1, . . . , n} (8)

nil − xil ≥ 0 ∀l ∈ {1, . . . , 6 · p},∀i ∈ {1, . . . , n} (9)

6·q
∑

l′=6·(q−1)+1

Nixil′ − nil ≥ 0 ∀i ∈ {1, . . . , n},∀l ∈ {6 · (q − 1) + 1, . . . , 6 · q},

∀q ∈ {1, . . . , p} (10)

6·q
∑

l=6·(q−1)+1

xil ≤ 1 ∀i ∈ {1, . . . , n},∀q ∈ {1, . . . , p} (11)

The obje
tive fun
tion (1) minimizes the number of o

upied plates. To attain this obje
tive,

the number of samples in ea
h plate is multiplied by a weight. Although the laboratory is mainly

interested in minimizing the number of plates, it would also be desirable to minimize the total

number of o

upied 
ells

2

and maximize, a

ording to the lexi
ographi
al order

3

, the o

upan
y

rate of the plates. The three obje
tives 
an be a

omplished by penalizing the plates in the last

2

The total number of o

upied 
ells is 
omposed of the number of 
ells that are o

upied by all the samples, whi
h

is �xed, and the number of 
ells that are ne
essary for pla
ing the 
orresponding reagents, whi
h is variable.

3

The laboratory prefers to have the �rst plates o

upied to the detriment of the last ones to be able to pla
e new

samples in the last plates while the �rst ones are being pro
essed. Note that those new samples are allo
ated on
e

the solution has been obtained and already the �rst plates have been pro
essed.

7



positions using the weights. Then, the weights will be 
onsidered in in
reasing order to �ll in the


ells of the �rst plates. In pra
ti
e, we use wq = q for all q ∈ {1, . . . , p}.

Constraint (2) sets the number of available 
ells in ea
h strip. Constraints (3) and (4) guarantee

that the absolute value of the di�eren
e in temperature between two 
onse
utive strips does not

ex
eed 5 degrees 
entigrade. Constraints (5), (6) and (7) ensure that the temperature of ea
h strip

is the same as the temperature of the groups with samples in the strip. Therefore, if

m
∑

j=1

yjl = 0,

strip l is an empty strip and will not be pro
essed. Otherwise,

m
∑

j=1

yjl = 1 and all the 
ells in strip l

will be pro
essed at the same temperature. Constraint (8) is used to 
he
k that all samples are in

the 
ells of the plates, whereas (9), (10) and (11) are asso
iated with the reagent. These last three


onditions require that if one or more samples of group i is in plate q, the isolated reagent related to

this group should be deposited in exa
tly one well in the plate; otherwise,

6·q
∑

l=6·(q−1)+1

xil = 0 implies

that there are no samples of group i in plate q and the 
orresponding reagent will not appear in

the plate.

3.2. Heuristi
 algorithm

Be
ause it is ne
essary to provide feasible and reasonable solutions to the problem in a short


omputational time, we have designed a heuristi
 algorithm. The heuristi
 algorithm is based on the

simulated annealing method, whi
h was introdu
ed by Kirkpatri
k et al. [6℄. The main motivation

of the simulated annealing method 
omes from the analogy between the physi
al annealing of solids

and 
ombinatorial optimization problems. A thorough review of this method 
an be found in Aarts

et al. [1℄ or Eglese [4℄.

To implement this method, it is ne
essary to de�ne the problem in terms of a solution spa
e

with a de�ned neighbourhood and 
ost fun
tion. The algorithm starts with an initial solution

and moves randomly through the solution spa
e, sele
ting a neighbour of the 
urrent solution

and 
omparing the di�eren
e in 
ost between the two solutions. If the new solution provides a

better result in terms of the 
ost fun
tion, we 
hoose it as the new solution. Otherwise, although it

provides a poorer result, there is still a probability of a

epting the new solution. The probability of

a

epting a move is typi
ally given by exp(−β/T ), where β is the 
ost in
rement and T is a 
ontrol

parameter that 
orresponds to temperature in the analogy with physi
al annealing. A

ording to

this probability fun
tion, small in
reases in the 
ost fun
tion are more likely to be a

epted than

8



large in
reases. Moreover, when T is high, most moves are a

epted, whereas when T approa
hes

zero, the probability of a

epting moves is very small. To avoid lo
al optima, the initial value of T

is relatively high and is gradually de
reased when new movements are made.

3.2.1. Initial solution

The initial solution is obtained by sorting the groups in as
ending order a

ording to their

pro
essing temperature. The samples will be deposited by 
olumns in the wells a

ording to this

group order. In addition, we must reserve one well for the reagent of the group in all the plates

in whi
h at least one sample of the group is deposited. The reagent of a group in a plate will be

deposited immediately after the last sample of the group.

On
e the samples and reagent of a group have been deposited in the plate, we 
an deposit the

samples of the next group as 
lose as possible, under the restri
tion that samples of both groups


an only be in the same strip if both groups are going to be pro
essed at the same temperature;

otherwise, the samples of the two groups 
annot be in the same strip.

If the samples of two 
onse
utive groups must be pro
essed at di�erent temperatures, on
e the

samples of the �rst group have been deposited in the last strip, we deposit the samples of the

next group in the 
onse
utive strip if the di�eren
e in the pro
essing temperature between the two

groups does not ex
eed 50 C. Otherwise, we leave as many empty strips as ne
essary to satisfy the


onstraint on the di�eren
e in temperature between 
onse
utive strips.

The pseudo
ode of the algorithm for obtaining the initial solution is presented as Algorithm 1.

The main body of the algorithm des
ribes the initial sorting method. Then, the pro
ess of assigning

a sample to existing plates is performed a

ording to the 
onstraints that are spe
i�ed above. This

pro
ess is re�e
ted in the pseudo
ode in Algorithm 2. If a sample 
annot be assigned to an existing

plate, a new one is 
reated.

3.2.2. Movements

To improve upon the initial solution and obtain the �nal positions of the samples in the plates,

the main algorithm explores the sear
h spa
e by 
reating new solutions from a 
urrent solution via

movements. We have devised two movements, from whi
h a neighbouring solution is generated:

1. Grouping movement. First, a group is randomly sele
ted. If there are samples of the same

group in di�erent plates, we randomly 
hoose two plates where at least one sample of the

group has been deposited. Then, we try to join all the samples of the group in one of the

9



Algorithm 1: Initial solution

1. Input: samples, list of samples to be pro
essed; maxTempDiff , maximum allowable temperature

di�eren
e between plate strips

Output: initialSol, initial solution (list of plates)

2. plates← ø

// Samples are sorted a

ording to their temperature (that is, to the temperature of the group

// ea
h of them belongs to)

3. sort(samples)
4. for i = 0 to samples.size do

5. posP late← 0
// Existing plates are traversed to allo
ate ea
h sample

6. while posP late < plates.size do

7. currentP late← plates(posP late)
8. isSampleAssigned← assignSample (samples(i), currentP late,maxTempDiff)
9. if ! isSampleAssigned then

10. posP late + = 1

11. else

12. break

// Whenever a sample 
annot be assigned to existing plates, a new plate is 
reated to 
ontain it

13. if ! isSampleAssigned then

14. newP late← new P late()
15. assignSample (samples(i), newP late,maxTempDiff)

16. addP late(newP late,plates)

17. initialSol ← plates

18. return initialSol

two plates. If the empty wells in the plate are not su�
ient for this, it is possible to move

to the plate samples of other groups that have similar pro
essing temperatures. The groups

that have samples in the other plate are preferred to other groups. Moreover, we move the

minimum number of plates that are ne
essary to satisfy the feasibility 
onstraints. This

movement also allows all the samples of one group to be moved from one plate to another

plate where there is no sample in the group.

2. Strip-ex
hange movement. We sele
t two strips in two plates and ex
hange them. Although

the temperature 
onstraint between 
onse
utive strips should be satis�ed for the movement

to be permitted, the temperatures of the strips 
an be di�erent.

The movements will be sele
ted a

ording to a �xed parameter that denotes the probability of

ea
h movement. If a movement is not feasible, a new movement will be made. If no movement is

feasible, the algorithm terminates and the solution that was obtained in the last iteration is sele
ted

10



Algorithm 2: Sample assignment

1. Input: sample, sample to be assigned; plate, plate for holding the sample; maxTempDiff , maximum

allowable temperature di�eren
e between plate strips

Output: true if sample is �nally allo
ated in plate; false otherwise

2. isSampleAssigned← false

// First, we attempt to allo
ate the sample in some of the non-empty strips (that is, strips that already

// hold other samples)

3. nonEmptyStrips← plate.getNonEmptyStrips()
4. posStrip← 0
5. while (! isSampleAssigned && posStrip < nonEmptyStrips.size) do
6. currentStrip← nonEmptyStrips(posStrip)

// A sample 
an be assigned to a non-empty strip if their temperatures mat
h. There must also be

// enough spa
e remaining to hold the sample and the reagent of the group (if needed)

7. . if (
he
kTemperature (sample, currentStrip) && 
he
kSpa
e (sample, currentStrip)) then
8. addSample(sample, currentStrip)
9. isSampleAssigned← true

10. else

11. posStrip + = 1

// If none of the non-empty strips 
an hold the sample, we try to assign it to some of the

// empty strips (if any)

12. if ! isSampleAssigned then

13. emptyStrips← plate.getEmptyStrips()
14. posStrip← 0
15. while (! isSampleAssigned && posStrip < emptyStrips.size) do
16. currentStrip← emptyStrips(posStrip)

// To assign a sample to an empty strip, we must guarantee that the maximum allowable

// temperature di�eren
e between the plate strips is not ex
eeded

17. if validateTemperatureDi� (sample, currentStrip, plate,maxTempDiff) then
18. addSample(sample,currentStrip)
19. isSampleAssigned← true

20. else

21. posStrip + = 1

22. return isSampleAssigned

as the �nal solution of the algorithm

4

.

3.2.3. Cost fun
tion

The 
ost fun
tion for 
omparing the 
urrent and new solutions at ea
h iteration of the algorithm

is obtained by applying the lexi
ographi
al order to the following obje
tives:

� First obje
tive: minimize the number of non-empty plates.

� Se
ond obje
tive: minimize the number of non-empty wells.

4

This does not limit the sear
h 
apa
ity, as we are already 
onsidering an es
ape me
hanism from lo
al optima

based on a

epting solutions that may be worse than the 
urrent one. Instead, this sele
tion avoids repeated iterations

of the algorithm in a rare s
enario.
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We only used two obje
tives be
ause the de�nition of the implemented movements and the

se
ond obje
tive indire
tly improve the o

upan
y rate of the plates. Furthermore, we 
ould have


onsidered a single obje
tive, as in the ILP model. However, the use of a single aggregated obje
tive

often results in the heuristi
 algorithm �nding lo
al minima and in a high degree of variability in

the results. Thus, we have ruled out this strategy.

The pseudo
ode of the algorithm for obtaining the �nal solution is presented as Algorithm 3.

Algorithm 3: Simulated annealing

1. Input: initialSol, initial solution; maxIter, maximum number of algorithm iterations; Tmax, initial

temperature; Tmin, minimum temperature; α, 
ooling parameter; SEProb, probability of applying

a Strip− exchange movement (thus, a Grouping movement will be applied with probability

1− SEProb)

Output: bestSol, best global solution that has been found

2. bestSol← initialSol

3. currentSol← initialSol

4. for i = 0 to maxIter do

5. T ← Tmax

6. while T ≥ Tmin do

// A new solution is 
reated from the 
urrent one by applying a movement. If

// no movement 
an be applied, the algorithm terminates

7. newSol ← applyMovement (currentSol, SEProb)
8. if newSol = ø then

9. return bestSol

10. else

// We must always keep updated the best global solution that has been found so far

11. updateBestSol (newSol, bestSol)
// If newSol improves currentSol (that is, if it uses fewer plates or

// if it minimizes the number of non-empty wells), it will repla
e the 
urrent solution

// for the next iteration

12. 
ase numPlates (newSol) < numPlates (currentSol) do
13. currentSol ← newSol

14. 
ase numPlates (newSol) = numPlates (currentSol) do
15. if nonEmptyWells (newSol) ≤ nonEmptyWells (currentSol) then
16. currentSol ← newSol

17. else

18. threshold← e
nonEmptyWellsDiff(newSol,currentSol)

T

19. a

eptWorseSolution (generateRandom(), threshold, newSol, currentSol)

// Even when newSol is worse than currentSol, it still may repla
e the 
urrent solution

20. otherwise do

21. threshold← e
numPlatesDiff(newSol,currentSol)

T

22. a

eptWorseSolution (generateRandom(), threshold, newSol, currentSol)

23. T ← α ∗ T

24. return bestSol

12



3.2.4. Example

To demonstrate how the algorithm operates, we 
onsider the following example: We must

distribute 69 samples that are organized in 14 groups (and the 
orresponding reagents) in the

plates. The initial solution of the algorithm is represented in the �rst part of Figure 2. The groups

are ordered a

ording to their temperatures in in
reasing order. A

ording to this order, we �x the

temperatures of the strips. To organize the samples under this 
riterion, we need two plates and

the number of o

upied 
ells is 84 (69 samples and 15 reagents). There are several strips that have

the same temperature sin
e in these 
ases, one strip is not su�
ient to hold all the samples that

are pro
essed at the 
orresponding temperature. Moreover, the samples of the �violet� group are

distributed in both plates. Then, the grouping movement 
ould 
onsist of joining all the samples

of the group in the �rst plate and moving the �pink� group to the �rst plate.

Both solutions (the initial solution and the solution obtained after 1 iteration of applying the

grouping movement of the algorithm) require two plates. However, whereas the number of o

upied


ells in the initial solution is 84, this number is redu
ed to 83 after 1 iteration sin
e the number of

reagents has been redu
ed from 15 to 14. Thus, the solution has been improved after 1 iteration.
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Figure 2: Grouping movement

Suppose we a

ept this new solution and perform another iteration. Now, we 
ould apply the
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strip-ex
hange movement on the fourth strip of the �rst plate and the se
ond strip of the se
ond

plate. After this movement, the number of o

upied 
ells is again 83; however, the solution is

improved be
ause the o

upan
y rates have 
hanged from (51.04,35.42) to (65.63,20.83). This

movement is illustrated in Figure 3.
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Figure 3: Strip-ex
hange movement

4. Experimental results

4.1. Data

The solution methods have been tested with real data. We have 
onsidered 36 �les, whi
h are

divided into two sets:

� The �rst set 
ontains 30 �les (Id 1-30), ea
h of whi
h 
ontains information on one working

session in the laboratory.

� The se
ond set 
ontains 6 �les (Id 31-36). Ea
h one of these �les 
orresponds to 2 or 3 plates

that have been randomly 
hosen from one working session.

Table 1 summarizes the main 
hara
teristi
s of the �les (numbers of samples, groups and group

temperatures). In both sets, the �les have been ordered a

ording to the number of samples.

The number of temperatures remains stable in all s
enarios. However, the number of groups and,

14



espe
ially, the number of samples vary 
onsiderably. Hen
e, the 
hara
teristi
s of ea
h working

session are highly parti
ular.

Id 1 2 3 4 5 6 7 8 9 10 11 12

Samples 174 193 233 285 290 315 358 368 432 434 501 551

Groups 80 68 31 147 87 99 35 27 32 44 82 37

Temperatures 13 14 12 18 10 16 10 11 14 13 15 15

Id 13 14 15 16 17 18 19 20 21 22 23 24

Samples 612 647 747 797 876 918 963 1128 1270 1309 1398 1473

Groups 107 27 37 27 120 184 37 192 167 201 200 197

Temperatures 17 12 15 11 13 17 15 16 17 17 18 16

Id 25 26 27 28 29 30 31 32 33 34 35 36

Samples 1944 2071 2248 2496 2703 3783 40 44 50 65 77 84

Groups 151 162 165 179 200 171 24 31 45 34 43 68

Temperatures 15 15 17 17 17 17 11 11 14 15 13 16

Table 1: Des
ription of the �les that were obtained from real data

4.2. Comparison between LabWare, the ILP model and the heuristi
 algorithm

This se
tion is devoted to 
omparing the results that were obtained in the laboratory with

LabWare software

5

and the results that were obtained via our solution methods. Our solution

methods have been evaluated using a 
omputer with an Intel(R) Core(TM) i7-3770 CPU of 3.40

GHz and 16 GB of RAM. Moreover, the ILP problem was solved using Gurobi Optimizer (version

6.0.5), whereas the heuristi
 algorithm was implemented in Java.

Ea
h working session in the laboratory involves many samples and groups. Thus, the ILP

problem for Files 1-30, whi
h are related to real working sessions, will be large and 
annot be

solved in a reasonable amount of time. To demonstrate this, Table 2 lists the results that were

obtained with ten examples from the �rst set. The ILP problem solutions were obtained after 60

hours. A

ording to Table 2, after this time, we 
annot guarantee the optimality of the solutions.

The table also indi
ates the best solution that was obtained and the size

6

of the ILP problem, the

gap of the solution

7

and the minimum time needed to obtain the solution. The results demonstrate

the ne
essity of developing a tool to identify satisfa
tory solutions in a reasonable 
omputational

time.

5

Sin
e LabWare is a 
omer
ial software, we do not know exa
tly how the optimization tool of this software works.

6

When we refer to the size of an ILP problem, we �rst indi
ate the number of 
onstraints, followed by the number

of variables.

7

The gap is 
omputed with the following formula: 100 ∗ |objective.lower.bound−incumbent.objective|
|incumbent.objective|

.
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Id

ILP problem solution

Plates O

upan
y rates Size Gap (%) Minimal time

1 4 100/98.96/44.79/22.92 4664×4176 2.17 2.07 h

2 5 100/97.92/55.21/20.83/2.08 5048×4530 3.14 0.21 h

3 4 100/94.79/64.58/26.04 2043×1800 4.17 54.87 h

4 7 98.96/97.92/96.88/95.83/39.58/17.71/6.25 14476×13146 5.43 59.61 h

5 5 100/100/100/72.92/22.92 6182×5550 1.18 12.89 h

6 6 100/100/96.87/84.37/46.87/6.25 7989×7452 1.02 3.46 h

7 5 100/100/100/80.20/36.46 2750×2430 0.99 58.21 h

8 5 100/100/98.96/86.46/31.25 2252×1980 1.90 53.8 h

9 7 100/100/100/98.96/65.63/23.96/2.08 3364×3318 1.90 41.05 h

10 7 100/100/98.96/98.96/75.00/28.13/4.17 4790×4284 1.79 45.92 h

Table 2: Solutions for Files 1-10 that were obtained by solving the ILP problem

However, it is possible to �nd the optimal solutions in few se
onds for problems that are asso-


iated with a small number of plates. For this reason, we have 
onsidered 6 small examples with 2

or 3 plates that are 
on�gured in the laboratory with LabWare. Despite not being representatives

of a typi
al working session, these examples will be useful for 
omparing optimal solutions with

the solutions that are provided by the heuristi
 algorithm. Thus, in Table 3 we 
an 
ompare the

o

upan
y rates of the three methods: LabWare, the ILP model and the heuristi
 algorithm. The

table also lists the 
omputational times for the ILP model and the heuristi
 algorithm.

Id O

upan
y rates Computational times

LabWare ILP model Heuristi
 ILP model Heuristi


31 37.50/29.17 50.00/16.67 50.00/16.67 0.01 s 0.006 s

32 29.17/28.13/20.83 57.29/20.83 57.29/20.83 0.25 s 0.07 s

33 54.17/37.50/7.29 71.88/20.83/6.25 71.88/20.83/6.25 0.88 s 0.065 s

34 41.67/39.58/21.88 73.96/20.83/8.33 73.96/20.83/8.33 4.04 s 0.26 s

35 47.92/47.92/30.21 86.46/32.29/6.25 86.46/32.29/6.25 4.76 s 0.55 s

36 67.71/50.00/40.63 91.67/45.83/20.83 91.67/45.83/20.83 4.76 s 0.62 s

Table 3: Examples with 2 or 3 plates

We have obtained the optimal solutions of the ILP problem in Files 31-36. However, the

solution provided by LabWare never 
oin
ides with the optimal solution. In the se
ond example,

the LabWare solution requires an additional plate and in the other 
ases, the distribution of the

samples in the plates is worse. However, after determining the best values for the input parameters

in the algorithm (a study of the parameters of the algorithm will be performed next), we have

veri�ed that for these 2 and 3 plate �les, the heuristi
 algorithm rea
hes the optimal value provided
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by the ILP model in less time. Sin
e Files 31-36 have been randomly sele
ted from the same working

session, these results enable us to guarantee the satisfa
tory performan
e of the heuristi
 algorithm.

4.3. Study of the parameters in the heuristi
 algorithm

In this se
tion, we fo
us on obtaining the appropriate parameters for Algorithm 3 a

ording to

our experimental environment.

The algorithm depends on several input parameters, as dis
ussed above. To ensure its proper

performan
e in our s
enario, it is ne
essary to adjust these parameters a

ording to our data. Next,

we justify the values of these input parameters:

� Initial temperature. The initial temperature was set to 100. A

ording to Ben-Ameur [2℄,

this value ensures a low probability of a

eptan
e of poor solutions with respe
t to the �rst

obje
tive and higher a

eptan
e ratio with respe
t to the se
ond obje
tive. Thus, when the

number of plates is minimized, there is greater �exibility for �lling them in the best possible

way.

� Minimum temperature. The �nal temperature at ea
h simulated annealing iteration was set

to 1E − 10. This low value permits an exhaustive sear
h at ea
h iteration.

� Cooling parameter (α). Our annealing pro
edure initially 
onsiders a high temperature. Then,

the temperature is lowered in
rementally by a 
onstant fa
tor. It is important to 
onsider

su�
iently many steps at ea
h temperature to keep the system 
lose to equilibrium until the

system approa
hes the minimum temperature. We have 
onsidered α = 0.9.

� Maximum number of iterations. On
e the above parameters were set, we performed an

exhaustive study of the exe
ution times by varying the number of iterations. A

ording to

the results of this study, a value of 1000 iterations has been 
hosen to ensure a reasonable

exe
ution time in all s
enarios. In addition, the obje
tive fun
tion values of the problem do

not improve after 1000 iterations.

� Probability of the Strip-exchange movement, whi
h is the parameter that most in�uen
es the

result of the algorithm. We have studied the results that were obtained for all �les by varying

the probability of 
hoosing this movement from 0 to 1 in in
rements of 0.1. A

ording to this

empiri
al study, this movement is the more e�e
tive of the two implemented movements as it

obtains only the best solutions if a high probability has been assigned to it.
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For simpli
ity, Table 4 lists the results for probability values of 0.8, 0.9 and 1. To summarize

the results for ea
h instan
e, Table 4 lists the minimum number of plates that are required

for pla
ing the samples, the total number of full plates and the �ll rate of the �rst plate that

is not �lled. The Grouping movement plays no role in small instan
es, as poorer results are

always obtained when it is involved. However, for larger �les, it is important to apply it with

low probability to obtain the best results. For instan
e, in File 27, we 
an obtain 24 full plates

out of a total of 27 by assigning probability 0.2 to the Grouping movement and probability

0.8 to the Strip-exchange movement.
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Figure 4: Study of the Strip-ex
hange movement for small instan
es (Files 1-10)
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Figure 5: Study of the Strip-ex
hange movement for medium instan
es (Files 11-20)
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Figure 6: Study of the Strip-ex
hange movement for large instan
es (Files 21-30)

Figures 4, 5 and 6 show the �ll rates that were obtained for various probabilities of the Strip-

exchange movement in small, medium and large instan
es, respe
tively. Figures 4, 5 and

6 support the following observation from Table 4: the probabilities of 0.8 and 0.9 for the

Strip-exchange movement yield the best �lling rates for medium and large working sessions.

4.4. Final results

On
e the parameters of the algorithm have been 
hosen, we will 
ompare the results that were

obtained by applying the heuristi
 algorithm with those that were obtained in the laboratory using

the LabWare software for Files 1-30.

The �rst and most important obje
tive is the redu
tion of the number of plates ne
essary to

pro
ess the samples. Figure 7 shows the number of plates that are saved by the heuristi
 algorithm


ompared to the solution that was provided by the LabWare software. In view of Figure 7, it is

evident that the heuristi
 algorithm is able to provide better solutions in most of the �les. The

savings are more signi�
ant in large instan
es.

In addition, the heuristi
 algorithm a
hieves the solutions in reasonable times for the laboratory,

as shown in Figure 8. It is also provided a 
omparison of the times ne
essary for the heuristi


algorithm to obtain the initial and �nal solutions. The initial solution is 
al
ulated in few se
onds

for all working sessions, whereas the 
omputational time of the �nal solution depends to a large

extent on the number of samples of ea
h �le.

As it has been previously mentioned, it is also interesting for the laboratory to have a 
ertain

distribution of the plate o

upan
y rates, so that the �rst plates are more o

upied than the last

plates. This would allow new samples to be pla
ed on the most empty plates, whi
h have not

yet been pro
essed, as these are the ones that o

upy the last positions. Figure 9 and Figure 10
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Id Plates

Full plates Per
entage

0.8 0.9 1 0.8 0.9 1

1 4 1 1 1 96.88 97.92 98.96

2 5 1 1 1 91.67 86.46 95.83

3 4 0 1 1 97.92 80.21 80.21

4 7 1 1 2 97.92 97.92 97.92

5 5 2 2 3 91.67 91.67 75

6 6 3 2 2 85.42 93.75 98.96

7 5 3 3 3 80.21 80.21 81.25

8 5 3 3 3 85.42 84.38 86.46

9 7 3 3 4 94.79 96.88 39.58

10 7 3 3 4 95.83 95.83 63.54

11 8 5 5 5 54.17 79.17 76.04

12 8 5 5 5 84.38 79.17 73.96

13 9 4 4 5 98.96 98.96 91.67

14 9 6 6 6 83.33 85.42 78.12

15 10 6 6 6 98.96 98.96 91.67

16 10 7 7 6 94.79 89.58 97.92

17 12 8 8 8 98.96 98.96 97.92

18 13 8 8 8 95.83 98.96 95.83

19 12 9 9 8 89.58 94.79 93.75

20 15 12 12 10 86.46 96.88 96.88

21 17 13 13 11 85.42 93.75 97.92

22 18 12 13 12 98.96 98.96 98.96

23 19 13 13 13 95.83 97.92 88.54

24 19 14 15 14 97.92 82.29 97.92

25 23 20 19 19 93.75 98.96 83.33

26 25 21 21 21 98.96 98.96 93.75

27 27 24 23 21 76.04 97.92 85.42

28 30 26 25 25 98.96 94.79 93.75

29 32 29 28 28 87.5 96.88 86.46

30 44 39 38 37 98.96 86.46 96.98

Table 4: Results of applying the Strip-exchange movement with probabilities 0.8, 0.9 and 1
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Figure 7: Comparison between the total number of plates that were obtained via the LabWare software and the

heuristi
 algorithm
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Figure 8: Comparison of the times in whi
h the initial and �nal solutions of the algorithm are obtained

show the distribution of the plate o

upan
y with the algorithm and Labware in small and medium

instan
es, respe
tively.

In the 
ase of both �gures, ea
h row represents the best solution obtained for the 
orresponding

instan
e by the proposed algorithm and by LabWare. The 
oloured squares represent the o

upied

plates and the o

upan
y level (100%, [75,100)%, [50,75)%, [25,50)% and [0,25)%) is indi
ated by

the di�erent 
olours. It 
an be 
learly seen that both the number of plates used and the number of

full plates is worse in the solution obtained by LabWare.

To highlight the e�
ien
y of the heuristi
 algorithm against the solution that was obtained

with LabWare, Figure 11 
ompares, by means of box-plots, the �ll rates that were obtained by
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Figure 9: Distribution of the plate o

upan
y obtained with the algorithm and LabWare in small instan
es

the initial and �nal solutions of the algorithm with the ones provided by LabWare for small and

medium instan
es (Files 1-20). In the 
ase of the medium instan
es, the solutions of the algorithm

yield mu
h higher �ll rates than LabWare's solution.

Finally, Figure 12 
ompares the �lling distributions of initial and �nal solutions that were

obtained via the heuristi
 algorithm with the solution provided by LabWare for large instan
es

(Files 21-30). As a summary of the obtained results, the number of plates that 
orrespond to ea
h

range of �lling per
entages (100, [75,100), [50,75), [25,50) and [0,25)) is displayed for ea
h �le.

Thus, for instan
e, in the 
ase of the largest �le (Id 30), the heuristi
 algorithm �nds a s
heme that

�lls 39 plates out of a total of 44 plates, while the LabWare solution �lls 11 plates out of a total of

90.

Con
luding remarks

In this paper, a real problem that was proposed by Health in Code is studied. This 
ompany

spe
ializes in geneti
 diagnosis servi
es for 
ardiovas
ular diseases. One of the diagnosis pro
edures

is based on the Sanger method. The Sanger method 
onsists of several phases. In one phase, DNA

samples are pla
ed into PCR plates to be pro
essed in thermo
y
lers. The problem addressed in

this paper fo
usses on the organization of samples in plates su
h that the minimum number of plates

are used sin
e plate pro
essing is expensive. Minimization of plate use would also enable Health in

Code to o�er more 
ompetitive pri
es in the market, as an in
reasing number of laboratories are

dedi
ated to DNA sequen
ing.

The s
heduling problem 
onsidered in this paper is di�
ult to solve sin
e to organize the samples
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Figure 10: Distribution of the plate o

upan
y obtained with the algorithm and LabWare in medium instan
es

on the plates, a series of 
onstraints must be satis�ed in su
h a way that this problem di�ers from

other problems that have been studied in the literature. The laboratory uses 96-well PCR plates

and the wells are organized into 8 rows and 12 
olumns. Ea
h plate is 
omposed of six strips. Ea
h

strip has 24 wells, whi
h are arranged in 8 rows and 2 
olumns. A

ording to the 
hara
teristi
s

of the thermo
y
lers, all the wells in the same strip will be pro
essed at the same temperature.

In addition, the di�eren
e in temperature between two 
onse
utive strips 
annot ex
eed 5 degrees


entigrade and one well of the plate should be reserved for the isolated reagent that is asso
iated

with a group. In addition, the laboratory fa
es work sessions in whi
h thousands of samples must

be pro
essed.

First, an integer linear programming model was developed. It has been shown that with the ILP

model, only small problems 
an be solved, whereas real problems are burdensome. To over
ome

this, a heuristi
 algorithm (based on the simulated annealing philosophy) has been designed. This

algorithm obtains satisfa
tory solutions in short amounts of time and, even in small problems

for whi
h the ILP model 
an be used, provides solutions of similar quality in a mu
h shorter


omputational time, as the 
ompany demands. Moreover, these solutions substantially outperform

the solutions that are obtained by the LabWare software, whi
h was used previously at Health in
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Figure 11: Comparison of the �ll rates that were obtained by LabWare, the initial solution, and the �nal solution of

the algorithm

Code. In most 
ases, it is possible to substantially redu
e the number of plates needed for the

samples.

The algorithm presented in this paper has been su

essfully implemented in the laboratories of

Health in Code and 
orresponds to software registration 03/2017/560, whi
h is entitled "SimPCR:

librería para la optimiza
ión del pro
eso de llenado de pla
as PCR en se
uen
ia
ión Sanger".

A
knowledgements

This work has been supported by MINECO: MTM2014-53395-C3-1-P, MINECO: MTM2017-

87197-C3-1-P, Xunta de Gali
ia/FEDER-UE ERDF: ED431C-2016-015, Xunta de Gali
ia/FEDER-

UE ERDF: ED431G/01, FEDER-UE ESF, Xunta de Gali
ia Cone
ta Peme-2014: IN852A-2014/9,

Xunta de Gali
ia/FEDER-UE CSI: ED431G/01, Xunta de Gali
ia/FEDER-UE GRC: ED431C

24



 0

 5

 ��

 ��

 20

 25

 30

 35

 40

0-25% 25-50% 50-75% 75-99 100%

P
la

te
s

File Id 21

Lab

Initial

Final

 0

 5

 ��

 ��

 20

 25

 30

 35

 40

0-25% 25-50% 50-75% 75-99% 100%

P
la

te
s

File Id 22

Lab

Initial

Final

 0

 5

 ��

 ��

 20

 25

 30

 35

 40

0-25% 25-50% 50-75% 75-99% 100%

P
la

te
s

File Id 23

Lab

Initial

Final

 0

 5

 ��

 ��

 20

 25

 30

 35

 40

0-25% 25-50% 50-75% 75-99% 100%

P
la

te
s

File Id 24

Lab

Initial

Final

 0

 5

 ��

 �!

 20

 25

 30

 35

 40

0-25% 25-50% 50-75% 75-99% 100%

P
la

te
s

File Id 25

Lab

Initial

Final

 0

 5

 "#

 "$

 20

 25

 30

 35

 40

0-25% 25-50% 50-75% 75-99% 100%

P
la

te
s

File Id 2%

Lab

Initial

Final

 0

 5

 &'

 &(

 20

 25

 30

 35

 40

0-25% 25-50% 50-75% 75-99% 100%

P
la

te
s

File Id 27

Lab

Initial

Final

 0

 5

 )*

 )+

 20

 25

 30

 35

 40

0-25% 25-50% 50-75% 75-99% 100%

P
la

te
s

File Id 2,

Lab

Initial

Final

 0

 5

 -.

 -/

 20

 25

 30

 35

 40

0-25% 25-50% 50-75% 75-99% 100%

P
la

te
s

File Id 29

Lab

Initial

Final

 0

 5

 01

 02

 20

 25

 30

 35

 40

0-25% 25-50% 50-75% 75-99% 100%

P
la

te
s

File Id 30

Lab

Initial

Final

Figure 12: Distribution of the plate o

upan
y obtained with the initial and �nal solutions of the algorithm and

LabWare in large instan
es

25



2017/58, MINECO-CDTI/FEDER-UE CIEN LPS-BIGGER: IDI-20141259, MINECO-CDTI/FEDER-

UE INNTERCONECTA uForest: ITC-20161074, MINECO-AEI/FEDER-UE eDSalud: RTC-2016-

5143-1, MINECO-AEI/FEDER-UE Datos 4.0: TIN2016-78011-C4-1-R and MINECO-AEI/FEDER-

UE ETOME-RDFD3: TIN2015-69951-R.

The interesting and 
onstru
tive 
omments made by three anonymous referees are also gratefully

a
knowledged.

Referen
es

[1℄ E.H.L. Aarts, J.H.M. Korst, P.J.M. van Laarhoven, 1997. Simulated Annealing, in: E. Aarts and J.K. Lenstra

(Eds.), Lo
al Sear
h in Combinatorial Optimization, John Wiley & Sons, pp. 91-120.

[2℄ W. Ben-Ameur, 2004. Computing the initial temperature of simulated annealing. Computational Optimization

and Appli
ations 29(3), 369-385.

[3℄ M. Delorme, M. Iori, S. Martello, 2016. Bin pa
king and 
utting sto
k problems: Mathemati
al models and

exa
t algorithms. European Journal of Operational Resear
h 255(1), 1-20.

[4℄ R.W. Eglese, 1990. Simulated Annealing: A tool for Operational Resear
h. European Journal of Operational

Resear
h 46, 271-281.

[5℄ K. Fleszar, K. S.Hindi, 2002. New heuristi
s for one-dimensional bin-pa
king. Computers & Operations Resear
h

29(7), 821-839.

[6℄ S. Kirkpatri
k, C.D. Gelatt, M.P. Ve

hi, 1983. Optimization by simulated annealing. S
ien
e 220, 671-680.

[7℄ F. Sanger, S. Ni
klen, R. Coulson, 1977. DNA sequen
ing with 
hain-terminating inhibitors. Pro
eedings of the

National A
ademy of S
ien
es 74, 5463-5467.

26


	PortadaRUC_declaracion_Cerdeira
	OK_2019-COR-Aceptada (1)



