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Abstract

In this article we consider the design of linear precoders and receivers in

a Multiple-Input Single-Output (MISO) Broadcast Channel (BC). We aim

to minimize the transmit power while meeting a set of per-user Quality-of-

Service (QoS) constraints expressed in terms of per-user average rate re-

quirements. The Channel State Information (CSI) is assumed to be known

perfectly at the receivers but only partially at the transmitter. To solve this

problem we convert the QoS constraints into Minimum Mean Square Error

(MMSE) constraints. We then leverage MSE duality between the BC and the

Multiple Access Channel (MAC), as well as standard interference functions

in the dual MAC, to perform power minimization by means of an Alternating

Optimization (AO) algorithm. Problem feasibility is also studied to deter-

mine whether the QoS constraints can be met or not. Finally, we present an
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algorithm to balance the average rates and manage situations that may be

unfeasible, or lead to an unacceptably high transmit power.

Keywords: Multiple-Input Single-Output, Broadcast Channels, imperfect

CSI, QoS constraints, rate balancing

1. Introduction

The Multiple-Input Single-Output (MISO) Broadcast Channel (BC) is an

appropriate model for the downlink of a cellular communication system in

which a Base Station (BS) with N antennas serves a set of K single-antenna

non-cooperative users. We assume signals are linearly filtered at transmission

and reception to mitigate the inter-user interference. We also assume per-

fect Channel State Information at the Receivers (CSIR) but only imperfect

Channel State Information at the Transmitter (CSIT). This is a reasonable

assumption in practical setups, as receivers can accurately estimate the CSI

from the incoming signals while the transmitter obtains the CSI via a feed-

back channel in Frequency Division Duplex (FDD) systems, or an estimate

of the reciprocal uplink CSI in Time Division Duplex (TDD) systems.

Several imperfect CSI models have been considered in the literature.

Some authors employ bounded uncertainty models which lead to optimiza-

tion problems that can be addressed using standard convex solvers [1, 2, 3, 4].

Other authors, as in this work, model CSI uncertainty as a stochastic error

whose distribution is known [5, 6, 7, 8].

Different performance metrics have been considered for BC optimization.

Maximizing the Signal to Interference–plus–Noise Ratio (SINR) [1, 3, 9] is

a common approach closely related to the maximization of the data rate.

2



Moreover, imperfect CSIT is considered in [9] by handling approximations

for the average SINR in which the expectation is applied separately to the

numerator and the denominator. The tightness of such an approximation,

however, is questionable and it is unclear whether it represents an upper or

a lower bound. Other metrics are based on Mean Square Error (MSE). Per-

user MSE has been considered in [2], or in [8], in which an approximation

of the average MSE based on Taylor expansion was proposed. Also, the

inverse of the MSE was studied in [4]. Sum MSE [3, 5], and MSE balancing

[5, 10] have also been addressed frequently. Sum MSE minimization in the

BC can be converted into an equivalent minimization in the dual Multiple

Access Channel (MAC) to perform Alternating Optimization (AO). Finally,

weighted sum rate was studied; e.g., in [11, 12]. A common approach is

to reformulate the problem as a weighted sum MSE to find solutions based

on Geometric Programing (GP), or based on the algorithm proposed in [12].

However, sum rate optimizations may lead to unfair situations in which some

of the users get low (or even zero) information rates.

Regarding optimization in the BC, some authors search for the best metric

performance for the given transmit power [5, 10, 11]. Alternatively, authors

in [1, 2, 3, 4] consider the minimization of the total transmit power under a set

of Quality-of-Service (QoS) constraints, as done in this work. In particular,

we ensure that users enjoy certain average rate values, which make it possible

to avoid the unfair situations stated previously.

To tackle the corresponding optimization problem, average rate con-

straints are replaced by average MMSE requirements using Jensen’s inequal-

ity. Note that, contrary to other solutions (e.g. [8, 9]), no approximations
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are needed to theoretically solve MSE problem formulation. Hence, we de-

termine the MISO BC linear precoders and receivers by means of an AO

process in which we resort to duality between the BC and the MAC, as done

in, e.g., [10]. More specifically, we employ the MSE duality proposed in [13]

according to the assumption of perfect CSIR and imperfect CSIT. In the dual

MAC, power minimization can be expressed as a power allocation problem

and solved using the framework proposed in [14].

This work also shows that the proposed power minimization algorithm

converges if the QoS constraints can be met. Therefore, we provide a test

for checking the feasibility of the average rate restrictions.

Additionally, we consider the rate balancing problem: the minimum of the

average rates is maximized under a total transmit power constraint. Again,

this problem is reformulated by bounding the average rates by average MM-

SEs. Such reformulation leads to the minimization of the maximum weighted

average MSE under a total power constraint, and it can be solved by com-

bining a bisection search with the proposed power minimization algorithm.

In recent communication systems, users are provided with more than

one antenna. When we extend the system model to the MIMO scenario,

two possibilities arise: single or multiple per-user streams may be consid-

ered. Considering more than one per-user stream adds more complexity to

the problem, since the per-user average rate constraints have to be divided

amongst all the streams allocated to the user. Discussion on such matters is

not within the scope of this work. However, the methods proposed for the

MISO BC directly apply in the single-stream MIMO BC, as shown in [15].

The following notation is used. Matrices and column vectors are written
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Figure 1: Sytem model of the Gaussian MISO BC.

using uppercase and lowercase boldface characters, respectively. By [X]j,k,

we denote the element in row j and column k of matrixX; diag(xi) represents

a diagonal matrix whose i-th diagonal element is xi; IN stands for the N ×
N identity matrix, and 1 represents the all ones vector. The superscripts

(·)∗, (·)T, and (·)H denote the complex conjugate, transpose, and Hermitian.

ℜ{·} represents the real part operator. Finally, E[·] stands for statistical

expectation, tr(·) denotes the trace operation, and |·|, ‖·‖2, ‖·‖F stand for the

absolute value, the Euclidean norm, and the Frobenius norm, respectively.

2. System Model

Let us consider the system model of the Gaussian MISO BC depicted in

Fig. 1. We assume the BS is equipped with N transmit antennas and sends

the data signal sk ∈ C to the user k ∈ {1, . . . , K}. The data signal vector

s = [s1, . . . , sK ]
T is assumed to be zero-mean, unit-variance, uncorrelated,

and Gaussian; i.e., s ∼ NC(0, IK). The data signals are precoded with the

linear filters pk ∈ CN at the BS and propagate over the vector channels

hk ∈ C
N . At the user-ends, the received signals are linearly filtered with
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fk ∈ C to produce an estimate of the k-th user data signal

ŝk = f ∗
kh

H
k

K
∑

i=1

pisi + f ∗
kηk, (1)

where ηk ∼ NC(0, σ
2
ηk
) represents the thermal noise independent of the data

signals. Note that, according to this signal model, the transmit power is
∑K

k=1 ‖pk‖2.
We assume that the receiver k has perfect knowledge of its own channel

hk. Contrarily, the BS only has imperfect knowledge of the CSI which is

modeled through the random variable v. The random nature of v is due to

numerous sources of error (i.e., channel estimation, quantization, delay, etc.)

which affect the acquisition process for the CSIT in both TDD and FDD

systems. Imperfect channel knowledge is expressed through the conditional

Probability Density Functions (PDF) fhk |v(hk|v), assumed to be known at

the transmitter.

Recalling (1), ŝk is a noisy version of the data signal sk. The achievable

instantaneous data rate in such situation is

Rk = log2(1 + pH
k hkh

H
k pkx

−1
k ), (2)

where xk = hH
k (
∑

i6=k pip
H
i )hk+σ2

ηk
. In this work, we search for the precoders

pk that minimize the transmit power while meeting the Quality of Service

(QoS) constraints E[Rk(v)] ≥ ρk, k ∈ {1, . . . , K}, where {ρk}Kk=1 is the set

of per-user average rates to be met by the system. Note that the notation

Rk(v) highlights that the transmitter has access to the partial CSIT v for

any channel realization hk, ∀k. Based on partial CSIT v, the BC precoders
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are determined according to the variational problem

min
{pk(v)}Kk=1

E

[

K
∑

k=1

‖pk(v)‖22

]

s.t. E [Rk(v)] ≥ ρk, ∀k. (3)

Note that optimization is over the maps pk(v); i.e., with the precoders

depending on the partial CSIT v. The constrained minimization problem (3)

is difficult to solve in general. However, in the ensuing subsection, we exploit

the relationship between the average rate and the average MMSE to express

(3) in a more manageable way.

2.1. MSE Constrained Optimization

Let MSEBC
k = E[|sk − ŝk|2] be the instantaneous MSE of the k-th user in

the BC. For given channel hk,

MSEBC
k = 1− 2ℜ

{

f ∗
kh

H
k pk

}

+ |fk|2
(

∣

∣hH
k pk

∣

∣

2
+ xk

)

, (4)

where xk is as defined below (2). Note that hk is assumed to be fixed in (4).

Therefore, the partial CSIT v is likewise fixed and we drop the dependence of

pk on v for the sake of brevity. Correspondingly, the minimum MSE receive

filter is expressed by

fMMSE
k (hk) =

(

hH
k

K
∑

i=1

pip
H
i hk + σ2

ηk

)−1

hH
k pk, (5)

and the MMSE is obtained by substituting (5) into (4); i.e.,

MMSEBC
k = 1− fMMSE,∗

k (hk)h
H
k pk. (6)

Finally, by applying the equality 1 − a
b
= (1 + a

b−a
)−1 to (6) it is possible to

express the k-th user rate (2) as Rk = − log2(MMSEBC
k ).
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Equations (4), (5) and (6) are suitable for the BC design with perfect CSI

at both ends of the communication system. However, for imperfect CSIT we

consider the average MSE at the BC, E[MSEBC
k (v)]. Correspondingly, the

average MMSE at the BC is expressed by

E[MMSEBC
k (v)] = E

[

1− fMMSE,∗
k (hk)h

H
k pk(v)

]

,

where we highlight the perfect CSIR assumption by fk(hk).

Taking advantage of log2(·) function concavity, and employing Jensen’s

inequality, we arrive at the following lower bound for the average rate

E [Rk(v)] ≥ − log2 E
[

MMSEBC
k (v)

]

≥ − log2 E
[

MSEBC
k (v)

]

. (7)

An example of the gap between the average rate and the average MMSE

lower bound is examined in Appendix A.

The constraints in (3) hold for − log2 E[MSEBC
k (v)] ≥ ρk, and they are

conservatively rewritten accordingly as

E
[

MSEBC
k (v)

]

≤ 2−ρk . (8)

Hence, the optimization problem (3) can be reformulated as

min
{pk(v),fk(hk)}Kk=1

E

[

K
∑

k=1

‖pk (v)‖22

]

s.t. E
[

MSEBC
k (v)

]

≤ 2−ρk , ∀k. (9)

Contrary to (3), the scalar receive filters fk(hk) are now involved in the

optimization process. Nevertheless, in the optimum of (9), MMSE filters are

used [see (5)].

Note that, by means of Bayes’ rule, E[MSEBC
k (v)] = E[E[MSEBC

k (v)| v]].
Thus, introducing MSE

BC

k (v) = E[MSEBC
k (v)| v], the variational problem of
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(9) can be solved pointwise for the given v as follows

min
{pk(v),fk(hk)}Kk=1

K
∑

k=1

‖pk(v)‖22 s.t. MSE
BC

k (v) ≤ 2−ρk , ∀k. (10)

Note that the average transmit power resulting from (10) is larger than that

obtained in (3) since the MMSE constraints in (10) are more restrictive than

the rate constraints in (3). From here forward, we use pk, fk and MSE
BC

k for

the sake of notational brevity.

2.2. BC/MAC MSE Duality

It is important to note that MSE
BC

k is independent of the receive filter

fj for j 6= k but depends on all precoders pj for j 6= k. This means that

pk cannot be individually optimized when solving (10) but, instead, all pre-

coders should be jointly optimized. Nevertheless, it is possible to avoid such

dependence by exploiting MAC/BC MSE duality as described in [13].

In the Single-Input Multiple-Output (SIMO) MAC dual to the MISO BC,

the receive and transmit filters are represented by gk ∈ C
N and tk ∈ C,

respectively, while θk = hkσ
−1
ηk

∈ CN and n ∼ NC(0, IN) represent the

channel response and noise in the dual MAC. The average MSE is, thus,

MSE
MAC

k (v) = 1− 2E
[

ℜ
{

gH
k θktk

}

| v
]

+ ‖gk‖22 + E

[

K
∑

i=1

|ti|2
∣

∣gH
k θi

∣

∣

2

∣

∣

∣

∣

∣

v

]

,

(11)

where the expectations are taken w.r.t. all channels for the given partial CSI

v as in MSE
BC

k (v) from (10).

Suppose, now, that the filters in the MAC; i.e., tk and gk, are given.

Introducing the set {αk}Kk=1 ∈ R+, and the following relationships between
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the MAC and the BC filters

pk(v) = αkgk(v), fk = α−1
k σ−1

ηk
tk (θ1, θ2, . . . , θK) , (12)

it is possible to achieve identical MSEs for all the users in the BC, just as

in the MAC, i.e., MSE
BC

k = MSE
MAC

k ∀k. Moreover, the average transmit

power is preserved [13]. Note that the MAC receive filters and precoders

are functions of the partial CSIT v and the channel, respectively, like the

corresponding BC precoders and receive filters.

In summary, a problem in the BC based on MSE
BC

k can be equivalently

reformulated in the dual MAC with MSE
MAC

k , and vice-versa [13].

3. Power Minimization

We now focus on solving the power minimization problem as formulated

in (10). First of all, for given BC precoders pk, the MMSE BC scalar receive

filters fMMSE
k are readily obtained via (5) considering perfect CSIR. Next,

we convert the BC receive filters fk to the MAC precoding weights tk using

MSE duality. Recall that tk is a function of hk.

Let us now define the average transmit power ξk = E[|tk|2| v] and the nor-

malized MAC precoders τk = tk/
√
ξk so that E[|τk|2| v] = 1. Let us also intro-

duce the conditional expectations µk = E[τkθk| v] and Θi = E[|τi|2θiθ
H
i | v].

Finally, let us define ξ = [ξ1, . . . , ξK]
T as the vector containing the average

transmit powers for all users, i.e., the power allocation vector. Notice that,

unlike the precoders tk, ξ only depends on the partial CSIT v, similar to the

total transmit power
∑K

k= ‖pk(v)‖22 in the BC.
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With these definitions, MSE
MAC

k from (11) reads as

MSE
MAC

k = 1− 2
√

ξkℜ
{

gH
k µk

}

+ gH
k

(

K
∑

i=1

ξiΘi + IN

)

gk. (13)

Therefore, the equalizers minimizing the MSE
MAC

k are

gMMSE
k =

(

K
∑

i=1

ξiΘi + IN

)−1
√

ξkµk. (14)

By substituting (14) into (13), we obtain the following expression

MMSE
MAC

k = 1− ξkµ
H
k

(

K
∑

i=1

ξiΘi + IN

)−1

µk. (15)

In order to obtain a computationally-efficient update of the power allo-

cation, let us introduce the scalar MAC parameters rk so that gk = rkg̃k

(cf. [16, Sec. 4.1]). Thus, (13) reads as

MSE
MAC

k = 1− 2ℜ
{

r∗kg̃
H
k µk

√

ξk

}

+ |rk|2 g̃H
k

(

K
∑

i=1

ξiΘi + IN

)

g̃k. (16)

For given g̃k, the optimal scalar filters are

rMMSE
k = g̃H

k µk

√

ξk

(

g̃H
k

(

K
∑

i=1

ξiΘi + IN

)

g̃k

)−1

. (17)

Substituting rMMSE
k into (16) yields the following average MAC MMSE

Σk = 1− ξk
∣

∣g̃H
k µk

∣

∣

2
y−1
k , (18)

where yk =
∑K

i=1 ξig̃
H
k Θig̃k + ‖g̃k‖22. Replacing g̃k in (18) with gMMSE

k given

by (14), yields (15). Therefore, (14) is the minimizer of both (13) and (18).
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3.1. Power Allocation

So far, we have found the MMSE vector receivers in the MAC, {gMMSE
k }Kk=1,

corresponding to the BC precoders {pk}Kk=1. We now search for the optimal

MAC receivers {gk}Kk=1 and power allocation ξ that minimize the transmit

power (subject to the QoS constraints MMSE
BC

k ≤ 2−ρk) for given normal-

ized precoders {τk}Kk=1. Due to the mutual dependence of {gk}Kk=1 and ξ, we

have to jointly optimize both of them.

To that end, we rely on standard interference functions [14, 17]. They

concisely describe the framework of the system requirements depending on

power allocation as the vector inequality ξ ≥ f (ξ). To ensure that the fixed

point iteration ξ(n+1) = f (ξ(n)) converges to the optimal solution for ξ, the

function f (·) must satisfy f (ξ) > 0 (positivity), af (ξ) > f (aξ) ∀a > 1

(scalability), and f (ξ) ≥ f (ξ′), ξ ≥ ξ′ (monotonicity).

We now define Ik(ξ) = ξkΣk, which can be interpreted as the interference

for user k. Applying the equality 1− a
b
= (1 + a

b−a
)−1 to (18) yields

Ik (ξ) =

(

1

ξk
+
∣

∣g̃H
k µk

∣

∣

2
(

yk − ξk
∣

∣g̃H
k µk

∣

∣

2
)−1

)−1

. (19)

We subsequently collect all of these functions into the vector I(ξ) = [I1(ξ), . . . , IK(ξ)],

meeting the conditions of a standard interference function.

Note that, due to BC/MAC average MSE duality, the QoS constraints can

be equivalently expressed as MSE
MAC

k ≤ 2−ρk . Furthermore, since Σk = Ik(ξ)
ξk

,

we reformulate the power minimization problem (10) in the dual MAC for a

given set of normalized precoders {τk}Kk=1 as

min
{ξk,g̃k}Kk=1

K
∑

i=1

ξi s.t.
Ik (ξ)

ξk
≤ 2−ρk , ∀k. (20)
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As shown in [14], since I(ξ) is a standard interference function, the iter-

ation ξ
(n)
k = 2ρkIk(ξ

(n−1)) converges to ξoptk for given {g̃k}Kk=1.

Moreover, the aforementioned iteration can also be used to jointly find

the {ξk, g̃k}Kk=1 that solve the power minimization problem (20). Indeed,

let Ik(ξ, g̃k) = ξkΣk be the same function explicitly highlighting the depen-

dence on g̃k. Similarly, we rewrite the interference function as I(ξ, G̃) =

[I1(ξ, g̃1), . . . , IK(ξ, g̃K)]
T, with G̃ = [g̃1, . . . , g̃K ]. Since I(ξ, G̃) is standard

for any G̃, so is minG̃ I(ξ, G̃), in which minimization is performed element-

wise. As a consequence, the Alternating Optimization (AO) iteration

g̃
(n)
k ←

(

K
∑

i=1

ξ
(n−1)
i Θi + IN

)−1
√

ξ
(n−1)
k µk∀k,

ξ
(n)
k ← 2ρkIk

(

ξ(n−1), g̃
(n)
k

)

∀k, (21)

converges to the global optimum of (20), as shown in [17].

Finally, the dual MAC equalizers obtained can be converted into the BC

precoders by applying BC/MAC average MSE duality [see (12)].

3.2. Power Minimization Algorithm

Algorithm 1 presents the steps to solve the optimization problem (10)

according to the ideas presented so far. Recall that we assume that v and

fhk|v(hk|v) are known at the transmitter, according to the imperfect CSIT

model. Since closed-form expressions of the expectations in (20) are not

known for general channel models, we evaluate them by using a Monte Carlo

method. To that end, we generateM channel realizations h
(m)
k ∼ fhk |v(hk|v),

m = 1, . . . ,M , and introduce the matrix Hk = σ−1
ηk
[h

(1)
k , . . . ,h

(M)
k ] to collect

the M dual MAC channel realizations. We also define t
(m)
k as the k-th user

13



scalar MAC precoder for given channel realization h
(m)
k . By collecting the

t
(m)
k we get the normalized diagonal precoder

Tk =
1√
ξk

diag
(

t
(1)
k , . . . , t

(M)
k

)

, (22)

where ξk =
1
M

∑M

m=1 |t
(m)
k |2 is the k-th user average transmit power for given

v. Therefore, we calculate the expectations as µk = 1
M
HkTk1 and Θk =

1
M
HkTkT

H
k HH

k .

We start with an initial set of BC random precoders {p(0)
k }Kk=1 (line 1). We

next calculate the M BC receivers f
MMSE,(m)
k corresponding to the channel

realizations h
(m)
k (line 5). Applying BC/MAC duality, we determine the M

dual MAC precoders (line 7). The normalized matrix of MAC precoders is

obtained after lines 8 and 9 are executed.

The following two steps (lines 10 and 11) perform iteration (21) to update

the power allocation and the dual MAC receivers. Observe, however, that

we do not include the loop arising from the optimization in (21). The reason

is to avoid convergence problems -which may occur even when the problem

constraints are feasible- caused by the lack of feasibility of the power min-

imization problem for given MAC precoders T
(ℓ)
k at the ℓ-th iteration (cf.

(20)). Therefore, considering a single loop, we avoid this undesirable effect,

as can be seen in our simulation experiments (cf. [16, 15]).

After the updates in lines 10 and 11, the new MAC transmit filters are

determined in line 13. Finally, we switch back to the BC in line 15. Due to the

existence of a unique minimum in (10), and to the fact that every step in the

algorithm either reduces the average MMSEs or the total transmit power,

the convergence of the algorithm is guaranteed when the QoS constraints
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Algorithm 1 Power Minimization trough AO

1: ℓ ← 0, initialize p
(0)
i , ∀i

2: repeat

3: ℓ ← ℓ+ 1, execute commands for all k ∈ {1, . . . , K}
4: for m = 1 to M do

5: f
(ℓ,m)
k ←f

MMSE,(ℓ,m)
k [see (5)]

6: end for

7: t
(ℓ,m)
k ← BC-to-MAC conversion [see Sec. 2.2]

8: ξ
(ℓ−1)
k ← 1

M

∑M

m=1 |t
(ℓ,m)
k |2

9: T
(ℓ)
k ← 1

√

ξ
(ℓ−1)
k

diag(t
(ℓ,1)
k , . . . , t

(ℓ,M)
k )

10: ξ
(ℓ)
k ← 2ρk Ik(ξ

(ℓ−1)) [power update]

11: g
(ℓ)
k ← update MAC receiver [see (14)]

12: for m = 1 to M do

13: t
(ℓ,m)
k ←

√

ξ
(ℓ)
k [T

(ℓ)
k ]m,m [include power allocation]

14: end for

15: p
(ℓ)
k ← MAC to BC conversion [see Sec. 2.2]

16: until ||ξ(ℓ) − ξ(ℓ−1)||1 ≤ δ

are feasible (see Section 4). To check whether we have reached the desired

accuracy or not, we set a threshold δ (line 16).

The computational complexity is approximately linear in the number of

channel realizations, O(M), since the sizes of the matrices to be inverted in

lines 7, 15, and 11 are small compared to M , i.e. K ≪ M and N ≪ M .
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4. Problem Feasibility

In this section, we analyze the feasibility of the power minimization prob-

lem (10). Due to the imperfect CSI assumption, interferences cannot be

completely removed in the BC. Consequently, increasing the total transmit

power does not necessarily lead to a reduction of the MMSEs for all the

users because, although this increases the received power, it also increases

the power of the interferences. In certain scenarios, the QoS constraints may

require that some users achieve low MMSE values that may be unfeasible

even though the transmit power is increased unlimitedly. Below, we present

a feasibility test to determine whether it is possible or not to accomplish the

QoS constraints MMSE
MAC

k = 2−ρk .

Let us start by considering the average MMSE in the MAC

MMSE
MAC

k = 1− θ̄
H
k

(

σ2IN +

K
∑

i=1

E[|ti|2 θiθ
H
i | v]

)−1

θ̄k, (23)

where θ̄k = E[θktk| v] and σ2 is the thermal noise variance in the dual MAC.

We define Υ = [θ1, . . . , θK ] diag(t1, . . . , tK) and rewrite (23) as follows

MMSE
MAC

k = 1−
[

E[Υ H|v]
(

E[ΥΥ H|v] + σ2IN
)−1

E[Υ |v]
]

k,k
. (24)

Hence, the sum average MMSE is

K
∑

i=1

MMSE
MAC

i = K − tr
(

E[Υ H|v]
(

E[ΥΥ H|v] + σ2IN
)−1

E[Υ |v]
)

. (25)

When K ≥ N and the channel knowledge is perfect on both sides, (25) can

be made arbitrarily small [18]. However, due to the imperfect CSI at the

MAC receiver, we cannot reduce the average MMSE as much as desired.
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Expression (25) allows us to determine the region where the feasible av-

erage MMSEs lie. Indeed, by setting the MAC thermal noise variance to

zero (i.e., σ2 = 0) we obtain the following lower bound for the sum average

MMSE for any finite total average power allocation

K
∑

i=1

MMSE
MAC

i > K − tr{X}, (26)

where X = E[Υ H|v](E[ΥΥ H|v])−1 E[Υ |v]. The bound is asymptotically

achieved when the powers for all users reach infinity. Therefore, we can

formulate a necessary condition for the feasibility of QoS targets: any power

allocation with finite sum power achieves a MMSE tuple {MMSE
MAC

i }Ki=1

inside the polytope

P =

{

{MMSE
MAC

i }Ki=1 |
K
∑

i=1

MMSE
MAC

i ≥ K − tr {X}
}

. (27)

Moreover, for each MMSE tuple in P, there is a power allocation vector ξ

(see [15] for the complete proof).

5. Rate Balancing

So far we have considered the design of the filters in a MISO BC to min-

imize the transmit power while meeting certain QoS constraints. However,

when the QoS constraints are rather stringent, the problem may be unfeasi-

ble. We now address a different problem, referred to as rate balancing in the

literature, in which the per-user average rate constraints {ρk}Kk=1 are scaled

by a common factor ς ∈ R+, and a power restriction Ptx is imposed. Observe

that, unlike the power minimization formulation, we can relax the per-user

requirement so that the problem is always feasible. For such a formulation,

17



we propose to jointly optimize the balance level ς together with the precoders

and receivers for given transmit power Ptx.

Using the lower bound (7), the problem formulation reads as

max
{ς(v),pk(v),fk(hk)}Kk=1

E [ς(v)] s.t. E

[

K
∑

i=1

‖pi(v)‖22

]

≤ Ptx,

and E
[

MSEBC
k

]

≤ 2−E[ς(v)]ρk , ∀k. (28)

Following a line of argumentation similar to the one presented in Sections 2

and 3, the problem (28) can be solved pointwise for each v using the MSE

duality and interference functions. Hence, we rewrite (28) as

max
{ς,ξk ,gk}Kk=1

ς s.t.
Ik (ξ)

ξk
≤ 2−ςρk , and

K
∑

i=1

ξi ≤ Ptx, (29)

where ξ = [ξ1, . . . , ξK]
T is the power allocation vector, gk are the dual MAC

receivers, and Ik (ξ) are the interference functions [cf.(19)]. Similarly to (20),

this formulation considers given MAC precoders. Algorithm 1 can be used to

determine optimum filters for given ς, but it does not provide the optimum

ς. Our proposal is to combine it with a bisection search to solve (29).

Indeed, let us start setting two feasible rate balancing values ςL and ςH so

that ςL ≤ ςopt ≤ ςH. Let ξL and ξH be the optimum power allocation vectors

corresponding to ςL and ςH, respectively. Such optimal power allocation

vectors satisfy on the one hand Ik(ξ
L)

ξL
k

= 2−ςLρk and Ik(ξ
H)

ξH
k

= 2−ςHρk , and on

the other
∑K

i=1 ξ
L
i ≤ ∑K

i=1 ξ
opt
i ≤ ∑K

i=1 ξ
H
i , as shown below.

We now introduce the average MMSE balancing factors ǫk = 2−ςρk

2−ρk
=

2−ρk(ς−1). Note that increasing the balance level ς, decreases the scaling

factors ǫk, ∀k. Let ǫLk and ǫHk be the MSE scaling factors corresponding to ςL

and ςH, respectively. Note that ǫLk ≥ ǫoptk ≥ ǫHk .
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To prove that a bisection search can be performed, we consider ǫLk = aǫoptk ,

with a > 1. The constraints in (29) are met with equality when ǫk = ǫoptk and

ξ = ξopt. Hence, aǫoptk 2−ρk = a Ik(ξ
opt)

ξ
opt
k

means that increasing the MSE targets

results in a decrease in the transmit power (i.e. ξk = a−1ξoptk , ∀k) when we

keep the interference constant. Moreover, notice that keeping the interference

constant sets an upper bound for the interference with the reduced transmit

powers Ik(a
−1ξopt) < Ik(ξ

opt). Therefore, the power needed to meet the

constraint with equality is lower than a−1ξopt, and 1TξL < a−11Tξopt < Ptx

holds.

We now prove the relationship in the reverse direction; that is, a power

reduction translates into larger scaling factors ǫk. Let us consider the power

reduction Aξopt with A = diag(a1, · · · , aK) < I, which yields a certain

average MSE scaling factor ǫ̃k for any user k, i.e., ǫ̃k2
−ρk = 1

akξ
opt
k

Ik(Aξopt).

Since no assumptions about user k have been made, we can focus on user k′

so that ak′ ≤ ak ∀k. Consequently,

ǫ̃k′2
−ρk′ =

Ik′
(

Aξopt
)

ak′ξ
opt
k′

≥ Ik′
(

ak′ξ
opt

)

ak′ξ
opt
k′

>
Ik′

(

ξopt
)

ξoptk′

= ǫoptk′ 2
−ρk′ . (30)

Therefore, ǫ̃k′ > ǫoptk′ for ξopt > Aξopt. We have previously shown that relax-

ing the balancing level ǫoptk implies a power reduction with respect to ξopt.

Hence, we conclude that a power reduction entails a lower balancing level

ς, and vice-versa, when the precoders, receive filters, and power allocation

vectors are optimum for every balancing level.

Finally, reducing the gap between ςL and ςH results in the optimum bal-

ancing level ςopt for the total average transmit power 1Tξopt = Ptx.
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5.1. Rate Balancing Algorithm

Algorithm 2 presents the steps to solve the optimization problem (29).

The algorithm is initialized with two balancing levels ςL,(0) and ςH,(0) (line

1). Next, their corresponding vector power allocation vectors, ξH,(0) and

ξL,(0), are computed via Algorithm 1 (line 2). Observe that the optimum lies

between the initial balancing levels. Next, the algorithm enters a loop that

first computes a new balancing level as the geometric mean of the balancing

levels obtained in the previous iteration (line 5). Then, the power allocation

vector for this new balancing level is computed via Algorithm 1 (line 6). Next,

we check whether the power obtained is lower than the power constraint or

not (line 7) and update the balancing levels accordingly (lines 8 and 10).

Lastly, we test if the current power has the desired accuracy (line 12).

The convergence of Algorithm 2 depends on the feasibility of the ini-

tial average MSE targets 2−ςH,(0)ρk ∀k. Indeed, recall that the feasibility re-

gion is described in Section 4 as a bounded polytope and that the initial

balancing levels ςL,(0) and ςH,(0) are chosen so that ςL,(0) ≤ ςopt ≤ ςH,(0).

Hence, if 2−ςH,(0)ρk ∀k lies inside the polytope, 2−aςH,(0)ρk ∀k likewise lies in-

side for 0 ≤ a < 1. Considering that the average MMSE given by 1

ξ
(ℓ)
k

Ik(ξ
(ℓ))

is monotonically decreasing in ξ(ℓ), the bisection procedure reduces gaps

(ςH,(ℓ) − ςL,(ℓ)) and |1Tξ(ℓ) − Ptx| at every iteration.

6. Results and Discussion

In this section, we present the results of several simulation experiments.

First, let us introduce the error model corresponding to the imperfect CSIT

hk = h̄k + h̃k, (31)
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Algorithm 2 Rate Balancing

1: ℓ ← 0, initialize ςL,(0), ςH,(0)

2: find ξH,(0) ≤ ξL,(0) via Alg. 1 [power min.]

3: repeat

4: ℓ ← ℓ+ 1

5: ς(ℓ) ←
√
ςL,(ℓ−1)ςH,(ℓ−1) [new candidate]

6: find ξ(ℓ) for ς(ℓ) via Alg. 1 [power min.]

7: if
∑K

i=1 ξ
(ℓ)
i < Ptx then

8: ςH,(ℓ) ← ς(ℓ), ςL,(ℓ) ← ςL,(ℓ−1) [weights update]

9: else

10: ςL,(ℓ) ← ς(ℓ), ςH,(ℓ) ← ςH,(ℓ−1) [weights update]

11: end if

12: until |∑K

i=1 ξ
(ℓ)
i − Ptx| < δ

where h̄k = E[hk| v] and h̃k is the error. This flexible model can repre-

sent, for example, the errors as result of calibration in TDD systems or the

quantization and estimation errors in FDD systems. We assume that the

imperfect CSI error is zero-mean Gaussian, i.e. h̃k ∼ NC(0,Ck) where Ck =

E[(hk−h̄k)(hk−h̄k)
H| v] is the k-th user CSI error covariance matrix. Recall

that v and fhk|v(hk|v) are known at the transmitter, although the specific re-

alizations of hk and h̃k are not. According to that assumption, it is possible

to generate the channel realizations h
(m)
k = h̄k+ h̃

(m)
k for k = {1, . . . , K} and

m = {1, . . . ,M}, with h̄k = E[hk|v] and h̃
(m)
k ∼ NC(0,Ck). In our scenario,

the number of users and transmit antennas were K = 4 and N = 4, respec-

tively. We generated M = 1000 channel realizations considering Ck = IN ,

21



5 10 15 20 25
2

4

6

8

10

12

14

16

18

Number of iterations

T
o

ta
l 

av
g

. 
P

o
w

er
 (

d
B

)

(a)

5 10 15 20 25

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of iterations

A
v

er
ag

e 
R

at
e

 

 

MMSE l.b.

SINR Approx.

Rate targets

User 1

User 2

User 3

User 4

(b)

Figure 2: Performance of Algorithm 1 for power minimization. (a) Total average power

vs. Number of iterations. (b) Per-user average rates vs. Number of iterations.

and h̄k ∼ NC(0, IN), ∀k. We also considered σ2
ηk

= 1, ∀k.

6.1. Power Minimization

In this subsection, Algorithm 1, which solves optimization problem (3),

is considered. We choose users with different rate requirements, viz., ρ1 =

0.5146, ρ2 = 0.737, ρ3 = 1, and ρ4 = 0.2345 bits per channel use, respectively.

These requirements correspond to the following targets in the MMSE domain:

ε1 = 0.7, ε2 = 0.6, ε3 = 0.5, and ε4 = 0.85. The threshold in Algorithm 1 is

set to δ = 10−2. Initial precoders are random.

Fig. 2a shows the evolution of the total average power over the iterations.

Starting above 16 dB, it gradually reduces until convergence is reached at

3 dB. The total average power is dramatically reduced during the first five

iterations whereas the improvement is marginal after iteration 15.

Fig. 2b shows the corresponding average rates throughout the iterations.

Recall from (7) that the actual average rates are lower bounded by the
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MMSE-based targets εk; i.e., E[Rk| v] ≥ − log2(εk), as discussed in Sec-

tion 2. Since the problem is feasible, the constraints in (20) are met with

equality at the optimum. As can be seen, the first steps go in the direction

of meeting the requirements and the average rates increase. Nevertheless,

the subsequent iterations reduce the rates until the MMSE-based targets are

reached for all users. The gap between the average rates obtained with Al-

gorithm 1 and the average rate targets corresponding to the QoS constraints

can be also observed. Moreover, we also include the rates obtained by using

the widely-employed SINR approximation proposed in [9]. This approach

determines the average rates as log2(1 + SINRk), in which SINRk reads as

SINRk =
pH
k E

[

hkh
H
k | v

]

pk

σ2
ηk

+
∑

i6=k p
H
i E [hkh

H
k | v]pi

. (32)

Note that the average rates for the SINR approximation are larger than the

true average rates for users 2 and 3, but smaller for users 1 and 4. Hence,

it is not possible to guarantee the QoS restrictions. Contrary to this, the

MMSE-based targets ensure the rate targets.

6.2. Rate Balancing

This subsection focuses on the performance of Algorithm 2. The rate

targets employed in Subsection 6.1 are also used in this section. We scale

them with a common factor to obtain the rate targets. The threshold to

check convergence is set to δ = 10−2.

Taking into account the numerical results obtained in Subsection 6.1,

we consider a total average transmit power of 3 dB, yielding an expected

balancing level of approximately one. Therefore, we pick ςL,(0) = 0.6 and

ςH,(0) = 1.3, from which ςopt ∈ [0.6, 1.3]. Fig. 3 plots the average power versus
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Figure 3: MMSE balancing. Balancing level candidates vs. Total average power.

the balancing level for the different iterations of the bisection algorithm. The

two initial values correspond to the points located on the left and the right

vertical axis in the figure. Note that the searching interval reduces as the

algorithm progresses until it converges after five iterations to the point ςopt =

0.99659 and Ptx = 3.0072 dB. This is in accordance with the experimental

results obtained in Subsection 6.1.

We also performed a computer experiment to compare our approach with

robust precoding as presented in [10], in which the same CSI for the users and

the BS is considered. More specifically, we focused on the following weighted

MSE Min-Max problem (see Section V.B of [10])

min
{pk,fk}Kk=1

max
i

MSE
BC

i

wi

s.t.
K
∑

j=1

‖pj‖22 ≤ Ptx, (33)

where wi is the weight for the i-th user. Robust precoders and filters are

designed via an AO process, and power allocation is calculated by solving an

eigen-system. The optimum of (33) is obtained after a few iterations, and
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Figure 4: (a) Robust transceiver. Balancing level vs. Number of iterations. (b) Average

MMSEs for proposed Algorithm 2 vs. Robust transceivers.

meets
∑K

i=1 ‖pi‖22 = Ptx and MMSE
BC

k /wk = wopt, ∀k (see Fig. 4a). The

error precision for min max ratio wopt is 10−4.

This min max problem can be seen as a balancing problem with wi = εi.

Thus, Fig. 4b represents the comparison between the solutions which use

robust transceivers and the one proposed in this work. As can be seen in

the figure, our proposed Algorithm 2 performs better because ςopt = 0.99659

is closer than wopt = 1.1442 to 1. Note that robust precoders are more

conservative since their performance depends on the radius of the uncertainty

region, i.e., on the estimation error variance. However, the robust filters from

[10] are designed using a computationally cheaper algorithm.

7. Conclusions

We focused on the design of linear precoders and receivers to minimize

the transmit power in a MISO BC while meeting a set of per-user QoS con-

straints given as per-user average rate requirements. Likewise, we explained
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that QoS constraints can be substituted by more manageable restrictions

based on the average MMSE. We later exploited MSE BC/MAC duality to

jointly determine the optimum transmit and receive filters by means of an

AO algorithm and optimum power allocation was found trough the so-called

standard interference functions. Furthermore, we analyzed feasibility of the

problem to ensure convergence of the proposed algorithm and we addressed

the balancing problem by combining the proposed algorithm with a search.

Lastly, we carried out simulation experiments to show the performance of

the proposed methods and compare them with previous solutions.
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Appendix A. Average-MMSE-Based Lower Bound Gap

In this appendix, we study the accuracy of the lower bound (7). To that

end, we approximate the MMSE Cumulative Distribution Function (CDF)

by a beta CDF. We focus on the setup: K = 1, N = 4, and Maximum Ratio

Transmission (MRT). Then, considering h ∼ NC(0, I) and η ∼ NC(0, σ
2),

the average MMSE is E[MMSE] = E

[

σ2

|hHp|2+σ2

]

. By using p =
√
P

‖h‖2h with

P = 1, and σ2 = 10, the corresponding CDF parameters are α = 14.3 and

β = 5.3. Fig. A.5 shows the comparison between the two CDFs.

We next introduce the PDF fε(MMSE) and the variable ε = MMSE.

Now, the expectation of the logarithm of ε is E[ln(ε)] =
∫ 1

0
fε(ε) ln(ε)dx.

Considering ε has a beta PDF, the logarithm of the geometric mean reads
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as E[ln(ε)] = ψ(α)− ψ (α+ β) , where ψ(x) is the digamma function. Such

a function can be approximated as ψ(x) ≈ ln(x + 1
2
) for x > 1. Then, we

approach the lower bound as −E[log2(ε)] ≈ 1
ln(2)

log2

(

1 + β

α− 1
2

)

.

The expectation of the beta distribution is E[ε] = α
α+β

. Accordingly, the

average MMSE lower bound is − log2(E[ε]) =
1

ln(2)
ln(1 + β

α
). Hence, the gap

between the average rate E[R] and the lower bound is

E [R]− [− log2 (E [MMSE])] ≈ 1

ln(2)
log2

(

1 +
β

α− 1
2

)

− 1

ln(2)
ln

(

1 +
β

α

)

=
1

ln(2)

[

ln

(

1 +
β

α− 1
2

)

− ln

(

1 +
β

α

)]

= log2

(

1 +
β

2
(

α− 1
2

)

(α + β)

)

.

In our example, this yields log2(1 + 0.0098) = 0.0141.
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[15] J. González-Coma, M. Joham, P. Castro, L. Castedo, Power minimiza-

tion and QoS feasibility region in the multiuser MIMO broadcast chan-

nel with imperfect CSI, in: Proc. IEEE Workshop on Signal Processing

Advances in Wireless Communications (SPAWC), 2013, pp. 619–623.

doi:10.1109/SPAWC.2013.6612124.
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