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Abstract The automatic identi�cation and segmentation of edemas associ-
ated with Diabetic Macular Edema (DME) constitutes a crucial ophthalmo-
logical issue as they provide useful information for the evaluation of the disease
severity. According to the clinical knowledge, the DME disorder can be catego-
rized into three main pathological types: Serous Retinal Detachment (SRD),
Cystoid Macular Edema (CME) and Di�use Retinal Thickening (DRT). The
implementation of computational systems for their automatic extraction and
characterization may help the clinicians in their daily clinical practice, ad-
justing the diagnosis and therapies and consequently the life quality of the
patients. In this context, this paper proposes a fully automatic system for the
identi�cation, segmentation and characterization of the three ME types using
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Optical Coherence Tomography (OCT) images. In the case of SRD and CME
edemas, di�erent approaches were implemented adapting graph cuts and ac-
tive contours for their identi�cation and precise delimitation. In the case of
the DRT edemas, given their fuzzy regional appearance that requires a com-
plex extraction process, an exhaustive analysis using a learning strategy was
designed, exploiting intensity, texture and clinical-based information. The dif-
ferent steps of this methodology were validated with a heterogeneous set of
262 OCT images, using the manual labeling provided by an expert clinician.
In general terms, the system provided satisfactory results, reaching Dice coef-
�cient scores of 0.8768, 0.7475 and 0.8913 for the segmentation of SRD, CME
and DRT edemas, respectively.

Keywords Computer-aided diagnosis · Retinal imaging · Optical Coherence
Tomography · Diabetic Macular Edema · Fluid segmentation

1 Introduction

The presence of Macular Edemas (ME) constitutes a retinal disease that pro-
duces, as main symptoms, a blurred or wavy central vision that could also
induce a change in the color perception of the visual acuity [24]. Di�erent med-
ical studies reported that this eye disorder is caused by damage in the retinal
microvascularity that consequently carries a problematic leak of blood within
the retinal tissues. The presence of this intraretinal �uid leads to a signi�cant
deterioration of the morphology and architecture of the retinal tissues (espe-
cially regarding its thickness), reducing consequently the visual acuity of the
patient. This eye fundus pathology is prevalent in advanced stages of signi�-
cant retinal diseases including Diabetic Macular Edema (DME) or Age-related
Macular Degeneration (AMD). DME is considered as one of the leading causes
of blindness and visual impairment among working-aged adults in industrially
developed countries [5]. Although few clinical methods, such as Anti-Vascular
Endothelial Growth Factor (AntiVEGF) therapy, are successfully applied with
patients with DME, the availability of robust and sensitive imaging biomark-
ers may bene�t the early diagnosis, allowing consequently the prescription of
more adjusted treatments [4].

Computer-Aided Diagnosis (CAD) systems have gained popularity over
the recent years as auxiliary tools to support the clinician's diagnosis and
evaluation of many signi�cative diseases. Many of them include, as source of
information, the input of di�erent medical imaging modalities. Actually, in
ophthalmology, Optical Coherence Tomography (OCT) has became nowadays
a valuable image modality for the analysis and diagnosis of many retinal disor-
ders, specially those that a�ects the retinal layers, as the presence of intrareti-
nal MEs. This imaging technique o�ers an easy and direct visualization of the
in vivo histopathology of the retinal tissues in a contactless and non-invasive
capturing process. Given that, nowadays, it is extensively used in the clinical
practice of many ophthalmological services for the diagnosis and follow-up of
patients with di�erent eye disorders.
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Fig. 1 OCT image with the localization of the 3 de�ned types of DME: SRD, CME and
DRT.

Using the OCT image modality as reference, Otani et al. [29] established
a novel clinical classi�cation that characterizes the abnormal intraretinal �uid
accumulations. In particular, this clinical classi�cation enables the identi�ca-
tion and categorization of the MEs associated with DME into 3 main patholog-
ical types: Serous Retinal Detachment (SRD), Cystoid Macular Edema (CME)
and Di�use Retinal Thickening (DRT). In the OCT images, SRD edemas are
typically recognized as a �dome-shape� hypore�ective region that presents a
signi�cant contrast over the nearby tissue (the photoreceptors layer). In the
case of CME edemas, they are clinically de�ned as a hypore�ective cystoid
space surrounded by highly re�ective membranes that represent the �cystoid-
cavities�. Finally, DRT edemas typically proliferate in the outer retina layer
with a �sponge-like� appearance. This pattern results as consequence of the
absence of limiting membranes that constrain the �uid in this speci�c reti-
nal region. Posteriorly, this classi�cation was extended by Panozzo et al. [30],
characterizing these 3 ME types using additional criterions in a more precise
classi�cation. In this study, the authors de�ned 5 clinical criterions: retinal
thickness, di�usion, volume, morphology and presence of vitreous traction [2].
Figure 1 includes the simultaneous presence of the 3 ME types in a particular
OCT image, illustrating the complexity and heterogeneity of the DME retinal
disorder.

Given the relevance of the disease, di�erent works were presented over the
recent years related with this issue. Part of them faced globally the identi�ca-
tion of pathological scenarios by the general presence of �uid accumulations
(addressing the cases that are typically more visible and omitting any type of
characterization). As reference, in the work of Sidibé et al. [40], the authors
proposed a strategy that �rstly models the appearance of normal OCT images
using Gaussian Mixture Models (GMM) to, then, detect cases with the pres-
ence of intraretinal �uid as outliers. Roy et at. [34] applied a convolutional
architecture based on the RelayNet network to simultaneously segment the
retinal layers as well as the �uid regions that may be present in the OCT
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images. Montuoro et al. [25] proposed an automatic method based on graph
theory that simultaneously allows the segmentation of the retinal layers and
the existing �uid regions. In particular, a probability map was used to perform
the initial surface segmentation to posteriorly extract several context-based
features.

Other proposals faced partially the ME disease, extracting particular patho-
logical cases, mainly the most directly identi�able, as the case of CME edemas.
In that line, Girish et al. [14] designed a methodology based on a marker-
controlled watershed method to segment existing CME regions. In the works
of Lee et al. [19] and Schlegl et al. [39], similar strategies were proposed to seg-
ment CME edemas using adapted CNNs. Venhuizen et al. [44] developed a deep
learning method for the automatic segmentation and quanti�cation of CME
edemas using the FCNN architecture. Rashno et al. [32] focused their study
in the automatic segmentation of CME regions using a neutrosophic transfor-
mation and a graph-based shortest path method. Sun et al. [43] presented a
framework for the SRD edema segmentation that combined AdaBoost classi-
�cation and a shape-constrained graph cut. Similarly, Lee et al. [20] proposed
a CNN method for the detection and quanti�cation of SRD cases. Novosel et
al. [28] proposed a strategy based on Loosely Coupled Level Set (LCLS) to
simultaneously segment the retinal layers and the pathological structures that
are present in the OCT images, as drusen or SRD edemas. Ding et al. [11]
used a graph cut approach with a Split Bregman-based segmentation method
to delimit the �uid regions. Then, a learning strategy was implemented, using
as reference the previously identi�ed dark regions to classify each candidate as
a case of SRD or CME. A similar strategy was proposed by Zheng et al. [47],
where the output of a Split Bregman-based segmentation method is compared
and validated with the manual delimitation of an expert.

Despite the existence of general or partial proposals that faced the analysis
of the DME disease, at present, Samagaio et al. [35] is the only work that
addressed the automatic localization of the 3 clinically de�ned edema types
of DME using OCT scans. To date, no other work faced the entire process
of simultaneous localization, characterization and also the segmentation of all
the existing cases of the 3 de�ned DME types in OCT images.

Summarizing, the main contributions of the paper include: (i) a new method-
ology for the simultaneous identi�cation, characterization and segmentation of
the 3 de�ned types of edemas (SRD, CME and DRT). In the case of SRD and
CME edemas, di�erent approaches were implemented adapting graph cuts
and active contours for their identi�cation and precise delimitation. In the
case of the DRT edemas, given their fuzzy regional appearance that requires
a complex extraction process, an exhaustive analysis using a learning strat-
egy was designed, exploiting intensity, texture and clinical-based information;
(ii) to date, this work represents the only proposal that accurately identi�es,
characterises and segments all the cases of the ME types that are associated
with DME, a signi�cant disease of great impact at the moment; (iii) this fully
automatic system provides crucial information that can facilitate the early di-
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Fig. 2 Main stages of the proposed methodology for the identi�cation and segmentation of
the DME types: SRD, CME and DRT.

agnosis of a relevant disease as is DME, among the main causes of vision loss
and blindness in the developed countries.

The manuscript is organized as follows: Section 2 presents a detailed expla-
nation about the steps that were followed for the identi�cation and subsequent
segmentation of the 3 ME types. Section 3 includes the results and validation
of the main designed stages of the methodology. Section 4 exposes the discus-
sion of the obtained results and the main challenges that were faced in this
work. Finally, Section 5 depicts the general conclusions of the study and the
possible future lines of work.

2 Methodology

As illustrated in Figure 2, the designed pipeline of the method is composed
by 3 main stages. Firstly, the system identi�es 4 representative retinal layers
that delimit the ROI where the intraretinal �uid may appear. Posteriorly, this
area is sub-divided in 2 main regions: the inner and the outer retina. This ROI
division facilitates the identi�cation of each ME type given their characteristic
relative positions within the retina. Regarding the identi�cation stage, we fol-
low a similar strategy for the detection of the SRD and CME edemas as in [35].
Then, the system exploits an adjusted combination of pre-processing �lter and
robust segmentation algorithms for their precise extraction. In the case of the
DRT edemas, a learning strategy was implemented for the identi�cation and
subsequent segmentation of this ME type. Each one of these stages is going to
be discussed next.

2.1 Delimitation of the region of interest

MEs are accumulated in typical relative positions within the main retinal
layers [29]. In particular, CMEs normally start to manifest symptoms in the
inner retina. In contrast, SRD and DRT edemas typically appear in the outer
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(a) (b)

Fig. 3 Representative examples of OCT images. (a) Normal OCT image without the pres-
ence of DME. (b) OCT image with the pathological presence of DME.

retina. In more severe pathological stages, CMEs can also proliferate from
the inner to the outer retina and merge with the DRT edemas. Based on
those premises, two retinal regions were particularly segmented, facilitating
the posterior identi�cation and analysis of the pathological regions that are
associated with the DME disease, with restricted and limited regions of interest
for each target case.

For this purpose, initially, the system detects 4 retinal layers that delimit
the entire region of analysis. Next, 2 sub-retinal regions are identi�ed to facil-
itate the extraction of each ME type. This complete process is described with
more detail in the next subsections.

2.1.1 Retinal layer segmentation

The 4 retinal layers that provide the delimitation of the entire search space
are the following: the Inner Limiting Membrane (ILM), the Outer Plexiform
Layer (OPL), the junction of Inner and Outer Segments (ISOS) and the Retinal
Pigment Epithelium (RPE). The identi�cation of these retinal layers initially
follows the work of González-López et al. [15]. To do that, �rstly, we employed
a noise �ltering strategy based on the Fourier Butterworth �lter to e�ciently
reduce the speckle noise but also preserving the clinical information contained
in the images [36]. Then, an active contour-based model is used to segment
and extract the main retinal layers. Finally, di�erent re�nement processes are
implemented to correct existing segmentation errors, improving the accuracy
of the obtained results. In this context, di�erent anatomical knowledge was
used, such as the horizontal placement of the retinal layers and their relative
positions over the analyzed OCT images. Using this strategy, we obtain the
ILM, ISOS and RPE layers.

The proliferation of pathological structures, as the MEs in our case, car-
ries a signi�cant deterioration of the retinal architecture and morphology [10].
Speci�cally, these alterations impact drastically in the intermediate intrareti-
nal layers, as the aimed OPL layer, hardening its identi�cation process. Fig-
ure 3 shows 2 representative examples of OCT images of patients with non-
pathological and pathological conditions, illustrating a signi�cative deteriora-
tion of the OPL layer with the presence of the DME disease. Given that the
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Fig. 4 Example of OCT image with the identi�cation of the inner and outer retinal regions.
(a) Identi�cation of the ILM, ISOS and RPE layers. (b) Additional delimitation of the OPL
layer. (c) Identi�ed inner retina, between the ILM and the OPL layers. (b) Identi�ed outer
retina, between the OPL and the RPE layers.

previous strategy does not o�er satisfactory results with this layer in patholog-
ical scenarios, the previous approach is complemented with a speci�c strategy
for the OPL layer. In this case, the method uses the previous detected ISOS
layer as baseline for the application of a region growing approach [48]. Over
this layer, N initial points were randomly generated and used as seeds for the
region growing approach, as shown in Figure 4(a). The number of generated
seeds is proportional to the image dimensionality, representing an amount of a
10% of the input OCT image width. This way, we obtain the entire region over
the ISOS layer by intensity similarity. Hence, as illustrated in Figure 4(b), the
upper limits of the obtained region corresponds to the target identi�cation of
the OPL layer.

2.1.2 Division of the ROI in two sub-regions: inner and outer retina

As said, CME edemas begin to manifest in the inner layers of the retina.
However, in more advanced pathological scenarios, these edemas proliferate
to the outer retina, merging with the DRT edemas. In opposition, the SRD
and DRT edemas present a characteristic relative position in the outer retinal
layers, without spreading to the upper retinal region [29]. The identi�cation
of these retinal regions simpli�es the identi�cation of each type of intraretinal
�uid accumulation, reducing signi�cantly the search space for each ME type.

Based on these clinical premises, 2 main sub-regions were de�ned to facil-
itate the identi�cation process: the inner and the outer retina. As illustrated
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Fig. 5 OCT image with the identi�cation of the SRD edema (+) as well as the ILM, ISOS
and RPE layers. ILM/RPE delimits the entire ROI. ISOS/RPE indicates the photoreceptors
layer.

in Figure 4, the inner retina (Figure 4(c)) is delimited by the ILM and the
OPL layers as superior an inferior boundaries, whereas the outer retina (Figure
4(d)) presents the OPL and the RPE layers as limits, respectively.

2.2 Identi�cation of the SRD and CME edemas

In this stage, 2 speci�c and individual strategies were designed for the identi-
�cation of the SRD and CME edemas (see Figure 2) as in [35]. In particular,
the SRD edema is searched in the outer retina, whereas the CME edemas
are veri�ed in both retinal regions, with adapted approaches to the image
characteristics of each region.

2.2.1 SRD Detection

The system automatically identi�es the SRD edemas by the combination of
clinical knowledge and image processing techniques. The method �rstly ap-
plies an adaptive thresholding to segment the areas with identical intensity
pro�les. Then, to decrease the false positive rates, a list of clinical restrictions
was implemented, using criteria such as: relative position, area, morphology,
thickness of the photoreceptors layer or the intensity pro�le [35]. Figure 5
presents an illustrative example of an OCT image with the identi�cation of
the existing SRD edema.

2.2.2 CME Detection

CME edemas are typically characterized as cystoid spaces with a signi�cant
low-intensity pro�le in comparison with the surrounding retinal tissues. These
edemas present a signi�cant variability in terms of dimensions, shape or mor-
phology, appearing since a cystoid to a petaloid-like appearance. In the early
stages of the disease, they typically emerge in the inner retina (ILM/OPL),
where the contrast with the surrounding retinal tissue is signi�cative. How-
ever, in more severe clinical stages, they can also proliferate in the outer retina
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Fig. 6 OCT image with the identi�cation of existing CME edemas (*).

Fig. 7 OCT image with the SRD (+) and CME (*) edemas.

(OPL/RPE). This region, with a low-intensity pro�le, presents a reduced con-
trast with the edemas, hardening signi�cantly their identi�cation. To detect
the CME edemas, we apply a similar strategy used for the identi�cation of
the SRD edemas [35]. Firstly, an adaptive thresholding is applied to identify
all the CME candidates, separately in the inner and the outer retina. Then,
a post-processing stage based on a �ooding-process over the image gradient
was applied to merge partial identi�cations. Finally, a list of clinical criterions
was applied to �lter any existing false CME candidate: area size, major and
minor axis of the candidates, retinal thickness and eccentricity were used to
preserve the true detections. Figure 6 includes a representative example of an
OCT image with the identi�cation of the visible CME edemas.

2.3 SRD and CME precise segmentation

Regarding the SRD and CME edemas, the proposed system exploits an ad-
justed combination of pre-processing �lters and robust segmentation algo-
rithms for the precise extraction of these pathological �uid regions. Figure
7 exposes a representative example of OCT image including SRD and CME
edemas, illustrating their initial localizations and their target regions.
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(a)

(b)

Fig. 8 Pre-processing stage. (a) Input OCT image. (b) Pre-processed OCT image after
applying the anisotropic di�usion �lter.

2.3.1 Image pre-procesing for the segmentation process

Using as reference the preliminary identi�cations of the SRD and CME ede-
mas, we continue with the precise segmentation of each case. The OCT images
are often a�ected by motion artifacts, speckle noise or poor soft tissues that
di�cult the analysis of di�erent pathological structures [37]. To eliminate the
noise and small artifacts while preserving and enhancing the retinal structures
and in order to facilitate the segmentation process, we implemented the opti-
mized anisotropic di�usion �ltering proposed by Kroon et al. [18]. This �lter
consists of an iterative method that enhances the contrast between the patho-
logical and non-pathological retinal structures. In this way, the �lter describes
the local image structure using the �second-moment matrix�, also designed as
structure tensor. This descriptor is transformed into the di�usion tensor D,
which is commonly determined in an iterative forward di�erence approxima-
tion, as follows:

δu

δt
= 5× (D5 u) (1)

Where u indicates the image and t the di�usion time. In this �lter, the
parameters magnitude of di�usion and direction are estimated and correlated.

Figure 8 illustrates a representative example of application of the opti-
mized anisotropic �lter in a pathological OCT image. As shown, this �lter
signi�cantly reduces the noise while preserving and simultaneously highlight-
ing the limiting boundaries of the SRD and CME edemas, therefore facilitating
the target segmentation process.

For the segmentation of the SRD and CME regions, 3 robust alternative
strategies were adapted and analyzed in this work, using as seed the initial
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(a) (b) (c)

(d) (e) (f)

Fig. 9 Segmentation stage. (a) & (d) OCT images with the presence of CME edemas. (b)
& (e) Seed regions that were obtained in the CME localization stage. (c) & (f) Final CME
segmentations.

extractions of the localization process: (a) an approach based on graph cuts
[33]; (b) another based on a Chan-Vese active contour model [7]; (c) a last one
adapting a geodesic active contour model [6].

2.3.2 Graph cuts approach

We based our approach in the GrabCut proposal of Rother et al. [33], given
its suitability and adequate results for similar segmentation problems [13] [8].
The main goal of this segmentation strategy is to classify the pixels in the
OCT image into 2 categories, the foreground (the pathological �uid regions)
and the background. To do that, as said, the algorithm, as the other studied
approaches, uses the initial extractions of the localization process as a �rst
approximation of the foreground region, as shown in Figure 9. Gaussian Mix-
ture Models (GMMs) are created for the initial foreground and background
regions. Then, each pixel of the OCT image is assigned to the most likely
Gaussian component in the background or the foreground GMM. Finally, an
interactive min-cut algorithm is applied to achieve the target segmentation,
precisely separating both regions.
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2.3.3 Chan-Vese active contour model approach

This active contour model proposed by Chan et al. [7] is also considered as
a powerful and �exible method, which is able to perform segmentation tasks
in a large variability of image types. This method, based on the Mumford-
Shad funtion [26] and the level set approach [23], o�ered satisfactory results in
similar complex medical imaging segmentation issues [46] [9]. In this line, the
Chan-Vese model assumes that the �uid regions and the background present a
Gaussian distribution with the same standard deviation. Using this informa-
tion as reference, the model seeks a precise segmentation by minimizing the
energy function E(C) based on the curve C that represents the limits of the
�uid regions. In particular, the Chan-Vese model is de�ned by:

E(C) =

∫
Ω1

[I(x, y)− c1]2dx+

∫
Ωc

1

[I(x, y)− c2]2dx+ α | C | (2)

where I represents the OCT image, Ω1 is the �uid region and Ωc1 is the
background region. In addition, c1 and c2 are the mean intensity values for the
regions Ω1 and Ωc1, respectively. Moreover, α | C | represents the smoothness
regularization term, where α is a weighting coe�cient and | C | indicates the
length of the curve C. This level set formulation facilitates the identi�cation
of regions with similar image properties, as the case of the target edemas.

2.3.4 Geodesic active contour model approach

Caselles et al. [6] proposed a segmentation method based on the relationship
between active contours and the computation of geodesics or minimal distance
curves, the geodesic model. This model was also applied in similar strategies
for the segmentation of pathological regions in many �elds of medical imaging
[16] [1]. In particular, the geodesic model is de�ned along a curve C(t) and
minimized by evolving the curve in the normal direction, as following:

C(t) = {I(x, y) | θ(t, x, y) = 0} (3)

where I represents the OCT image, t is an time parameter and θ(t, x, y) = 0
represents the zero level set of the function θ. The level set function θ is selected
to be a signed distance function, being negative in the interior (the pathological
�uid regions) and positive in the exterior (background) of the zero level set.

2.4 DRT identi�cation and segmentation

Finally, we identify the presence of the DRT edemas and segment its con-
stituent region without any pre-processing stage. DRT edemas are character-
ized by a �sponge-like� appearance due to swelling of the surrounding retinal
tissues. This swelling is normally produced by the �uid accumulations in the
OPL/ISOS region, as illustrated in Figure 10.
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Fig. 10 OCT image with the presence of the DRT edema (-.-).

Fig. 11 Schematic representation of the designed strategy for the identi�cation and seg-
mentation of the DRT edemas.

Figure 11 illustrates a schematic representation of the designed strategy
for the detection of the DRT edemas, analyzing its presence by columns in a
process that is composed by 3 main steps: feature extraction, use of classi�ers
to identify the DRT presence and post-processing stages to complete and re�ne
the �nal segmented region.

Firstly, to characterize each analyzed region as DRT or non-DRT, we ex-
ploit the information contained in each column within the search space (the
OPL/ISOS region), where this DME type usually appears. To do that, we use
a window of a de�ned size that is centered in each column under analysis,
as illustrated in the input image of Figure 11. Besides, considering that the
thickness of the OPL/ISOS region is not constant, the height of the window
varies according to the analyzed column in that region, being adjusted to the
OPL/ISOS height. In this way, we extract the set of features that better dis-
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criminate the presence of the DRT edemas. Given that, a suitable combination
of features based on intensity, texture and clinical-based information was ana-
lyzed. In fact, a total of 354 features were extracted from the analyzed regions
(listed and described in Table 1).

Table 1 List of the de�ned set of 354 features to identify the DRT presence.

N. Features Category Features
[1 - 15] Global Intensity-Based Fea-

tures (GIBS)
Maximum, minimum, mean,
median, std, variance, 25th

percentile, 75th percentile,
skewness and maximum like-
lihood estimates for normal
distribution.

[16 - 20] Gray-Level Intensity His-
togram (GLIH)

Obliquity, kurtosis, energy
and entropy.

[21 - 36] Gray-Level Co-ocurrence
Matrix (GLCM)

Contrast, energy, correlation
and homogeneity.

[37 - 117] Histogram of Oriented Gra-
dients (HOG)

9 windows per bound box
and 9 histogram bins.

[118 - 245] Gabor Mean and std. Orientations
= 8 and scale = 8.

[246 - 309] Local Binary Pattern (LBP) Mean and std. Number of
neighbors = (4, 8, 12, 16) and
�lter radius: 1-8.

[310 - 337] LAWS A collection of convolutional
kernels that search for char-
acteristic texture patterns.

[338 - 340] Fractal Dimension (FD) Mean, std and lacunarity.

[341 - 347] Gray Level Run Length Im-
age (GLRLI)

SRE, LRE, GLN, RP, RLN,
LGRE and HGRE.

[348 - 354] Retinal Thickness Analysis The maximum height of
the OPL/ISOS, ILM/ISOS,
ILM/RPE and the ratio be-
tween these regions.

Short Run Emphasis (SRE), Long Run Emphasis (LRE), Gray Level Non-uniformity (GLN),

Run Percentage (RP), Run Length Non-uniformity (RLN), Low Gray Level Run Emphasis (LGRE) and

High Gray Level Emphasis (HGRE).

Given the high dimensionality of the feature set, we applied di�erent fea-
ture selectors to avoid irrelevant and redundant features as well as measure
their potential of discrimination. In particular, we used 3 selection strategies:
Sequential Forward Selection (SFS) [41], Robust Feature Selection (RFS) [27]
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and SVM-Forward Selector (SVM-FS) [3]. Generally, the SFS selector adds
each feature to the selected subset by an incremental importance feature or-
der. In the case of the RFS selector, it identi�es the features by the use of an
emphasizing joint `2,1-norm regularization, selecting those with joint sparsity.
Finally, the SVM-FS selector uses a linear `1-norm SVM to select the features
and a non-linear `1-norm SVM to predict the best subset.

Using the selected feature sets as input, 7 representative classi�ers were
trained and tested: the Naive Bayes classi�er [12], k -Nearest Neighbors (kNN)
[45], Parzen [21], the Quadratic Bayes Normal Classi�er (QDC) [42], the Sup-
port Vector Machine (SVM) [17], the Linear Bayes Normal Classi�er (LDC)
[22] and the Decision Tree Classi�er (DTC) [31]. In the case of the kNN clas-
si�er, 3 con�gurations were tested, using values of k = [3, 5, 7]. For the re�ne-
ment of the DRT segmentation, we use as reference the detected DRT columns
and the thickness of the OPL/ISOS region.

Furthermore, the isolated classi�cations of all the columns produce irreg-
ularities and discontinuities over the DRT extraction. Given the consistent
and regional appearance of the DRT edemas, we introduced 2 independent
post-processing approaches [38] with 2 speci�c targets of removing spurious
detections and joining partial DRT identi�cations. This way, we exploit these
regional characteristics, improving the performance of the proposed method:

� The �rst post-processing approach aims at reducing the False Positive (FP)
rates, typically as false detections that are introduced by the presence of
other retinal structures. In this way, the system analyzes the minimum
width of each DRT region and the distance to the next closest DRT region,
removing small and isolated DRT detections.

� The second post-processing approach analyzes the in�uence of the misclas-
si�ed regions, with the aim of reducing the False Negative (FN) rates. To
do that, we implemented an aggregation factor (d) that connects 2 con-
secutive signi�cative detected DRT regions if the distance between them is
smaller than the de�ned value of the aggregation factor, considering that
those signi�cantly nearby regions belong to the same global DRT region.

3 Results

The proposed methodology was validated using a dataset composed by 262
OCT images. These images were captured with a Spectralis R© OCT capture
device from Heidelberg Engineering. The OCT scans were obtained using a 7
Line Rater scan con�guration with a 30◦ × 5◦ of angle of capture and with
a space of 240µm. These images are centered on the macula and present a
variability of resolutions ranging from 361 × 1,285 to 480 × 1,023 pixels. The
images were captured from both left and right eyes of di�erent individuals,
presenting a varying degree of the analyzed DME types in a single scan. This
study was approved by the local ethics committee. To ensure the anonymity
of the patients that participated in the study, the corresponding images were
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Table 2 Results of the SRD segmentation stage using Dice, Precision and Recall metrics.

Method Dice Precision Recall

Chan-Vese 0.8705 90.63% 86.62%
Geodesic 0.7157 78.10% 76.11%
Grabcut 0.6761 80.35% 68.63%
Pre-processing & Chan-Vese 0.8768 91.16% 87.48%

Pre-processing & Geodesic 0.7316 78.40% 78.29%
Pre-processing & Grabcut 0.6703 79.52% 68.83%

renamed by the specialists before being provided for the validation of the
proposed system.

In order to test the performance of the proposed methodology, the OCT im-
ages were labeled by an expert clinician, identifying and categorizing the pres-
ence of pathological regions of the 3 edema types of DME. The performance
of this system was validated using statistical metrics that are commonly used
in the state-of-the-art to measure the performance of similar computational
proposals. In particular, Precision, Recall and Dice coe�cients were measured
for the quantitative validation of the results. Mathematically, these metrics are
formulated as indicated in Eqs. 4, 5, and 6, where (TP), (TN), (FP) and (FN)
indicate True Positives, True Negatives, False Positives and False Negatives,
respectively.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Dice =
2× TP

2× TP + FP + FN
(6)

SRD edemas are considered as a particular and less frequent ME type
that commonly a�ects a reduced group of patients [29]. Additionally, in each
OCT image, it is only possible to verify the existence, if present, of a single
SRD edema. Given that context, in the analyzed dataset 22 SRD edemas were
present, being correctly identi�ed in all the cases by the system. Regarding the
segmentation performance, Table 2 shows the achieved results of the proposed
methodology for the segmentation of the SRD edemas with and without the
explained pre-processing stage that employs the anisotropic di�usion �lter.
Using a best con�guration of pre-processing �lter and Chan-Vese approach, the
proposed strategy reached an accurate value of 0.8768 for the Dice coe�cient
as well as values of 91.16% and 87.48% for Precision and Recall, respectively.

Regarding the CME edemas, a total of 829 cases were identi�ed by the spe-
cialist in the entire image dataset. In this experiments, once again, we analyzed
the best combination of the 3 segmentation approaches with and without the
use of the anisotropic di�usion �lter. As show in Table 3, the best results were
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Table 3 Results of the CME segmentation stage using Dice, Precision and Recall metrics.

Method Dice Precision Recall

Chan-Vese 0.6604 90.13% 58.97%
Geodesic 0.6975 74.06% 76.45%
Grabcut 0.6178 91.38% 53.77%
Pre-processing & Chan-Vese 0.7475 85.22% 73.46%

Pre-processing & Geodesic 0.7264 71,16% 82,37%
Pre-processing & Grabcut 0.6290 91.03% 55.40%

provided by the combination of pre-processing and Chan-Vese approach, re-
turning values of 0.7475, 85.22% and 73.46% for the Dice coe�cient, Precision
and Recall, respectively. Despite that the Geodesic approach presents better
results than the Chan-Vese approach without the pre-processing stage, the
combination of pre-processing and Chan-Vese approach signi�cantly increased
the performance of the proposed system. This is provided by the characteristics
of the pre-processing �lter, as it generates images with a higher homogeneity in
terms of intensities over the analyzed retinal layers. This scenario bene�ts the
Chan-Vese approach that often achieves better segmentation results in images
with intensity homogeneity [7].

Regarding the DRT edemas, we analyzed the performance of the proposed
methodology in 3 main steps: �rstly, we tested the detection of the columns
containing DRT edemas; then, we determined the best combination between
feature selectors and classi�ers for the DRT segmentation. Finally, we analyzed
the post-processing approaches to determine their in�uence and impact in the
reduction of the FPs and FNs rates, using the best-trained con�guration.

To do that, using the labeled regions that were identi�ed by the specialist as
DRT columns, we constructed a set of features by the extraction of the de�ned
354 features from 2,576 samples with non-DRT and DRT edema presence. The
constructed set was randomly divided in 2 subsets with the same size, one for
training and other for testing. Then, to ensure the accuracy of the global
performance, we trained the classi�ers using a 10-fold cross-validation with a
total of 50 repetitions, being calculated the mean error/accuracy to measure
the �nal performance of the method. Then, using the best con�guration of each
classi�er, we validated the performance of the proposed system with 92,571
columns containing DRT and 52,845 non-DRT columns that were obtained
from 131 OCT images.

Regarding the DRT detection, we analyzed the performance of the pro-
posed method using di�erent feature selectors and classi�ers, as show in Table
4. Firstly, to determine the subset of features that better discriminate the pres-
ence of this ME type, as said, 3 feature selectors were applied: RFS, SVM-FS
and SFS. In this analysis, generally, the majority of the selected features were
taken from Gabor, LBP, HOG and LAWS as they present the highest capac-
ity of di�erentiation between the DRT and non-DRT patterns supporting the
discrimination on the characteristic gradients and textures of this pathological
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Table 4 Accuracy results that were obtained with the tested classi�ers for the DRT detec-
tion using di�erent feature set sizes.

Classi�ers Properties SFS RFS SVM-FS

DTC
N.Features 19 51 23
Accuracy 0.8538 0.8446 0.8461

3-kNN
N.Features 74 139 31
Accuracy 0.8867 0.8920 0.8570

5-kNN
N.Features 69 112 80
Accuracy 0.8858 0.8904 0.8635

7-kNN
N.Features 64 112 80
Accuracy 0.8835 0.8904 0.8635

LDC
N.Features 76 140 83
Accuracy 0.9031 0.8802 0.8710

Naive Bayes
N.Features 8 141 6
Accuracy 0.8339 0.8297 0.8349

Parzen
N.Features 18 92 69
Accuracy 0.8936 0.8954 0.8712

QDC
N.Features 26 124 65
Accuracy 0.8870 0.8612 0.8609

SVM
N.Features 75 142 53
Accuracy 0.8989 0.8973 0.8801

Table 5 Results of the DRT segmentation process before the post-processing stage.

No Post-Processing
Classi�er Dice Precision Recall

LDC 0.8369 0.9569 0.7420

presence. As we can observe in Table 4, the best con�guration was achieved
by the LDC classi�er combined with the characteristics that were indicated
by the SFS feature selector. In particular, a total of 76 features were selected
in this best combination, achieving an accuracy of 90.31%. In opposition, the
Naive Bayes classi�er with the RFS feature selector obtained the lowest rates,
with an accuracy of 82.97%.

Regarding the DRT segmentation re�nement, we analyzed the best con-
�guration (LDC classi�er and SFS feature selector) that was obtained for the
DRT detection using the thickness of the OPL/ISOS region. Table 5 lists the
obtained results for the DRT segmentation before any post-processing re�ne-
ment using again Dice coe�cient, Precision and Recall. The proposed strategy
achieved a Dice coe�cient of 0.8369 as well as values of 95.69% and 74.20%
for Precision and Recall, respectively.

Using these results as baseline, next, we tested the capabilities of the de-
signed post-processing approaches. Thus, Table 6 presents a comparative anal-
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Table 6 Results of the DRT segmentation process after the �rst and second post-processing
approaches.

First Post-Processing Second Post-Processing
Classi�er Wmin dmin Dice Precision Recall d Dice Precision Recall

LDC 33 1 0.8441 0.9538 0.7570 47 0.8913 0.9080 0.8784

ysis for the application of both designed strategies. As we can observe, the �rst
post-processing approach achieved an improvement in the Dice coe�cient of
a 1%. On the other hand, the best increment in the accuracy results was ob-
tained using the second post-processing approach with the aggregation factor
(d). In this case, the best performance was obtained with a value of d = 47,
reaching a Dice coe�cient of 0.8913. This strategy leads to an improvement
over a 5% of the Dice coe�cient. With disparity in their relevance, we can
conclude that the application of the post-processing approaches re�nes and
improves the segmentation performance of the extracted DRT regions.

4 Discussion

Over the recent years, the OCT image modality was established as an ac-
curate source of information for a precise retinal cross-sectional visualization
and analysis of di�erent eye anatomical structures, facilitating the diagnosis
of many diseases, specially those that proliferate among the retinal layers, as
represents the case of the DME disease. Globally, DME is a leading cause
of vision impairment that constitutes a serious health problem, a�ecting ap-
proximately a 10% of the people with diabetes. This pathology is caused by
the �uid accumulations that proliferate in the macular region. In this context,
these �uid accumulations typically present a great variability and heterogene-
ity within the retinal tissues, characterizing di�erent ME types. Despite this
complex and challenging scenario, the proposed system is able to e�ciently
identify and segment the hypothetical presence of each ME type, even when
they appear simultaneously.

As said, SRD edemas are less frequent than the other 2 DME types, given
that this case a�ects a reduced group of patients. Moreover, when present,
only one SRD edema appears in each individual. The proposed system for the
segmentation of this ME type achieved satisfactory identi�cation and segmen-
tation results, providing accurate extractions as the case that is illustrated
in Figure 12. In particular, the combination of the anisotropic di�usion �l-
ter with the Chan-Vese approach o�ered the best results, presenting a precise
segmentation of the SRD regions.

Regarding the SRD and CME edemas, we want to highlight that we use
as a reference their respective preliminary identi�cations to make the precise
segmentation. In this line, the segmentation performance was evaluated even
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(a) (b) (c)

(d) (e) (f)

Fig. 12 Examples of results of the SRD segmentation stage. (a) & (d) Original OCT images.
(b) & (e) Segmented SRD regions. (c) & (f) OCT images with the segmented SRD regions.

when the preliminary identi�cations were not correctly obtained (as happens
in some CME cases), being therefore the general performance of the proposed
method penalized. If the performance analysis would have been measured only
over the correct localizations, the performance metrics would o�er even better
results.

Regarding the methodological novelty and potential relevance of the pro-
posed method with respect to other similar approaches, we would like to point
out that in the literature, to date, there is no existing methodology speci�cally
designed for the automatic segmentation and characterization of all the exist-
ing pathological cases of DME, following the clinical classi�cation of reference
in the ophthalmological �eld [29].

In terms of a comparative analysis, we have to consider that, to date,
there is no other entire dataset that was labeled simultaneously with the 3
types of ME. In particular, in the case of SRD and CME edemas, the existing
state-of-the-art method was validated with di�erent datasets, without any
speci�cations about the selected cases that were used in the study and under
di�erent settings (pixel-level resolution, quality, OCT device, image size, signal
averaging, image acquisition protocol, labelling of di�erent clinical experts,
enhanced depth...).

Table 7 exposes a comparative analysis between the few existing proposals
of the literature that faced the automatic segmentation of the SRD edemas
and our proposed approach. As said, we have to consider that the presented
methods were tested using di�erent private datasets. Considering this, in any
case, our method shows a competitive performance compared to the rest of
the proposals.

In the case of the CME edemas, the proposed system was capable of sat-
isfactorily delimiting the area occupied by these edemas, as illustrated in the
examples of Figure 13. Despite their high variability in terms of shape, size and
low contrast with the surrounded tissue of many cases, as said, the proposed
system achieved satisfactory results.

Complementarily, Table 8 lists a comparative analysis between di�erent
representative works of the literature that faced the speci�c segmentation of
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Table 7 SRD segmentation performance comparison of the state-of-the-art methods and
the proposed approach.

Method Dice Precision Recall

Schlegl et al. [39] - 90.00% 67.00%
Lee et al. [20] 0.82 - -

Novosel et al. [28] 0.89 - -
Proposed 0.88 91.16% 87.48%

(a) (b) (c)

(d) (e) (f)

Fig. 13 Examples of results of the CME segmentation stage. (a) & (d) Original OCT
images. (b) & (e) Segmented CME regions. (c) & (f) OCT images with the segmented CME
regions.

Table 8 CME segmentation performance comparison of the state-of-the-art methods and
the proposed approach.

Method Dice Precision Recall

Lee et al. [19] 0.73 - -
Venhuizen et al. [44] 0.75 - -
Girish et al. [14] 0.71 79.00% 66.00%
Rashno et al. [32] 0.71 73.89% 88.85%

Proposed 0.75 85.22% 73.46%

CME edemas and our proposed system. In the same way as for the SRD cases,
this comparison presents some limitations given that each work performed
their study using a di�erent dataset, without any speci�cations about the
selected cases that were used in the study. Additionally, we consider that
our dataset �ts the real conditions that are commonly faced by the expert
clinicians, including the simultaneous presence of di�erent types of ME. In
this context, the proposed system shows a competitive performance compared
to the current state of the art.

In the case of the DRT edemas, to date, none scienti�c study proposed
a strategy that automatically segments the region occupied by this ME type.
This challenge is related to the absence of limiting membranes, as well as to the
signi�cant di�culties of pattern variability for the correct delimitation of the
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(a)

(b)

(c)

Fig. 14 Example of results of the DRT segmentation process. (a) DRT segmentation with-
out the application of any post-processing approach. (b) DRT segmentation after the appli-
cation of the �rst post-processing approach. (c) DRT segmentation after the application of
the second post-processing approach.

pathological tissues that are a�ected by this ME type. Furthermore, to improve
the performance of the proposed method, two independent post-processing
approaches were included and analyzed. Figure 14(b) shows an example of
OCT image after the application of the �rst post-processing approach. As
we can see, the presence of artefacts in the outer retina may produce wrong
detections. In this context, the �rst post-processing aims at the reduction of the
FP rates. On the other hand, as illustrated in Figure 14(c), the application
of the second post-processing approach further provided the uni�cation of
non-DRT regions, reducing the FN rates. The proposed method achieved the
best results with a Dice coe�cient of 0.8913 after applying the second post-
processing approach with an aggregation factor of d = 47 using the LDC
classi�er.

In general, as we can observe in the literature, most of the presented meth-
ods only aimed at the partial analysis of CME or SRD regions and, therefore,
addressed only the pathological scenarios of DME that are typically more vis-
ible and structurally well-de�ned. Contrary to the other types, DRT edemas
were barely faced. In addition, to date, our contribution represents the only one
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that accurately identi�es, characterises and segments all the cases of the ME
types that are associated with DME, even when they appear simultaneously.

5 Conclusions

In this work, we propose a complete methodology for the identi�cation, charac-
terization and segmentation of the 3 de�ned types of edemas (SRD, CME and
DRT) in OCT images that are associated with the DME disease by the clinical
classi�cation of reference in the ophthalmological �eld. This fully automatic
system provides crucial information that facilitates the diagnostic process and
monitoring of the patients with DME.

For this purpose, �rstly, we restricted the search space of these edemas
using, as reference, 4 principal retinal layers that are initially segmented: ILM,
OPL, ISOS and RPE layers. These layers enable the delimitation of the ROI
and the posterior sub-division in the inner and the outer retina. Regarding
the SRD and CME edemas, di�erent speci�c approaches were designed and
analyzed for the localization and the subsequent segmentation of the area
that is a�ected by these 2 types of MEs. In the case of the DRT edemas, given
their fuzzy presence and not clearly de�ned boundaries, a learning strategy
was implemented and applied only in the OPL/ISOS region where this edema
typically appears. The experimental results showed that the proposed system
achieved satisfactory results, even with the simultaneous appearance of several
edemas of the di�erent analyzed DME types.

Summarizing, in the segmentation of the SRD and CME edemas, the sys-
tem achieved Dice coe�cient values of 0.8768 and 0.7475, respectively. Re-
garding the DRT edemas, the system was capable to successfully localize and
segment this DME type, reaching a value of 0.8913 also for the Dice coe�-
cient. In this way, despite the high variability and heterogeneity of the edemas
in terms of size, morphology, contrast and localization of each type, the pro-
posed system satisfactorily identi�es and segments the pathological areas of
each considered ME disorder. Therefore, the proposed methodology o�ers an
auxiliary tool for the ophthalmologists, facilitating the visualization, diagno-
sis and monitoring of the DME disease, adjusting the treatments options and
consequently improving signi�cantly the life quality of the patients.

As future work, we plan to extend the dataset in a meaningful way for the
application of Convolutional Neural Networks (CNNs). Given the potential
existence of other structures, we also plan to extend the proposed methodology
for the automatic segmentation of other relevant eye diseases, such as age-
related macular degeneration, central serous retinopathy and peripheral retinal
holes, among others. In this way, it will be possible to detect more precisely
the disease condition, specially in early stages.
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