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Abstract

In this work we present a new method for determining relative positions

between one moving object, modelled by a bounding spheroid, and

surrounding static objects, modelled by circular hyperboloids of one sheet.

The proposed strategy is based on the real-time calculation of the coefficients

of degree three polynomial. We propose several algorithms for two real

applications of this geometric problem: the first one, oriented to the design

of video games, and the second one, devoted to surveillance tasks of a

quadcopter in industrial or commercial environments.
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1. Introduction

The determination of relative position and collision detection has

been widely researched during the last years. These studies have been
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mainly motivated by the extensive field of their potential applications in

very-demanded recent technologies used in video games design, robotics, or

physical simulations.

Collision detection and proximity query is a general problem for

determining if two or more objects intersect or not, which can be solved

in a geometric way [1, 2]. This geometric approach runs into problems such

as the computational complexity, the storage requirements, the robustness,

or the development of efficient algorithms and data structures.

Classical geometric algorithms for contact detection use quadric bounding

surfaces as object modelling. For further details see [3, 4, 5, 6, 7]. The

most commonly used bounding volume for contact detection is a simple

approximative bounding sphere, which leads to faster tests and less memory

requirements but higher false positives [8, 9]. Moreover, thus previous

methods for contact detection consider only convex bodies. Recently, the

authors in [10] have characterized all the possible relative positions between

a circular hyperboloid of one sheet and a sphere using for this purpose the

roots of a characteristic polynomial associated to these surfaces. The work

[10] also provides three different tables helping to that classification according

to the hyperboloid and sphere dimensions.

The first contribution of this paper is to extend the work in [10] to the

detection of relative positions between spheroids and circular hyperboloids of

one sheet using for this purpose the coefficients of a degree three polynomial

associated to these surfaces instead of its roots, which provides a simple

method for the contact detection between those two surfaces based on such

an easy calculation. The second contribution of this work is the application
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of this theory to very topical scenarios, as shown in [11, 12, 13], focused on

detection contact between non-static and static objects. The first proposed

application will be a video game environment, in which an object (a person,

a robot, or an animal) moves in a scenario where one or more objects could

be modelled by hyperboloids of one sheet, as for example trees. In the second

proposed application, we will model Unmanned Aerial Vehicles (UAVs), like

a quadcopter, by means of a bounding spheroid. For this application, we

also propose an algorithm based on Bounding Volume Hierarchies (BVHs)

[14, 15], which uses not only the bounding volume, but also the children

ones corresponding to smaller spheroids containing the four rotors. Such

a quadcopter could be used for the aforementioned applications inside a

structure modelled by an hyperboloid of one sheet, like a cooling tower,

a water tower, a cathedral, an air traffic control tower, and so on.

This work is organized as follows. Section 2 presents the theory of the

proposed strategy for the computation of relative positions. Section 3 shows

two applications: the first one, related to the design of a video game, and the

second one, applied to surveillance tasks of quadcopters in hyperboloid-form

structures, like cooling towers in thermal power plants or tourist buildings

(see Subsections 3.1 and 3.2, respectively). Section 4 presents the BVHs

strategy. Finally, some concluding remarks are made in Section 5.

2. Mathematical formulation

In this section we show how to determine the relative position between a

spheroid and a circular hyperboloid of one sheet. We will use the following

notation.
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We consider H as a circular hyperboloid of one sheet centred at the

origin and described by the following equation

H :
x2

α2
+
y2

α2
− z2

γ2
= 1, for α, γ > 0. (1)

In matrix notation, it can be expressed as follows

XTHX − 1 = 0, (2)

with X = (x, y, z)T and the associated matrix

H = diag

(
1

α2
,

1

α2
,− 1

γ2

)
. (3)

Note that T denotes the transpose operator.

We also define a spheroid E centred at the point C0 = (x0, y0, z0) with

parameters b and d, defined by the equation

E :
(x− x0)2

b2
+

(y − y0)2

b2
+

(z − z0)2

d2
= 1, for b, d > 0. (4)

We can rewrite this expression using a matrix formulation as given

XTEX − 2BX +K = 0, (5)

with E expressed as

E = diag

(
1

b2
,

1

b2
,

1

d2

)
, (6)

and where B =
(
x0
b2
, y0
b2
, z0
d2

)
and K =

x20
b2

+
y20
b2

+
z20
d2
− 1, for b, d > 0.

We are interested in the determination of relative position between

a hyperboloid H and a spheroid E . For this purpose, we have to find

the transformations that allow us to solve this problem through both the

equivalent hyperboloid H and the sphere S.
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Theorem 1. Contact detection between H and E is equivalent to contact

detection between H and S, respectively given by

H :
x2

(α
b
)2

+
y2

(α
b
)2
− z2

(γ
d
)2

= 1, (7)

S :
(
x− x0

b

)2
+
(
y − y0

b

)2
+
(
z − z0

d

)2
= 1. (8)

Proof:. Let consider the linear application F : R3 → R3 given by F (X) =

AX, where the matrix A is given by

A = diag

(
1

b
,
1

b
,

1

d

)
. (9)

Denoting X = AX, and taking into account that A is a regular matrix and

A = AT, from (2) we obtain that X
T
HX − 1 = 0, which corresponds to the

hyperboloid defined in (7), with

H = A−1HA−1 = diag

(
b2

α2
,
b2

α2
,−d

2

γ2

)
. (10)

Moreover, from (5) and considering that A−1EA−1 = I, where I is the

identity matrix, and according to (6) and (9), we have X
T
X−2BA−1X+K =

0, which corresponds to (8).

As conclusion it can be said that, since F is an isomorphism, if X is an

intersection point between E andH, then X = F (X) = AX is an intersection

point between S and H, and vice versa. �

Considering the isomorphism given in Theorem 1, we introduce the

following notation.

The characteristic polynomial for S and H, respectively defined by (7)

and (8), is given by

f(λ) =
(a2 + λ)g(λ)

a2c2
, (11)
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with

g(λ) = λ3 + (a2 − c2 + 1− x2c − y2c )λ2

− (a2c2 − a2 + c2 − c2x2c − c2y2c + a2z2c )λ− a2c2, (12)

where a = (α
b
) and c = (γ

d
) are the parameters of the hyperboloid defined by

(7), and xc = x0
b

, yc = y0
b

, and zc = z0
d

are the coordinates of the centre point

of the sphere defined by (8). Notice that λ = −a2 = −
(
α
b

)2
is one root of f

and that the other roots are also roots of g.

We focus our attention on finding conditions which allow us to determine

if the spheroid is either exterior or interior to the hyperboloid by studying

the discriminant and coefficients of g in (12).

Remark 2. In general, for a monic degree three polynomial in the form

x3 + c2x
2 + c1x+ c0, the discriminant ∆ is

∆ = −4c32c0 + c22c
2
1 + 18c2c1c0 − 4c31 − 27c20. (13)

In our case, the coefficients c0, c1, and c2 of g are obtained as

c0 = −
(α
b

)2 (γ
d

)2
,

c1 = −
(α
b

)2 (γ
d

)2
+
(α
b

)2
−
(γ
d

)2
+

(γ
d

)2 (x0
b

)2
+
(γ
d

)2 (y0
b

)2
−
(α
b

)2 (z0
d

)2
,

c2 =
(α
b

)2
−
(γ
d

)2
+ 1−

(x0
b

)2
−
(y0
b

)2
−
(z0
d

)2
. (14)

In practice, the most commonly used hyperboloid corresponds to the

restriction given by (α
b
) ≥ 1 or/and (γ

d
)2 ≥ (α

b
). Some examples of this

type are the circular hyperboloids used in architecture (as cooling towers,
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air traffic control towers, etc.) which are large in comparison with other

surrounding objects that can collide with them (cleaning robots, UAVs, etc.)

and be enclosed by a spheroid. For this reason, we will restrict our study to

these cases.

In [10], the authors have studied the roots of the characteristic polynomial

f for contact detection between S and H. Following this work, we can obtain

a characterization to determine if the spheroid E is exterior to the hyperboloid

H using for that purpose the coefficients of g.

Proposition 3. Let H and E verifying (γ
d
)2 ≥ (α

b
). Then:

1. The spheroid is exterior to the hyperboloid if and only ∆ > 0, c2 < 0,

and c1 > 0.

2. If ∆ ≤ 0, then there is contact between spheroid and hyperboloid.

Proof:. By Theorem 1, the spheroid E is exterior to the hyperboloid H if and

only if the transformed sphere S is exterior to the transformed hyperboloid

H. If (α
b
) ≥ 1 then the relative positions between S and H are given by Table

1 of Theorem 6 in [10]. Otherwise, the relative positions between S and H

are shown in Tables 1 and 2 of Theorems 6 and 14, respectively, in [10].

From these theorems, we have that the spheroid is exterior to the

hyperboloid if and only if the characteristic polynomial f has three different

positive roots. Then, using (11), we have that the spheroid is exterior to the

hyperboloid if and only if g has three different positive roots. By Descartes’

rule of signs we know that the number of negative roots of g is the same as

the number of changes in sign of the coefficients of the terms of g(−λ) or less

than this by an even number. In our case, g(−λ) = (−1)λ3 + c2λ
2− c1λ+ c0.
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Remember that, from (14), we have that c0 < 0. Therefore, it must be

satisfied that c2 < 0 and c1 > 0 to guarantee non–negative roots for g. Then

we have c2 < 0 and c1 > 0 if and only if all the real roots of g are positive.

Now, by definition of discriminant, we have that ∆ > 0 (see (13)) if and

only if g has three different real roots. Then we conclude that ∆ > 0 and

c2 < 0 and c1 > 0 is equivalent to the fact that the spheroid is exterior to

the hyperboloid. Finally, using again Theorem 6 and Theorem 14 in [10], we

have that if ∆ ≤ 0, then there is contact between spheroid and hyperboloid.

�

Remark 4. Notice that under the conditions of the previous result, i.e. for

H and E verifying (γ
d
)2 ≥ (α

b
), the discriminant and coefficients do not

provide equivalent conditions for the interior case because if we analyse the

cases shown in Tables 1 and 2 respectively corresponding to Theorems 6 and

14 included in [10], we extract the following conclusion: if g has two different

negative roots then either there is contact or the spheroid is interior to the

hyperboloid.

The following result is obtained in a similar way using Theorems 6 and

15 of [10].

Proposition 5. Let H and E verifying (α
b
) > 1. Then:

1. The spheroid is interior to the hyperboloid if and only if ∆ > 0 and

either [c2 > 0, c1 6= 0] or [c2 < 0, c1 < 0].

2. If ∆ ≤ 0, then there is contact between spheroid and hyperboloid.

Remark 6. Notice that under the conditions of the previous result, i.e. for

H and E verifying (α
b
) ≥ 1, the discriminant and the coefficients do not
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provide equivalent conditions for the exterior case because if we analyse the

cases shown in Tables 1 and 3 corresponding to Theorems 6 and 15 of [10],

we can conclude that if g has three different positive roots, then either there

is contact or the spheroid is exterior to the hyperboloid.

3. Real Applications of the Proposed Strategy

Simulated environments (including video games, virtual reality, etc.) are

real or imaginary situations that enable user to perform operations and show

their effects in real time. In this section we will show two applications to real

situations in which it is needed to determine the relative position between

a moving object, modelled using spheroids, and a fixed object, modelled

using a hyperboloid. Before doing any movement, the updated position is

pre–determined so that our proposed algorithm indicates if it is valid or

non-valid movement.

3.1. Application 1: Video Game Environment

In order to show how to use our results in this type of applications, Fig.

1 shows a moving object (a woman) and the surrounding static ones (trees).

The woman is modelled with a simple spheroid although more accurate

approximations using a higher number of spheroids to individually model

legs, arms, etc., can be easily extended. This object can do any displacement

in the x–axis, y–axis, and z–axis without exceeding the z–dimension of the

static object, or rotations in the xy–plane. The tree trunks are modelled

by hyperboloids satisfying the (γ
d
)2 ≥ (α

b
) condition. Thus, as you can

see in the figure, the hyperboloid marked as “type 1” corresponds to the

(α
b
) ≥ 1 condition, i.e., the tree trunk is wider than the woman; otherwise,
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Type 1

Type 2

Type 2

Figure 1: Application 1. A woman moving in a simulated forest environment.

the hyperboloids marked as “type 2” correspond to the (α
b
) < 1 case. From

the first condition of Proposition 3, we propose the Procedure 1 (Table 1) to

detect valid movements (i.e, those for which the woman bounding spheroid

is “exterior” to the trunk bounding hyperboloid).

compute c0, c1, c2 using (14) and ∆ using (13);

if ∆ > 0 and c2 < 0 and c1 > 0 then
“valid movement”;

else
“non–valid movement”;

end

Table 1: P

rocedure 1 for video game, with ( γ
d
)2 ≥ (α

b
) and E exterior to H. This

procedure is valid for both cases (α
b
) ≥ 1 and (α

b
) < 1.
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Data: values of α, γ, b, and d;

Result: valid = 1 for valid movement (exterior position) or

valid = 0 for non-valid movement (interior position or

contact);

A← (α/b)2

B ← (γ/d)2

c0 ← −A× B

C ← c0 + A− B

while movement do

(x0, y0, z0)← obtain position

P ← (x20 + y20)/b2

Q← (z0/d)2

c1 ← C +B × P − A×Q

c2 ← A− B + 1− P −Q

∆← −4× c32× c0 + (c2× c1)2 + 18× c2× c1× c0− 4× c31− 27× c20
valid← (∆ > 0) and (c2 < 0) and (c1 > 0);

end

Table 2: Pseudocode of Procedure 1 for video game.

From (14) and (13), we can write the pseudocode of Procedure 1 (Table

1) as given in Table 2, where the number of operations has been optimized

considering that some terms are computed independently from sphere

location. Since only additions or products are performed, the computational

cost is very low (see [16]).
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This procedure exhibits several advantages compared to previous

approaches. Our proposal in [13] determines relative positions considering

the roots of the polynomial f given in (12), instead of computing only the

coefficients, which implies to evaluate trigonometric functions when ∆ > 0.

Moreover, other methods described in [3, 4, 5, 6, 7] can not be used for the

application shown in this section since moving and static objects are modelled

by quadric bounding surfaces.

3.2. Application 2: UAV Control Environment

Because of its potential for commercial, military, law-enforcement,

research, and other purposes, UAVs have received considerable attention

in recent years in real and simulated environment [12]. Contact detection

methods based on computing the distance from the UAV to the surface

are adequate in most situations where that surface shape is similar for all

height positions but hyperboloid structures have not this property. Figure 2

shows two hyperboloid structures bounded by the corresponding hyperboloid

volume: the left picture represents a cooling tower, and the right one, a

touristic tower.

We consider that the UAV flies inside the cooling tower following a

trajectory with three types of possible movements: pitch, forward and

backward UAV tilt; yaw, left and right UAV rotation in the xy–plane, without

changing the z–axis, and throttle, vertical up and down UAV motion, varying

only the z–axis. Note that this last displacement must be restricted up to

the maximum height of the cooling tower.

Figure 3 shows the geometric model of an example of UAV, a quadcopter.

Observe that this quadcopter can be bounded by an exterior spheroid with
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(a) Meirama Cooling Tower (Spain) (b) Kobe Tower (Japan)

Figure 2: Application 2. One-sheeted hyperboloid structures.

Figure 3: Application 2. Model of a quadcopter with a bounding spheroid and four smaller

spheroids bounding each rotor.
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centre (x0, y0, z0) and parameters b and d. The i–th rotor, i = 1, 2, 3, 4, is

bounded by its corresponding smaller spheroid, denoted by Ei, with centre

point (xi, yi, zi) and parameters bs and ds, identical for all spheroids. The

Cartesian coordinates of the centre point is given by the following expressions

xi = x0 +
l
√

2

2
(cos(gi)− sin(gi)) = x0 +

l
√

2

2
T1(gi),

yi = y0 +
l
√

2

2
(cos(gi) + sin(gi)) = y0 +

l
√

2

2
T2(gi),

zi = z0, (15)

where T1(gi) and T2(gi) are obviously given by T1(gi) = cos(gi)− sin(gi) and

T2(gi) = cos(gi) + sin(gi), respectively. Notice that, in general, the angles of

the spheroids E2, E3, and E4 can be computed from the angle of E1, denoted

as g1, by using gi = g1 + (i−1)π
2

, i = 2, 3, 4, respectively.

Contact detection between the hyperboloid H and the spheroid Ei is

equivalent to contact detection between the hyperboloid Hs and the sphere

Si, where

Hs :
x2(
α
bs

)2 +
y2(
α
bs

)2 − z2(
γ
ds

)2 = 1, (16)

Si :

(
x− xi

bs

)2

+

(
y − yi

bs

)2

+

(
z − zi

ds

)2

= 1. (17)

Considering (15) and applying T1(gi)
2 + T2(gi)

2 = 2, we have that

x2i + y2i =

(
x0 +

l
√

2

2
T1(gi)

)2

+

(
y0 +

l
√

2

2
T2(gi)

)2

= x20 + y20 + l2 + l
√

2(T1(gi)x0 + T2(gi)y0). (18)

Observe that the c0 coefficient in (14) does not depend on the centre
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point. Then, for all the spheroids Ei it verifies

c0,s = −
(
α

bs

)2(
γ

ds

)2

. (19)

We introduce the following expressions,

C(gi) =
l
√

2(T1(gi)x0 + T2(gi)y0)

b2s
,

B1 = 1−
(
γ

ds

)2

−
(
z0
ds

)2

,

B2 =
x20 + y20 + l2

b2s
. (20)

As shown in Appendix A, we obtain the final expressions

c1(gi) =

(
α

bs

)2

B1 +

(
γ

ds

)2

(B2 − 1 + C(gi)),

c2(gi) =

(
α

bs

)2

+B1 − B2 − C(gi). (21)

Considering that the quadcopter flies in the interior of this hyperboloid,

Procedure 2.a (Table 3) allows to detect when a movement is valid or not.

We will use Proposition 5 to determine non-valid movements. This method

can be applied if ( α
bs

) ≥ 1.
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compute c0,s, c1(gi), and c2(gi) for i = 1, 2, 3, 4 using (19) and (21),

and ∆(gi) using (13);

if ∆(gi) ≤ 0 for some spheroid Ei, i = 1, 2, 3, 4, then
“non–valid movement”;

else

if [c2(gi) > 0; c1(gi) 6= 0] or [c2(gi) < 0; c1(gi) < 0] for all spheroid

Ei, i = 1, 2, 3, 4, then
“valid movement”;

else
“non–valid movement”;

end

end

Table 3: Procedure 2.a for UAV control, with ( αbs ) ≥ 1 and Ei interior to H.

Notice that (19), (20), and (21) indicate that the coefficients c0,s, c1(gi),

and c2(gi) can be determined without computing the angle gi of each spheroid.

As a consequence, similar operations to those shown throughout of the

pseudocode of Procedure 1 (Table 2) could be performed.

4. Bounding Volume Hierarchicy

A BVH is based on modelling an object using a tree structure of bounding

volumes that form the leaf nodes of the tree which are grouped and enclosed

by other larger bounding volumes in a recursive way, eventually resulting in

a tree structure with a single bounding volume at the top of the tree. Sphere

and spheroid tree hierarchies are simple to be implemented and suitable for

efficient minimum computation (see, for instance, [14, 15] and references

therein).
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The procedures proposed in the previous section could be used to detect

valid or non-valid movements in a hierarchy structure, when the objects and

their individual components can be enclosed by spheroids. As an example,

we will consider the application for UAV control described in Subsection 3.2.

We consider that the rotors are bounded by small spheroids and they are

then bounded by a bigger one (see Fig. 3). Procedure 2.b (Table 4 is used

to detect valid and non-valid movements. Firstly, we would analyse the big

bounding spheroid E assuming the condition (a
b
) ≥ 1 in Proposition 5. If

the procedure detects contact, i.e. ∆ ≤ 0, we would consider each one of the

smaller spheroids, as was directly done in Procedure 2.a (Table 3) to discard

false collision detections. Otherwise, we consider the condition given in the

same proposition to verify that the movement is interior.
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compute c0, c1, c2 using (14), and ∆ using (13) ;

if ∆ ≤ 0 then

compute c0,s, c1(gi) and c2(gi) for i = 1, 2, 3, 4 using (19) and

(21), and ∆(gi) using (13);

if ∆(gi) ≤ 0 for some spheroid Ei, i = 1, 2, 3, 4, then
“non–valid movement”

else

if [c2(gi) > 0; c1(gi) 6= 0] or [c2(gi) < 0; c1(gi) < 0] for all

spheroid Ei, i = 1, 2, 3, 4, then
“valid movement”

else
“non–valid movement”

end

end

else

if [c2 > 0; c1 6= 0] or [c2 < 0; c1 < 0] then
“valid movement”

else
“non–valid movement”

end

end

Table 4: Procedure 2.b for UAV control, with (αb ) ≥ 1 and E interior to H. This algorithm

is valid for both cases ( γd )2 ≥ (αb ) and (γd )2 < (αb ).

Notice that the pseudocode corresponding to the condition ∆ ≤ 0 in

Procedure 2.b (Table 4) is the same as that of Procedure 2.a (Table 3).

Since the computation of ∆(gi) has a considerable computational cost in
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comparison to other operations, we are interested in counting when ∆ ≤ 0.

Towards this end, we consider a computer simulated environment where the

hyperboloid models the cooling tower of a power station. This tower has

α = 2 m and γ = 35.6/2 m. The UAV is bounded by a spheroid with

b = 0.25 m and d = 0.15 m and the rotors are wrapped in spheroids with

bs = 0.1 m and ds = 0.05 m.

The UAV flies inside the cooling tower following a random trajectory

determined as follows:

• straight movement with probability 0.25,

• down or up movement with probability 0.25,

• random turn with angle in [−π/4, π/4] with probability 0.5,

• and turn of angle −π/2 or π/2 if a non-valid movement is detected with

Procedure 2.a (Table 3).

For instance, Fig. 4 shows the 3D and the 2D views, respectively in subfigures

(a) and (b), of three trajectories of 25 positions. Figure 4 (c) shows the values

of the discriminant ∆ obtained using (13). The values of ∆ closest to zero

correspond to those situations where the UAV is near the tower walls.

We consider now that the UAV follows a trajectory of D = 500 m with

a speed v varying from 5 m/s to 10 m/s. Before any movement, the UAV

evaluates Procedure 2.b (Table 4) to determine if the movement is valid.

This prediction is done considering the position of the UAV in t seconds, i.e.

its response time. For a non-valid movement, the UAV turns and tries a new

one.
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 (a) 3D view
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Figure 4: Application 2. Trajectory and values of ∆.

Table 5 shows the number of executions in a trajectory, expressed as a

percentage and averaged from 1 000 realizations, where ∆ ≤ 0 in Procedure

2.b (Table 4). We will referred to as execution percentage. As you can see

in the table, we obtain less than 14 % of execution percentage for all cases,

which represents an extremely low ratio. Note that for t = 0.1 m/s the values

are similar independently from speed. Otherwise, this percentage is reduced

as speed increases since higher speeds lead to higher probabilities of obtaining

interior or exterior positions, which correspond to ∆ > 0. This also happens

for increasing t values. Again, the probability of interior or exterior positions

will be higher.
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Table 5: Percentage of executions of ∆ ≤ 0 in Procedure 2.b (Table 4)

.

v (m/s)

t (s) 5 6 7 8 9 10

0.1 13.9532 13.9029 13.5640 13.1907 12.9477 12.4708

0.2 11.7990 10.9387 10.3449 9.6364 8.9626 8.5885

0.3 10.9574 10.2549 9.4475 8.6942 7.8514 7.4627

5. Conclusions

We have focused this work on the determination of relative position

between two types of bounding volumes: a spheroid, which moves in a static

environment, and all those surrounding objects that can be modelled by

hyperboloids of one sheet. We show how this method could be used in recent

applications. Applying the developed theory, we propose three algorithms

with the goal of reducing the computational complexity using more adequate

bounding volumes than the standard approaches.

A. Calculation of expressions c1(gi) and c2(gi)

In this appendix we obtain the expressions of c1(gi) and c2(gi) in

Application 2 corresponding to the UAV movement inside a cooling tower.

Substituting (15) into c1 given by (14), we have

c1(gi) =

(
α

bs

)2
(

1−
(
γ

ds

)2

−
(
zi
ds

)2
)

+

(
γ

ds

)2(
x2i + y2i
b2s

− 1

)
.
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Using (18), we can express c1(gi) as follows

c1(gi) =

(
α

bs

)2
(

1−
(
γ

ds

)2

−
(
z0
ds

)2
)

+

(
γ

ds

)2
(
x20 + y20 + l2 + l

√
2(T1(gi)x0 + T2(gi)y0)

b2s
− 1

)

=

(
α

bs

)2
(

1−
(
γ

ds

)2

−
(
z0
ds

)2
)

+

(
γ

ds

)2(
x20 + y20 + l2 + l

b2s
− 1

)
+

(
γ

ds

)2
(
l
√

2(T1(gi)x0 + T2(gi)y0)

b2s

)
.

If we define

C(gi) =
l
√

2(T1(gi)x0 + T2(gi)y0)

b2s
,

A1 =

(
α

bs

)2
(

1−
(
γ

ds

)2

−
(
z0
ds

)2
)

+

(
γ

ds

)2(
x20 + y20 + l2

b2s
− 1

)
,

c1(gi) could be consequently rewritten in this way

c1(gi) = A1 +

(
γ

ds

)2

C(gi).

Using a similar reasoning, c2(gi) can be expressed as

c2(gi) = A2 − C(gi),

where

A2 =

(
α

bs

)2

+ 1−
(
γ

ds

)2

−
(
z0
ds

)2

− x20 + y20 + l2

b2s
.

Now, defining

B1 = 1−
(
γ

ds

)2

−
(
z0
ds

)2

,

B2 =
x20 + y20 + l2

b2s
, (22)
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we obtain the expressions

c1(gi) =

(
α

bs

)2

B1 +

(
γ

ds

)2

(B2 − 1 + C(gi)),

c2(gi) =

(
α

bs

)2

+B1 − B2 − C(gi). (23)
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