© 2019 Copyright held by the owner/author(s). This is the author's version of the work. It is posted here for
your personal use. Not for redistribution. The definitive Version of Record was published in ACM
Transactions on Mathematical Software, https://doi.org/10.1145/332¢

Tree Partitioning Reduction: A New Parallel Partition
Method for Solving Tridiagonal Systems

ADRIAN P. DIEGUEZ, MARGARITA AMOR, and RAMON DOALLO, University of A Corufia,
Spain

Solving tridiagonal linear-equation systems is a fundamental computing kernel in a wide range of scientific
and engineering applications, and its computation can be modeled with parallel algorithms. These parallel
solvers are typically designed to compute problems whose data fit in a common shared-memory space where
all the cores taking part in the computation have access. However, when the problem size is large, data cannot
be entirely stored in the common shared-memory space, and a high number of high-latency communications
are performed. One alternative is to partition the problem among different memory spaces. At this point,
conventional parallel algorithms do not facilitate the partition of computation in independent tiles, since
each reduction depends on equations which may be in different tiles. This paper proposes an algorithm based
on a tree reduction, called the Tree Partitioning Reduction (TPR) method, which partitions the problem into
independent slices, that can be partially computed in parallel within different common shared-memory spaces.
The TPR method can be implemented for any parallel and distributed programming paradigm. Furthermore,
in this work, TPR is efficiently implemented for CUDA GPUs to solve large size problems, providing highly
competitive performance results with respect to existing packages, being, on average, 22.03x faster than
CUSPARSE.

Additional Key Words and Phrases: GPU, CUDA, Tuning, Tridiagonal systems, CUSPARSE

ACM Reference Format:

Adrian P. Diéguez, Margarita Amor, and Ramén Doallo. 2019. Tree Partitioning Reduction: A New Parallel
Partition Method for Solving Tridiagonal Systems. ACM Trans. Math. Softw. 1, 1 (May 2019), 26 pages. https:
//doi.org/10.1145/nnnnnnn nnnnnnn

1 INTRODUCTION

Solving systems of linear equations with tridiagonal matrices arises in many scientific, engineer-
ing and computing problems, being a very important component in different fields, such as fluid
dynamics, heat conduction, diffusion equations, numerical analysis, ocean models, cubic spline
approximations and real-time or interactive applications in computer graphics. The Thomas al-
gorithm [21] is the best-known sequential algorithm for solving these systems. Since the 1960s,
a wide range of parallel algorithms for solving tridiagonal systems have been developed, among
which Cyclic Reduction (CR) [10], Parallel Cyclic Reduction (PCR) [9] and Recursive Doubling (RD)
[20] are the most notable methods. These algorithms have been historically implemented in vector
supercomputers first, and later with a message-passing paradigm as an alternative. Nowadays, these
algorithms have been also implemented in Graphics Processing Units (GPUs), since they are used for

Authors’ address: Adrian P. Diéguez; Margarita Amor; Ramon Doallo, University of A Corufia, Department of Computer
Engineering, A Corufia, 15073, Spain, {adrian.perez.dieguez, margarita.amor,doallo}@udc.es.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

@ 2019 Association for Computing Machinery.

0098-3500/2019/5-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 A. P. Diéguez et al.

scientific computation, providing high computational throughput and large memory bandwidth,
being less expensive with rather lower power consumption than CPUs.

It should be noted that many applications require solving a number of tridiagonal systems
simultaneously. Large problem sizes are the most interesting ones, and there are several reasons
for solving this kind of problems [13]: (i) a set of small systems can be expressed as a single large
problem by joining their matrices, (ii) solving a large problem is the most difficult case to implement,
since there is no independence to compute slices of the problem separately, in addition to which
the common shared-memory is limited. In the case of GPU programming, there is also another
strong reason: (iii) although there are a great number of GPU-based solvers for small problem sizes,
only few implementations can handle large problem sizes.

In this paper, a new parallel partition method for solving large-problem sizes is described, called
Tree Partitioning Reduction (TPR). This approach can be easily implemented using any parallel and
distributed programming paradigm,; specifically, this work also provides an efficient GPU CUDA
implementation which allows several large-size problems to be solved simultaneously with a single
invocation to our method.

The rest of the paper is organized as follows, after summarizing the related work: Section 2
introduces the basics of tridiagonal systems and the best known parallel methods. Section 3 presents
the new partition method we propose, the Tree Partitioning Reduction algorithm; whereas Section
4 gives an introduction to CUDA GPU programming and discusses the CUDA implementation of
our algorithm. Section 5 shows the experimental results and their analysis; and finally, Section 6
presents our conclusions and future work.

2 TRIDIAGONAL SYSTEM PRELIMINARIES

A tridiagonal system is composed of N equations E;, with i = 1,--- | N where E; has the form:
ajx;_y + bjx; + ¢;x;,1 = d;. The system can also be represented by its coefficient matrix, A. The b;
coefficients constitute the main diagonal of the coeflicient matrix, whereas a; and c; are known as
the lower and upper diagonals, respectively. Thus, Ax = d, where x and d are vectors.

bl (=]
daz bz Cz 0
az bs C3
A =
0 T - - . CN -1
ay by
In this matrix, a; and cy values are zero. If |b;| > |a;| + |ci|, Vi = 1,--- , N, then the system is

known as diagonally dominant. This kind of matrix guarantees numerical stability in most of the
algorithms proposed in the literature.

In a system solver, as seen above, an equation E; is composed of different unknowns depending
on the step k in which: Ef.‘ = a;‘x,-_u + b:‘x,- + cf.‘x,-w = df.‘ is computed where u is a function of k.
For the sake of clarity, an equation EF is represented in this article by three numbers {i — u. i, i + u}
which correspond to the indices of the unknowns that compose that equation in the step k.

2.1 Thomas Algorithm
The classic algorithm for solving tridiagonal systems is the Thomas algorithm [21], which is based

on Gaussian elimination. The algorithm comprises two phases, forward elimination and backward

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

Tree Partitioning Reduction :3

substitution. The first phase eliminates the first unknown in each equation (a; coefficient in E;
equation) by

k
c]_c+1_ Ci
i 7 gk _ L k+lk
by —cira;
k _ gk+1 k
R Rk N S
T gk kg

i—-1 7

The second phase solves the reduced system by back substitution:

XN = d;i:l

Xj = df-”l - cfoiH, i=N-1,...,1
This algorithm is inherently serial, taking 2 - N computation steps, since cf“, df.‘“
on the preceding ci.c_"ll , diffll and xj.q.

and x; depend

2.2 Parallel Algorithms

There are several parallel algorithms for solving tridiagonal systems, but Cyclic Reduction (CR)
[10] and Parallel Cyclic Reduction (PCR) [9] are the most popular methods [4]. Additionally, the
Wang and Mou algorithm [23] is also a well-known parallel tridiagonal solver.

2.2.1 The Cyclic Reduction Algorithm (CR). On the one hand, CR (see Figure 1), comprises
two phases, forward reduction (Figure 1 (a)) and backward substitution (Figure 1 (b)). As already
mentioned, an equation E; = a;x;_y + bix; + cixiyy = d; is represented as E; = {i — u,i,i + u}
in figures. Forward reduction reduces a system to another one comprising half the number of
equations, until a 2-unknown 2-equation system is reached in log;N — 1 steps. Even-indexed
equations are updated in parallel as a linear combination of their adjacent equations E;, E;_, and
E;,y, deriving a system of only even-indexed unknowns by Eq. 1:

k
k+1 k k+1 k k k . i
ait = —ai_ s, b =bF — i 51— a5, with s = kl
i-u
k k k gk k of
1_ 1_ : _ i
it = —c{fwsz, dit =di —di s, —df s with s; = — (1)

I+

where k denotes the step of the algorithm; i starts from all even index and shrinks exponentially for
each step k; and u starts from 1 and increases exponentially step-by-step, u = 2K~1. After one step
of the algorithm, redundant unknowns and zeros are removed, and a half-size matrix is formed by
the remaining unsolved equations. As Figure 1 (a) shows for the forward reduction with N = 16
elements, the system is reduced to another one where the selected equations to be kept in the
updated system, the even-indexed ones, are highlighted in red, building a half-size system. In
this example, the process is repeated along 3 steps, until a two-unknown two-equation system is
obtained.

In each step of the backward substitution, unknowns x; are solved in parallel. To do this, the
previously solved x;_, and x;,,, values at step k — 1 are substituted on each E; equation in the step
k; repeating this process along log; N steps, as Eq. 2 defines:

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

12

24

234
4B

456
468
678
8 16
8910
81012
101112
8 1216
121314
121416
141516

B 18

Fig. 1. Pattern of Cyclic Reduction (CR) with N = 16 elements.

123

234

345

456

567

678

789

8 910

91011

101112

111213

121314

131415

141516

15 16

)
=

101112

-+ 1012 14

121314

» 1214 16

14 15 16

14 16

678

4812

8910

81012

101112

8 1216

121314

121416

141516

12 16

(a) Forward Reduction

456
468
678
816
8910)
81012
101112
81216
121314
1214 16
141516

8 16

s

89 10
81012
w0111z
A 1216
121314
121416
141516

8 18

u

a

as

(b) Backward Substitution

468

678

8 16

8010

81012

101112

8 1216

121314

121416

14 1516

8 16

»

101112

8 1216
121314
121416
141516

8 168

A. P. Diéguez et al.

@

where u decreases exponentially step-by-step, from N/2 to 1 (u**! = ¥ /2); and the domain of i
also increases exponentially, employing a double-size system in each step. Figure 1 (b) shows the
backward substitution when solving N = 16 unknowns. As can be observed, the process takes 4
steps, and each step uses the double of equations with respect to the previous step, solving the

double of unknowns.

2.2.2 The Parallel Cyclic Reduction (PCR). On the other hand, PCR is a modification of CR that
performs the forward reduction phase in log,N — 1 steps, and the substitution phase in only 1
step. The PCR forward reduction is performed on all equations, instead of even equations only;

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

Tree Partitioning Reduction :5

thus, doing asymptotically more work per step. Therefore, the domain of i does not decrease
exponentially. To do this, two systems are initially considered at step k = 1, one whose odd-indexed
equations are updated with its adjacent equations (u = 1), and another one which updates its
even-indexed equations. In both systems, the equation Ef is updated with E;, E;_, and E;,,, where
u = 1 at this initial step. Regarding the remaining steps, each of the existing systems at step k is
divided into two systems of half-size in the step k + 1, where the stride u increases exponentially
u = 2K-1, After logy — 1 steps, there are N/2 two-unknown systems that can be solved in parallel
in only one step as Eq.3 shows:

k k k
o bi+Nf2dl' - ci‘can;z
P~k k_ k k
bi+N,|"2bf TGN

d* bk dkaqk

i+N /270 i+N /2
bi+N,f'zbi — G ﬂf,,N;z

Figure 2 depicts the pattern of PCR with N = 16 elements. It performs the forward reduction
along 3 steps, and the substitution phase in one step. In each step, each of the existing systems
(marked with different colours) is divided into two systems of half-size, until achieving eight
two-unknown two-equation systems. At this point, it is possible to solve them in one step and the
algorithm is finished after log; N steps.

Forward Reducton Substitution

> X
8 910'? 791
910 11—

-

1011122 9111
111213€—> 1012

Fig. 2. Pattern of Parallel Cyclic Reduction (PCR) with N = 16 elements.

2.2.3 The Wang & Mou Algorithm. In addition to these algorithms, the Wang and Mou (WM)
algorithm, presented in Figure 3 for N = 8 equations, divides the computation into log;N steps.
Each element of the algorithm is composed of three equations, also known as a triad of equations.
For the sake of clarity, and in order to be homogeneous with the other algorithms, each element
(triad) is represented as E;, which is composed of three equations, labeled as Left, Center and Right.
As previously, each equation is formed of a;x;_; + bix; + cixit1 = d;.

Unlike CR and PCR, WM has an unique reduction phase, where EX+! and EX! are both updated

instead of only E¥*1) using EX and EX. with u = 2k-1. The updating of coefficients is more complex
Y I g 1 +u p g P

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

6 A. P. Diéguez et al.

W | [(BNe | R
titnen | e | B
@i (ENe B e

B
wmao
(=TT

BEE BB A BBRA
@W~w; @O WU ! e;
@i | | @I | el e

Bl b
oo ce o
o =

Fig. 3. Pattern of Wang& Mou algorithm (WM) with N = 8 elements.

in WM than in CR and PCR, as Figure 4 represents. A more detailed explanation of the coefficient
updating in WM can be found in [15]. Initially, each equation in the original system is triplied in
order to build L;, C; and R; for each element E;. After this, in order to reduce E; and E;,, in each
step, the algorithm operates as follows: first, the middle term of equation R; is used to reduce the
first term in the three equations of E;,,, using the Gaussian elimination, already explained above.
Next, the middle term of the new equation in L;,,, is used to reduce all the other coefficients. At
the end of the sequence, both left equations will be identical, and the same happens with both right
equations. In the last step, the Center equation, C;, of each element, E;, is composed of only one
unknown, thus it can be inmediately solved by Eq. 4:

dx
xX; = b_;‘ 4

Figure 3 represents the pattern of WM in order to solve a system of N = 8 equations. Each
grey-box represents an E; element, where its top equation is L;, its middle one is C; and its bottom
one is R;. After log; N steps, each C; equation can easily obtain the corresponding x; value.

2.3 The Partitioning Problem

As introduced above, partitioning the system is crucial for surpassing the memory capacity re-
striction. In order to efficiently solve the problem on distributed platforms, each private-memory
system of the distributed platform must process a subset of equations as independently as possible,
to avoid communication latency. In this work, each subset of equations, which is computed in a
private-memory space, is called a slice. However, most of the parallel algorithms cannot be easily
partitioned. In the case of the Cyclic Reduction (CR) method, equations that take part in a reduction
may belong to different slices. Specifically, the equation E¥, at step k, is the result of reducing the
[Ef.‘__,}, Ef.‘_l, Ef.‘:l},] equations, withu = k-1, Figure 1 showed an example of the CR method for

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

Tree Partitioning Reduction :7

NS
RN

\\t ~

o

oged O

l) “. ezl ..’-... i |
i el

Fig. 4. Reduction of two triads in the Wang and Mou algorithm

N = 16 equations. Specifically, Figure 1 (a) depicts the forward reduction phase. As can be observed
in this figure, the problem cannot be directly partitioned into independent slices (marked with
horizontal dashed lines), as equations need from other slice equations to be reduced. The same
problem happens in the subsitution backward phase (see Figure 1 (b)).

Regarding PCR, this algorithm cannot be splited into different slices. Figure 2 showed the same
problem as CR for the forward reduction: the participating equations in each calculation do not
belong to the same slice.

With respect to WM, as can be observed in Figure 3, the computation can be easily performed in
different independent slices. This is possible due to the fact that each element is used for only one
reduction; whereas equations of PCR and CR can be used in different reductions.

In terms of computation, both PCR and WM require fewer algorithmic steps than CR to solve
the system, but do asymptotically more work per step. In distributed (or non shared memory)
machines only WM can easily partition the problem into independent shared-memory spaces, as
seen above; whereas PCR and CR have a communication pattern with strong dependences that
do not allow the system to be partitioned (since equations from one shared-memory space would
need equations from another shared-memory space). However, although WM can easily divide the
problem into independent slices, the fact of not having access to all equations makes the application
of the adjacency property impossible [7], tripling the number of equations to be stored. This is a
serious issue in memory-bound problems, as the number of transactions is also triplied. Thus, it is
necessary to find an algorithm that partitions well the problem into independent shared-memory
spaces and does not consume a huge amount of memory bandwidth. This algorithm, the Tree
Partitioning Reduction Method (TPR), is presented in Section 3.

2.4 Related Work

There are many tridiagonal system solver implementations on GPUs. Most of them solve small
problems that can be stored in the GPU shared memory, such as [2, 24], where parallelism is
inherent and there is no partitioning overhead. In [6], a new tridiagonal system solver based on a
parallel prefix sum pattern is developed. CUDPP [17] is another accelerated GPU library that solves
small-size tridiagonal systems and other parallel operations.

In [1], the authors first recognized that partitioning is essential for solving large matrices on GPUs,
using a hybrid PCR - Thomas algorithm to do so, although this algorithm suffers from a computation
overhead. Argiiello et al. [3] proposed a split-and-merge method based on the CR algorithm, reducing
the overhead from previous proposals. This split-and-merge approach is later refined in [5]. In [8], a

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

:8 A. P. Diéguez et al.

partition method based on the SPIKE [19] algorithm is presented. Additionally, a diagonal pivoting
method for numerical stability is first introduced in [13]. Combining QR factorization with Given
rotations in [22] improved the previous implementation. In [25], a CR-based approach for solving
large-problems is also presented; whereas a asymmetric banded solver with a direct approach that
scales very well across many processors is proposed in [11]. Finally, NVIDIA implements CUSPARSE
[16], a library that uses a hybrid CR-PCR implementation with pivoting for solving large-problem
sizes.

A different approach was presented in [15] for small problem sizes and extended in [7] for
medium and large problem sizes. This approach adapts the Wang and Mou algorithm [23] for
CUDA-enabled GPU architectures. The Wang and Mou algorithm is based on the same Divide-and-
Congquer strategy [18] as the SPIKE algorithm; however, in contrast to the SPIKE algorithm, the
diagonalization of each block is performed using the Gaussian elimination method, also reordering
the equations in a different way.

3 THE TREE PARTITIONING REDUCTION METHOD

In this section, a new tridiagonal system solver, called Tree Partitioning Reduction (TPR), is presented.
This method is based on a division of the problem into independent slices to compute large-problem
sizes. The TPR algorithm has two phases: the forward reduction and the backward substitution. In
contrast to most solvers, equations that take part in the TPR can be reduced independently in each
slice over many steps, facilitating the computation of large systems.

The goal of the forward reduction, which is shown in Figure 5 where each i—box represents
the E; equation, is to compute as many independent steps in slices as possible; where there is no
communication between slices, and finally, to integrate all the resulting equations in the lowest
number of steps possible. In the backward substitution, unknowns are solved with the equations
obtained in the forward reduction.

B[] [B [S
HEEEERE

XD DD
n’a&%& B[=
=

X
stn!
A

EEEEREE
EEEEREEE [

Fig. 5. Forward reduction phase for N = 16 elements in the TPR method, with S = 8.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

Tree Partitioning Reduction 9

k=1 k=2 k=3 k=4 k=5
12 13 - 15 14
< 123 24 24
g
FHllz3a 135 135
345 245 45 48
456 457 - 459 458
~ 567 468 468
4
= 7 5749 5789
Fl678
7809 - - 6B9 - 489 T—— 4 8 12 ;B 16
8 910- . 8911 - 8913 - 8912
o |||91011 . 81012 81012
D & X /
2 1101112 - 91113 91113
o /
1112 13- 101213 - 81213 | 81216
12 13 14- - 121315 - 12 13 - 13 16
™ || |131415 - 1214 16 121416
@ v
o
=2 |||141516 - 1315 13 15
o . /
1516 14 16 12 16 12 16 8 16
Stage 1 Intermediate Stage Stage 2

(a) TPR forward reduction

k=6 k=7 k=8 k=9
12 v 12
24 24 2
@
234 $ 234 <
48 5 48 45 45

456 % 456

s 468 468)
6578 $ 678 E
8 16 8 16 ¢ 8 16 \ 489 489
. B 9 10 .': 8810
% 81012 81012 a‘_’_‘
101112 s101112 ||| 0
| 81216 : 81216 | B1213< 81213
h 121314 3121314
v 121416 1214 16 %
141516 $14 15 16 ‘2:
8 16 8 16 8 16 12 16 12 16
Stage 2 Stage 3

(b) TPR backward substitution

Fig. 6. Tree Partitioning Reduction example for N = 16 elements with S = 4

3.1 The TPR Forward Reduction phase

The TPR Forward Reduction phase, see Figure 5, divides a tridiagonal system of N equations into
slices of size S; i.e., a divide-and-conquer algorithm where each slice is reduced independently
from other slices. Specifically, the algorithm treats each slice as two different sub-systems, one that
operates over the initial odd-indexed equations (red colour), and the other that operates over the
initial even-indexed equations (blue colour). This mechanism can be seen in Figure 6 (a) for N = 16

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

:10 A. P. Diéguez et al.

and S = 4 where each of the two sub-systems is marked with a different colour. In each step of
the forward reduction, each of the two sub-systems is reduced to another with half the number
of equations. In order to update the equation E¥ in the step k, the equations EX~!, E¥-! and E;!
are used, with u = 25~ shrinking exponentially in each step, as Figure 7 depicts, forming a tree
reduction schema, following Eq. 5:

k
a;
ai‘Hl = —af_usl, bi‘cw = bi‘c - Cf‘c—usl - ai‘cmsz, with s; = bk—l
i—u
A s)
c:
Ci‘“—l = _ci‘c+u52a df_c+u = df - di‘c—usl - di‘c+u52¢ with s; = bkl

Fig. 7. Coefficient reductions in the TPR forward reduction phase for a node computation

After log,S steps, each of the two sub-systems is composed of only one two-unknown equation.
In the step k = log;S + 1, the equation of the first sub-system is updated with the corresponding
equation of the second sub-system, obtaining a single two-unknown equation. This procedure is
repeated in every slice and, consequently, the step k = log,S + 2 integrates all the slices by reducing
the unique equation of each slice with the unique equation of its adjacent slice. After these log,S + 2
steps, the remaining log,(N /S) — 1 steps reduce the created system until obtaining a two-unknown
two-equation system with a conventional tree-reduction schema: each step reduces the system to
another with half of the number of equations, using the coefficient updating explained in Eq. 5
over the even-indexed equations. It should be observed that the last log,(N/S) — 1 steps are not
calculated in independent slices due to the dependencies between equations. It should be observed
that the term stage, which appears in Figure 6, is related with the implementation, where each
stage, or kernel, represent a set of steps performed in one computing function, as will be explained
in Section 4.

More precise details about the algorithm are presented in Figure 8, which shows the pseudo-code
for the TPR forward reduction phase. The first for-loop (lines 4-16), along log,S steps, updates the
coefficients of the two sub-systems. To do this, a while-loop (lines 7-15) iterates over the different S
slices, where the variable p controls the slice. The two inner for-loops update the coefficients of
its corresponding sub-system. Then, the step log,S + 1 is performed in the lines 18-24. The next
for-loop, lines 27-29, integrates the unique equation of each slice with its adjacent. Finally, the
second while-loop (lines 32-39) performs the remaining log,(N/S) — 1 steps. The update function
calculates the coefficients of the i equation (E;), following the formula of Eq.5, with the i + u
equations (Ej_y, Eivy).

The fact of performing log;N + 1 steps in independent slices, and integrating them later, is
possible thanks to work with the specific columns of the coefficient matrix in each step. The
coefficient matrix A is divided into M = N /S sub-matrices of equal size S, A = {A, ..., Am_1},
where each sub-matrix corresponds to an independent slice. A sub-matrix A; is composed of the

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

Tree Partitioning Reduction 11

PROCEDURE TPR_forward(A,S,N)

1

2 k:=0

3 //Stage 1

4 for k:=1; k=< log:5; k:=k+1

5 u:=2k1

6 p:=1

7 while (p<N)

8 for i:=p; i=<p+S; ii=i+2k
9 update(i,%u)

10 end

11 for i:=p+2"—1; i<p+S; i:=is2k
12 update(i,%u)

13 end

14 p:=p+5

15 end

16 end

17

18 k:=k+1

19 u:=25"1

2w p:=1

21 while(p<N)

22 update(p,+(u-1))
23 p:=p+S

24 end

26 //Intermediate Stage

27 for i:=5; i = N-5; i:=i+8§
28 update(i,+1)
29 end

30 //Stage 2

j:=0
32 while(j<log:(N/S)-1)

3 u:=zk!
4 for i:=2F; i<N; i:=is2*
35 update(i,+u)
36 end
37 ji=j+1
38 k:=k+1
39 end
Fig. 8. Pseudo-code of the TPR forward reduction phase.
following set of equations {Ej.s+1, - - , Ej.2.5}, represented as its rows. The TPR method transforms

the starting coefficient matrix, as shown in Figure 9 (a), into an equivalent matrix composed of
sub-matrices where the bottom row (equation) of each sub-matrix has two common columns
(unknowns) with respect to the top row of its lower sub-matrix, as represented in Figure 9 (b).
Thanks to this process, each sub-matrix computes a high number of steps independently, and
subsequently, can easily use equations from other sub-matrices to build the overall final reduction.
This transformation is carried out in log,S + 1 steps, called sliced forward reduction, where the rows
of a sub-matrix are independently reduced with other rows from the same sub-matrix, creating zeros
in some columns and giving values to others. As can be observed, following the presented reduction
schema guarantees that, after log;S + 1 steps, columns from the top rows of each sub-matrix are
carried to its bottom rows in order to have common columns with lower sub-matrices; i.e., provide
these unknowns to other sub-matrices and solve the overall system. After log,S + 1 steps, the
corresponding rows from one sub-matrix share the same two columns with adjacent sub-matrices,
allowing them to be reduced (integrated) with the tree-form reduction presented above.

In terms of computation, each sub-matrix represents a slice of the problem to be computed in an
independent memory space. Equations of each slice are independently computed through log,S + 1
iterations, without communication among these memory spaces. In a parallel environment, each

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

12 A. P. Diéguez et al.

(A A
x)x x X
X X X X X X
X X X X X
x(X) x x X X
Ox x X X x
X X X 3 X X X
X x k X x__x
x(x) x X [x x
\ ' J o\ ' J
(a) Coefficient matrix in the starting (b) Coefficient matrix after processing
step sub-matrices

Fig. 9. Coefficient matrix evolution in the TPR method

thread or computing process is the responsible of perfoming the coefficient updating for an equation,
which is called node computation or reduction. In Figure 5, the node computations are represented
with black circles. The first log;S + 1 steps are performed independently in each memory space
(slice); however the last log;N /S steps need communication between the different participating
memory spaces.

To sum up, firstly the equations of each slice are independently reduced in log,S + 1 steps.
These steps are also known as sliced forward reduction. Then, the bottom equation of each slice is
updated with the top equation of its corresponding lower slice in one step. And finally, the resulting
equations of previous steps are solved in a single overall matrix, in log,(N/S) — 1 steps. At this
point, the backward substitution phase is performed.

For the sake of clarity, Figure 6 showed an example of the TPR method for N = 16 equations,
where the matrix is divided into M = 4 independent sub-matrices of size S = 4; i.e., the computation
is divided into four slices. The sliced forward reduction phase is performed in (log,S) + 2 = 4
steps, as defined above. Specifically, the first log,S + 1 steps are computed inside each slice, with
no communication with other slices. One sub-system is represented with the red colour, and the
other one in blue. To perform the forward reduction, the suitable E; equations of each sub-system
are reduced with the corresponding E;_, and E;,, equations inside each slice, where u shrinks
exponentially in each step (u = {1, 2, 4}). For example, the following operations are performed for
slice 0 (sub-matrix Ag):

® k = 1: The equations {E;, E3} in one sub-system, and {E;, E,} in the other, are respectively
updated with u = 1.

e k = 2: {E,} and {E4} are updated, respectively, with u = 2.

e k = 3: {E,} is updated with {E;}. At this point, each slice has an unique equation.

¢ k = 4: The unique equation of each slice is updated with the unique equation of its adjacent
slice. In the case of slice 0, E; (slice 0) is updated with Es (slice 1), creating an overall system
that cannot be split into slices.

At this point, the created overall system is reduced through steps, as explained previously:
reducing the system to another with half the number of equations in each step. This reduction is
performed in k = 5, achieving a 2-equation 2-unknown system whose unknowns are xs and xi¢.
This system can be solved directly in the first step of the backward substitution phase.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

Tree Partitioning Reduction :13

Please, note that the examples of this work are given for power-of-two sizes. In the case of an
arbitrary N, it can be expressed as 2" + N’. On the one hand, the sliced forward reduction for 2"
is calculated as explained in slices of size S. On the other hand, the smallest power of 2 able to
compute N’ is calculated, fulfilling the extra equations with the last equation of N’. Then, both 2"
and N’ are integrated into the overall system, after the sliced forward reduction, to perform the
substitution.

3.2 The TPR Backward Substitution phase

Concerning the backward substitution, a two-unknown system composed of two equations is
received from the forward reduction phase and is solved in the first step of the backward substitution.
As defined before, the system was divided in M partitions of size S. Thus, the whole phase takes
logzN steps: specifically, the solution of unknowns during the first log, M steps is solved as a single
system; whereas the system can be partitioned into slices in the remaining log,S steps.

The first step solves the two-unknown two-equation system, with u = N/2, by Eq. 6:

k k k

o bi+Nf2d!' - ci‘can;z

Tk k_ Lk k
bi+N,f'zb:‘ TGNz

dk bk —dkgk

i+N /270 i+N /2
bi+N,f'zbi — G aﬁmz

Then, each step of the backward substitution solves the unknown variables in the overall matrix
in the next logzM — 1 steps, by substituting the solutions obtained from the previous step in Eq. 7:

i = di - aixi—bu — CiXitu @

- - k _ k-1 - .- -
decreasing u exponentially step-by-step, u™ = “5—, whereas the domain of i increases exponentially,

as Figure 6 (b) shows. After these steps, the odd-indexed E; equations are replaced with their
homologous E; equations from the original system (step k = 0); whereas the even-indexed equations
are replaced with their corresponding equations from the system after the sliced forward reduction,
step k = log,S + 1. Thanks to this replacement, the system can be now partitioned into slices in
order to solve the unknowns in the last log,S steps, following Eq. 7. It should be observed that this
computation of the last log;S steps can be performed in independent slices, since each slice only
needs to know the bottom unknown of its upper slice, which does not vary during the final steps.
These steps are known as the sliced backward substitution. This algorithm can be implemented
efficiently in any parallel programming paradigm, as Section 4 shows.

This procedure is possible thanks to the matrix operation properties and the Gaussian elimination.
In the first log:M steps of the substitution phase, after the forward reduction phase, there are M
rows (with stride S) with enough common columns between them to solve the unknowns. In order
to solve the remaining unknowns (i.e., having enough common columns between the participating
rows), it is necessary to transform the coefficient matrix. Let us define A” as the initial coefficient
matrix (step k = 0); and A as the coefficient matrix generated after the step k = log,S + 1. Replacing
the odd-indexed rows of the matrix by the odd-indexed rows from A%, and the even-indexed rows
by the even-indexed ones from A, there are enough common columns between the corresponding
rows to be eliminated and solve the unknowns.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

14 A. P. Diéguez et al.

PROCEDURE TPR_substitution(A,5,N)

1

2

3 I:=N/2

4 M:=N/S

5 //Stage 2
6 u:=N/2

7T i:=1

8 xji= Pisudi—cidisu
9

bivubi—ciajiy

disubi-didizu

W0 Xisw = 3 i ciaiiu
1

12 j:=0

13 while (j<logaM —1)
14 I:=1/2

15 u:=u/2
16 for i:=1; i=N; i:=i+2u
di— 8% u—CiXisu

17 Xi = N
1

18 end

19 ji=j+1

20 end

22 for i:=1; i=N; i:=i+1
23 if (i%2=0)

24 replace (i,log:5+1)
25 else

26 replace (i.0)

27 end

28 end

29 //Stage 3
30 for j:=0; j<log:S;j:=j+1

31 I:=1/2

32 u:=u/2

33 p:=0

34 while (p=<N)

35 for i:=p+l; i<p+5; i:=i+2u
" X; = df—ﬂiri—u_—fi-fnu

37 end !

38 p:=p+5

39 end

40 end

Fig. 10. Pseudo-code of the TPR substitution phase.

A more detailed description of the algorithm is presented in the pseudo-code of Figure 10. The
first step of the backward substitution, which solves xx/2 and xy, is performed in line 8 and line 10,
respectively. After that, the next log,M — 1 steps are performed in a while-loop (lines 13-20). The
offset u decreases exponentially in each step. The variable I is used to control the stride for the first
equation of each iteration, which also decreases exponentially. As can be observed in the for-loop
of lines 16-18, the domain of i increases in each iteration thanks to reduce I and u. The i unknowns
are solved by using the formula of Eq.7. After this point, equations of the system are replaced,
as explained above, in the for-loop of lines 22-28, considering even-indexed equations (i%2 = 0)
and odd-indexed equations. The replace function changes the current i-equation, indicated in the
first argument of the function, by the values of this equation after the step indicated in the second
argument. Finally, the for-loop of lines 30-40 perform the remaining log,S steps in slices. To do
this, the while-loop (lines 34-39) performs the solution of unknowns for each slice, controlling the
slice with the variable p.

In the example of Figure 6 (b), there are N = 16 equations with S = 4; thus, the unknowns xs
and xy6 are solved in the first step of the backward substitution phase (global step k = 6), since

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

Tree Partitioning Reduction :15

a 2-unknown 2-equation system was obtained from the forward reduction phase. As M = 4, the
next step (k = 7) is solved in a single overall system, where the unknowns x, and x;; are solved.
After this point, the remaining steps (k = 8 and k = 9) can be performed in independent slices for
the last 2 steps. It should be observed that the slice j needs the unknown xjxs during every step
of the sliced backward substitution, which belongs to the slice j — 1; i.e., slice 1 needs x4, slice 2
needs xs and slice 3 needs x,. However, the value of xj.s does not vary since the sliced backward
substitution starts and, in terms of computation, storing this single value does not imply either a
bottleneck or overhead.

3.3 Algorithms comparison and GPU implementation considerations

Table 1 highlights the links between the explained algorithms of this work:

Algorithm Arithmetic Operations Steps in Forward phase Steps in Substitution phase Observations
CR 17N logzN —1 logaN Dependences for partitioning
PCR 12N logaN logzN — 1 1 Dependences for partitioning

Huge memory bandwidth
WM 48N(logsN — 1) + N log:N — 1 1 requ -

Easy to partition, fewer
inter-systems memory transactions

Table 1. Comparison of algorithms, where N is the number of equations, M is the number of slices and S is
the slice size, and assuming these parameters power of two.

TPR 24M(S — 2) + 60M — 36 + 5N logsN + 1 log:N

From a GPU point of view, CR and PCR algorithms are easily implemented in CUDA when the
problem fits in the shared memory of one thread block. Otherwise, when the problem is bigger than
the shared memory capacity, the computation needs to be divided among several thread blocks,
which hinders the CUDA implementation.

Regarding the GPU performance of WM, this algorithm is well suited to GPU architectures,
as demonstrated in [15]. This algorithm is easily partitioned among different thread blocks for
solving large problem sizes [7] when exceeding the GPU shared-memory size. However, when
distributing the equations among different thread blocks, the elements are not stored in the same
shared-memory space and it is necessary to work with (and store) whole triads, decreasing the
global performance due to memory bandwidth limits.

In terms of computation, as will be seen in Section 4 for a GPU implementation, the TPR
algorithm matches excellently to distributed (or non-shared memory) systems. Although it performs
2logzN + 1 steps, most of them are performed in independent shared-memory systems; thus, the
communication between systems is minimum, which is the best advantage in memory-bound
problems in comparison to other paralell algorithms. Although in the sliced substitution backward
phase, each slice needs one unknown from another shared-memory slice, this data is sent only
once during the whole phase, which has no penalty.

4 AN EFFICIENT CUDA IMPLEMENTATION FOR THE TPR METHOD

As stated in the introduction, the TPR method can be implemented in any parallel and distributed
programming paradigm. In order to show its efficiency for parallel platforms, this work provides
an efficient implementation for GPU devices, since they play a huge role accelerating applications
nowadays.

In order to correctly exploit the GPU parallelism, this solver has been implemented under
the BPLG library [14]. This library is composed of BPLG skeletons, which are predefined and
generic functions that implement common specific patterns of computation and data movements,
customized with user-defined code parameters, and whose performance has been demonstrated

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

:16 A. P. Diéguez et al.

in [7]. These BPLG skeletons make extensive use of CUDA templates to create several optimized
versions, depending on the problem size and the target architecture. Different static tables are built,
where each entry represents a problem size indicating both the slice size, and the optimal values of
the GPU tunable parameters (see Section 4.2) for the given execution. The library chooses the entry,
and then kernels are built with the corresponding entry parameters at compile time. Hence, users
do not have to generate kernels or worry about performance decisions. Most of the function calls,
register loops and move operations are fully optimized at compile time; thus this library provides
generality and usability, generating well performing kernels with little effort.

4.1 The CUDA GPU Programming Model

NVIDIA GPUs are made up of many streaming processors (SPs) organized into a set of streaming
multiprocessors (SMs). Each SM has its own small high-speed on-chip programmable memory,
called shared memory. It also has its own set of registers. In addition to this, the main memory of
the GPU is called global memory and is accessible by different SMs simultaneously. On the software
side, there are some programming interfaces, such as OpenCL and CUDA, for programming the
software layer, although CUDA is the most popular when using NVIDIA GPUs. CUDA virtualizes
threads, grouping them into a grid of thread blocks, enabling programmers to run thousands of
threads and thread blocks regardless of the number of hardware-processors. The thread blocks
compute a function (kernel) in parallel, where a stage corresponds with a kernel invocation. In
the CUDA runtime, thread blocks are assigned to available SMs and, depending on the amount of
required resources, each SM may execute several blocks simultaneously. Threads of the same thread
block can exchange information through the thread block’s shared memory, and a small number
of adjacent threads, called warp, is executed at the same time (currently, one warp comprises 32
threads). Threads from the same warp can exchange information via registers with the shuffle
instructions, avoiding shared memory communication. Finally, there is a barrier instruction to
synchronize threads inside a thread block, but there is no instruction to synchronize thread blocks
inside the kernel grid. However, launching a kernel involves an implicit global synchronization
barrier between thread blocks, and can be used as a global synchronization mechanism. A more
detailed description can be found in [12].

4.2 BPLG Implementation Parameters

In order to facilitate the understanding of our CUDA implementation, the following implementation
parameters are defined. Firstly, each problem is composed of N = 2" elements. Additionally, G
problems are simultaneously solved in a single invocation to the method. Each computation step
has a given number of reductions, called node computations, which execute the reduction operation
over a number of P elements. To do so, B thread blocks are executed per kernel, which can be
arranged as B = By X By, where By is the number of thread blocks used per problem, whereas
By represents the number of batch problems being simultaneously executed. Each thread block is
composed of L threads, and each thread works with P elements in private registers, whereas all
threads share information through S elements in shared memory. As all data processed in registers
have a copy in shared memory, S = P X L is obtained. Table 2 collects all previous parameters and
their definitions.

4.3 BPLG CUDA Kernels for the TPR method

Our CUDA implementation of TPR divides the execution in three stages (kernels). The first kernel,
Stage 1, is responsible for performing log;S + 1 steps of the forward reduction, where each slice
(sub-matrix) is computed in one thread block. After log,S + 1 steps, the last equation of each slice
uses the first equation of the next slice, thus communication among thread blocks is needed. In order

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

Tree Partitioning Reduction 17

Problem Parameters
N=2" Problem size.

G Number of problems being solved simulteneously.

M Number of partitions which solve the system independently.
GPU Parameters

S Number of shared-memory elements per block.
P Number of elements stored in registers per thread.
Number of thread blocks executed per GPU, where
B -
B=B,xB,

Number of threads that compose a block, where
S=PxLandL=LyxLy
Table 2. Description of implementation parameters.

L

to do this, a second kernel, Stage 2, is launched, working as a global synchronization barrier among
thread blocks. In Stage 2, each problem is represented by as many equations as the number of slices
the first stage had (M = N/S). Stage 2 computes the last log, M steps of the forward reduction, and
the first log,M steps of the backward substitution. Finally, Stage 3 computes the remaining steps
of the backward substitution in slices of S equations, where each slice is again solved by a thread
block. It should be noted that each slice needs the last equation of the upper slice to perform its
substitutions, which is taken from global memory. In Figure 6, the division of stages can be seen.

Specifically, the first kernel is invoked with (B = N/S, By = G) thread blocks, and its pseudo-
code is shown in Figure 11. Considering floating point single precision elements, each element is
composed of four 4-byte elements, requiring 16 bytes of storage, that can be stored in a float4
datatype (line 3). In the case of double precision, it would be represented by a double4 datatype.
Each thread performs a node computation, and although each node computation works with three
elements, these elements are shared by two different node computations; thus each thread loads
P = 2 elements in its own registers and takes the third element from shared memory (lines 7-11).
Please observe that there are S node computations in the first step, but there are L = S/P threads;
considering P = 2, each thread has to compute two node computations in the first step (lines 13-19).
In the following steps, the number of node computations shrinks exponentially; thus it is necessary
to control the thread id to know which threads must perform the reduction (lines 26,31). Please
observe that there are cases where the node computation only computes two elements. In these
cases, the identity equation is assigned to the third element to avoid influencing in the computation
and giving rise to produce branch divergence. Finally, the even-indexed equations, with i%2 = 0,
are stored in global memory, overwriting their previous values (line 38), whereas the E; equations
with i%2 # 0 remain constant in global memory. Additionally, the bottom equation of each slice is
stored in an auxiliary buffer for the next stage (lines 35-36). It should be noted that the size of this
buffer corresponds to G problem times By — 1 slices per problem (the first slice of each problem
can skip this storage action, since its equation is not used in future steps).

To optimize the communication among threads, the pseudo-code of Figure 11 can be improved
with the use of shuffle instructions during the last four steps. Considering 32 threads/warp in
current architectures, where each thread collaborates with one element, this implies four steps of
computation where the comunication is entirely performed by shuffle instructions.

Regarding the second kernel (Stage 2), each problem needs as many elements as slices it had in
the previous stage. As this number can be low, each thread block can compute several problems. In
the first step, each element from the auxiliary buffer is reduced with its corresponding equation,
as Figure 6 (a) shows. Then, a conventional reduction is applied, until being able to solve the
unknowns xn 2 and xy; after which, the backward substitution starts.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

:18 A. P. Diéguez et al.

1| template<int N> __global__ wvoid

2| BPLG_TPR_Stagel (const float* __restrict__ src, float* bufferAux){
3 Float4 reg[3];

4 __shared__ Float4 shm[N];

5 //0btain id, offsets and strides

&

7

3

//Load data from global mem2reg, reg2shm

copy<2>(reg,src+strideld,...);
9 copy<2>(shm+strideSHM, reg, ...);
10 __syncthreads ();
11 copy<1>(reg+2,shm+strideSHM+offset,...);

13 //First compute step

14 Float4 aux[3]; //second node comp. in first step
15 copy<1>(aux,shm+strideSHM-1,..);

16 copy<1>(aux+1,reg,..);

17 copy<1>(aux+2,reg+1,..);

18 compute<2,MixStep>(reg);

19 compute<2,MixStep>(aux);

20

21 for(int accR=MixR; accR < N ; accR*=2) {
22 __syncthreads();

23 //0btains strides and offsets

24

25 //Reg-> Shm

26 if(threadId<numThreads)

27 copy<1>(shm+write0ffset, reg,..);

28 __syncthreads();

29 numThreads/=2;

30 //Shm-> Reg

31 if(threadId<numThreads)

32 copy<3>(reg,shm+readoffset,..);

33 compute<2>(reg); //Computation in registers
34 }

35 if(threadId==1)

36 copy<1>(bufferAux+offset,reg+l,..);

37 copy<1>(reg+1,shm+strideSHM+1,..);
38 copy<1>(src+strideld+1,reg,..);

Fig. 11. Forward Reduction code for the TPR tridiagonal algorithm using BPLG.

Finally, the third kernel (Stage 3) performs the remaining substitutions that did not take place in
the Stage 2. The number of thread blocks and threads per block is the same as in the first kernel,
dividing the problem in the same number of slices. Observing Figure 6 (b), each slice needs the last
element of its upper slice.

4.4 BPLG Tuning

The values of S and P (from which L is derived) are key in our implementation. In this work, the
tuning strategy developed in [7] [15] has been followed. Basically, this strategy is composed of a
set of performance premises. These premises say that it should be achieved: (i) a high granularity
of work performed by threads (P parameter), which implies a high instruction level parallelism and
a reduction of the high-latency communications, but must be aware of register consumption; (ii) a
high warp occupancy to hide latency, also taking into account a high block parallelism rate per SM;
and (iii) a performance trade-off between kernels, looking for a workload balance in performance.
Additionally, coalescing patterns are essential for achieving the maximum memory bandwidth,
especially in memory-bound problems.

Considering devices with compute capability 5.0, Table 3 shows different configurations and the
corresponding parallelism achieved. The row in bold represents the configuration which maximizes

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

Tree Partitioning Reduction :19

Warps Regs Shared
Archit. per per memory
block thread per block

Warp SM
occupancy blocks

Maxwell 1 64 2048 50% 32
2 32 2048 100% 32
2 40 2560 75% 24
4 32 4096 100% 16
4 40 5120 75% 12
8 32 8192 100% 8
8 40 10240 75% 6
16 32 16384 100% 4
32 32 32768 100% 2

Table 3. Performance parameters which maximize the number of warps and blocks per SM

both warp and block occupancy. However, it is not always possible to use this configuration, since
the resource consumption limits these occupancies. The idea is to maximize these values within
the available resources.

As explained above, a problem of size N is solved by partitioning the data into M = N/S slices
of size S. The first and third kernel solve this problem with By = N/S blocks of L = S/P threads,
whereas the second kernel solves N /S elements with 4 threads within a single block. In the case
of solving G problems simultaneously, By = G is used. In order to improve the warp occupancy
and, as such, performance, each thread block of the second kernel computes Ly problems, resulting
in an invocation of B = G/L, blocks.

Using P = 2 already implies employing 40 registers per thread; thus, higher P values would
consume a huge amount of registers, resulting in inefficiency. Therefore, P = 2 must be used, and S
is expressed as S = 2 L. It should be noted that the configuration marked in the row in bold cannot
be applied to this case due to the register consumption; thus, an alternative configuration, which
maximizes the occupancies as much as possible, must be found when consuming 40 or a higher
number of registers per thread.

In the case of storing the unknowns in global memory, the amount of shared memory bytes per
block (floats) is calculated as Sx 4 coe f /eqx4 bytes = 2XLxX4x4 bytes, as each equation is composed
of 4 coefficients. For the first and third kernel, looking at Table 3, the row of L = 64 threads, 40
registers per thread and up to 2560 shared memory bytes per thread block, maximizes both the
warp occupancy and the number of active thread blocks per SM, between all other possibilities
that consume 40 registers or more. This configuration implies solving N /128 elements per problem
in the second kernel. In order to maximize the second kernel performance, each block works with

L = 64 = L x Ly threads, with the following configuration L, = N;‘zlzs and Ly = max(1, s—i).

It should be noted that the case of n > 19 implies that the value of S is higher than 128. Otherwise,
the number of threads in the second kernel would result in more than 1024 threads per threadblock.
In this case, S is the minimum value higher than 64 that allows the execution of the second kernel
(fewer or equal to 1024 threads for current architectures). Table 4 summarizes the tuning parameter
values for each N = 2" value.

In the case of storing the unknowns in shared memory, the amount of shared memory bytes per
thread block is S X 4 coef /eq X 4 bytes + S X 4 bytes = 2 X L X (4 X 4 + 4) bytes. Due to the register
consumption, the same warp and block parallelism is achieved as in the global memory case, thus

the tuning values are the same.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

:20 A. P. Diéguez et al.

Problem size | Kernel 1,3 Kernel 2
n<18 L=64 |L=(L,Ly) = (f35 max(1, 1))
n=19 L=128 L= (L L,) = (N/256, 1)
n=20 L= 256 L=(L.L,) = (N/512, 1)
n=21 L=512 L= (Ly.Ly) = (N/1024, 1)
n=22 | L=1024 | L= (Ly.L,) = (N/2048, 1)

Table 4. Description of tuning parameters, being S = P-Land P = 2.

5 EXPERIMENTAL RESULTS

This section presents two different analyses for our proposal on the CUDA Maxwell platform
exposed in Table 5, a performance study and a numerical-stability study. Tests were run in both
floating point single and double precision, the data of which already reside in the device memory
at the beginning of each test. There are no data transfers to the CPU during the benchmarks to
avoid interactions with other factors in the analysis.

Platform: Maxwell Architecture
CPU Intel Core i7-2600 3.4 GHz
Memory 8 GB DDR3 1333
0sS Ubuntu 12.04 LTS
Compiler GCC 4.6.3
GPU Nvidia GeForce GTX980
Driver 384.9, SDK 8.0

Table 5. Description of the test platform

5.1 Performance Analysis

In this subsection, a study of the performance achieved with the CUDA implementation of the TPR
method is analyzed and compared with other solvers. Specifically, our proposal is compared with
respect to the CUSPARSE library and our previous Wang&Mou BPLG approach presented in [7].
Here, we should stress that the performance results are measured in million rows computed per
second, MROWS/s, using a diagonally dominant system which ensures numerical stability (Toeplitz
matrix with row [-1 2 -1]). The number of batch problems being simultaneously solved in parallel,
G, is studied for G = 1, G = 8 and G = 64, whereas the problem size range goes from N = 128 to
N = 524288. Thus, the MROWS/s value is performed using the expression N - G - 107¢/t.

Figure 12 shows a global overview and a comparison with respect to CUSPARSE and our previous
WM BPLG implementation. In the case of a single problem being solved (G = 1), Figure 12 (a), the
TPR method outperforms up to 30.16x the CUSPARSE library for all problem sizes, being 22.03x
times faster on average. Regarding WM, TPR surpasses WM for N > 32768 values, being 1.22x
faster on average, although this speedup is higher considering large problem sizes, being up to
2.35x in the case of N = 524288. As explained in Section 2, this Wang and Mou implementation
has to store 3 equations per element for solving large problem sizes, saturating global memory
bandwidth when there are many elements. Although TPR has more computing steps and invokes
three kernels instead of two, it performs a better access to global memory and reduces the use of
shared memory, being especially notable when solving large problem sizes. Figure 12 (b) depicts the
same comparison but solving 8 problems simultaneously (G = 8). The TPR method again surpasses

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

Tree Partitioning Reduction 21

CUSPARSE by up to 13.28x for all cases, being 7.04x faster on average. With respect to WM, as the
number of batches has been increased, there are more elements being processed, thus there are
more global memory transactions in the execution, saturating the global memory bandwidth for a
smaller problem size. In this case, TPR outperforms WM from N > 4096, being 1.64x times faster
on average and up to 2.88x in the best case. In contrast to the previous case, performance stops
increasing at N = 524288. This lack of scalability can be explained by two factors: firstly, as Table 3
shows for this problem size, L increases and the achieved GPU occupancies drop and, secondly,
the global memory bandwidth is saturated. Finally, Figure 12 (c) depicts the case of G = 64 batch
problems. In this case, our approach is up to 5.53x faster than CUSPARSE on average, and up to
8.95x in the best case. With respect to WM, our solver achieves 1.9x on average, and up to 3x in
the case of N = 524288.

1 batch 8 balches
2500 3000
e —=—TPR
2000 —+— CUSPARSE 2500 +$"MSP“RSE
wm 2000
1500
- .
w § 100
g 1000 i
S . Z 1000
- f(,-/-/ 500 e
4 I
P . L - —— o — "
256 1024 4095 16384 S5 262144 256 1024 4006 16384 65536 262144
128 512 2048 a8 2768 13 524288 128 512 2048 a1 768 131072 524288
N N
(a) 1 batch (b) 8 batches
64 batches
3500
—&—TPR
3000 —e— CUSPARSE
2500 b
» 200
£ 150
&
= 1000
500 " _“4\’
. ——
o T
256 1024 4096 16384 G553 262144
128 512 2048 #192 2768 131072 54288
N
(c) 64 batches

Fig. 12. Overall FP32 performance comparison of the TPR method

Additionally, Figure 13 depicts the same performance analysis in the case of double precision.
It is easy to see how performance drops in comparison to FP32, this is due to the fact that this
Maxwell platform has 128 FP32 CUDA cores but just 4 FP64 ALUS per SM, as well as the memory
consumption is doubled. In the case of a single batch, our approach is 7.48x faster than CUSPARSE
on average, and up to 10.44x in the case of N = 1024. With respect to WM, 1.38x on average and
up to 3.02x. When solving G = 8 batches, 1.98x on average compared with CUSPARSE, and up to
4.42x in the best case. Using WM, the improvement is 1.7x on average, being up to 3.27x faster
for N = 524288. And finally, in the case of G = 64, our approach is, on average, 1.93x faster than
CUSPARSE and up to 3.41x than WM. It should be pointed out that the huge memory consumption
of WM does not allow us to execute N = 524288 in the target architecture.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

122 A. P. Diéguez et al.

1 batch 8 batches
400 450
350 —a—TPR 400 —@—TPR
wy T CUSPARSE 350 —+— CUSPARSE
[200 W
250
w » 250
o 200 -
H £ 200 I =
g 190 — £ 1%
-
1o T 100
50 - 50 —
—0——'/’
0 —y— 0
6 1024 4096 16384 65536 262144 26 1024 4096 16384 65536 262144
128 512 2048 8192 32768 13072 524788 128 512 2048 8192 32768 11072 S24288
N N
(a) 1 batch (b) 8 batches
64 batches
600
—=—TPR
500 —+— CUSPARSE
WM
400
< am
£
£ 200 —
= -
100 / //
’__,--'—"—_‘
0
56 1024 4096 16384 65536 262144
128 512 2048 B2 32768 18072 Se4288
N
(c) 64 batches

Fig. 13. Overall FP64 performance comparison of the TPR method

5.2 Numerical-Stability Analysis

Depending on the application in which the solver is being executed, the numerical stability may
be essential or may have a minor role. It is impossible to provide a general solver suitable for
all the applications, some of them require solving one problem, and others need to solve several
problems simultaneously. The same happens with the numerical stability and the execution time.
Our proposal allows the user to choose the rate performance / stability to be employed, depending
on the target application, as well as the number of problems to be solved.

Figure 14 shows an analysis about the influence of S in the numerical stability of the algorithm.
The chosen slice size, S, determines the numerical stability in the TPR method. Larger slice sizes
allow more equations to participate in the sliced forward reduction (Stage 1), increasing the
numerical stability. On the other hand, small slice sizes limit the sliced forward reduction to a
reduced number of equations (see Figure 14 (a)); therefore, less information from other . It should be
noted that the unacuraccy is more evident in larger problem sizes, since there are more computing
steps, and the choice of the size of S is crucial for the stability, as Figure 14 (b) shows.

In the previous performance analysis, the given results are based on the performance configura-
tion which achieves the best execution times. However, if a strong numerical stability is required,
the said configuration can be chosen to achieve the maximum numerical stability possible (basically
by increasing the slice size). Figure 15 shows a performance comparison of two configurations
for our proposal in the case of G = 1: the one which minimizes the execution time (TPR-fastest in
graphics) with respect to the one which maximizes the numerical stability (TPR-stable in graphics).
Specifically, the results presented under the TPR-stable approach were taken using S = 2048. On av-
erage, the TPR-fastest approach obtains a speedup of 1.33x with respect to the TPR-stable approach.
The chosen S in the TPR-stable approach is the most suitable for each N, following the tuning

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

Tree Partitioning Reduction :23

B,00E-006 7,00E004
- 5256 —— 5208
7,00E-006 —5=32 8,00E-004
6,00E-006 5,00E-004
E 5,00E-006 5 4,00E004
4,00E-006 2
g El 3,00E-004
2 300E006 @
¥ 2008004
2,00E-006
1,00E-006 1,00E-004
0,00E+000 B—— 0,005+000 H—
1024 2048 096 8192 16384 2768 5536
N N
(a) Small problem sizes (b) Larger problem sizes
Fig. 14. Analysis of numerical stability for different S and N values
1 batch - FP32 1 batch - FP64
2500 400
-+ =4 = TPR-stable a5 %~ TPRstable
soon — W TPRJastest —8— TPR{astest
——+—— CUSPARSE 30—+ CUSPARSE
1500 W =0 WM
@ v
; ;o
5 1000 g 150
H S
200 100
=0
——t
0w — 0
16384 65535 262144
128 512 2048 B1o2 32768 131072 G248 1
N L'
(a) Simple precision (b) Double precision

Fig. 15. Performance comparison of two different TPR configurations: performance vs numerical stability,
executing 1 batch

64 batches - FP32 64 batches - FP64

B0 . TPR- 600
+ — - TPRstable -+ —# = TPR-stable

3000 —&—— TPR-lastest 500 - TPR-fastest
—#—— CUSPARSE

2500 Wl
- 2000 w
2 om0 L £
i r"—-"\"\-\-\.
500 e — " i 2
0 e -
256 1024 4096 16334 65535 262144 255 1024 2096 16384 65536 262144
128 s12 2048 8102 32768 131072 524288 128 512 048 8102 32768 131072 524288
M N
(a) Simple precision (b) Double precision

Fig. 16. Performance comparison of two different TPR configurations: performance vs numerical stability,
executing 64 batches

strategy of Section 4.4. The same analysis is performed in Figure 16 for G = 64, where TPR-fastest is
1.32x faster than TPR-stable. Table 6 shows the relative error of the previous configurations for the
FP32 execution, when executing the Toeplitz matrix described in the introduction of this section

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

:24 A. P. Diéguez et al.

and whose unknowns have the value 1.0 as solution. As can be observed in table, TPR-fastest results
are acceptable in most cases.

N TPR-stable | TPR-fastest | Thomas Sequential
128 5.70E-007 1.40E-006 2.10E-006
256 0.00E+000 | 2.20E-006 5.70E-006
512 8.40E-007 | 2.40E-005 4.40E-005
1024 | 0.00E+000 | 3.90E-007 2.30E-004
2048 2.00E-007 1.70E-007 9.30E-004
40% 9.90E-007 | 6.70E-006 1.10E-002
8192 4.00E-007 | 2.50E-005 3.10E-001
16384 | 2.00E-006 | 8.80E-005 1.2E+000
32768 | 7.40E-006 | 2.50E-004 2.3E+000
65536 | 3.00E-005 5.90E-004 3.7E+000
131072 | 1.20E-004 | 3.20E-002 5.4E+000
262144 | 4.80E-004 | 3.20E-003 7.9E+000
524288 | 1.90E-003 5.50E-001 1.1E+001

Table 6. Relative error of the two FP32-TPR configurations for a Toeplitz matrix

Table 7 and 8 show a numerical-stability analysis for the different 16 input matrices of size 512
proposed in [13], whose description is shown in Table 9, in simple and double precision (using
the TPR-stable configuration). This analysis compares the achieved stability with respect to other
solvers accuracy, using the Thomas algorithm as a baseline, following the experiment of [13]. In
the case of N = 512, TPR is quite stable for the studied matrices. The relative error for a solution %
is calculated from the following equation, where x is the solution of the baseline solver:

1% — x|l
[,

Matrix TPR WM CUSPARSE Matrix TPR WM CUSPARSE
1 4.20E-006 | 8.80E-006 | 3.80E-006 1 1.30E-014 | 7.70E-015 | 5.20E-015
2 2.60E-009 | 2.90E-009 | 8.60E-010 2 1.20E-016 | 1.20E-016 | 3.90E-017
3 8.70E-008 | 8.20E-008 | 4.40E-008 3 1.60E-016 | 2.40E-016 | 8.20E-017
1 2.80E-006 | 5.30E-006 | 2.90E-006 4 1.00E-014 | 2.00E-014 | 6.00E-015
5 NAN NAN 1.10E-006 5 NAN NAN 1.20E-015
6 1.60E-007 | 1.60E-007 | 4.00E-008 6 1.30E-016 | 1.30E-016 | 9.50E-017
7 1.00E-007 | 9.20E-008 | 1.80E-007 7 3.60E-016 | 2.10E-016 | 3.40E-016
8 7.90E-007 | 1.50E-006 | 1.80E-007 8 4.40E-015 | 5.50E-015 | 4.30E-015
9 4.70E+005 | 4.70E+005 | 4.70E+005 9 4.70E+005 | 4.70E+005 | 4.70E+005
10 4.40E+013 | 440E+013 | 4.40E+013 10 1.40E+013 | 4.40E+013 | 4.40E+013
1 6.10E+000 | 2.00E-005 | 3.90E-006 11 6.00E+000 | 1.60E-015 | 7.30E-015
12 4.90E-007 | 4.70E-007 | 3.80E-007 12 7.60E-010 | 3.90E-016 | 7.80E-016
13 9.10E-001 | 1.10E+001 | 1.10E+001 13 8.50E-001 | 1.20E-009 | 7.40E-001
14 NAN NAN NAN 14 1.00E+000 | 5.40E-014 | 8.50E-015
15 NAN NAN NAN 15 NAN NAN NAN
16 NAN NAN NAN 16 NAN NAN NAN
Table 7. Relative errors for FP32 Table 8. Relative errors for FP64

It should be noted that these matrices were chosen to test the robustness of solvers, thus the
accuracy of valid solutions varies greatly. It is not possible to compare directly these results with
the ones obtained in [13], since (i) the vector d has been randomly generated, (ii) the baseline
solver is a sequential version of Thomas instead of a Matlab solver, (iii) the CUDA SDK and drivers
are different, and (iv) the relative error formula is slightly different. Also, the results that can be

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

Tree Partitioning Reduction :25

[Mafrix Condition -
| Type number Description
1 441E+4 Each matrix entry randomly generated from a uniform distribution on [-1.1] {d i as U{-1,1))
2 1.00E+00 A Toeplitz matrix, main diagonal is 1e8, off-di el ts are from U(-1.1)
3 3.52E+02 gallery('lesp’,512) in Matlab: eigenvalues which are real and smoothly distributed in the inversal approximately [-2°512-3.5,-45]
4 2.75E+03 Each matrix entry from 1§-1,1), the 256th lower diagonal element is multiplied by 1e-50
5 1.24E+4 Each main diagonal element from U{-1,1), each off-diagonal entry chosen with 50% probability either 0 or from U{-1.1)
& 1.03E+00 A Toeplitz marix, main diagonal entries are 64 and off-diagonal enfries are from U(-1,1)
7 9.00E+00 inv{gallery('kms’ 512,0.5)) in Matlab: Inverse of a Kac-Murdock-Szego Toeplitz
8 9.87E+14 gallery(‘randsvd’,512,115,2,1,1) in Matlah: A randomly generated matrix. condition number is 1e15, 1 small singular value
9 9.97E+14 | gallery('randsvd’,512,1e15,3,1,1) in Matlab: A randomly generated matrix, condition number is 1e15, g trically distributed singular vales
10 130E+15 gallery(randsvd’,512,1e15,1,1.1) in Matlab: A randomly g fed mafrix, condifion number is 1el5, 1 large singular value
11 1.01E+15 | gallery('randsvd’512,1e154.1,1) in Matlab: A randomly generated matrix, condition number is 1e15, arithmetically distributed singular values
12 2.20E14 Each matrix entry from U(-1,1), the lower diagonal elements are multlplled by 1e-50
13 321E+16 gallery('dorr’,512,Te-4) in Matlab: An ill-conditioned, d ‘malrix
14 1.14E+67 A Toeplitz matrix, main diagonal is 1e-8, off-diagonal element are from Ui-1,1)
15 6.02E+24 gallery('clement’,512,0) in Matlab: All main diagonal el ts are 0; eigenvalues include plus and minus 511, 509, ... 1
16 71E+191 A Toeplitz mafrix, main diagonal is 0, ofi-diagonal el ts are from U=(-1.1)

Table 9. Matrix types used in the numerical evaluation from [13]

considered correct are marked in bold in tables; thus, we can conclude that in most cases, our
proposal produces stable results, similar to the ones achieved by CUSPARSE.

6 CONCLUSIONS

We have developed a new tridiagonal system solver, called Tree Partitioning Reduction method (TPR).
This algorithm is especially well-suitable for parallel and distributed computing systems, since
it allows to partition the problem among several processing cores, reducing the communication
latency in comparison to other parallel solvers and allowing to solve large problem-sizes efficiently.
Additionally, this work also presents an efficient GPU CUDA implementation of the TPR method.
This implementation is especially designed to solve several batches simultaneously, i.e. solving
several equation systems at the same time, as demanded by many scientific applications. This
GPU implementation surpasses other well-known libraries, such as CUSPARSE (being, on average,
22.03x times faster) for both single and double precision executions. A numerical stability study is
also provided for simple and double floating point precision, obtaining stable results in most cases,
similar to other libraries.

ACKNOWLEDGMENTS

This work was cofunded by the Government of Galicia and ERDF funds from the EU, under the
Consolidation Programme of Competitive Reference Groups [ED431C 2017/04]; by the Ministry of
Economy and Competitiveness of Spain and ERDF funds [TIN2016-75845-P]; and by the Ministry
of Education of Spain (FPU14/02801). Additionally, it has been also supported by the Xunta de
Galicia (Centro Singular de Investigacién de Galicia accreditation 2016-2019) and ERDF funds
[ED7431G/01].

REFERENCES

[1] A.Davidson, Y. Zhang and].D. Owens. 2011. An Auto-tuned Method for Solving Large Tridiagonal Systems on the
GPU. In Proc. of the 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS) (2011). 956—965.

[2] A.Davison and J. D. Owens. 2011. Register Packing for Cyclic Reduction: A Case Study. In Proc. of the Fourth Workshop
on General Purpose Processing on Graphics Processing Units. 4:1-4:6.

[3] F. Argiiello, D.B. Heras, M. Boo, and J. Lamas-Rodriguez. 2012. The Split-and-Merge Method in General Purpose
Computation on GPUs. Parallel Comput. 38, 64AS7 (2012), 277 — 288.

[4] Li-Wen Chang and Wen-mei Hwu. 2014. A Guide for Implementing Tridiagonal Solvers on GPUs. In Numerical
computation with GPUs, V. Kindratenko (Ed.). Springer, Chapter 2, 29-44.

[5] L.-W. Chang and W.-W. Hwu. 2013. Mapping tridiagonal solvers to linear recurrences. Technical Report, University of
Illinois at Urbana-Champaign (2013).

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

:26 A. P. Diéguez et al.

[6] A.P.Diéguez, M. Amor, and R. Doallo. 2015. New Tridiagonal Systems Solvers on GPU Architectures. In 2015 IEEE
22nd International Conference on High Performance Computing (HIPC). 85-94.

[7] A.P.Diéguez, M. Amor, J. Lobeiras, and R. Doallo. 2018. Solving Large Problem Sizes of Index-Digit Algorithms on
GPU: FFT and Tridiagonal System Solvers. IEEE Trans. Comput. 67, 1 (2018), 86—101.

[8] H.-S. Kim, S. Wu, L.-W. Chang, WW. Hwu. 2011. A Scalable Tridiagonal Solver for GPU. In Procd. of Int. Conf. on
Parallel Processing (2011). 444-453.

[9] RW. Hockney and C.R. Jesshope. 1988. Parallel Computers 2: Architecture, Programming and Algorithms. Taylor &
Francis.

[10] R.W. Hockney. 1965. A Fast Direct Solution of Poisson’s Equation Using Fourier Analysis. 7. ACM 12, n.1, 1 (1965),
95-113.

[11] Michael A. Jandron, Anthony A. Ruffa, and James Baglama. 2017. An Asynchronous Direct Solver for Banded Linear
Systems. Numer. Algorithms 76, 1 (Sept. 2017), 211-235.

[12] D. B. Kirk and W. W. Hwu. 2012. Programming Massively Parallel Processors: A Hands-on Approach (2nd ed.). Morgan
Kaufmann.

[13] L.-W. Chang, J.A. Stratton, H.-S. Kim, W. W. Hwu. 2012. A Scalable, Numerically Stable, High-performance Tridiagonal
Solver Using GPUs. In Proc. of the International Conference on High Performance Computing, Networking, Storage and
Analysis (SC’12) (2012). 27:1-27:11.

[14] J. Lobeiras, M. Amor, and R. Doallo. 2015. BPLG: A Tuned Butterfly Processing Library for GPU Architectures.
International Journal of Parallel Programming 43, n.6 (2015), 1078-1102.

[15] Jacobo Lobeiras, Margarita Amor, and Ramon Doallo. 2016. Designing Efficient Index-Digit Algorithms for CUDA
GPU Architectures. IEEE Transactions on Parallel and Distributed Systems 27, 5 (2016), 1331-1343.

[16] NVIDIA-Corporation. 2012. CUDA CUSPARSE Library.

[17] NVIDIA-Corporation. 2014. CUDPP: CUDA Data Parallel Primitives Library. (2014). http://cudpp.github.io/

[18] J.L.Larriba Pey. 1995. Design and Evaluation of Tridiagonal Solvers for Vector and Parallel Computers. Ph.D. Dissertation.
Universitat Politecnica de Catalunya.

[19] A.H. Sameh and D. J. Kuck. 1978. On Stable Parallel Linear System Solvers. J. ACM 25, 1 (1978), 81-91.

[20] Harold S. Stone. 1973. An Efficient Parallel Algorithm for the Solution of a Tridiagonal Linear System of Equations. }.
ACM 20, n.1, 1 (1973), 27-38. https://doi.org/10.1145/321738.321741

[21] L. H. Thomas. 1949. Elliptic Problems in Linear Difference Equations over a Network. Watson Sci. Comput. Lab. Rep.,
Columbia University (1949).

[22] LE. Venetis, A. Kouris, A. Sobczyk, E. Gallopoulos, and A.H. Sameh. 2015. A direct tridiagonal solver based on Givens
rotations for GPU architectures. Parallel Comput. 49 (2015), 101 — 116.

[23] X. Wang and Z.G. Mou. 1991. A divide-and-conquer method of solving tridiagonal systems on hypercube massively
parallel computers. In Proc. of the Third IEEE Symposium on Parallel and Distributed Processing (1991). 810-817.

[24] Y.Zhang,]. Cohen,] D. Owens. 2010. Fast Tridiagonal Solvers on the GPU. In Proc. of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP). 127-136.

[25] Di Zhao and Jinhang Yu. 2015. Efficiently Solving Tri-diagonal System by Chunked Cyclic Reduction and single-GPU
Shared Memory. 7. of Supercomputing 71, 2 (2015), 369—-390.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, Article . Publication date: May 2019.

http://cudpp.github.io/
https://doi.org/10.1145/321738.321741

