
parSRA: A Framework for the Parallel Execution of Short Read Aligners on
Compute Clusters

Jorge González-Domı́nguez∗

Computer Architecture Group, University of A Coruña, Spain

Christian Hundt, Bertil Schmidt

Parallel and Distributed Architectures Group, Johannes Gutenberg University Mainz, Germany

Abstract

The growth of next generation sequencing datasets poses as a challenge to the alignment of reads to reference genomes

in terms of both accuracy and speed. In this work we present parSRA, a parallel framework to accelerate the execution

of existing short read aligners on distributed-memory systems. parSRA can be used to parallelize a variety of short read

alignment tools installed in the system without any modification to their source code. We show that our framework

provides good scalability on a compute cluster for accelerating the popular BWA-MEM and Bowtie2 aligners. On average,

it is able to accelerate sequence alignments on 16 64-core nodes (in total, 1024 cores) with speedup of 10.48 compared

to the original multithreaded tools running with 64 threads on one node. It is also faster and more scalable than the

pMap and BigBWA frameworks. Source code of parSRA in C++ and UPC++ running on Linux systems with support

for FUSE is freely available at

https://sourceforge.net/projects/parsra/.

Keywords: Short Read Alignment, High Performance Computing, Multicore Clusters, Bioinformatics, PGAS

∗Principal corresponding author: Jorge González-Domı́nguez

Email addresses: jgonzalezd@udc.es (Jorge González-Domı́nguez), hundt@uni-mainz.de (Christian Hundt),

bertil.schmidt@uni-mainz.de (Bertil Schmidt)

Preprint submitted to Journal of Computational Science September 22, 2016

© 2017 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-
nc-nd/4.0/. This version of the article has been accepted for publication in Journal of Computational Science. The Version of Record is available online at https://
doi.org/10.1016/j.jocs.2017.01.008.

1. Introduction

Short Read Alignment (SRA) is a crucial step in many

bioinformatics pipelines. It consists in mapping DNA frag-

ments (called reads) onto a reference genome, in order to

locate the genomic coordinates these fragments come from.

The rapid progress of next generation sequencing (NGS)

technologies has led to large-scale datasets containing hun-

dreds of millions or even billions of reads, which makes the

SRA step time consuming.

Although efficient seed-and-extend based algorithms that

provide high-quality alignments have been developed, their

associated runtimes are still high. Examples include

GASSST [1], Bowtie2 [2], GEM [3], SeqAlto [4], BWA-

MEM [5] and CUSHAW3 [6]. The main algorithmic idea

applied by all these tools are based on the fact that sig-

nificant alignments usually contain short exact matches

(so called seeds). Typical short read aligners thus map

a given read by first identifying such seeds on the given

reference genome. This is usually accomplished by using

a pre-computed index data structure that allows for fast

retrieval of short exact matches between query and refer-

ence genome. Subsequently, these seeds are extended and

refined under certain constraints, such as minimal percent-

age identity or length, in order to filter out irrelevant seeds.

Finally, more sophisticated but also computationally more

expensive approaches (e.g., dynamic programming based

alignment algorithms) are employed to obtain the final

alignments from the seeds. It should be noted that the

time needed for the alignment of each read can vary as it

depends on the number of associated seeds.

Parallelization can be used to accelerate this procedure.

Most existing SRA tools only provide shared memory par-

allelism based on multi-threading, which limits their exe-

cution to single compute nodes. In order to overcome this

limitation, there exist parallel implementations of certain

SRA tools that can be executed on multicore clusters and

exploit the computing capabilities of several nodes (e.g.,

pBWA [7] and merAligner [8]). However, the accuracy

of the results provided by these multinode implementa-

tions is limited to only one mapping approach and they

do not offer portability for the underlying aligner. For

instance, pBWA is limited to a particular version of the

BWA aligner [9].

Research on SRA approaches is still evolving and new

methods with better accuracy in some scenarios are con-

tinuously developed. Therefore, it is not advisable to limit

parallel frameworks to work with only one type of align-

ment (e.g. pBWA only works with the outdated 0.5.9 ver-

sion of the BWA method). pMap [10] is a parallel frame-

work that allows for working with several existing and

previously installed tools (e.g., Bowtie2, BWA-MEM or

CUSHAW3). It splits the workload among nodes and uses

the selected method to complete the alignment in parallel

on multiple compute nodes within a cluster. However, as

will be shown in the experimental evaluation, the scalabil-

ity of pMap is low even for a moderate number of nodes.

Recently, approaches based on the map-reduce paradigm

have been presented for distributed execution of the BWA

aligner [11–13]. However, their scalability is limited to a

small number of compute nodes.

In this paper we present parSRA, a novel framework

to parallelize SRA on multicore clusters which can work

with different underlying methods and provides signifi-

cantly better scalability than pMap. parSRA can use the

most suitable alignment method for each situation, and

even more accurate methods that can be developed in fu-

ture. Moreover, parSRA is even more portable than pMap

as its configuration file allows for the users to parallelize

the execution of existing SRA tools without the need to

modify the source code of parSRA or the aligner.

The rest of the paper is organized as follows. Section 2

reviews some related work. Our parallelization approach

is described in Section 3. Experimental evaluations are

presented in Section 4. Section 5 concludes the paper.

2. Related Work

The implementation of parallel tools for SRA that re-

sort to accelerators to reduce their runtime has attracted

extensive research interests. The most popular acceler-

ators for SRA are GPUs, and some examples of GPU-

based tools are CUSHAW [14], CUSHAW2-GPU [15], Bar-

raCUDA [16], SOAP3 [17], SOAP3-db [18] and nvBowtie

[19]. Other examples include FPGA and Xeon Phi imple-

mentations such as [20] and [21].

So far, not much effort has been made to develop tools

able to exploit the characteristics of compute clusters. For

instance, there is no parallel SRA implementation using

workflow systems such as Swift/T [22] or SciCumulus [23].

Three examples of map-reduce based SRA aligners are

BigBWA [11], SEAL [12] and SparkBWA [13], which are

limited to the BWA method [9]. Regarding the message-

passing paradigm, pBWA [7] and pMap [10] use MPI to

distribute the reads among the processes and align the as-

signed reads on each process. While pBWA is also limited

to the BWA aligner, pMap is portable enough to be able to

work with several different aligners. The current publicly

available version of pMap provides support for some pop-

ular aligners. Moreover, the source code can be modified

in the case that we want to work with a new aligner. Both

pBWA and pMap suffer from two major problems that

limit their scalability. First, the overhead of their initial

file splitting is significant, especially when increasing the

number of processes. Moreover, they apply a static distri-

bution that assigns the same number of reads to each MPI

process. As the time to align one read can vary, a simple

static distribution cannot achieve good load balancing.

In this paper we describe parSRA, a novel framework

to execute short read aligners on compute clusters. Our

parallel implementation overcomes the scalability issues of

pMap thanks to:

1. A fast splitting of the input reads using the FUSE

kernel module [24].

2. Gathering of results into a unique output file using

OS commands.

3. A balanced on-demand distribution of the reads based

on the shared locks of UPC++ [25].

UPC++ is an extension of C++ for parallel comput-

ing which has evolved from Unified Parallel C (UPC) [26].

PGAS languages (such as UPC, Co-Array Fortran [27]

or Titanium [28]) are often easier to use than their mes-

sage passing counterparts [29, 30] and can also obtain bet-

ter performance by using efficient one-sided communica-

tion [31–33]. UPC++ combines these advantages of the

PGAS model with object oriented programming. Both

UPC and UPC++ have recently been used for the paral-

lelization of bioinformatics applications [8, 34, 35].

merAligner [8] is a parallel UPC-based sequence aligner

for distributed-memory architectures which obtains good

scalability on multicore clusters. Although this tool is

also an aligner, it is focused on scenarios where the refer-

ence genome is very large and thus represented as a (dis-

tributed) collection of contigs. According to the results

provided by the authors, the whole procedure (index con-

struction and sequence mapping) is faster in merAligner

than in pMap. However, the scalability of the alignment

step on several nodes is lower than that of pMap. mer-

Aligner also optimizes the distribution of the genome in

case that it is too large to fit in one node. However, the

goal of our work is the parallelization of the type of aligners

presented in the previous section, that work with genomes

that fit in the memory of one node (which is typically the

case for a human reference genome; the most common use

case). There is no restriction related to the size of the

dataset with the reads to align in parSRA. Furthermore,

merAligner does not provide portability to existing align-

ers.

Figure 1: Workflow of parSRA. All processes work in parallel to align

different reads while Process 0 splits the input file and gathers the

output.

3. Implementation

The aim of parSRA is to accelerate the SRA while pre-

serving the quality of the results provided by the underly-

ing aligner. Therefore, we do not modify the source code

of the aligners. Figure 1 shows the workflow of a parSRA

execution. The procedure starts with one process split-

ting the files through FUSE as will be explained in Sec-

tion 3.1. Once all the virtual files have been created, all

processes simultaneously align the reads. Each process

calls the underlying aligner (e.g., BWA-MEM or Bowtie2)

several times with different FUSE files. The assignment of

virtual files to processes is described in Section 3.2. Each

process writes its results into a different intermediate file

(i.e., there are as many intermediate files as processes).

Finally, once all reads have been aligned, the results are

gathered into a unique output file. This is carried out

again by only one process using the OS commands to con-

catenate files.

All the information to perform the alignment is indi-

cated by the user in a configuration file. One important

parameter that must be included in this configuration file

is the number of blocks (virtual files) that will be gener-

ated from the original input file. Increasing the number of

blocks generally improves load balance but might also lead

to higher synchronization overhead. The configuration file

also indicates the path to the input files folders, the com-

mand of the aligner executable, and the flags needed by

this aligner. An explanation of all the configuration fields

is included in the reference manual available with parSRA.

3.1. Splitting Input Files with FUSE

The procedure of parSRA starts with all UPC++ pro-

cesses splitting the input file (or two input files in the case

of paired-end alignment) using FUSE. The FUSE kernel

module is shipped with every major Linux distribution

and allows for the implementation of custom file systems

in userspace without root permissions.

The parSRA tool provides a virtual file system that

computes valid split points of fasta and fastq files using

breadth-first search on a binary tree. Assuming a max-

imum number of n = 2k > 0 splits for a file of L > 0

bytes, the input file is locally read from position L
2 until

a valid delimiter is found at position s ≥ L
2 . Since NGS

reads usually contain about a hundred base pairs, a delim-

iter is expected to be found in the direct neighbourhood.

The resulting intervals [0, s) and [s, L) are then processed

recursively for each of the remaining k − 1 levels of the

binary tree in order to build an index.

As the input file is only read locally at the split po-

sitions the I/O is limited to merely O(n) accesses to the

physical file system. Afterwards, n virtual files are ex-

posed to the aligners that can be read in a lazy fashion

i.e., the content of the file is not accessed until the aligner

reads it. Thus, using FUSE, we can completely eliminate

the L write operations to the physical file system when

performing a näıve splitting and further reduce the 2 · L

read operations (read input file + read split files) to merely

L+O(n) accesses. Concluding, in contrast to a näıve split-

ting, approximately 2 ·L of the 3 ·L overall accesses to the

file system can be saved with our approach.

3.2. On-Demand Distribution of FUSE Files

Once the FUSE files with the blocks of reads are cre-

ated, the processes align the reads of the different vir-

tual files using an on-demand distribution. Each process

i starts calling the external aligner using the virtual file

i as input. Once the aligner has finished this work, the

process looks for the next virtual file j that has not been

computed yet by any process, and calls the external aligner

using this file j as input. Note that every call to the aligner

loads the reference genome index to the main memory of

the corresponding node, but this time is almost negligible

compared to the alignment runtime. The advantage of our

on-demand distribution is that the workload adapts better

to the characteristics of the input dataset than a static dis-

tribution as the one implemented by pMap. A process can

compute more virtual files if the reads that they contain

are aligned fast.

The implementation of the presented on-demand dis-

tribution using a traditional message passing approach like

MPI would force us to broadcast the number of the next

FUSE file to align every time that one process finishes

one call to the underlying aligner, with the associated syn-

chronization among all processes. Therefore, as previously

mentioned, we have employed UPC++ to develop this on-

demand distribution. The execution model of UPC++

is single program multiple data (SPMD). It takes advan-

tage of C++ language features, such as templates, object-

oriented design, operator overloading, and lambda func-

tions (in C++ 11) to provide advanced PGAS features.

As all PGAS languages, UPC++ exposes a global shared

address space to the user which is logically divided among

processes, so each process is associated or presents affin-

ity to a different part of the shared memory. Moreover,

UPC++ also provides a private memory space per pro-

cess for local computations, as shown in Figure 2. There-

fore, each process has access to both its private memory

Figure 2: UPC++ memory model

and to the whole global memory space (even the parts

that do not present affinity to it) with read/write func-

tions. This memory specification combines the advantages

of both shared and distributed programming models. On

the one hand, the global shared memory space facilitates

the development of parallel codes, allowing for all processes

to directly read and write remote data without explicitly

notifying the owner. On the other hand, performance can

be increased by taking data affinity into account. Typi-

cally, accesses to remote data are more expensive than the

accesses to local data (i.e., accesses to private memory and

to shared memory with affinity to the process).

A UPC++ shared variable is used to keep trace of the

last file that has been computed. Concurrent accesses to

this shared variable are synchronized with locks in order to

avoid race conditions (i.e., several processes working with

the same virtual file). The basic concept of a lock is that

only one process can own it any given time. Therefore,

even if several processes try to access the lock only one

will succeed. No other process can access that lock until

the owning process unlocks it. One process closes the lock

every time that it needs to know the value of the shared

variable, i.e., other processes will have to wait if they try to

access it. The process that reads the value also increments

it and opens the lock to make the variable accessible again

to other processes.

Table 1: Characteristics of the Illumina datasets used in the tests.

Name SRR091634 SRR926245

Read length 100 150

Number of reads 328,621,238 246,839,706

Type of alignment Paired-end Single-end

4. Experimental Results

16 nodes of the MOGON cluster, installed at the Jo-

hannes Gutenberg University-Mainz, are used for evalu-

ating the scalability of parSRA. Each node contains four

16-core AMD Opteron 6272 processors (i.e., 64 cores at

2.10 GHz within each node). A private L1 cache of 16 KB

is available for each core, while the 2 MB L2 and 8 MB

L3 caches are shared among two and eight cores, respec-

tively. Nodes provide 256 GB of memory and are con-

nected through a QDR InfiniBand network. UPC++ runs

over GCC v4.8.1 and OpenMPI v1.6.5. We compare the

scalability of parSRA and pMap aligning two Illumina short-

read datasets (see Table 1) to the human genome hg38

working with two popular aligners: BWA-MEM [5] (BWA

v 0.7.11) and Bowtie2 [2] (v 2.2.4). In order to illus-

trate different situations, one of the datasets is mapped

with single-end alignment while the other with paired-end.

Both datasets are publicly available and named after their

accession numbers in the NCBI sequence read archive.

Note that the current version of pMap only provides sup-

port for older versions of BWA and Bowtie. We have there-

fore adapted the pMap source code to work with the newer

versions. We have also tested BigBWA [11] on the same

system as an example of Hadoop-based SRA aligner.

Figure 3 shows the runtime (in minutes) for the align-

ment of both datasets with parSRA, pMap and BigBWA.

As BWA-MEM and Bowtie already provide support for

multithreaded parallelism, the experiments for parSRA and

pMap are carried out with one process per node and 64

threads within each node. In fact, the time shown for

one node is the time of the original multithreaded aligner,

without including the overhead of parSRA or pMap. How-

ever, BigBWA could only use 27 cores per node due to

high memory requirements of the Hadoop-system, which

leads to higher per-node runtimes.

The results show that parSRA is faster than pMap in all

cases, and the difference becomes more significant when in-

creasing the number of nodes. Table 2 shows the speedups

of both frameworks over the original multithreaded BWA-

MEM and Bowtie2 using up to 16 nodes. The scalability

of parSRA is significantly higher than pMap. For instance,

the average speedup of parSRA for 16 nodes (1,024 cores)

is 10.48, which is 2.30 times higher than that of pMap (av-

erage speedup of 4.55 for 16 nodes). This trend indicates

that speedups would become even higher when increasing

the number of processes, i.e., in systems with more nodes

or less cores per node. Regarding BigBWA, we can assert

that it has several drawbacks compared to parSRA. First,

due to high memory requirements, BigBWA can only ex-

ploit 27 cores per node on our system (256 GB RAM).

Moreover, the scalability of the Hadoop-based tool is lim-

ited. The main reasons are the expensive initial split of

the input files (around 12 and 40 minutes for the single

and paired datasets, respectively) and the reduce phase.

Figure 4 illustrates the breakdown of the runtime for

the experiments with 16 nodes, in order to help us to un-

derstand the reasons why parSRA is faster than pMap.

First, the initial file splitting in pMap is around 6 and 10

minutes for the SRR926245 and SRR091634 datasets, re-

spectively. This time is almost constant for different num-

ber of processes, so its impact on the total time is more

significant when the computational time is reduced. The

time for splitting files through FUSE is almost negligible.

Furthermore, gathering of the results into a unique output

file is much faster in parSRA, thanks to using OS com-

mands. In pMap this final step is performed in parallel by

all processes, using the C printf function to print their

results into a unique output file. However, this paralleliza-

tion is inefficient due to two reasons: 1) printf is an ex-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 4 8 16

T
im

e
 (

m
in

u
te

s
)

Number of nodes

SRR926245

pMap BWA-MEM
pMap Bowtie2
parSRA BWA-MEM
parSRA Bowtie2
BigBWA

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 4 8 16

T
im

e
 (

m
in

u
te

s
)

Number of nodes

SRR091634

pMap BWA-MEM
pMap Bowtie2
parSRA BWA-MEM
parSRA Bowtie2
BigBWA

Figure 3: Runtime (minutes) of the alignment varying the number of nodes for pMap and parSRA using BWA-MEM and Bowtie2 as underlying

aligners, as well as BigBWA.

Table 2: Speedups of parSRA, pMap and BigBWA. Multithreaded BWA-MEM and Bowtie2 aligners with 64 threads are used as baseline for

parSRA and pMap. Speedups of BigBWA are obtained over the highest number of cores that can be employed on one node (27).

Single-end SRR926245 Paired-end SRR091634

Nodes ↓
BWA-MEM Bowtie2 BigBWA BWA-MEM Bowtie2 BigBWA

pMap parSRA pMap parSRA pMap parSRA pMap parSRA

2 1.52 1.74 1.41 1.43 1.49 1.54 1.64 1.50 1.55 1.45

4 2.49 3.38 2.37 2.51 1.85 2.55 3.29 2.75 3.15 1.85

8 3.51 6.43 3.34 5.42 2.35 3.84 6.60 3.97 5.79 2.05

16 4.43 12.57 4.19 9.81 2.46 4.61 8.56 4.97 10.98 1.99

pensive function; 2) the synchronization overhead needed

to guarantee that only one process accesses the output file

at a time. The main drawback of parSRA is that accessing

the virtual files generated by FUSE has also an associated

overhead. For instance, in contrast to pMap, the overhead

of the virtual file system causes an increasing of the run-

time of the alignment calls using parSRA (see Figure 4).

Nevertheless, thanks to the adaptable workload distribu-

tion, the time difference between the alignment parts is

smaller than the time difference when splitting the input

and gathering the output.

In this section we have not included results for pBWA [7]

as it is not portable (it must use version 0.5.9 of BWA as

underlying aligner). Nevertheless, according to the exper-

imental results presented in [7], this tool never obtains

parallel efficiency higher than 24% even for a small cluster

with 240 cores. Thus, we can deduce that its scalability

is supposed to be significantly lower than the results pre-

sented in Table 2.

Finally, note that we have also tested that the output

alignments provided by parSRA are the same as for the

original tools. The only difference is that the order of the

alignments in the output file can be different, which does

not influence alignment quality.

5. Conclusion

NGS technologies have revolutionized biological research

in recent years. The alignment of produced reads to a

given reference genome is an important basic operation in

many bioinformatics pipelines such as variant calling [36].

Even though several multi-threaded alignment tools (such

as BWA [5] or Bowtie2 [2]) have been developed their as-

sociated runtime for large-scale input data sets are still

high.

In this paper we have addressed this runtime bottleneck

 0

 100

 200

 300

 400

 500

 600

 700

 800

pMap(BWA-MEM) parSRA(BWA-MEM) pMap(Bowtie2) parSRA(Bowtie2)

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Performance Breakdown for SRR926245 on 16 nodes

Input split
Alignment
Output Gather

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

pMap(BWA-MEM) parSRA(BWA-MEM) pMap(Bowtie2) parSRA(Bowtie2)

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Performance Breakdown for SRR091634 on 16 nodes

Input split
Alignment
Output Gather

Figure 4: Breakdown of pMap and parSRA using BWA-MEM and Bowtie2 as underlying aligners on 16 nodes.

by presenting parSRA, a framework for executing existing

SRA tools on a compute cluster. parSRA gains efficiency

by using (1) fast splitting of input reads using the FUSE

kernel module; (2) balanced workload distribution based

on shared lock in UPC++; and (3) gathering of results of

results into a unique output file using OS commands.

Our performance evaluation using 16 compute nodes

demonstrates speedups of 12.57 for executing BWA-MEM

over parSRA for the single-end SRR926246 dataset and

10.98 for executing Bowtie2 for the paired-end SRR091634

dataset. This is a factor of 2.8 and 2.2 times faster, respec-

tively, compared to the pMap tool [10], which is based on

a naive approach. parSRA is also faster and more scalable

than the Hadoop-based approach BigBWA.

Source code of parSRA in C++ and UPC++ running

on Linux systems with support for FUSE is available at

https://sourceforge.net/projects/parsra/. The available ver-

sion provides examples of configuration files for the align-

ers that have been tested: Bowtie2 [2], BWA-MEM [5],

CUSHAW3 [6] and SOAP2 [37].

Our current implementation of parSRA supports input

files in the commonly used fasta or fastq formats. In order

to save space input files are also often stored in compressed

formats. Part of our future work is an extension of the

first stage of parSRA to support direct reading of short

read input files in a compressed format using FUSE. This

would require an indexed compression format with a block

structure which is supported by the gzip compliant BGZF

(a valid gzip file) compression format part of the popular

SAMtools [38].

Acknowledgments

This work was partly supported by the Ministry of

Economy and Competitiviness of Spain and FEDER funds

of the EU (Project TIN2013-42148-P).

References

[1] G. Rizk, D. Lavenier, GASSST: Global Alignment Short Se-

quence Search Tool, Bioinformatics 26 (20) (2010) 2534–2540.

[2] B. Langmead, S. L. Salzberg, Fast Gapped-Read Alignment

with Bowtie2, Nature Methods 9 (4) (2012) 357–359.

[3] S. Marco-Sola, M. Sammeth, R. Guigó, P. Ribeca, The GEM

Mapper: Fast, Accurate and Versatile Alignment by Filtration,

Nature Methods 9 (2012) 1185–1188.

[4] J. C. Mu, H. Jiang, A. Kiani, M. Mohiyuddin, N. B. Asadi,

W. H. Wong, Fast and Accurate Read Alignment for Resequenc-

ing, Bioinformatics 28 (18) (2012) 2366–2373.

[5] H. Li, Aligning Sequence Reads, Clone Sequences and Assembly

Contigs with BWA-MEM, arXiv:1303.3997 [q-bio.GN].

[6] Y. Liu, B. Popp, B. Schmidt, CUSHAW3: Sensitive and Accu-

rate Base-Space and Color-Space Short-Read Alignment with

Hybrid Seeding, PLOS ONE 9 (1).

[7] D. Peters, X. Luo, K. Qiu, P. Liang, Speeding Up Large-Scale

Next Generation Sequencing Data Analysis with pBWA, Jour-

nal of Applied Bioinformatics & Computational Biology 1 (1).

[8] E. Georganas, A. Buluc, J. Chapman, L. Oliker, D. Rokhsar,

K. Yelick, merAligner: A Fully Parallel Sequence Aligner,

in: Proc. 29th IEEE Intl. Parallel and Distributed Processing

Symp. (IPDPS’15), Hyderabad, India, 2015.

[9] H. Li, R. Durbin, Fast and Accurate Short Read Alignment with

Burrows-Wheeler Transform, Bioinformatics 25 (14) (2009)

1754–1760.

[10] HPC Lab, pMap: Parallel Sequence Mapping Tool-

http://bmi.osu.edu/hpc/software/pmap/pmap.html.

[11] J. M. Abúın, J. C. Pichel, T. F. Pena, J. Amigo, BigBWA:

Approaching the BurrowsWheeler Aligner to Big Data Tech-

nologies, Bioinformatics 31 (24) (2015) 4003–4005.

[12] L. Pireddu, S. Leo, G. Zanetti, SEAL: a distributed short read

mapping and duplicate removal tool, Bioinformatics 27 (15)

(2011) 2159–2160.

URL http://dx.doi.org/10.1093/bioinformatics/btr325

[13] J. M. Abúın, J. C. Pichel, T. F. Pena, J. Amigo, SparkBWA:

Speeding Up the Alignment of High-Throughput DNA Sequenc-

ing Data, PLOS ONE In press.

[14] Y. Chen, B. Schmidt, D. L. Maskell, CUSHAW: a CUDA

Compatible Short Read Aligner to Large Genomes Based on

the Burrows-Wheeler Transform, Bioinformatics 28 (14) (2012)

1830–1837.

[15] Y. Liu, B. Schmidt, CUSHAW2-GPU: Empowering Faster

Gapped Short-Read Alignment Using GPU Computing”, IEEE

Design & Test of Computers 31 (1) (2014) 31–39.

[16] P. Klus, S. Lam, D. Lyberg, M. S. Cheung, G. Pullan, I. Mc-

Farlane, G. S. Yeo, B. Y. Lam, BarraCUDA - a Fast Short

Read Sequence Aligner Using Graphics Processing Units, BMC

Research Notes 5 (27).

[17] C. Liu, T. Wong, E. Wu, R. Luo, S. Yiu, Y. Li, B. Wang, C. Yu,

X. Chu, K. Zhao, R. Li, T. Lam, SOAP3: Ultra-Fast GPU-

Based Parallel Alignment Tool for Short Reads, Bioinformatics

28 (6) (2012) 878–879.

[18] R. Luo, T. Wong, J. Zhu, C. Liu, X. Zhu, E. Wu, L. Lee, H. Lin,

W. Zhu, D. W. Cheung, H. Ting, S. Yiu, S. Peng, C. Yu, Y. Li,

R. Li, T. Lam, SOAP3-dp: Fast, Accurate and Sensitive GPU-

Based Short Read Aligner, PLOS ONE 8 (5).

[19] NVIDIA CUDA Zone: nvBio,

https://developer.nvidia.com/nvbio.

[20] Y. Chen, B. Schmidt, D. L. Maskell, A Hybrid Short Read

Mapping Accelerator, BMC Bioinformatics 14 (67).

[21] R. Luo, J. Cheung, E. Wu, H. Wang, S.-H. Chan, W.-C. Law,

G. He, C. Yu, C.-M. Liu, D. Zhou, Y. Li, R. Li, J. Wang,

X. Zhu, S. Peng, T.-W. Lam, MICA: A Fast Short-Read Aligner

that takes Full Advantage of Many Integrated Core Architecture

(MIC), BMC Bioinformatics 16 (Suppl 7).

[22] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Von Laszewski,

V. Nefedova, I. Raicu, T. Stef-Praun, M. Wilde, Swift: Fast,

Reliable, Loosely Coupled Parallel Computation, in: Proc. 3rd

IEEE World Congress on Services (SERVICES’07), Salt lake

City, UT, USA, 2007.

[23] D. De Oliveira, E. Ogasawara, F. Baião, M. Mattoso, Scicumu-

lus: A Lightweight Cloud Middleware to Explore Many Task

Computing Paradigm in Scientific Workflows, in: Proc. 3rd

IEEE Intl. Conf. on Cloud Computing (CLOUD’10), Miami,

FL, USA, 2010.

[24] FUSE, Filesystem in Userspacehttp://fuse.sourceforge.net/.

[25] Y. Zheng, A. Kamil, M. Driscoll, H. Shan, K. Yelick, UPC++:

a PGAS Extension for C++, in: Proc. 28th IEEE Intl. Parallel

and Distributed Processing Symp. (IPDPS’14), Phoenix, AR,

USA, 2014.

[26] UPC Consortium, UPC Language Specifications, v1.2,

http://upc.lbl.gov/docs/user/upc spec 1.2.pdf.

[27] R. W. Numrich, J. Reid, Co-Array Fortran for Parallel Pro-

gramming, ACM FORTRAN FORUM 17 (2) (1998) 1–31.

[28] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit,

A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella,

A. Aiken, Titanium: A High-Performance Java Dialect, Con-

currency: Practice and Experience 10 (11) (1998) 825–836.

[29] J. González-Domı́nguez, M. J. Mart́ın, G. L. Taboada,

J. Touriño, R. Doallo, D. A. Mallón, B. Wibecan, UPCBLAS:

a Library for Parallel Matrix Computations in Unified Paral-

lel C, Concurrency and Computation: Practice and Experience

24 (14) (2012) 1645–1667.

[30] J. González-Domı́nguez, O. A. Marques, M. J. Mart́ın, G. L.

Taboada, J. Touriño, Design and Performance Issues of

Cholesky and LU Solvers Using UPCBLAS, in: Proc. 10th IEEE

Intl. Symp. on Parallel and Distributed Processing with Appli-

cations (ISPA’12), Leganés, Spain, 2012, pp. 40–47.

[31] C. Bell, D. Bonachaea, R. Nishtala, K. Yelick, Optimizing Band-

width Limited Problems Using One-Sided Communication and

Overlap, in: Proc. 20th IEEE Intl. Parallel and Distributed

Processing Symp. (IPDPS’06), Rhodes Island, Greece, 2006.

[32] R. Nishtala, P. Hargrove, D. Bonachea, K. Yelick, Scaling

Communication-Intensive Applications on BlueGene/P Using

One-Sided Communication and Overlap, in: Proc. 23rd IEEE

Intl. Parallel and Distributed Processing Symp. (IPDPS’09),

Rome, Italy, 2009.

[33] R. Nishtala, Y. Zheng, P. Hargrove, K. Yelick, Tuning Collective

Communication for Partitioned Global Address Space Program-

ming Models, Parallel Computing 37 (9) (2011) 576–591.

[34] E. Georganas, A. Buluc, J. Chapman, L. Oliker, D. Rokhsar,

K. Yelick, Parallel De Bruijn Graph Construction and Traver-

sal for De Novo Genome Assembly, in: 26th ACM/IEEE Intl.

Conf. on High Performance Computing, Networking, Storage

and Analysis (SC’14), New Orleans, LA, USA, 2014.

[35] J. C. Kässens, J. González-Domı́nguez, L. Wienbrandt,

B. Schmidt, UPC++ for Bioinformatics: A Case Study Using

Genome-Wide Association Studies, in: Proc. 15th IEEE Intl.

Conf. on Cluster Computing (Cluster’14), Madrid, Spain, 2014.

[36] G. A. V. der Auwera, M. O. Carneiro, C. Hartl, R. Poplin, G. del

Angel, A. Levy-Moonshine, T. Jordan, K. Shakir, D. Roazen,

J. Thibault, E. Banks, K. V. Garimella, D. Altshuler, S. Gabriel,

M. A. DePristo, From FastQ Data to High-Confidence Variant

Calls: The Genome Analysis Toolkit Best Practices Pipeline,

Current Protocols in Bioinformatics 11 (11).

[37] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansend,

J. Wang, SOAP2: an Improved Ultrafast Tool for Short Read

Alignment, Bioinformatics 25 (15) (2009) 1966–1967.

[38] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan,

N. Homer, G. Marth, G. Abecasis, R. Durbin, The Sequence

Alignment Map Format and SAMtools, Bioinformatics 25 (16)

2078–2079.

Jorge González-Domı́nguez received the B.Sc., M.Sc. and PhD de-

grees in Computer Science from the University of A Coruña, Spain,

in 2008, 2010 and 2013, respectively. He is currently an assistant

teacher in the Computer Architecture Group at the University of A

Coruña, Spain. His main research interests are in the areas of high

performance computing for bioinformatics and PGAS programming

languages.

Christian Hundt has received his diploma in theoretical physics for

the analysis of quantization maps on curved manifolds and a PhD

degree in Computer Science for the efficient subsequence alignment

of time series on CUDA-enabled accelerators at the University of

Mainz, Germany, in 2010 and 2015. In his current position, as a

postdoctoral researcher at the Parallel and Distributed Architectures

group, he investigates the design and parallelization of algorithms in

the field of bioinformatics.

Bertil Schmidt (M’04-SM’07) is tenured Full Professor and Chair for

Parallel and Distributed Architectures at the University of Mainz,

Germany. Prior to that he was a faculty member at Nanyang Tech-

nological University (Singapore) and at University of New South

Wales (UNSW). His research group has designed a variety of algo-

rithms and tools for Bioinformatics mainly focusing on the analysis

of large-scale sequence and read datasets. For his research work, he

has received a GPU Research Center award, GPU Education Cen-

ter Award, CUDA Academic Partnership award, CUDA Professor

Partnership award and Best Paper Awards at IEEE ASAP 2015 and

IEEE ASAP 2009.

