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Highlights

• The automatic detection and extraction of the Macular Edema (ME) regions

is a relevant task as it helps significantly in the evaluation of the disease

severity.

• A new complete methodology is proposed to analyze and characterize the

presence of the ME within the retinal tissue using Optical Coherence Tomography

(OCT) images.

• Using the reference clinical classification, the identified intreretinal fluids

accumulations types are Serous Retinal Detachment (SRD), Diffuse Retinal

Thickening (DRT) and Cystoid Macular Edema (CME).

• The experimental results offer an accurate performance in the identification

and characterization of the all the types of ME within the retinal tissue.

• This proposed system represents a useful auxiliary tool, improving the

efficiency in the healthcare systems, aiding the clinicians in this complex

work of detection and characterization of a relevant disease as is the ME.

Postprint accepted for publishing by Elsevier  2018
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Abstract

Background and objective The detection and characterization of the intrareti-

nal fluid accumulation constitutes a crucial ophthalmological issue as it provides

useful information for the identification and diagnosis of the different types of

Macular Edema (ME). These types are clinically defined, according to the clini-

cal guidelines, as: Serous Retinal Detachment (SRD), Diffuse Retinal Thickening

(DRT) and Cystoid Macular Edema (CME). Their accurate identification and

characterization facilitate the diagnostic process, determining the disease sever-

ity and, therefore, allowing the clinicians to achieve more precise analysis and

suitable treatments.
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Methods This paper proposes a new fully automatic system for the identification

and characterization of the three types of ME using Optical Coherence Tomog-

raphy (OCT) images. In the case of SRD and CME edemas, multilevel image

thresholding approaches were designed and combined with the application of ad-

hoc clinical restrictions. The case of DRT edemas, given their complexity and

fuzzy regional appearance, was approached by a learning strategy that exploits

intensity, texture and clinical-based information to identify their presence.

Results The system provided satisfactory results with F-Measures of 87.54% and

91.99% for the DRT and CME detections, respectively. In the case of SRD edemas,

the system correctly detected all the cases that were included in the designed

dataset.

Conclusions The proposed methodology offered an accurate performance for the

individual identification and characterization of the three different types of ME

in OCT images. In fact, the method is capable to handle the ME analysis even

in cases of significant severity with the simultaneous existence of the three ME

types that appear merged inside the retinal layers.

Key words: Computer-aided diagnosis; Retinal imaging; Optical Coherence

Tomography; Macular edema
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1 Introduction

Visual impairment represents a major worldwide health concern which, besides

its effects on the normal vision, carries a significant loss of life quality and an

important economic cost both to the patients and the healthcare systems.

According to the World Health Organization (WHO), it is estimated that 253

million people suffer from visual impairment in the world, where 36 million

are blind and 217 million present low vision [1,2]. In the last 10 years, despite

the progress that was made in surgical procedures, cataracts still remains as

the leading cause of visual impairment affecting a 47.9% of the population

with vision difficulties. Macular Edema (ME), especially diabetic ME, is also

among the main causes of vision loss, being listed as the second [3]. It is defined

as a swell in the macular region caused by the leak of fluid from the retinal

blood vessels. This swelling changes the morphology of the retinal tissues, fact

that is directly linked to the central vision loss, disabling the individuals to

correctly perceive shapes, colors or even details of the objects [4]. In the last

decades, the average lifespan has increased, yielding an older population where

the vision problems are more frequent. For that reason, it is estimated that

the number of people with visual impairment could be triplicated by 2050. It

is important that the early detection and treatment of retinal diseases become

one of the major health issues in all the countries, especially in the developed

ones.

Nowadays, Computer-Aided Diagnosis (CAD) systems are used in ophthal-

mology as important tools that support the clinical evaluations of several

types of eye fundus images. One of the most widely used is the Optical Co-

herence Tomography (OCT) image modality. This acquisition technique, that
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is increasing its popularity and use, provides images of a cross-sectional vi-

sualization with high-resolution of the retinal layers. It is a non-invasive and

contactless technique that evaluates in vivo the histopathology of the retinal

tissue.

Regarding the ME disease, a clinical classification was proposed by Otani et

al. [5] using OCT images, being widely used worldwide by the specialists as

a way to classify the different types of ME based on the properties of the

OCT image modality. Hence, considering the clinical characteristics that are

present in these images added to retinal properties as thickness, reflectivity

or the area of the intraretinal fluid accumulation, MEs were categorized in

three main types: Serous Retinal Detachment (SRD), Diffuse Retinal Thick-

ening (DRT) and Cystoid Macular Edema (CME). Posteriorly, Panozzo et

al. [6] extended this classification with a new proposal that better character-

izes these clinical conditions. The new classification takes into account five

parameters for the same defined ME types: retinal thickness, diffusion, vol-

ume, morphology and presence of vitreous traction [7]. Figure 1 illustrates the

complexity and heterogeneity of this retinal pathology, given the significant

variability in terms of morphology, shape or the relative position that each ME

type normally presents within the retinal tissue. Typically, the SRD type is

characterized by a dome shape at the inferior retinal layers whereas the CME

type is defined by the presence of the intraretinal cystoid spaces of low reflec-

tivity separated by highly reflective boundaries that represent the intraretinal

cystoid-like cavities [8]. Finally, the DRT type is commonly characterized by

a “sponge-like” swelling appearance as a result of a regional fluid spread with

reduced intraretinal reflectivity [4,9].

An automatic detection and extraction of these ME regions is a crucial task
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as it significantly helps in the evaluation of the disease severity, aiding the

clinicians to determine more accurate diagnosis and treatments [10].

In recent years, most of the proposed computational works using OCT images

have focused their studies on a general or partial analysis of the presence of

the intraretinal fluid. Sidibé et at. [11] proposed a technique that allows the

classification of the entire OCT volume. This approach is based on model-

ing the appearance of normal OCT images using Gaussian Mixture Models

(GMM), detecting as outliers the images with intraretinal fluids. In the work

of Montuoro et al. [12], the authors proposed an automatic method based on

graph theory that allows the simultaneous segmentation of the retinal layers

and the existing fluid-filled regions. Following a similar idea, Alsaih et al. [13]

used learning strategies to identify normal volumes versus volumes with the

ME presence. The dataset was assessed by trained graders and the method

identified the volume types in the OCT images based on the evaluation of

the retinal thickening, hard-exudates, intraretinal cystoid space formation as

well as subretinal fluid. Deep learning was also recently introduced in the is-

sue mainly for cystoid edemas, as the work of Lu et al. [14] that proposed a

methodology using a Fully Convolutional Neural Network (FCN) for the seg-

mentation of abnormal fluid regions within the retinal tissue. Lee et al. [15]
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proposed a method for the automatic segmentation of fluid regions by the ap-

plication of a Convolutional Neural Network (CNN). Using a similar strategy,

Gopinath et al. [16] proposed a method also using a CNN implementation

for the segmentation of CMEs followed by a post-processing step using clus-

tering to refine the previously identified cystoid regions. Roy et at. [17] also

implemented a convolutional architecture based on the RelayNet to simulta-

neously segment the retinal layers as well as the fluid regions that are present

in the OCT images. Schlegl et al. [18] used a neural network comprising two

processing components, an encoder that transforms an input image into an

abstract representation and a decoder that maps the abstract representation

to an output image assigning each pixel to a class as normal or abnormal

fluid regions. In the work of Girish et al. [19], the authors proposed a FCN to

automatically capture both micro and macro-level features for the character-

ization of the cystoid structures. Rashno et al. [20] proposed the application

of a neutrosophic transformation and a graph-based shortest path method to

segment fluid-associated and cystoid regions. González et al. [21] proposed a

strategy for the automatic detection of CME edemas. This approach applies a

flooding process and a texture analysis, within the retinal region, to identify

the presence of these ME type. In the work of Moura et al. [22], a method for

the automatic identification of intraretinal fluid regions was designed based

on a set of features that characterize the analyzed regions, including intensity

and texture-based features. Girish et al. [23] proposed a benchmark study for

the automated intra-retinal CME segmentation. In particular, the authors in-

troduced a modular approach integrating different segmentation algorithms,

facilitating the comparative analysis between the obtained quantitative and

qualitative results of the experiments. Esmaeili et al. [24] proposed a method-

ology to detect dark pixels between the pigmented epithelium and the nerve
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fiber layer considering them as cystoid spaces. This approximation was based

on a K-SVD dictionary learning [25] in the curvelet transform [26] to help

reducing speckle noise, facilitating the set of thresholds that are posteriorly

applied to the regions of interest. Other works as Wu et al. [27] focused their

study in the detection of SRD edemas. The proposed method involves the

construction of a probability map from training samples using a classification

process with random forest. This map results from the linear combination of

information from image characteristics like the structural texture, intensity or

the layer thickness. Sun et al. [28] proposed a framework for the SRD edema

segmentation that combined AdaBoost classification and a shape-constrained

graph cut.

To date, none computational proposed work faced the simultaneous identifi-

cation of the three ME types, being their presence and corresponding amount

relevant information for the characterization of the ME disease, as defined

in the clinical guides of reference [5,6]. Additionally, none scientific proposal

studied the automatic identification of the specific case of DRT edemas.

The proposed system of the present work aims to achieve a fully automatic

and simultaneous detection and characterization of the three types of ME

(SRD, DRT and CME) following the indicated clinical classifications of refer-

ence in the ophthalmological field. In particular, the system identifies all the

appearances of the different ME types within the retinal tissue. This way, all

the existing edemas are provided as well as their characterization by type,

representing crucial information to determine the degree of severity of the ME

disease. Since the retinal fluid accumulation forms swollen regions within the

intraretinal tissues, the proposed system firstly delimits and restricts the anal-

ysis to the region of the retinal layers. Given that each type of edema typically
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appears in particular parts inside these retinal layer tissues, two sub-regions

are also identified to facilitate the work: the ILM/OPL (or inner retina) and

the OPL/RPE (or outer retina) regions, where the Inner Limiting Membrane

(ILM) and the Retinal Pigment Epithelium (RPE) constitutes the limiting

membranes of the entire layer retinal area and the Outer Plexiform Layer

(OPL) represents the transitional layer. Focusing within these regions, the

system combines clinical knowledge, image processing techniques (for the SRD

and CME cases) as well as a learning strategy (for the DRT case) to identify

the presence of all the existing edemas. Finally, the system presents, as out-

put, a labeled image with all the identified edemas, correctly characterized by

type. This way, this process allows the standardization of the identification of

the existing ME types, avoiding the subjectivity that is frequently introduced

among ophthalmologists in this analysis. Additionally, given the instantaneous

performance of an automatic computational procedure, the work of the spe-

cialists is facilitated, improving their productivity. This improvement benefits

the early diagnosis of the disease and, consequently, the life quality of the

patients.

The paper is organized as follows: Section 2 presents the proposed methodol-

ogy and its main characteristics. Section 3 presents the results and validation

of the main stages of the methodology. Section 4 includes the discussion of the

obtained results and the challenges that were faced in the work. Finally, Sec-

tion 5 presents the conclusions about the proposed system as well as possible

future lines of work.
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2 Methodology

The proposed system receives, as input, the histological sections provided by

the OCT images. These sections are centered in the macula, as this is the

region of analysis where the ME types typically appear, offering an optimal

visualization of the retinal tissues to identify the hypothetical presence of ME.

The method aims to the simultaneous identification and localization of the

three ME types to characterize their presence or absence as well as their

amount, useful clinical information for its visual presentation for posterior

clinical analysis. The methodology is composed of a set of progressive stages,

as illustrated in the diagram of Figure 2. Firstly, the system detects the 4

main retinal layers in the OCT section that delimits the region of interest

(ROI). This retinal area is divided into two sub-regions: inner and outer retina.

Posteriorly, the system searches each type of ME in three main steps to identify

and characterize them individually.

Fig. 2. Main steps of the proposed methodology for the identification of the ME
types: SRD, CME and DRT.

For the SRD and CME cases, we used multilevel adaptive image thresholding

approaches, whereas for the DRT case a learning strategy was implemented.

Posteriorly, as output, the system provides a labeled image with the identifi-

cations and associated types for a better characterization and understanding

of the present ME disease.
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Despite that these three types derive from the same cause, the leak of fluid,

their characteristics and visual appearance within the retinal layers are enor-

mously different, due to properties such as morphology, shape, texture or even

the relative position within the retinal tissue. These significant differences

make the ME disease a particularly complex retinal pathology.

Given their characteristics, two of the cases could be directly approached with

image processing strategies (the SRD and CME cases), basing their identifi-

cation in the initial selection of possible candidates and a posterior removal of

wrong detections using the mentioned properties as shape or relative position,

among others, to preserve the real existing ones. For the identification of these

edemas, all the defined parameters were designed and determined in collab-

oration with the clinical specialists, as well taken from clinical knowledge of

the literature.

The DRT edema generally presents a more complex appearance within the

retinal tissue, with a more fuzzy presence and not well-defined boundaries.

These characteristics constitute a more complex scenario, motivating the im-

plementation of a learning strategy for their identification, looking for their

characteristic texture or clinical properties as the corresponding increment in

the retinal thickness, among others, as evidence of their presence.

2.1 Identification of the Region of Interest

The OCT images allow the visualization of the morphology of the retinal

tissues. When the pathological structures emerge within the retinal tissue its

typical morphology changes significantly. Usually, MEs have specific relative

positions within the retinal layers. Therefore, to facilitate the detection of
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these edemas, the system firstly identifies the four main retinal layers and,

then, sub-divides this ROI in two sub-regions: the inner and the outer retina.

This process is described with more detail in next subsections.

2.1.1 Retinal Layer Segmentation

The reconstruction of the OCT images leads to a degradation of the quality

of these images, difficulting the differentiation of the subsurface structures

[29], as the retinal layers, by the inclusion of speckle noise. For that reason,

the speckle noise reduction is a common preprocessing stage in the analysis

of OCT images [30]. In that sense, to clean the image and simultaneously

preserve the properties of the retinal tissue, a median filter was applied, as a

preprocessing, in order to facilitate the posterior identification stages.

Next, four main retinal layers were identified to delimit the search space:

ILM, OPL, ISOS and RPE (illustrated in Figure 3). We initially based our

proposal in the work of Chiu et al. [31]. Using this strategy, our system iden-

tifies the ILM, ISOS and RPE layers. This automatic approach mainly uses

graph theory and dynamic programming. Hence, an OCT image is represented

as a graph of nodes, connecting optimum paths from both sides of the image.

Each graph node corresponds to a pixel where the subsequent connected pixels

form a pathway from both sides of the image. The optimal paths provide the

aimed layers. The algorithm calculates dark-to-light gradient images, identi-

fying adjacent layers and generating weights for the layer segmentations. The

main layers of the retina are identified progressively by the minimum weighted

paths using the Dijkstra algorithm [32].

As indicated, this approach was used to identify the ILM and RPE retinal

14
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OPL, ISOS and RPE.

layers, first and last ones, both delimiting the retinal analysis region. Addi-

tionally, the ISOS layer is also detected to simplify the posterior identification

of the OPL layer.

The presence of MEs implies a significant change in the normal retinal mor-

phology, deteriorating the conditions of the retinal layers and consequently

presenting a significant impact in the OPL layer [33]. This layer is significantly

altered in its typical morphology by the presence of fluid in the inner and outer

retina hardening the identification process. Given that, the previous method

did not present acceptable results in very deteriorated pathological cases. For

that reason, we implemented a new strategy to identify the OPL layer that

offered a robust performance, even in deteriorated cases. To solve this issue,

the previous identification of the ISOS layer is used as baseline to extract the

region immediately over it that corresponds to the OPL layer. Thus, over the

ISOS layer, N initial points are randomly generated and used as seed for region

a growing process [34], as shown in Figure 4. The number of generated seeds

is proportional to the image dimension, representing an amount of a 10% of

the input image width. This strategy progressively appends other pixels with

similar properties in the seed points neighborhood. This way, we obtain the

entire region over the ISOS layer by intensity similarity. The upper limits
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of the resultant region identify the limits of the aimed OPL layer, strategy

that is illustrated in Figure 5. The use of a significant number of seeds along

the image guarantees the OPL extraction even in deteriorated pathological

conditions, as in the presence of ME in advanced stages.

Fig. 4. Example of OCT image with the initialization of N seeds points (+) over
the ISOS layer.

Fig. 5. Example of OCT image with the identification of the OPL layer. The arrows
(↑) indicate the direction of growing of the proposed algorithm.

2.1.2 Division of the ROI in Two Sub-Regions: Inner and Outer Retina

In most of the ME cases, edemas are accumulated in typical relative positions

within the retina. According to the Otani et al. [5] classification, CMEs nor-

mally start to manifest symptoms in the inner retinal layers, defined as the

upper region of the analyzed ROI. In contrast, SRD and DRT edemas typ-

ically appear in the outer retinal layers. In more severe pathological stages,

CMEs can proliferate from the inner to the outer retina and merge with DRT
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edemas [35]. Based on those premises, two sub-regions are identified inside the

ROI as inner and outer retina, using the previously identified retinal layers

to facilitate the posterior identification of each type of ME. The inner retina

can be defined as the upper region of the ROI, comprehended between the

ILM and the OPL layers whereas the outer retina is the lower region, which is

limited by the OPL and the RPE layers, as illustrated in Figure 6. As said, the

identification of the boundaries of these two regions simplifies the detection of

each type of intraretinal fluid accumulation, reducing the search for each ME

type.

Fig. 6. Inner and Outer retinal regions. (a) The entire ROI, which delimits the
retinal tissue between the ILM and RPE layers. (b) The inner retina, between the
ILM and the OPL layers. (c) The outer retina, between the OPL and the RPE
layers.

2.2 Identification of the Different Types of ME

Each type of ME is searched in the sub-region where they typically appear.

Then, image analysis and medical knowledge were combined in individual

specific strategies for the detection and localization of each of the three types

of ME, given their significant differences in appearance and characteristics.

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.2.1 SRD Detection

SRD edemas appear centered in the macula when the fluid is leaked under the

ISOS and over the RPE layer regions, as observed in the example of Figure

7. In the OCT images, it can be recognized by the presence of a hyporeflec-

tive space, presenting a characteristic dome-like elevation of a detached retina.

These characteristics are mainly used by the specialists for the DRT identi-

fication. However, in early stages, it is complicated to distinguish the typical

contrast over the photoreceptors layer and the early proliferation of this ME

type, difficulting the identification of its presence.

Fig. 7. Example of OCT image with the presence of SRD edema.

The proposed system automatically identifies the presence of SRD edemas us-

ing this clinical knowledge as reference. Given the relative position where they

typically appear, the proposed strategy was implemented restricting the search

space to the previously identified outer retina. Inside this area, an adaptive

thresholding [36] was applied in order to segment areas with identical inten-

sity profiles. In this case, the optimal threshold was determined with the value

that maximizes the separability between the intraretinal fluid regions and the

surrounded retinal layer tissues [37,38]. As a result, different candidates of

SRD edemas presenting low intensity profiles are obtained.
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Next, we filter clear false positives from the entire set of candidates with a list

of medical restrictions that a SRD edema should accomplish:

• Relative position. It should be near the ISOS layer and close to the macula

[39];

• Minimum area. Using as reference the double of the typical area of the

Microcystic Macular Edemas (MME), we consider a SRD edema candidate

if it presents an area bigger than 200pixels2, equivalent to 4,751µm2 [35,40].

• Morphology. SRD edemas normally appear with a fusiform shape, also called

dome shape. To measure this fusiform shape, we enclose each candidate in an

ellipse form. The minor and major axis of the ellipse of the candidate should

be respected. It was empirically determined that these parameters should be

bigger than 10pixels and less than 250pixels for the minor and major axis,

respectively, as the usual dimensions that the SRD edemas typical present

in the eye fundus.

• Constriction of the photoreceptors layer. The presence of fluid in the macular

region leads to a thickness reduction of the region comprehended between

the ISOS and the RPE layers [41]. This analysis uses a window that takes,

as reference, the column of the centroid of the candidate allowing the deter-

mination of the RPE/ISOS thickness in that area. Then, to be considered

as possible SRD edema, the local mean thickness should be smaller than

95% of the global ISOS/RPE thickness to consider a notable constriction

of the photoreceptors layer.

• Intensity profile. These edemas are characterized by a containing hypore-

flective region in contrast with the surrounded retinal tissue, which is hy-

perreflective (produced by the photoreceptors layer). Using the centroid of

the candidate, we analyze the intensities of the immediately surrounding

tissue using a window with 10pixels of width. Then, to be considered as
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a possible candidate the local mean intensity should be bigger than 0.17,

value that was empirically determined.

Additionally, this edema is also characterized by its presence near the fovea.

Given that a patient can only present a SRD edema, if two or more candidates

fulfill these conditions, we only preserve the one closer to the foveal center.

Given that the adaptive thresholding process does not produce detailed seg-

mentations, the region of the identified candidate is used as seed for a region

growing process to obtain a more adjusted segmentation of the SRD region.

This precise extraction is useful for its entire removal in posterior stages of

the methodology in the search of the other ME types.

2.2.2 DRT Detection

DRT edemas are classified by the specialists as a swelling of the retinal thick-

ness, with undefined boundaries and a reduced contrast with the surrounding

tissue. The regional leak of fluid within the outer retina produces a pattern

typically characterized as a “sponge-like” appearance. However, in some OCT

images, these edemas are presented with a bright pattern, whereas in other

cases it appears as significantly dark regions, similar to the background of the

image. As these edemas occur in the outer retina but above the photoreceptors

layer, to search their presence, we remove the photoreceptors region and the

SRD edema from the search space, as detected in the previous stage. The pre-

vious precise extraction of the SRD edema facilitates its removal from the new

region of interest. Additionally, the correction of the OPL/RPE region to the

OPL/ISOS region also decreases the detection of false positives with a more

precise and restricted region to detect the DRT edema. Given the complexity

of this ME type, a learning strategy was applied in this case.
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Therefore, each column within the search space is considered using a window

of a defined size that is centered in the analyzed column. Since the outer reti-

nal thickness is not constant, the height of the window varies according to

the analyzed column, being adjusted to the OPL/ISOS region height. This

strategy allows the extraction of features that better describe the DRT edema

presence. A suitable ensemble of features based on intensity and texture prop-

erties was analyzed in combination with clinical-based information, as the

retinal thickness, which is normally increased by the presence of DRT edemas

[42].

In detail, the analyzed features, that are summarized in Table 1, are the fol-

lowing:

• Intensity Image Analysis. We analyze the global intensity of the region of

interest in each column of the OCT image. The “sponge-like” appearance

implies the inclusion of a higher irregularity and a drop of the intensity

profiles when compared with the normal tissue of the retinal layers. For that

reason, we measured 6 global statistics over a window that is centered in

the analyzed column to capture these alterations. We calculate: maximum,

minimum, mean, median, standard-derivation and variance.

• Gray-Level Intensity Histogram (GLIH). Following the same reasoning as

before, the intensity alterations also vary the characteristics of the his-

togram. Obtaining the intensity histogram over the window centered in

the analyzed column, the following measurements are calculated: obliquity,

kurtosis, energy and entropy.

• Mask Thickness Analysis. We analyze the thickness of the regions that are

commonly used by the specialists in the clinical analysis of the ME. We

consider the thickness of the entire retinal region, the thickness of the outer
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Table 1
List of the defined 18 features to identify the DRT presence.

Number of Features Feature Specification

- Intensity Image Analysis:

1 - 6 Maximum, Minimum, Mean, Median, Variance

and Standard Deviation

7 - 10 - Gray-level Intensity Histogram (GLIH):

Obliquity, Kurtosis, Energy and Entropy

- Mask Thickness Analysis:

Thickness of OPL/RPE region,

11 - 14 Thickness of ILM/RPE region and

The maximum height of the OPL/RPE region

The ratio between the thickness of OPL/RPE and
the ILM/RPE regions

- Texture Analysis:

15 - 18 GLCM texture-based features: Contrast, Energy

Correlation and Homogeneity

retina (OPL/RPE region) and the ratio between them. This is based on the

concept that the presence of intraretinal fluids leads to an increase of the

retinal thickness, especially in the outer retina. Therefore, the evaluation of

the thickness of these retinal regions is an important medical parameter for

the determination of the DRT presence.

• Texture Analysis. The “sponge-like” appearance represents a typical tex-

ture that these edemas normally present. For that reason, we capture the

patterns of the normal retinal tissue as well as the irregularities of the DRT

presence using the Gray Level Co-occurrence Matrix (GLCM) texture-based

features [43] in order to capture these texture patterns. From the GLCM

descriptors we obtained: contrast, correlation, energy, and homogeneity.

The previously defined set of 18 features was posteriorly analyzed using three
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different feature selectors: Sequential Forward Selection (SFS) [44], Robust

Feature Selection (RFS) [45] and SVM-Forward Selector (SVM-FS) [46]. These

feature selectors were successfully applied in similar medical imaging studies

[47], to simultaneously reduce the array dimensionality using different strate-

gies but preserving those features with the highest discriminative power. In

particular, SFS adds each feature to the subset by an incremental importance

order, whereas RFS identifies the features using an emphasizing joint `2,1-

norm regularization selecting those with joint sparsity. SVM-FS uses a linear

`1-norm SVM for the variable selection, but a non-linear `1-norm SVM is used

for predicting the best subset.

Using the selected features, two representative classifiers were used to test

the potential of the implemented approach: the Naive Bayes and the SVM

classifiers. The Naive Bayes classifier [48] is based on the so-called Bayesian

theorem whereas the SVM classifier [49] builds a model as a non-probabilistic

binary linear classifier.

Fig. 8. Example of OCT image with the presence of DRT edema (- -).

Finally, a post-processing stage was implemented to rectify misclassifications

originated by other structures that may be present in the eye fundus, such as

hard-exudates or vessels, as illustrated in Figure 9. These structures produce

shadows on the posterior layers creating dark patterns with different properties

in the retinal tissue that can be confused with non-DRT candidate columns

[50]. To improve the results, we used an aggregation factor (d), to join discon-
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nected groups of DRT identifications. This parameter allows the unification of

two consecutive DRT regions, when the distance between both detections is

smaller than the defined d factor. In those cases, we assume that both detec-

tions belong to the same DRT edema, correcting the intermediate non-DRT

classified columns. This way, we obtain grouped DRT regions that are more

adjusted to the real scenario, improving the performance of the system.

Fig. 9. Example of OCT image with the presence of pathological structures (hard-ex-
udates) and vessels, whose columns are delimited by (- -).

2.3 CME Detection

CMEs are spaces within the retinal tissue typically characterized as cystoid

areas with a low intensity profile, as illustrated in the example of Figure 10.

Their morphological shape could vary from a well-defined round shape to

a petaloid-like appearance (like petals of flowers). They typically emerge in

the inner retina with a significant contrast with the surrounded tissue, and a

considerable variability in terms of size. In more severe cases, the size of these

edemas can be significantly increased, thus, expanding the thickness of the

retina, even eventually emerging in the outer retina.
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Fig. 10. Example of OCT image with the presence of CME (*).

The proposed system firstly searches the presence of these edemas in the inner

retina and then in the outer retina. This strategy was adopted given that the

contrast and the characteristics of CMEs in both regions are slightly different.

In the inner retina, CMEs typically present well defined boundaries with a

clear contrast with the surrounding neighborhood whereas in the outer retina

they present a poor contrast between these edemas and the surrounding tissue,

hardening their detection and representing a more challenging task. This is

illustrated in Figure 11, where an advanced pathological case includes the

presence of CMEs in the outer retina, where the poor contrast they normally

present in this specific region of the eye fundus is clearly observed.

Considering the typical elliptical shape and the low intensity profiles that this

edema presents in contrast of the surrounding tissue of both retinal regions, we

implemented adaptive thresholding approaches to identify all the CME candi-

dates. This strategy presents, as main limitation, the possibility of production

of partial segmentations of the same candidate cyst. For that reason, in a

post-processing stage, we applied a segmentation method based on a flooding

process of the image gradient to merge and obtain more defined and reliable
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opposition to CMEs in the inner retina.

extracted regions of the candidates [51]. Posteriorly, we analyzed the entire set

of CME candidates to filter any existing false positive using a set of conditions

derived from clinical references in the field [4,40,52] and medical knowledge

from the specialists that participated in the work. The applied conditions in

both regions are:

• Area size. This strategy is applied to discard candidates produced by noisy

and tissue artifacts such as shadows, among others, that affect both retinal

regions. Therefore, the empirically determined minimum areas in the inner

and outer retinas were set to 118µm2 (equivalent to 5pixels2) and 237µm2

(equivalent to 10pixels2), respectively.

• Major and minor axis of the surrounding ellipse. Having the candidate sur-

rounded by an enclosing ellipse, the corresponding minor and major axis

of this ellipse are included in the analysis. As limiting conditions, the mi-

nor and major axis lengths should be bigger than 7pixels and smaller than

200pixels, respectively. These values were empirically determined as the

minimum values that CMEs usually present.

• Retinal Thickness. The entire retinal region should have a retinal thickness

bigger than 250µm. This value represents the normal thickness of the retinal
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tissue of the parafoveal region. When CMEs are present within this region

the retinal thickness is significantly increased [4,42].

• Eccentricity. To measure this parameter, we take advantage of the axis of

the previously defined enclosing ellipse. In particular, the eccentricity is the

ratio of the distance between the central point of the ellipse and its major

axis length. As CMEs normally present an ovoid shape, we demanded a

minimum eccentricity of the candidate, that should be smaller than 0.98.

3 Results

The proposed system was validated using OCT images that were captured

with a SD-OCT imaging with OCT - Spectralis R© OCT confocal scanning laser

ophthalmoscope from Heidelberg Engineering. The OCT scans were obtained

using a configuration of 7 Line Rater scan with a 30◦× 5◦of angle of capture

and with a space of 240µm apart from each other. In this study, we used a total

of 170 OCT images centered in the macula, with a resolution of 2,032 × 596

pixels. The images correspond to scans from both left and right eyes of different

individuals presenting a varying degree of the ME disease, in many cases with

many appearances of the three ME types in a single scan. The local ethics

committee approved the study and the tenets of the Declaration of Helsinki

were followed. To ensure the anonymity of the patients that participate in this

study, the corresponding images were renamed by the ophthalmologists before

being provided for the system validation.

The system is composed by two main stages: region of interest delimitation

and identification of all the appearances of the different ME types. Firstly,

the proposed system identifies two regions: the inner and the outer retina.
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Given the alternative proposal for the OPL layer extraction, to measure the

efficiency of this designed stage, an expert clinician labeled 20 representative

OCT images, 10 pathological and 10 non-pathological images, both from the

present dataset. For this analysis, two retinal layers were labeled by a special-

ist: the OPL and the RPE layers. These segmented layers are used to quantify

the OPL layer extraction and, consequently, the outer retina identification.

A total of 47,136 marked points were obtained from both retinal layers. To

measure the performance of this proposal, three statistical, used in similar val-

idation processes [53], were implemented: Mean Absolute Difference (MAD),

Correlation Coefficient (CC) and Dice Coefficient (DC) (Equations 1, 2 and

3, respectively). The MAD metric analyzes the absolute mean difference, in

pixels, between both segmentations of the OPL layer (manual and proposed

method). The CC metric determines the correlation between them. Finally,

the DC metric compares the similarity between both segmentations of the

entire outer retina, which is delimited by the OPL and the RPE layers as

superior and inferior boundaries, respectively.

MAD =
1

N

N∑

k=1

mi − pi (1)

CC =

∑N
k=1mipi√∑N

k=1m
2
i

∑N
k=1 p

2
i

(2)

DC =
2
∑N

k=1 |mi ∩ pi|∑N
k=1 |mi|+

∑N
k=1 |pi|

(3)

wheremi and pi represent the manual detection and the output of the proposed

method, respectively, at the ith (i=1...N) column in two measurements of the

OCT image dimensions.

Table 2 presents the results obtained by the proposed system for the OPL
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layer and the outer retina identifications. In particular, as global performance,

in non-pathological and pathological cases our proposal achieved values of

1.51 pixels for MAD, 99.97% of CC and 0.9439 of DC metrics, representing

satisfactory results.

Table 2
Performance of the proposed method for the OPL layer and outer retina identifica-
tions in non-pathological and pathological OCT images.

Cases MAD (pixels) CC DC

Non-pathological 1.951 99.96% 0.9623

Pathological 1.077 99.98% 0.9255

Global 1.514 99.97% 0.9439

Regarding the edema identification process, in each of the extracted regions,

inner and outer retina, the system identifies all the existing edemas of the

three ME types in terms of locations and amount. Given that, to validate

the proposed methodology, an expert clinician labeled the images indicating

the regions with the presence of the three types of ME. Regarding the SRD

and CME extraction approaches, we directly compared the identification of

the system and the manual identifications of the specialist. In the DRT case,

we use the expert labeling by columns, as reference, to construct the training

and test sets of the implemented learning strategy. This stage was validated

using the following metrics: Precision, Recall, Accuracy and F-Measure. Math-

ematically, these metrics are formulated as indicated in Equations 4, 5, 6 and

7, respectively. F-Measure is defined as a combination of both precision and

recall metrics in a global measurement of the performance of the system.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)
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Accuracy =
TP + TN

TP + TN + FP + FN
(6)

F −Measure = 2 ∗ Precision ∗Recall
Precision+Recall

(7)

Regarding SRD and CME edemas, as gold standard, formally, we consider the

following cases:

• True Positive (TP): we verified if the central point of each detected edema

matches with any identification of the specialist. In the case of two or more

candidates match with the same manual identification, we only consider the

first candidate to ensure the method efficiency.

• False Positive (FP): if the central point does not overlap with any manual

identification of the specialist.

• False Negative (FN): if any manual labeling of the specialist is not covered

with any central point provided by the system.

• True Negative (TN): otherwise. Given the significative unbalance between

both positive and negative sets, TNs are not considered with these edema

types.

In the case of the DRT edemas, the same analysis is performed by columns,

where we used, as gold standard:

• True Positive (TP): if a column indicated by the ophthalmologist with DRT

presence was classified as DRT by the proposed system.

• False Positive (FP): if a column indicated by the ophthalmologist with non-

DRT presence was classified as DRT by the proposed system.

• False Negative (FN): if a column indicated by the ophthalmologist with

DRT presence was classified as non-DRT by the proposed system.

• True Negative (TN): if a column indicated by the ophthalmologist without
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DRT presence was classified as non-DRT by the proposed system.

SRD edemas are a particular and less frequent case as it only affects a reduced

group of patients [5]. Moreover, if present, we can only find one per scan.

For that reason, the used dataset of 170 OCT images only contains 10 SRD

edemas. We would like to remark that the 10 cases were correctly identified

by the proposed system.

Regarding the DRT detection, a learning strategy was applied using both

Naive Bayes and SVM classifiers. For that, we used a window size with a width

of 5 columns empirically determined, and a variable height summing a total of

5,600 samples extracted from DRT and non-DRT regions to train and test the

classifiers without any preprocessing or application of correction parameters.

This dataset was divided into two subsets, one for training and the other for

testing. Next, to ensure the global performance of the method, we trained both

classifiers using a 10-fold cross-validation using 10 repetitions, being calculated

the mean error/accuracy to determine the most suitable configuration for each

case using the best performances. Then, using the best configuration of each

classifier, we proceed with the corresponding validation processes using the

testing data. We tested the performance of the system with 51,346 columns

containing DRT and 68,976 non-DRT edemas.

To detect the DRT edemas, firstly, three feature selectors (RFS, SVM-FS and

SFS) were applied to determine the subset of features that better discriminate

the presence of this ME type. The majority of the selected features were

taken from intensity image analysis, mask thickness and GLCM texture-based

features, as they present the highest capacity of differentiation between DRT

and non-DRT patterns.
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Table 3 lists the performances in the test set for each classifier and the optimal

subsets of each analyzed feature selector. The best configuration for the Naive

Bayes classifier obtained an accuracy of 87.49% using the RFS subset, whereas

for the SVM classifier obtained an accuracy of 86.14% using the SFS subset.

Table 3
Obtained results by the analyzed classifiers and the selected feature subsets.

Classifier Selector F-Measure Accuracy

Naive Bayes

RFS 84.45% 87.49%

SVM-FS 84.39% 87.44%

SFS 84.36% 87.41%

SVM

RFS 82.72% 86.10%

SVM-FS 82.75% 86.12%

SFS 82.79% 86.14%

Complementary, Table 4 details the performances achieved with both classi-

fiers using a window width of 5 columns. As it can be observed, both clas-

sifiers showed a satisfactory behavior in the detection of DRT edemas, being

the Naive Bayes classifier slightly better, reaching a F-Measure of 84.45%.

Table 4
Obtained results for the DRT detection using the best configurations of Naive Bayes
and SVM classifiers using the testing dataset.

Classifier Precision Recall F-Measure

Naive Bayes 89.88% 79.65% 84.45%

SVM 88.09% 78.08% 82.79%

Then, we also tested the use of the aggregation factor, d, to merge isolated

candidates of the same DRT regions. Figure 12 shows the obtained F-Measures

in the calculation of the optimal aggregation factor using both classifiers. A

more detailed information is listed in Table 5, where the best aggregation

factor for the Naive Bayes classifier is d=72, whereas for the SVM classifier is

d=21, reaching a F-Measure of 87.54% and 85.22%, respectively.
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Fig. 12. Determination of the optimal aggregation factor. Obtained F-Measures.

Table 5
F-Measures that were obtained with the tested classifiers and their corresponding
optimal aggregation factors using the testing dataset.

Classifier Aggregation Precision Recall F-Measure

Factor

Naive Bayes d=72 85.65% 89.51% 87.54%

SVM d=21 81.94% 88.78% 85.22%

Figure 13 illustrates an output of the proposal of the best aggregation factor

that unifies single candidates in grouped “sponge-like” edema detections.

In the case of CMEs, we divided the evaluation process in the detection in

both inner and outer retina. We tested the performance of the system with 379

CMEs that were identified by the specialist in the entire image dataset. The

obtained results are summarized in Table 6, where F-Measure reached values

of 96.08% and 81.65% in the inner and outer retina, respectively. Finally, as

global performance, the system obtained an accurate F-Measure of 91.99%, as

also illustrated in Figure 14.
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Fig. 13. OCT image with DRT presence. The application of the aggregation factor
unifies single candidates in a grouped “sponge-like” edema detection.

Table 6
Results of the CME detection using Precision, Recall and F-Measure.

Region Precision Recall F-Measure

Inner Retina (ILM/OPL) 97.03% 95.15% 96.08%

Outer Retina (OPL/RPE) 74.17% 90.82% 81.65%

ROI (Inner and Outer Retina) 90.13% 93.93% 91.99%

4 Discussion

OCT images have become an important auxiliary tool in clinical routines and

scientific studies, helping the clinicians in the diagnosis and evaluation of the

severity of many diseases.

Given that, we propose a system that firstly segments the inner and the outer

retina. In each of these identified regions, three fully automatic strategies were

implemented to individually identify the three types of the ME disease.
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Fig. 14. Example of OCT image with the detection of CMEs (*) in both retinal
regions. In particular the CMEs (x) in the outer retina are surrounded by the
presence of a DRT edema.

Generally, this issue presents as a main limitation the complex characteristics

typical of the OCT images such as the lack of tissue details, the speckle noise

or the poor soft tissue contrast in some acquisition scenarios.

Regarding the identification of the upper limiting membrane of the outer

retina, the OPL layer, we quantitatively compared the results of our approach

with the performance of the work proposed by Chiu et al. [31]. The decision

of using this alternative approach was motivated by the poor results in the

extraction of the OPL layer by the original method in advanced pathological

images that, in our case, represent the most frequent scenario. Given that, we

compared the performance of both methods in non-pathological and patholog-

ical OCT images. As illustrated in Figure 15, both methods present a similar

performance for the identification of the OPL layer and the outer retina in

non-pathological OCT images (Figure 15 (a), (c) & (e)), whereas in patho-
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logical OCT images, the performance of the proposed system is significantly

better in comparison with the original method.

Non-Pathological Pathological

(a) (b)

(c) (d)

(e) (f)

Fig. 15. Comparative analysis between the performance of the original method and
our proposal for the OPL layer and the outer retina identifications, using non-patho-
logical (1stcolumn) and pathological cases (2ndcolumn). (a) & (b) Using MAD met-
ric over the OPL extraction. (c) & (d) Using CC metric over the OPL extraction.
(e) & (f) Using DC metric over the entire outer retina segmentation.

Figure 16 illustrates these situations with examples of both non-pathological

and pathological OCT images. As we can see, in accordance with the metrics,

both methods present a favorable performance for the OPL layer extraction in
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non-pathological OCT images (Figure 16 (a) & (b)). However, in pathological

images, the original method provides poor results of the OPL layer, crossing

the entire macular region (Figure 16 (c) & (e)). In opposition, our proposal

detects efficiently this layer (Figure 16 (d) & (f)), facilitating the posterior

division of the retinal layers in the consequent inner and outer retina.

(a) (b)

(c) (d)

(e) (f)

Fig. 16. Example of OCT images with the OPL identification from the output of
the original method and our proposal. 1strow, non-pathological OCT images. 2nd

& 3rdrows, pathological OCT images.

Despite the high variability and complexity of the ME disease, the proposed

system using the implemented specific strategies is capable of detecting effi-

ciently the hypothetical presence of the three types of ME, even when they

appear simultaneously in the same OCT image. Each of these strategies work

independently with respect to the others, identifying each faced ME type.

The output binary identifications of the three strategies are finally combined

to provide the final image result to the specialists to ease their inspection, as

illustrated in Figure 17.

SRD edemas constitutes an unfrequent particular case. In this case, the typical

contrast of the photoreceptors layer is similar to the presence of this ME type
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in early stages, which difficult its identification in some cases. Even in such

cases, the system correctly performed the SRD identifications. Similar works

present in the literature also detect all the SRD cases [18,27,28]. However, this

comparison presents some limitations, given that each study was made using

their own image dataset.

In the case of the DRT edemas, to date, no scientific proposal studied the issue

of the automatic detection and identification of this ME type. This challenge

is related with the absence of limiting membranes as well as the significant

pattern variability, difficulting the correct identification of the retinal regions

affected by this ME type. Given that, a learning strategy was applied to detect

the presence of this edema in the outer retina. In the validation performance,

three feature selectors were used: RFS, SVM-FS and SFS. Also, two classifiers

were analyzed: Naive Bayes and SVM. Regarding the selected features, the

majority of them were taken from the intensity image analysis, mask thickness

and GLCM texture-based features. These features are in concordance with the

characteristics of the DRT edemas, once they are characterized with “sponge-

like” patterns with a significant variability in terms of intensities. Given that,

features such as maximum, mean, variance and standard deviation from the

global intensity features and the correlation from the GLCM features were

mostly selected. Additionally, the thickness of the ILM/RPE and the ratio

between the OPL/RPE and ILM/RPE layers were also selected in the first

positions as the DRT presence typically implies not only an increment of the

outer retina thickness but also the increment of the entire “retinal thickening”.

Using the previously selected features, both classifiers were trained and tested

using the best configuration. Comparing the results of Table 4 and Table 5,

we can conclude that the application of the aggregation factor increases sig-
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nificantly the accuracy in the case of the Naive Bayes classifier, as illustrated

in the example of Figure 13. In the case of the SVM classifier, this increment

was lower. Generally, this difference is given by the SVM, which is more sen-

sitive to noise. For that reason, it produces sets of candidate columns of a

variable size in both non-DRT and DRT regions. Instead of that, Naive Bayes

presents a considerable number of consecutive candidate columns in the DRT

region with a small distance between them. In this situation, the use of the

aggregation factor is crucial, merging this small separated DRT detections in

coherent merged ones and being this case the one that obtained a higher im-

provement of this step of the method. This factor benefits the Naive Bayes

classifier by connecting significantly close DRT detections whereas this pe-

nalizes the SVM case by merging non-DRT with DRT regions. With large

values, the aggregation factor groups regions that are too far from each other,

decreasing progressively the obtained results.

Regarding the CME detections, we defined two main steps to detect the pres-

ence of CMEs in the inner and outer retina, individually. Hence, the system

firstly detects these edemas in the inner retina (ILM/OPL), where they present

a higher contrast and well-defined boundaries, allowing a better identification

of the fluid regions. For that reason, the performance of the system in this first

region is significantly better. Despite the large variability in terms of size and

shape, the implemented approach successfully identified the CMEs, as shown

in Figure 17. In fact, the proposed system was capable to detect even cystoid

edemas with complex petaloid shapes that appear often merged even between

both regions.

Most of the missed CMEs present specific and uncommon morphologies and
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Fig. 17. Example of OCT image with the presence of CMEs (*).

sizes, such as those with fusiform shapes or cystoid edemas with reduced areas.

Figure 18 presents an illustrative example of the first case with the presence

of a cyst with an unusual horizontal elliptical shape.

Fig. 18. Example of OCT image with a non-detected CME (- -), with an elliptical
horizontal shape.

In the case of small edemas, they are easily mistaken with noise and other

artifacts that are typically present in the OCT images. In fact, as explained,

the system removes small identifications considering the sizes that noisy and

artifact detections typically present in the inner and outer retina. This restric-

tion also avoids the detection of any present microcyst, being out of the scope

of this work.

Moreover, the presence of fuzzy contours further complicates the detection
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of these edemas. Additionally, when these edemas are proliferated in nearby

groups, their individual identification is more complex to accomplish.

Then, the performance of the system was tested in the outer retina. As in-

dicated, in this region, CMEs do not present well-defined boundaries, being

frequently mistaken with the surrounded tissues given the almost absent con-

trast between these fluid accumulations and the neighboring retinal tissues.

Moreover, many times, in advanced pathological cases, CMEs are surrounded

by the presence of DRT edemas, hardening the identification of the CME lo-

cations. Consequently, the accuracy of the method is decreased in this region

but still with a satisfactory performance (Table 6).

We proposed a system for the individual identification of the three types of

ME that is also capable of their identification when they appear simultane-

ously in the OCT scans. This is illustrated in Figure 20 with examples of

the individual and the merged presence of the different ME types. Firstly, we

can see satisfactory individual identifications of SRD edemas (Figure 20 (a)

& (b)), DRT edemas (Figure 20 (c) & (d)) and CME edemas (Figure 20 (e)

& (f)). We also present the simultaneous detection of DRT and CME cases

(Figure 20 (g) & (h)) where we can see that the proposed system is capable

to identify them even if they appear merged. This idea is also presented in the

representative case of Figure 19 with a scan with ME presence in an advanced

stage. In this case, we can see the accurate performance of the system with

the simultaneous detection of the three types that are present in the retinal

layers in this single scan.
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Fig. 19. Example of OCT image with the detection of the three types of MEs: SRD
illustrated as (+), CME as (*) and DRT.

Table 7 lists a comparative analysis between two reference works of the liter-

ature that faced the CME detection and our proposed strategy. This compar-

ison presents some limitations, given that each proposal used specific private

datasets, without any specifications about the selected cases that were used in

the study, limiting the comparison among the different analyzed approaches.

As we can see, our method shows a competitive performance respect to other

proposals.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 20. Examples of ME detection in OCT images: (a) & (b) SRD identification
(+). (c) & (d) DRT regional identification. (e) & (f) CME detections (*). (g) & (h)
Simultaneous identification of CMEs (*) and DRT.

Table 7
CME detection performance comparison of state-of-the-art approaches and the pro-
posed method.

Method Precision Recall F-Measure

Schlegl et al. [18] 99.00% 89.00% 93.73%

González et al. [21] 80.00% 77.11% 78.53%

Proposed 90.13% 93.93% 91.99%
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5 Conclusions

In this paper, we propose a complete methodology for the analysis and char-

acterization of the ME presence. This fully automatic system detects and

characterizes the three types of ME that may appear in the eye fundus of the

patients using OCT images. The OCT scans provide an optimal visualization

of the internal characteristics of the retinal layers. Using this information,

image processing techniques were combined with learning strategies and com-

plemented with clinical knowledge to build a robust system that accurately

aimed to the three types of ME. Regarding their typical pathophysiology, we

identified the existing edemas of each ME type, representing useful informa-

tion for the characterization of the ME disease using the international clinical

reference guides.

Regarding the SRD and CME types, both are characterized by a significant

drop of intensities combined with their typical morphological shapes as well

as the relative position where they normally appear within the retina. Specific

adaptive thresholding approaches were applied to identify each type. CMEs

are identified with adapted approaches in the inner and outer retina, whereas

SRD edemas are searched in the outer retina near the photoreceptors layer.

Both identification processes were complemented with expert criterions to re-

move false candidate detections and obtain a more precise system. In the DRT

case, a learning strategy was implemented, testing two representative classi-

fiers as Naive Bayes and SVM to identify columns of the OPL/ISOS region

with the DRT presence. This learning approach is more suitable with this type

of edemas as they neither present a well-defined boundary nor a significant

contrast with the surrounded tissue, presenting a diffuse and regional appear-
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ance. To solve this issue, both classifiers where trained and tested to identify

these regions using a complete and heterogeneous set of 18 features including

intensity, texture and domain knowledge properties. Three feature selectors

were applied in this study: RFS, SVM-FS and SFS. The main selected fea-

tures were taken from the intensity image analysis, mask thickness and GLCM

texture-based descriptors. Given that, the best configuration results were ob-

tained from the Naive Bayes classifier and the RFS using the testing dataset.

The experimental results show that the proposed system offers a satisfactory

performance in the identification and characterization of the ME disease, even

when the different types appear combined on the same retinal region. In the

case of CMEs, the system achieves a global F-Measure of 91.99% for both

retinal regions, while the identification of the DRT presence reaches a value of

87.54%. In the case of the SRD edemas, the system was capable to adequately

detect all the cases that appear in the used dataset. Summarizing, despite the

high variability and complexity of this retinal pathology, the proposed system

is capable to accurately identify all the types of ME, being a useful auxiliary

tool to aid the clinicians in the complex and exhausting task of detection and

characterization of a relevant disease as is the ME.

Future works include the extension of the methodology with more sophisti-

cated procedures, especially in the case of CMEs in the outer retina, as well

as the inclusion of further features and classifiers for the DRT detection. Also,

the methodology is planned to be expanded with an automatic detection of

MME, providing further medical information for the early diagnosis of ME.

To cover the entire characterization of the ME disease, we aim to extend the

proposed methodology by its precise segmentation. In addition, further vali-

dations could be implemented by the increase of the dataset dimensionality,

which enables also the application of other ambitions techniques in this prob-
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lematic, as deep learning strategies. Therefore, it will be possible to follow

more precisely the evolution of the disease and, consequently, improve the life

quality of the patients.
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