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ABSTRACT

Today, generalized linear mixed models (GLMM) are broadly used in many fields. However, the development
of tools for performing simultaneous inference has been largely neglected in this domain. A framework for

ARTICLE HISTORY
Received April 2020
Accepted June 2021

joint inference is indispensable to carry out statistically valid multiple comparisons of parameters of interest

between all or several clusters. We therefore develop simultaneous confidence intervals and multiple testing
procedures for empirical best predictors under GLMM. In addition, we implement our methodology to
study widely employed examples of mixed models, that is, the unit-level binomial, the area-level Poisson-
gamma and the area-level Poisson-lognormal mixed models. The asymptotic results are accompanied by
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Small area estimation;
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extensive simulations. A case study on predicting poverty rates illustrates applicability and advantages of

our simultaneous inference tools.

1. Introduction

Generalized linear mixed models (GLMM) are suitable for mod-
eling clustered and correlated data with categorical or count
outcomes. They are ubiquitous in applied statistics, for example,
in biometrics or small area estimation (SAE). In the latter, they
serve to analyze surveys on a disaggregated level. Despite an
increasing interest, for example, to guide resource allocation, the
development of methods for simultaneous inference for predic-
tors is missing. It is surprising as only those would make joint
considerations of clusters valid. Available (1 — «)-confidence
intervals (CI) for mixed parameters (except the credibility inter-
vals of Ganesh 2009) are constructed such that for each study at
least @100% of them do not contain the true value. Undoubtedly,
practitioners do compare, but so far without valid statistical
tools. We aim to close this distressing gap, not to improve any
existing method.

Specifically, we introduce simultaneous confidence interval
(SCI) and multiple test procedure (MTP) for the empirical best
predictor (EBP) of Jiang (2003). They are based on max-type
statistics combined with extreme value theory. We prove asymp-
totic convergence of SCI and MTP for nested (or hierarchical)
GLMM within the exponential family. We study the numerical
performance of our SCI and MTP for two area-level and one
unit-level mixed models that are widely used, for example,
for studying local poverty rates (Pratesi 2016). All introduced
methods show a satisfactory performance within considered
modeling frameworks. Even though our estimates under the
area-level models appear to be less volatile, one can argue that
EBPs are not directly comparable because different methods and
model classes are used. Finally, under area-level Poisson-gamma

model, we derive a new mean squared error (MSE) estimator
which is of crucial interest in SAE.

The amount of literature on estimation and testing under
GLMM is considerable, see, i.a., the review of Tuerlinckx et al.
(2006), the monograph of Jiang (2007), and the article of Ghosh
et al. (1998) which is particularly interesting within the context
of SAE. Furthermore, researchers put forward several method-
ologies broadly used in the analysis of count data. Molina,
Saei, and Lombardia (2007) and Scealy (2010) studied the esti-
mation of labor force status using multinomial logistic mod-
els, whereas Saei and Taylor (2012) focused on the same tar-
get parameter, and examined the performance of a bivariate
random components model. Chandra, Chambers, and Salvati
(2012) and Franco and Bell (2015) provided extensions for
modeling proportions using logistic unit- and area-level mod-
els. Hobza and Morales (2016) implemented the EBP for unit-
level, and Boubeta, Lombardia, and Morales (2016) for area-
level GLMM to study poverty in small areas. Chambers, Salvati,
and Tzavidis (2012) and Tzavidis et al. (2015) extended the
M-quantile inference for robust estimation and prediction of
count data. Yet, to the best of our knowledge, no one addresses
the issue of simultaneous inference for clusters-level parameters
when applying GLMM. Likewise, little research has been carried
out on simultaneous inference for cluster level parameters in
linear mixed effects models (LMM). Ganesh (2009) developed
credibility intervals for a mixed parameter in a particular area-
level model. Reluga, Lombardia, and Sperlich (2019) proposed
bootstrap SCI and MTP for mixed parameter under LMM,
whereas Kramlinger, Krivobokova, and Sperlich (2018) devel-
oped a framework for marginal and conditional inference with
quadratic forms.
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After an introduction of a model and estimators in Section 2,
we propose the construction of SCI and MTP for a general EBP,
followed by the theoretical justifications in Section 3. Sections 4
and 5 present simulations and a case study. Conclusions are
drawn in Section 6. More details are deferred to appendix and
our supplementary material (SM).

2. Best Prediction for GLMM

Let D be the number of clusters or areas with d < [D], ny
the number of sampled units in each area j € [ng] withn =
Y2, ng Ny the known population sizes with N = >0 Ny,
[A] = {1,...,A}. Since in our context the notion of cluster
and area can be used synonymously, we proceed with the latter.
Suppose that {vg : d = 1,...,D} is a set of independent
and identically distributed (iid) random effects with unknown
variance 82, § > 0, which is often parameterized as vy =
dug with ug ~ N(0, 1). The target variable y4; represents the
jth sample observation from the dth area. Furthermore, we
consider nested data structures such that yy; # yg; ford # d'.
In full generalization, we assume that random variables Yy,
conditionally on a random effect 4, are independent with a
probability density function (pdf) from the exponential family
Ydjlug ~ Exp.Family(6)

yajlua ~ indep.gy,u, (Vajlua),
8 gilua, 0) = exple™ ygva — byl + c(gj )}

where & = (B',5,9)" with § the variability parameter, 8 =
(Bi>---s ﬁp)t regression parameters of auxiliary variables x4 =
(Xdj1 - - - » Xajp)" for which typically x4 = 1,Vj € [n4]Vd € [D],
and yg;, ¢ are canonical and scale parameters, respectively. Link
function M relates E(Y|u,) to a linear mixed model such that
vaj = ME(Yglug)} = x3B + Sug.

2.1. Estimation and Computation

Let y; = (Vdi>-..>Ydny)' for all d € [D] be the vector of
outcomes, and y = (3},...,yp)". A conditional pdf of y and
the likelihood contribution from each area d are given by

L4(0) := fa(y,10) = fgd(ydlud,ﬂ)h(ud)dud

ng
= [ T ea0aua o)hwadus 1)
i=1
where @ can be derived from

L(0):= ]'[ L4(6) = H f ngd;(ydﬂud,ﬂ)h(ud)dud
d=1

In case of area-level models, ny = 1, and Equation (1) simplifies
accordingly. For a concise presentation, we assume that there
is a single random effect for each area such that the integral
in Equation (1) is one-dimensional. Extensions to multidimen-
sional random effects follow immediately with some changes
of notations and more complicated computation. Finding an
analytical solution to Equation (1) is difficult unless the integral
can be simplified. Often one evaluates the integral numerically

by Laplace approximation (LA) (De Bruijn 1981), Gaussian
quadrature (GQ) (Naylor and Smith 1982) or adaptive GQ
(AGQ) (Pinheiro and Bates 1995). In what follows, we pro-
ceed with AGQ as it is a higher order version of LA, that
is, it gives smaller approximation errors (Bianconcini 2014).
An alternative is the quasi-likelihood (Breslow and Clayton
1993) which suffers from a nondecreasing bias (Tuerlinckx et al.
2006), and the method of moments (Jiang 1998). In addition,
researchers considerably advanced in developing methods to
compute maximum likelihood (ML) estimators under GLMM.
(Jiang 2007, sec. 4.1) proposed an expectation-maximization
algorithm, whereas Lele, Nadeem, and Schmuland (2010) devel-
oped the so-called data cloning subsequently implemented by
Torabi (2012).

Since we consider a prediction problem of possibly nonlinear
mixed effects &; = £4(B, ug), we use the best predictor (BP) L
in the sense of minimizing the area-specific MSE in Equation
(3) which is actually the area-specific mean squared prediction
error:

Zd = £a(0):=E{ta(B, ua)ly} = E{¢a(B, ua)ly 4}
_ J 2B, u)ga(yylua, 0)h(ua)dug

2
[ ga(y4lua, )h(ug)dug @

Simplification of Equation (2) is possible by choosing the pdf
of ug accordingly. If we replace 6 by a consistent estimator,
then we obtain EBP g’d g’d(ﬂ) Note that in order to obtain
the consistency for random effects, one needs to assume that
ng — oo for each E’d, d=1,...,D (Jiang and Lahiri 2001).
Regarding the estimation of the variability of the EBP
MSE is by far the most popular measure. Well known tech-
niques to estimate MSE are the analytical approximation based
on a Taylor expansion (Jiang 2003), and parametric bootstrap
approaches (Boubeta, Lombardia, and Morales 2016; Hobza and
Morales 2016). Consider the following MSE decomposition:

MSE(Zs) = E[{Z4(0) — a)’]
= E[{24(0) — 2401 + E[{2a(0) — ¢a}]
=: g2d + Q1ds (3)

which can be derived applying the law of iterated expectations
(for details, see Jiang 2003, and our SM). The analytical formulas
of MSE estimators are model dependent. Bootstrapping permits
to obtain estimators that do not vary with the model assumed.
In what follows, we denote with E*, Var*, and MSE¥, the corre-
sponding bootstrap operators for expected value, variance and
MSE and define

MSE%(Zy) = E*{(E;}‘ —HY

~ B—l Z ( #(b1)

bl—

*”’”) —msep(Zy), (4)

which is a bootstrap equivalent of Equation (3). In their article,
Hall and Maiti (2006) pointed out that (4) tends to underesti-
mate the MSE, and propose a double-bootstrap bias-correction

MSE4(84) = 2MSE%(Z4) — MSES, (£4)

~ 2msep(Z4) — mseg2 (L) (5)



where MSEﬁz(Ed) is the second-stage bootstrap MSE estimator,
that is

MSE}, (Z4) = E**{(E** - "‘"‘)2}

~ B] lB—l Z Z( *#(by,by)

bi=1b=1

=: mse,gz(fd)-

**(hi’z))z

The computation of MSEj, (Z4) involves selecting B, bootstrap
replicates from each first-stage bootstrap sample. In this article
we do not aim for a precise estimation of the variability of
EBP, but the construction of narrow SCI and reliable MTPs. It
turns out that for doing this, the use of an estimate of g, 7 as in
Equation (3) yields better results than using an estimate of the
entire MSE (see Section 4), similarly as in Chatterjee, Lahiri, and
Li (2008) under LMM.

2.2. Popular Examples of GLMM and Their Properties

2.2.1. Poisson-Gamma Area-Level Model

The Poisson-gamma model is widely applied for modeling
counts in the presence of overdispersion (see Cameron and
Trivedi 2013, Section 4.2.2). Within the SAE context, Chen,
Jiang, and Nguyen (2015) investigated the observed best
prediction and bootstrap MSE estimation for small area mean
counts. Among others, they also consider a Poisson-gamma
specification. We propose a different model formulation, focus
on the EBP of g’d::,ugG and develop a plug-in MSE estimator.
Let yqlug ~ Poiss(,uSG), d = 1,...,D, where ,u,SG > 0,
ng = 1Vd e [D], with canonical parameter log .LLSG =
x;ﬁ + ug, and wg=exp(uy) ~ Gamma(s,8) such that
EQalug) = ny = hawa = exp(xyB)wy = exp(xyB + ug).
Since Gamma pdf is conjugate to the Poisson, their mixture
yields a negative binomial y; ~ NB(\4, 8—!) with likelihood

D

g +1re)

8
() o
8+ Ag 8+ A4

where E(y;) = A4 and Var(y;) = A4 + 8~'A%. The marginal
mean of y; is the same as in the Poisson case, but the random
effect increases the variance. Suppose that this model holds for
all areas of population P of size N partitioned into subpopula-
tions Py, Pa,. .., Pp of sizes Ny, N, ..., Np. We can show that
the BP for counts ,EigG @) := [E(,ugG lyq) is

PS10) =

Jo© Xawagalwa)h(wa)dwy

E PG =
(g~ lya) 1o galwah(wg)dw,
_ AL ra(a+9)
- st (Gatd)

54, 0). (7)
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Equation (7) follows from the conjugation of the Gamma pdfto
the Poisson pdf, while

PG o0
0

WP (g 4+ 14 8)
— T@)yal(hg + syati+e’

exp( Aawa) Al daﬁw“ Lexp(— wdﬁ)
ya'l'(8)

Wa

The EBP fLSG is obtained by replacing the vector of unknown

parameters # in Equation (7) with a consistent estimator 0.
Under the Poisson-gamma model ¢ = 1 and 8 = (B,9).
We derive an analytical plug-in MSE estimator to measure the
variability of our EBP.

Proposition 1. LetVarg(6) = D[E{(é—ﬂ)(@ —6)'}. An analytical
MSE decomposition with its corresponding practical plug-in
estimator are given by

3 1
MSEpG (25°) = geG1a + 5¢d(®) +0(1/D) and
- - 1, -
msepG (15°) = gpGia + 5¢a®), ®)
8rG1d = K14(0) — K24(0),
8pG1a = k14(0) — kpq(8), d < [D], 9)
AL +1
with  x4(0) = % and
o0 k).(}- + 5)2
0 = dY " p(ys =
124(6) Zj GaTapt0a=D
aswellas  cy(0) = ZI WﬁG(J/d,G)]

x Var;(0) lg‘ﬂg(}(}’d,ﬂ)] P(yq = j).

¢4(0) is a Monte Carlo approximation of cz(8), kg refers to k4
with an infinite series truncated at a large term and @ replaced

by 6. To estimate k14 we need only the latter.

One can estimate Var;(#) using any reasonable method. In
Section 4 we use bootstrap estimators defined in (24). Details on
the derivation of Equations (6) and (8) are deferred to our SM.

2.2.2. Poisson-Lognormal Area-Level Model

The Poisson-lognormal model has been thoroughly examined
by, among others, Cameron and Trivedi (2013), Section 4.2.4,
Franco and Bell (2015) and Boubeta, Lombardia, and Morales
(2016). For uz ~ N(0,1), let y4|ug ~ Poiss(u’l),d = 1,...,D,
where ,uPL > 0,n4 = 1foralld < [D]. In addition, ,ud = V4pPd,
where v is a known size variable and p4 a binomial probability.
The canonical parameter is log ,LLSL = log vg+x4B + Suy for all
d e [D]. Typically £;:=p; for which we have p; = exp(xfiﬁ +
Sug) with @ = (B, 8). In this case, the likelihood is

L6) = f(10) = @7)~P?

D _ d t Y

1—[ f exp(—vapd)v, e;q:{yd(xdﬁn%ud)} exp( ;d) L
'd!
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Once 6 is estimated, we obtain BPs ..'15]“, pq4. and EBPs ,G,BL,

pa using the formulas from Boubeta, Lombardia, and Morales
(2016). In Section 4.1 we estimate their MSE by bootstrap.

2.2.3. Logit Unit-Level Model

The unit-level logit model is a popular choice for binary
responses, comprehensively discussed by Hobza and Morales
(2016). Under this setting, y4j|us ~ Bin(mgj, paj), ua ~ N(0, 1)
with mg; a known size parameter for a logistic regression. The
natural parameter is pg;/(1 — pgj) = xfij.ﬁ + 8ug, d € [D],
j € [na] where pg; = {exp(xfijﬂ +8u}/ {1+ exp(x;jﬁ +8uy)}.
We assume that the unit-level logit model holds for all units
of population P of size N, partitioned into D subpopulations
P4 of sizes Ny, d € [D]. Let g’d::,u,g = Z;El Pdj- As for the
Poisson models, we have ¢ = 1 and therefore § = (8',5). The
likelihood is given by

£Y©) =1 (y.9)
~ D ng my ng
= (27) D/2 1_[ jl;exp Zlog (J/dji) + Zya}(xfijﬁ + 8uy)
d=1 j=1 ) j=1
2 Mg

_7“' _ Z mg;log {1 + exp (x;jﬁ + Sud) } duy.
j=1

(10)

We can proceed with the estimation of the BP py(#) and
Y = 2?31 Paj only if we have access to the information on
each population unit. In practice, however, the auxiliary infor-
mation is available only for the sample units. Then, following the
suggestion of Hobza and Morales (2016), we can still estimate
the population quantity of interest by using only categorical
covariates. Suppose that they take a finite number of values
xdj € {21,...,21} ford € [D] and j € [ng] with z; denoting
the resulting covariate class. We then define

,u,U Ng L
iy = F‘:’ py = Zde = ZNd;rdb with
=1 I=1

exp(ziB + duq)
ra =

= , (11)
1 + exp(z1f + duy)

where Ny = #{l € P; : x4 = z;} is the known size of class z; in
area d. Hobza and Morales (2016) derived BP ﬁg(ﬂ) and EBP
,&g (@) for ,ug as well as for other quantities in Equation (11).
Due to the computational burden of the analytical estimator, in
Section 4.2 we use bootstrap for obtaining an estimate of MSE.

3. Simultaneous Intervals and Multiple Testing

To construct CI for ¢4 that account for the effect of estimates
from other areas, we need to find a region 7, _, such that P({s €
Ti_q ¥d € [D]) = 1 — a. Define

So = max 1S4l » with Spq = & — g‘*, vd e [D], (12)
=1,...,

-

o(&d)

g =inf{tcR:PSy < 1) > 1—a}, (13)

with c‘r(f’d) being an estimate of the variability of EBP Ed- We
then consider

a=P (|§A'd - gd‘ > qg;_“)&(fd) for somed € [D])
=P max w > qg]_“) . (14)
d=1,..D| &(Z4)
Constructing SCI boils down to the estimation of qgi_“), as one

can define then

D

Ils—a = X Ig,l—a’ with Ig,].—a = [gd + q.(S;_a) X &(gd)}!
d=1

(15)

where x denotes a generalized Cartesian product. Z{__, covers
all ¢z with probability 1 — «, that is, its joint confidence level is
1 —a. In contrast, for each qgld_a) defined analogously to qg]_“),
with Sy replaced by [Sp4l, individual area CI (iCI) are given by

T, =+ d” x 6@} vieml o
By construction, iCI does not contain ¢4 for at least 100¢% of
all areas.

Remark 1. I:g_a is designed to cover ¢; at an individual
confidence level. Consequently, the joint coverage probability
of iCIs decreases in a cumulative way for increasing D. This
highlights the need to construct SCI. Nevertheless, maintaining

1 — a simultaneous confidence level of SCI Z}_, makes its
constituents Ig |_q Wider than corresponding iCls I:;,Cl‘r_a. This

is not surprising because I;ﬁ"_a and Iil_a were constructed
to cover different sets which serve distinct inferential purposes.
It is worth mentioning that the length of Ig_l_a stabilizes as
for growing D we observe two opposite trends: the increase of
area parameters to cover and the decrease of MSE (see Tables 1

and 3).

The SCI defined in Equation (15) is not operational as the
distribution of Sp is unknown. The problem can be circum-
vented by bootstrap approximation: for by = 1,..., B; set
7x(b1)
(b1) _ &a
B a0 @y

(b1)
_;'*
S§’”=di?‘j‘_’_‘p)3$))* S i (17)

and approximate the critical value qg;”’) = inf{t ¢ R :

PSp <€ t|(.X)) =2 1 —a}byal(l —a)B; + 1]th-order
statistic of the Sg"). Then the bootstrap equivalent of Equation
(15) is

D
2.=X I‘El_a, where
d=1

18 = {t+d x6¢a). (18)
An alternative approach to Equation (12) could be to take
computationally simpler nonstudentized statistics. Yet, already
DiCiccio and Efron (1996) pointed out that the lack of studenti-
zation results in slower convergence rates. Since the application
of nonstudentized SCI did not yield satisfactory results, we
decided not to include them.



Table 1. ECP, AIW, and AIWV of SCl under area-level models.
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Poisson-gamma Poisson-lognormal
B BC p G B BC
ECP (in %) ECP (in %)
D=26 95.7 959 95.8 953 95.0 946
D=52 947 93.7 949 946 949 948
D=78 947 948 949 94.4 949 946
AIW %103 (AIWV x103) AW x103 (AIWV x103)

D=26 24.4(0.025) 24.5 (0.028) 24.5(0.024) 23.9(0.023) 18.0 (0.003) 18.0 (0.004)
D=52 30.3(0.030) 30.3 (0.034) 30.4(0.029) 29.8 (0.028) 20.7 (0.003) 20.8 (0.004)
D=78 33.4(0.027) 33.4(0.032) 33.5(0.025) 33.0(0.024) 21.9(0.002) 22.0(0.004)

NOTE: Nominal coverage: 95%.

Our methodology is also applicable for hypothesis testing.
Consider the test problem

H[):BC:b VS. HI:BC-,—/:b, (19)

where B € RP*D D' < D, b € RY. We are interested in
max-type statistic f such that

H_p
tg = max » tHy = gd d,
d=1,.. ( )
Cd Ca'
Sy, = , S = s 20
Hy =  max Hod = @) (20)
where ¢ = (¢f,..., ¢l = Bt e R with &H being its

(1—a)

estimator. One rejects Hy at the a-level if ty > g~ with

gl =inf{t e R:P(S, < 1) > 1—a}.
In practice, we might use such a test to examine differences

between area characteristics. Similarly as for SCI, we approxi-

mate q(l —) applying bootstrap to a modified version of statistic
Sg, namely

i = inf(t e R: P(Spr, < (X)) > 1—a), (1)
where Sph, in the bf‘ bootstrap sample is

Y Y ) g.*H(h) é.*H(h)

(b1) (b1) (b1) d d

SgH, = Py ‘SBHud * OBHod T T ZaH(b) (22)
&)
*H (51)

with g*Hb) — (& *H(b')) Be*B) ¢ R and

f*H(bl) = (g'*H(b') .,gg,H(bl)) its corresponding estimated
version.

We provide the consistency of our bootstrap-based CI and
tests, as well as asymptotic convergence and coverage probabil-
ity. Proofs are deferred to Appendix A.2 and A.3. Suppose that ]
is consistent such that ||§ —8|| = Op(n~™), ¢ > 0. Since for the
GLMM with clustered random effects the log-likelihood can be
expressed as the sum of independent random components, the
consistency of 6 estimated by ML follows assuming a classical
theory. The consistency under a general GLMM had been an
open problem for many years until it was solved by Jiang (2013).
Bianconcini (2014) and Huber, RoncheEti, and Victoria-Feser
(2004) investigated the consistency of # once we compute it
using AGQ and LA respectively. For our purpose, we need to
prove the bootstrap consistency

Proposition 2. Under Assumptions 1-5 from Appendix A.1 it
holds that

E* () — E(rg) = op+(D),
Var*(y) — Var(y,) = [op(1)]nyxng>
116" — 81| = Op+(n).

Given Proposition 2, we can derive the consistency of Z2_
based on results from extreme value theory and asymptotic
expansions of the standardized statistics using ideas from

Chatterjee, Lahiri, and Li (2008). Let us assume c?(fd) =
Qld(fd) though similar results are immediate for &(E’d) =

v mse() (L d)) where (-) stands for different types of estimators.

We use g q(l ~®  where unambiguous, and denote the

cumulative d15tr1bution function (cdf) of Spy and Sgd by
Ga(w) = P(Soa < w)and Gpy(w) = P(Spd ﬁ
In Appendix A.3 we pr0v1de asymptotic expa.nsmns for bot

Define (So(d+1) - -->So@p)) = (=So1s--->—Sop), and observe

that max |S[)d| = max (S(]l, - ,S[)D, —Sm,. ‘e —S[)D).
=1, d=1,....2D
From Equatlon (14), we have
To@ = P(So < q)
=P(So1 < 4----5p < 4—S01 < 4---.,—Sop < 9)
2D
=[] G@ (23)

As D — o0, unless standardized, the distribution in Equation
(23) converges to 0 or 1. In Appendix A.3, we show that Gz(w) is
asymptotically normal, such that P (So < q) ~ ®?P(g). Since
the cdf of the maxima of the standard normal random variables
is in the domain of attraction of the Gumbel law, it follows
that F}i{noo ®2P(q/bp + bp) = exp(exp(—q)) = To(q), for all

q € R where bp is a sequence of constants (see Leadbetter,
Lindgren, and Rootzén 2012, theor.1.5.3). Unfortunately, this
approximation has a poor convergence rate, but bootstrap is
again a remedy. Notice that a similar representation holds for
Sp, substituting P with P* and replacing the true parameters by
their estimates. Application of Poyla’s theorem that combines
the convergence in distribution with a convergence in sup norm
results in our next proposition.

Proposition 3. Define T} (w) = P*(Sg < q) which is a boot-
strap analogue of 7p(w) in Equation (23). Under Assumptions
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1-5 from Appendix A.1 it holds that
sup | Tp(w) — T3 (w)| = op(1).

weR

Corollary 1. Proposition 3 implies that under the same assump-
tions,

PyeI? ,vde D) > 1—a.

Since we use almost identical max-type statistics in Equations
(12) and (20), the construction of MTP follows almost immedi-
ately from the correspondence between tests and CI. In fact, the

acceptance region of our test is If{_"a = XdD=1 Ig‘l’_a, where

" x 6(Ca) <ba<tatqs ? x &(Ed)} ,

H, - 1
Id,?—a = {fd - q-(sg
that is, we reject Hy if b ¢ If‘r_“a. We can write P(h; € If‘r_“an €
[D]) = 1 — a. Since this probability statement is true for any
h4 = 4, we obtain the CI defined in Equation (15) by inverting
the test.

Corollary 2. Let Hy be the null hypothesis defined in Equation
(19) and & € (0, 1). Under Proposition 3, we have

P(ty = ‘IBHQ) < o+ o(l).

Remark 2. Our single-step testing procedure in Equation (19)
with a bootstrap critical value in Equation (21) controls weakly
for the family-wise error rate (FWER), and might be limited in
detecting false null hypotheses once we deal with a large D'. Yet,
we can readily extend our test to a bootstrap-based step-down
procedure of Romano, Shaikh, and Wolf (2008) which controls
the false discovery rate with a better power to detect false Hyg
than FWER.

4. Empirical Reliability Study

We performed intensive simulation studies to assess the reliabil-
ity of our methods. SCI and MTP for EBP were constructed with
different estimators of variability under the models presented
in Sections 2.2.1-2.2.3. First, we examined the relative bias and
relative root-MSE of fixed effects 8 and variability parameter .
Then, the performance of EBP was evaluated comparing bias,
average absolute bias and MSE for D = 26,52, and 78. Since
they did not show any atypical pattern, the results under Poisson
area-level models and logistic unit-level model were deferred
to the SM. Regarding SCIs, we calculated empirical coverage
probability (ECP), average interval width (AIW), and the ATW
variation (AIWV):

BCP = — Y 1{¢¥ e I} , vd e [DI},
k=1
D K
AIW — B ZZ“’“‘) o® _ zq(l—a)(k)&(k)(gd)
DK d’ ‘ ’
d=1 k=1
L Nhye (0 2
AIWV = (0 - aa) .
DK — 1) dg g d
1 K
dg==Y 0P, d=1...,D

For each simulation run k we record the widths of the SCI and
check whether they cover all EBPs. ECP is then computed by
averaging over K simulation runs and is aimed to be close to
1 — a. AIW is obtained by averaging over the simulation runs
and areas. Narrower intervals are preferable if its ECP is close
to the nominal level. These are standard measures to assess the
quality of interval estimators (Chatterjee, Lahiri, and Li 2008;
Ganesh 2009). Lower AIWV values indicate that the length is
stable and does not depend on the simulation run.

4.1. Finite Sample Performance Under Area-Level Models

Under the Poisson-gamma model we set yg ~ Poiss(,ugL),
,ugL = Agwy. Covariates, parameters and sample sizes are
taken from our case study in Section 5, that is, we set § =
(B',8) = (10.038,7.747,—3.136,11.317, —2.466, 2.480)", and
D = {26,52,78}, n4 = 1,¥d € [Dl,n = D.ForD =
52 we take covariates from the original sample, for D = 26
we randomly select the areas using simple random sampling
without replacement, and for D = 78, we take the original
sample plus 26 randomly selected areas, that is, these areas enter
at most twice. Parameter of interest is the area proportion of
individuals below the poverty line, 25 = ufl/N,. The EBP
for ,LLSL is given in Equation (7). Since Ny is usually unknown,
in practice it is replaced by its estimate, see Equation (25) in
Section 5. We apply double bootstrap with B; = 1000 first-stage
and B; = 1 second-stage bootstrap replicates (the choice of the
latter is motivated by Erciulescu and Fuller 2014). We generate
K = 1000 samples with the same areas and fixed covariates, but
randomly drawn w; and y,;. SCIs and iCls are constructed as
follows:

1. Fit the model to the data and obtain estimates = ( ,é, H ).
2. For by = 1,...,B; bootstrap samples, generate wﬁ(b') ~
Gamma(s ,8 ) iid and set

uSG*(bl) *(by)

— idwd *(by)

and ¥ PG(b

~ Poisson(p ; 1)).

3. For each bootstrap sample calculate ¢

b ~PGx(b PGx(b
AD%’&?&‘: iy *( 1)_lu‘d *(by) )

~k(by) k(b
a( l)’ P"P,'G*(bl)(f’*( 1)),

(a) For b, = 1,...,B; generate samples wz*(b"bﬂ

Gamma(5*(®), §*(1)) iid and
!L‘P,‘Gﬂ(bl‘bﬂ — iz(bl)wz*(blvbz)’

yz*(bl,bz) PG**(bl,bz))‘

~ Poisson(u

~sck(by,b
(b) For each bootstrap sample calculate ﬂ**(l ) and

. k(b b
#;’G**(bl,bg)(a**( 1 2))‘

b B « PGk(by b PGk(by b2) 2
(c) Set msef;l) — 'BIEZEJZLL (l”‘d ##(by,b2) —_— +%(b 2)) _

N ~%x(b
4. Calculate bootstrap estimates gpg14( * 1)) as in Equation (9)
as well as

B
. 1 Z . PG(b PGx(b1)\2
mSEB(;.LgG) — B_l (.u'd *(b1) _ ,(.Lav ( 1)) .
b1=].

B
- W~ 1 b
mSEBC(“SG ) = 2mSEB(PL§G) 5 E mse:(i D,
1
h=1



5. Calculate statistic Spg, p with the critical value ng:?g obtained

from the bootstrap sample Spg g = (S%.g_g,. . S%,)B)t, where

b br) ;A ~ PGx(b
S%ézg = dir;;fj)‘(’DAD%,g,!a*(“) (P‘d * l)) and

1—
4565, = Qi—a(SpG,B)
as well as a variance estimate for 9:

B
— l a~ b — A~ b —
var(f) = 5 Z(ﬂ*( ) 9)(9*( ) 0)! with
1
bh=1

B1
— 1 ~%(by)
0= B E [0} .

1 bh=1

(24

We compare the performance of SCI and MTP for different
variability estimates &(ﬁSG) and their bootstrap equivalents

Vgrcid and 6 (a5%) =

/mse()( ,G,SG). Here, mse(.) refers to either the plug-in msep, the
msep or the msegc, defined in Equations (8), (4), and (5). Steps

3(a)-(c) of the algorithm refer to the second-stage bootstrap
which is only necessary to obtain bias-corrected msegc. Under
the Poisson-gamma model, we are interested in the estimation
of poverty rates. We thus consider ﬁBG = ﬁSG /Ny, §pG1 d =
grc14/N3 and mse(.)(ﬁgc) = mSE(.)(ﬁgG)fNj.

For the Poisson-lognormal model with y; ~ Poisson(,ugL),
,ugL = v4pd, the parameter of interest is py with Ny = vy
estimated by EBP derived by Boubeta, Lombardia, and Morales
(2016). We take the fixed parameters from Section 5, that is,
(B',8) = (—2.264, 3.480, —0.870, 4.842,0.125,0.322)!. Covari-
ates, sample sizes, number of simulation runs and bootstrap
replicates are the same as in case of the Poisson-gamma model.
The variability of g4 was estimated using bootstrap MSEs, that
is msep and msepc. To obtain estimates of SCI and iCI one can
use almost the same algorithm as above by changing the way we

&"‘(,&EPG), namely for &(ﬁgG) =

generate yz(bl).

Table 1 summarizes the performance of 95% SCI for fLSG
constructed with mseg (B), msepc (BC), plug-in msep (P) and
8rcid (G). For py4, they were constructed using msep (B) and
msegc (BC). All methods perform very well regarding the cov-
erage ECP, even for D = 26. In contrast, SCIs constructed
using a Bonferroni procedure yield unacceptably low ECP. For
instance, for D = 52 and mseg it equals 78% for the Poisson-
gamma, and 88% for the Poisson-lognormal model. Therefore,
we do not further report them.

Figure 1 presents 95% SCI and iCI estimates for a randomly
selected simulation under the Poisson-gamma model. The plot
is divided into five panels according to the number of units Ngf’
defined in Equation (25) with the first presenting the results
for the areas with the fewest observations. The black and red
dots represent the true proportions known in a simulation. The
color red indicates true parameters not covered by theirs iCls.
In Figure 1, that holds for four of the true values (= 7.7%). This
illustrates well the difference between individual and simultane-
ous inference as well as a particular relevance of the latter. We
obtain similar figures for other simulations (see our SM).
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Finally, we studied the performance of our test (19) under
Poisson-gamma and Poisson-lognormal models. Results for the
latter are in our SM as they reveal the same features. Consider
Hy : itPS = bvs. H, : iPS = b+1pA, where b:=ji for the same
data-generating processes as before. Critical values are obtained
from the bootstrap analogues of Sp, calculated similarly as
in Step 5 of the algorithm above. Figure 2 shows the power
functions of our test based on different variability estimates.
They are visibly indistinguishable, which is not surprising given
the similar ECPs and AIWs in Table 1. For D = 52, that is, the
sample size of the real data, the nominal level of 5% is attained
almost exactly under Hp.

4.2. Finite Sample Performance Under the Unit-Level
Model

Under the unit-level model we assume yg ~ Bin(mg;, pg;) with
pa = {exp(xyB + Sua)}/{1 + exp(xyB + Sua)}, mg = 1,
ug ~ N(0, 1). In our context, y4; is binary and value 1 indicates
an individual below the poverty threshold defined in Section 5.
The regression parameters are taken from our case study:
0 = (,6’,5) = (—2.048,0.989,0.172,0.760,0.100, 0.348)".
Four categorical covariates result in 16 covariate classes x4 €
{z1,. .., %16} for which we need to estimate N using Equation
(25),I =1,...,16. We considered D = {26,52, 78} containing
unit-level information with n = {11423,23628,35818},
respectively. Summary statistics for all samples are presented
in Table 2. Furthermore, for D = 52, ny, Ny, X4j, z; are the same
as in our case study. The areas for D = {26, 78} were selected in
the same way as in Section 4.1. In addition, for D = 78, within
each of the additional area we sampled with replacement ny
units (i.e., 26 newly sampled areas contained different units in
comparison to the original sample). The parameter of interest is
the area poverty proportion ﬁg defined in Equation (11). Given
that the original sample size was n = 23, 628, under the unit-
level model we restrict our simulations to K = 200, B; = 500,
and B, = 1. As far as the algorithm for constructing SCI and iCI
is concerned, it follows almost the same steps as in Section 4.1.
The exact algorithm can be found in the SM.

Table 3 presents the performance of SCI constructed
using mseg (B) and msepc (BC). The coverage probability
is somewhat lower than the nominal level. In addition, it
slightly decreases with increasing D, whereas the AIW increase
stabilizes as expected (see Remark 1). The undercoverage might
be related to the simulation design. Even though the latter
is popular in SAE, it is suboptimal for random effects from
the asymptotic point of view (ny - oo, d e [D], recall
Section 2.1). The results in Table 3 do not demonstrate any
inconsistencies with respect to the theoretical developments,
nor they exhibit unexpected findings. Due to their limited
impact, the equivalents of Figures 1 and 2 for this simulation
are deferred to our SM. In comparison to the area-level models,
the coverage probability is worse and the average width of SCIs is
much larger (it is also the case for the iCI, see our SM). Moreover,
fitting unit-level models is computationally more expensive. In
our case the estimation of MSE and construction of intervals
took about 900-1000 times longer. Since the data-generation
processes are different, the numerical results in our simulations
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Interval Estimation
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Figure 1. 95% iCl and SCl for proportions with D = 52. Red dots indicate true parameters outside iCl, whereas black dots indicate true parameters inside their iCl.
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Figure 2. Simulated powers for multiple test Hy : ﬁPG = bversus Hy : ﬁPG = b+ 1pA under the area-level Poisson-gamma model; (left) D = 26, (middle) D = 52,

(right) D = 78.

Table 2. Summary statistics of ngy under different scenarios in the simulation study under the unit-level model.

D =26 D=52 D=78

Min. Q 0))] Mean Q Max. Min. Q 0)] Mean Q Max. Min. (0] Qz Mean Q3 Max.

47 139 260 439 454 1714 34 108 260 454 479 2631 34 114 289 459 482 2631
Table 3. ECP, AIW and AIWV of 95% SCl under the unit-level model. SCI are the first tools for simultaneous inference with GLMM-
ECP (in %) AIW % 10% (AMVx103) based mixed parameter, we concentrate on their implementa-
D B BC 3 BC tion and application to the well-known model-based estimators.
199 025 These have been thoroughly examined in comparative analyses

26 94.0 93.0 134.0(0.193 135.0(0.268 c4s . ; :

5 935 930 1503 (0.139) 1509 (0.189) which 1n::luded direct estimators (see for instance Boubeta,
78 92.0 915 153.9(0.125) 155.1 (0.234) Lombardia, and Morales 2016; Hobza and Morales 2016). In our

NOTE: Nominal coverage: 95%.

are not directly comparable. However, our empirical studies
suggest to give some preference to the area-level modeling in
the considered GLMM settings.

Our simulations lead us to following conclusions. First, for
a given sample size and data, our SCI attains the nominal
coverage probability, almost independently from the choice of
the estimator of variability. In particular, the area-level models
yield very accurate results even for small samples. Second, the
distinction between SCI and iCI is crucial, and the latter should
not be employed in comparative studies. Third, the numerical
performance of our test for comparative studies is satisfying.
Given the simplicity of SCI and tests based on \/‘ﬁT , We restrict
further presentations to them.

Remark 3. In our simulation study, we do not analyze the
performance of direct estimators for proportions, because our
goal is to study the numerical performance of our MTP and
SCIs, and to compare them to existing iCls. Since MTP and

case study in Section 5, we include direct estimators in order to
have an almost model-free benchmark.

5. Predicting Poverty Rates in Galicia

Poverty prediction is of great interest for statistical offices. It
provides a basis on which local or central authorities can decide
about resource allocation and related polices. The interest is
not in individual, randomly chosen small areas but in the total
picture. Resource distribution requires comparative statistics,
and one would thus provide SCI instead of iCI. We illustrate our
methodology calculating point estimates, iCIs and SCIs for the
poverty rates in each county of Galicia, that is, the proportions
of inhabitants who live under a poverty line. We make use of a
general part of the Structural Survey for Homes (SSH) in Galicia
in 2015 with 23,628 individuals within 9203 households located
in 52 counties (small areas). The survey does not produce official
estimates at the area level, but we managed to recover the direct
estimates of the totals of people below the poverty line (Yy),
as well as the number of inhabitants (N;) for each county.
For the area-level models, we need to calculate the number of
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Figure 3. Design and model-based 95% iCls.

units which fall into a particular category (X), for example,
number of employees or of graduates in each county of Galicia,
i = 1,...,p. The latter are used to obtain the proportions of
individuals in each category X5 = X/N,. For the unit-level
model, we need to obtain the number of units Ny falling into
artificially created categories zg,d = 1,...,D,I=1,...,L, see
Section 2.2.3. The explicit formulas are

lf%;; = ZjeRd Wi¥i> N;‘" = Zje’.-'{d Wi

Ny" = 2 iery Wi%ilix==)> X

A5 A e odi
X = Yjer, Wikjin and  XGT = X3 /NG,

(25)

where R; € P, are the sample elements belonging to area d,
d e [D], wy sampling weights, and yg binary variables with
1 indicating that an individual is below the poverty line. The
poverty threshold is calculated from the survey. It is set to 0.6
of the median household income per capita in Galicia, that is,
we do not use county specific poverty lines. This income is
calculated in each household according to scale developed by
the Organisation for Economic Co-operation and Development
(the same technique is used by Eurostat). The model-based
approach of this paper assumes that the estimates in Equation
(25) are considered to be known, nonrandom quantities, fol-
lowing Lopez-Vizcaino, Lombardia, and Morales (2015). SSH
provides many categorical, auxiliary variables. Under the unit-
level model these are binary variables with 1 indicating that a
person belongs to a particular category, whereas under area-
level models we use the county proportions. We considered
four variables for labor status: children (Is0), employed (ls1),
unemployed (1s2), inactive (1s3), and four covariates for educa-
tion: less than primary (ed0), primary (ed1), first- and second-
level secondary (ed2), higher education (ed3). Furthermore, we
analyzed three variables for the size of municipality: less than
10,000 (sm1), 10,000-50,000 (sm2), more than 50,000 (sm3).
We have also investigated the effect of two variables indicating
the nationality, that is, Spanish (n1), not Spanish (n2). Finally,
we examined five age variables: < 15 (agel), 15 — 24 (age2),
25—49 (age3), 50—64 (age4), >= 65 (age5). We are interested in
ﬁg)::,ug) /Ny with () standing for PG or U in case of Poisson-
gamma and binomial model, respectively, and in p; in case
of the Poisson-lognormal model. We first compute estimates
of proportions and their variances using the same formulas as
Boubeta, Lombardia, and Morales (2016)

di lA_fd ]_’gir
ﬁdlr _ du' S
Nglr

(26)

Z wi(1 — w)) (yj —f)ﬂi’)z.

: 1
 adiry
var(p”) = ‘(Ngir)z _

We used estimates in Equation (26) to construct design-based
iCI intervals (Dir) displayed in Figure 3. Following Lopez-
Vizcaino, Lombardia, and Morales (2015), we then proceed with
a variable selection inspired by the simulation results. More
specifically, under the Poisson-gamma model we check if any
of the levels of categorical variables for labor status, education
and age are significant at the @ = 0.05 level. We examined
these covariates in the first place, because they turned out to be
important in earlier studies on poverty rates (see, for instance,
Boubeta, Lombardia, and Morales 2016). In this way, we selected
Is2, ed2, and age2. Afterwards, we tested the levels of variables
nationality and the size of the municipality and we additionally
retained sm1 which was significant after the selection of 1s2, ed2,
and age2. The same categories were then used to other models,
see Table 4. As we do not carry out a causality analysis, we
refrain ourselves from a discussion of the magnitude or signs of
estimates. We only notice that under the Poisson-gamma model,
the signs are consistent with our expectations; unemployment
and young age are associated with higher poverty rates, whereas
higher level of studies or living in a small municipality is asso-
ciated with lower poverty rates.

Figure 3 shows point and iCI estimates of proportions
under Poisson-gamma (PG), Poisson-lognormal (PL), and
binomial (Unit) models together with direct estimates (Dir).
In this plot, we compare point estimates within four modeling
frameworks; we do not compare them across different areas
within the same model. First, the variability reflected by the
width of iCIs decreases with the number of units in each
area ﬁ;;“’ defined in Equation (25). Second, even though the
area sample sizes ny, d € [D] are not that small, the iCI of
direct estimates are wider than model-based estimates, which
is in accordance with the literature. The width difference is
especially pronounced when comparing area-level-based with
design-based direct estimates—the latter entirely cover the
former. Unit-level model-based point and interval estimates are
different with much wider iCIs than under area-level models,
but still overlapping with the direct estimates. Only in one case
(sixth area in the third panel), the iCIs under area-level models
do not overlap with the iCI under the unit-level model which
indicates a possible bias in one of the approaches. In contrast,
both area-level models produce almost identical estimates.

Figure 4 presents bootstrap iCI and SCI for fLSG, d =

1,...,D constructed with & (;) = /ZpG14 as defined in Equa-
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Table 4. Estimates of regression parameters under the area- and the unit-level models with 3PG — 2.48,5PL = 0.32and 5V = 0.35, respectively.

Poisson-gamma

Poisson-lognormal

Unit-level model

B SE z-value P(= |z|) é SE zvalue Pr(= |z]) é SE z-value P(= |z])
Int 10.038 0.669 15.005 0.000 —2.264 0.341 —6.633 0.000 —2.048 0.067 —30.415 0.000
Is2 7.747 3.091 2.506 0.012 3.480 1.577 2.207 0.027 0.989 0.052 19.160 0.000
ed2 —3.136 1.201 —2.611 0.009 —0.870 0.612 —1.422 0.155 0.172 0.039 4442 0.000
age2 11.317 4.023 2813 0.005 4.842 2.057 2.354 0.019 0.760 0.058 13.033 0.000
sm1 —2.466 0.267 —9.224 0.000 0.125 0.136 0.918 0.358 0.100 0.050 1.993 0.046
s X . iCl
0.3 H = SCI
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Figure 4. 95% bootstrap iCl and SCl estimates for poverty rates in counties of Galicia.
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Figure 5. SCl of EBP poverty proportions: (left) lower boundary, (middle) upper boundary; (right) significant differences in poverty rates between women (F) and

men (M).

tion (9). The plot is divided into five panels according to the
numbers of units in each area obtained by direct estimates of
county inhabitants Ngi' in (25). Figure 4 serves as an illustration
of the differences between individual and simultaneous infer-
ence. When comparing iCI and SCI, in many cases (e.g., first
and second county of the first panel in Figure 4) iCI would
insinuate statistically different poverty rates, whereas SCI does
not confirm this claim. Such multiple comparisons are valid
only if we use SCI. In addition, at least 5% of the true poverty
rates are not contained in their iCIs. Analogous figures under
the Poisson-lognormal and binomial models lead to the same
conclusions. They are thus deferred to the SM. Further model
selection and specification testing might be interesting but they
are beyond the scope of this article.

Since we do not know which model is closer to the real data-
generating process, we proceed with the Poisson-gamma area-
level model, as it is reliable and the least computer intensive.
Left and middle panel of Figure 5 depict the resulting maps of
the counties with the corresponding lower and upper bounds
of our SCI. We observe a higher rate of poverty in the interior
and a south-western part of the region whereas a lower level is
typical for the northern part. These conclusions are similar to
those drawn by Boubeta, Lombardia, and Morales (2017).

Finally, we investigate whether men and women are equally
affected by poverty. We wish to test for equality on the county
level across Galicia. Testing for each county individually at @ =
5% error level results in rejection of at least 5% of the hypotheses
of no significant difference. We thus use our MTP and consider
clusters created from the cross section of sex and county such
that ¢ € R!%. Wetest Hy : B¢ = 05y vs. H; : B¢ # 05
where B € R>2¥104 with rows being vectors with 1 on the
2d — 1 place, —1 on 2d place, and 0 elsewhere. The max-type
test statistic yields fy = maxg_;,__104 |BE|/6(E) =~ 20.489
while the bootstrap critical value under Hy is q%ﬁ“) 2 2.999.
Thus, we strongly reject Hy. However, our test does not support
the hypothesis that women are more affected than men, or vice
versa, see the right panel of Figure 5. Additional results are
deferred to our SM.

Remark 4. Imagine that Galician counties were considered as a
part of a macro region, for example, Spain with Ds counties, and
consider two inferential problems: (a) the calculation of SCI for
the poverty rates in all Ds Spanish counties, (b) the calculation
of SCI only for D Galician counties, but using all data. Following
Remark 1, we expect that the widths of our SCI in Figure 4 would
increase in case (a) to maintain the joint coverage probability of



95% for all Ds > D counties. In contrast, they would most likely
slightly decrease in case (b). In fact, the simultaneous coverage
probability of 95% would be requested for the set of D counties,
but SCI would be constructed using a more precise estimate of
MSE computed using a larger dataset with Dg counties.

6. Conclusions

We developed a methodology that allows for statistically valid
simultaneous inference for EBP under GLMM. We constructed
SCIand MTP applying a combination of max-type statistics and
consistent bootstrap estimation of its distribution. These tools
enable practitioners to make comparisons between areas. In
contrast, the iCls are not suitable for such comparative analyses
because they are constructed at individual confidence level and
disregard an additional variation which arises in joint studies.
We do not claim that SCI and MTP are better than iCls or
t-tests. The former simply complete the toolbox for statistical
inference for mixed parameter £;. Similarly, the simultaneous
inference completes the individual inference for fixed param-
eters. We introduced various versions of statistics to construct
SCI and MTP. Within our framework, all of them exhibited
similar performances without indicating a clear winner.

Our methodology can be extended to more complicated data
structures such as GLMM with spatial or temporal correla-
tion (see, e.g., Hobza, Morales, and Santamaria 2018; Chandra,
Chambers, and Salvati 2019). One could also consider spatio-
temporal or nonparametric models to build SCI by adjusting
the statistic Sp and choosing a bootstrap procedure accordingly.
Apart from a mathematical challenge to develop a valid asymp-
totic theory, these extensions would require a construction of an
appropriate bootstrap scheme and its computationally efficient
implementation.

Supplementary Materials

The supplementary materials consist of: (a) a document with further devel-
opments, in particular additional MSE decomposition, a proof of Proposi-
tion 1, the derivations of estimators under area-level Poisson and unit-level
binomial models, additional numerical results and a data analysis which
completes the case study in Section 5, (b) codes for replicating the results
in the main document, and (c) a document which contains additional
information on the data set and the description of the codes.

Appendix A: Technical details

A.1. Regularity conditions

In this section, we state the regularity conditions used in our deriva-
tions.

L. iy = argmax,,, p{loggi(valug,0) + logh(uz)}.

2. 1(#) exists and is well-defined if: (a) /() is continuous, uniquely
maximized and 8o € O, where fp is a true parameter value; (b)
1(#) and i{ﬂ} are concave; (c) 8¢ is an interior point of the parameter
space and the estimator 9 is an interior point of the neighborhood
of 8g; (d) 5(9) converges uniformly in probability to 1(#).

3. xgj are bounded and E(y:}}) < oo foralld € [D],j € [n4], where m
is suitable large.

4. For each fixed y, a score equation is continuously differentiable and
E{R(o)} = 0.
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5. limninfl[n_IVar{R(G)}] > 0and ]jmninfk[—n_l]E{VR{ﬂ}}] >0

where VR(#) = %%‘ﬂ and A[A] indicates the smallest eigenvalue of
matrix A.

The first two conditions refer to the log-likelihood function (see, e.g.,
Bianconcini 2014), whereas conditions 3-5 are needed for the deriva-
tion of the MSE estimators.

A.2. Proof of Proposition 2

Let y;a. ~ Exp.Family(6). If u?; is sampled from a suitable distribution,
then we have y‘};. =M {]E(y%wd)} = xffjﬁ + u}. Furthermore,
Var*(y}) = Var*(E*(v}lu})) + E*(Var* (y§|u})). The first part of
the Proposition follows from the way we generate the random effects as

well as the results on the consistency of 6. To show the second part we
consider a general score equation. Replace y by y* and set @ = @, that

is, R*(8) = =2 M — 0. Then E*(R*(6)} = O at

6 = 6 which ylelds consistency of 0 .0

A.3. Proof of Proposition 3

Let ¢ be a general EBP, g:=¢;(6) and §,5:=,1(f). Assume that ||3; —
&4ll = Op(n=°), ¢ > 0. The proof uses ideas of Chatterjee, Lahiri, and
Li (2008). We investigate the properties of G;(a).

td — td
Gg(a) =P <a
( <)

J_d ﬂ/_d
]E[I{a f Q(a'Jd)]]

= 2@+ @E|Q@aya)} - 2 @E | QP @ ya)|

1 a+Qlayg) 2
+27'E f {a+ Qa,y) — 222 — D (x)dx |
a

I(\f—d

Applying some classical results and a triangle inequality, it follows that
the last term is bounded by E|Q|?, and is of smaller order than the first
three terms. Therefore, the first step toward the consistency of SCI is to
quantify the asymptotic expansions of E{Q(a,y4)} and E{Q?(a, yz)}.
We decompose Q(a, y;) into

1/2,,1/2

Qayy =87 G- +ag; @Y —/H =i+ Q.

Let ¢ be a twice differentiable function with respectto 8, y; = y41 +

- + Ydny» Vd € [D]. Observe that y; = y4 under an area-level
model. The specific form of ¢ depends on the choice of the GLMM (for
instance, under the Poisson-gamma model we spelled it out in Equation
(7)). Function v satisfies the decomposition

ba—Ta=Va04,0) — Va(r4,0) = {3%“!”&()’:1,:9)]: (9 - 9)

+4(0-0) {5 va0a.0)} (2 -0) +op(1d — 01
(A1)

Let C = 2¢ where ¢ > 0. Since we assume ||€3 —8|| = Op(n—*), we
have

S s 1 3 b 2 _c
E[(£a®) ~ 2a@)) ] = —E ([ gwm_,ﬂ)} n (8- o)] )+a(n )
(A2)
As for Qy, it has been found in Equation (A.1) that

E(tq—ta) = [{aaww 9)} b — 9)]+0( ).
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and E [(g,”-d — Ed)zl = O(n~C), thanks to the result in Equation
(A.2). Furthermore, observe that g4 is of order O(1) which leads to
E(Q1) = O(D~°) as well as ]E(Q%} = O(D—C). When we turn to Q,,
we have an immediate simplification Q; = ﬁgt;l’r 2@;‘; z_ gclf 2} =
al@a/g)"* —1}. Let g4 be twice differentiable with respect to 6.
Similarly to the computations above, we have the expansion

240) = ga(8) + (%g&{ﬂ))t (é _ 9) + % (é _ e)t

a2 A n
X (%&1(9)) (9 — 9) +op(|16 — 0]1%).

Therefore, we obtain
B(340)) = 20) + —E || Zo0)] nC (-0) [+0075
d AT 50% :

It follows that E {@;‘g)”z} = O ), E(Q) = On ) and
]E{Q%} = O(n—C). We can deduce that G 4(a) attains the asymptotic
expansion G4(a) = ®(a)+n"y(a, ) +0(nC). A similar expansion
can be established for G;{a) if we replace # with # and P with P*.
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