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ABSTRACT

Many channel estimation methods in Massive MIMO FDD
systems usually rely on the knowledge of the channel co-
variance matrix to operate. However, in real scenarios, this
covariance is not known beforehand and, hence, it should be
estimated. In this work, we investigate different existing tech-
niques for covariance identification to achieve full knowledge
of this matrix with very short training sequences. Moreover,
we propose a modification of the spatial smoothing approach
with the goal of improving the quality of the channel covari-
ance identification.

Index Terms— Covariance identification, Massive MIMO,
FDD, MUSIC

1. INTRODUCTION

Massive Multiple-Input and Multiple-Output (MIMO) is a
solid candidate radio technology for future wireless commu-
nications due to its ability to provide large data rates [1]. The
use of large antenna arrays characteristic of this technology
entails numerous challenges related to the radiating system
dimension. One of the main challenges is channel estima-
tion in Frequency-Division Duplex (FDD) mode since a large
number of antennas requires long training sequences [1].

In recent literature, different methods have been proposed
to overcome these limitations with FDD such as exploiting
the geometric characteristics of the channel [2], or group-
ing users with either similar local scatterers [3] or similar
channel covariance matrices [4, 5]. Other solutions reduce
the training overhead relying on the channel temporal cor-
relation [6]. In general, these works assume the channel is
sparse in some sense. Although it is generally assumed that
the channel covariance matrix is known in advance, in prac-
tical circumstances it should also be estimated. The recent
work [7] considers covariance identification in Time-Division
Duplex (TDD) mode based on the assumption of channel reci-
procity between the downlink and the uplink. Finally, [8, 9]
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consider the FDD case by exploiting the weaker assumption
of angular reciprocity.

In this work, we will focus on covariance identification
for FDD leveraging only on the assumption that the channel
coefficients arise from a stationary process whose statistics
slowly change with respect to the channel coherence time.
We will also assume that the covariance matrix has a Toeplitz
structure, which is satisfied by typical antenna arrangements
like Uniform Linear Arrays (ULAs). Under this general as-
sumption, training sequences can be designed according to
the structure of a sparse ruler, which allows for employing
training sequences with lengths in the order of the square root
of the number of antennas [10]. Moreover, the common as-
sumption of sparsity, used for channel estimation, is no longer
necessary to obtain reasonable training lengths in covariance
identification.

Another approach to covariance identification is based
on the estimation of the Angle of Departures (AoDs) of the
waves transmitted by the ULAs. Recent work addressing
this problem finds solutions based on the MUltiple SIgnal
Classification (MUSIC) algorithm [11–13]. However, for this
scenario, it is particularly interesting to increase the angular
resolution by means of spatial smoothing [14], thus allowing
for very short training sequences. Moreover, the methods
to obtain the power associated with each propagation path
usually assume that there is a full-rank dictionary matrix [11]
which may not be available in practice.

Therefore, in this work, we propose a variation of the spa-
tial smoothing method presented in [15] that improves the
quality of the AoDs estimation. In addition, our strategy ex-
ploits the covariance matrix structure to obtain a more general
solution that does not impose a requirement of a full-rank dic-
tionary matrix.

2. SYSTEM MODEL

Let us consider the downlink of a multiuser Massive MIMO
system with M transmit antennas and several single-antenna
receivers operating in FDD mode. Let hk ∈ CM×1 repre-
sent the channel response to an arbitrary user during the k-th
training period, with k ∈ {1, . . . ,K} and K being the to-
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tal number of channel blocks used to estimate the channel
covariance. We assume a block-fading channel where each
channel realization remains constant during a channel block
and is statistically independent from one channel block to an-
other. Furthermore, the training sequence X ∈ CTtr×M is
transmitted for each block, where Ttr is the number of chan-
nel uses devoted to the transmission of the training sequence.
The remaining channel uses within the block are dedicated to
data transmission. Finally, we will consider that Ttr � M ,
hence the columns ofX are non-orthogonal.

We further consider the channel response vector h results
from a linear combination of L array response vectors a(αl),
each one associated to an Angle of Arrival (AoA) αl. This
can be approximated by means of a steering vector dictionary
A = [a(θ1), . . . ,a(θG)] ∈ CM×G for a set of G predefined
angles, that is,

h =
L∑
l=1

gla(αl) ≈
G∑
i=1

g̃ia(θi), (1)

where g̃i are the channel gains with L nonzero elements,
and E

[
g̃ig̃
∗
j

]
= σ2

i δi−j . Note that equality in (1) holds
if the AoAs αl lie on the angles chosen for the dictionary
{θ1, . . . , θG}. Hence, the channel covariance matrix can be
written as

Ch ≈
G∑
i=1

σ2
i a(θi)a

H(θi) = ADAH , (2)

where the diagonal matrix D = diag(σ2
1 , . . . , σ

2
G) contains

the channel gain variances. Observe that the former matrix
Ch is Toeplitz due to the assumed array geometry.

When the vector training sequence is transmitted, the re-
ceived signal at the single-antenna user is

φ = Xh+ v ∈ CTtr×1, (3)

where v ∼ N (0,Cv) is the Additive White Gaussian Noise
(AWGN). Since h and v are independent, and if the training
sequence is the same for all training periods, the covariance
of φ can be written as

Cφ = XChX
H +Cv ≈ FDFH +Cv. (4)

where we have used the approximation in (2) and F =
XA = [f1, . . . ,fG]. Assuming Cv known, estimating Cφ
is equivalent to estimatingD. Moreover, we will assume that
the noise is spatially white, i.e. Cv = σ2

vI . Finally, notice
thatK realizations of (3), denoted as {φk = Xhk+vk}Kk=1,
will be available at the receiver. Since h is stationary, these
K training blocks will be used to estimate the channel covari-
ance Ch.

3. COVARIANCE IDENTIFICATION

In this section, we will consider several methods for covari-
ance identification. Each algorithm is particularly suited for

some scenario, depending on the noise covariance, channel
sparsity, and computational complexity.

3.1. ML Estimation

Maximum Likelihood (ML) estimation is based on maximiz-
ing the log-likelihood function. For given φk, the minus log-
likelihood function ofD is

L (φk;D) = log det (Cφ) + tr
(
C−1φ φkφ

H
k

)
. (5)

and the joint likelihood function is L(φ1, . . . ,φK ;D) =∑K
k=1 L(φk;D) because {φk}Kk=1 are independent. The

ML estimate of D is the result of the following optimization
problem

min
D

L(φ1, . . . ,φK ;D) s.t. σ2
l ≥ 0, ∀l ∈ [1, G]. (6)

The log-likelihood function (5) can be expressed for a block
of K snapshots as

1

K
L (Φ;D) = log det (Cφ) + tr

(
C−1φ Ĉφ

)
, (7)

where Ĉφ = 1
KΦΦH with Φ = [φ1, . . . ,φK ]. This is a

difficult problem because it involves the sum of a concave
and a convex function, and it has been subject of extensive
research.

Multiple algorithms have been proposed to solve (6) (e.g.,
[16]) but one of the most robust is the LIKelihood-based Es-
timation of Sparse parameters (LIKES) algorithm [17] which
is based on the majorization-minimization principle. This al-
gorithm assumes that the covariance can be written as the
linear combination of a set of matrices, in the present case
Cφ ≈

∑G
i=1 σ

2
i f if

H
i + σ2

vI, and estimates the eigenvalues
σ2
i . However, the LIKES algorithm suffers from a large com-

putational complexity.

3.2. OMP-based estimator

Compressive sensing algorithms have been extensively ana-
lyzed in the context of channel estimation for Massive MIMO
FDD. An example of compressive covariance identification is
the variation of the Orthogonal Matching Pursuit (OMP) al-
gorithm known as Covariance OMP (COMP) [18]. This algo-
rithm relies on the more general assumption thatD is a sparse
hermitian matrix, instead of diagonal, and the adaptation of
OMP to the quadratic case. The COMP algorithm greed-
ily selects columns of F to obtain F S = [fS1 , . . . ,fSL ],
which stacks the columns for a given integer index subset
S ⊆ [1, G]. Then, for fixed F S , the channel gain variances
are estimated by solving

D̂S = arg min
D:D=DH

∥∥∥Ĉφ − F SDFHS ∥∥∥2
F

(8)

=F †SĈφ(FHS )†. (9)



Finally, D̂ is computed as a matrix of zeros except for ele-
ments at the rows and colums selected by S which are set to
[D̂]S,S = D̂S .

3.3. MUSIC

MUSIC algorithm is a well-known AoA estimation algorithm
based on the orthogonality of signal and noise subspaces. In
our particular scenario, the MUSIC algorithm will be em-
ployed to identify the angles corresponding to the L chan-
nel paths. The first step of MUSIC consists in computing the
eigendecomposition of the sample covariance matrix Ĉφ =

UΛUH assuming that this covariance converges to the chan-
nel second order moment for a large number of samples, i.e.,
Ĉφ → Cφ when K → ∞. Next, the eigenvectors corre-
sponding to the L largest eigenvalues are discarded, that is,
we obtain the basis spanning the noise subspace Ū .

The second step of MUSIC performs the support identifi-
cation. To that end, we define the estimator function as

Ji =
1

‖fHi Ū‖22
, (10)

The angles are identified as the L largest values of Ji. Next,
we construct the matrix F S containing the L columns of F
corresponding to the estimated angles θi. Once the angles are
determined, it is possible to obtain the associated gain vari-
ances. If the matrix F is full rank, these gains can be esti-
mated as in [11], i.e.,

D̂S = F †S(Ĉφ − σ2
vI)(FHS )†. (11)

This simple and intuitive approximation has some limi-
tations. For short training sequences, Ttr < L, the pseudo-
inverse does not exist. This scenario will be analyzed in the
ensuing section. Moreover, for Ttr > L it is possible that
the calculation of (11) results in numerical difficulties. Re-
call that, for finite M , the dictionary contains non-orthogonal
vectors. When the distance between two consecutive angles in
the dictionary is small, which arises whenG is large, this may
lead to dictionary matrices such that rank(F ) ≤ min{M,G},
thus making it possible to obtain matrices F S with arbitrarily
small minimum singular value.

To circumvent this limitation, the dictionary size can be
reduced to increase the distance between consecutive angles.
However, this would also reduce the angular resolution re-
sulting in poorer covariance estimations. Alternatively, we
propose to exploit the diagonal structure of D and perform
the estimation by means of

diag(D̂S) = (F ∗S ◦ F S)† vec(Ĉφ − σ2
vI), (12)

where the Khatri-Rao product, i.e. the column-wise Kro-
necker product, produces matrices of rank L when the
columns of F S are not co-linear.

3.4. Spatial Smoothing (SS)

A well-known limitation of MUSIC is that it can only work if
the sample covariance has a rank equal to at least the number
of elements to estimate. That is, the number of paths (or an-
gles) to be estimated is bounded by the number of snapshots
and the number of observations, i.e., L ≤ min{Ttr,K}. Im-
provements to MUSIC were proposed in [12,13] to overcome
the rank deficiency limitation. In particular, these solutions
apply when the number of snapshots is not sufficient, or when
the snapshots are linearly dependent, that is, rank(Ĉφ) < L.
Nevertheless, in the proposed scenario, the number of snap-
shots is not a stringent limitation since the covariance slowly
changes over time. Hence, it is possible to employ more ob-
servations to obtain L linear independent received signals φ.

On the contrary, it is desirable to avoid the large training
overhead. By reducing the training sequence length Ttr, the
remaining of the channel coherence time can be used for data
transmission. This strategy, however, may lead to scenarios
where the rank of the sample covariance matrix rank(Ĉφ) =
Ttr is smaller than the number of propagation paths, that is
Ttr < L. In this involved setup, neither MUSIC nor COMP is
applicable to identify the L spatial directions. We propose to
address this interesting scenario by using spatial smoothing.

Spatial smoothing was originally based on nested arrays
with different antenna separation [14]. A similar effect can
be obtained with the use of sparse rulers of length G as train-
ing sequences [15], which is equivalent to deploying non-
uniform distance antenna elements. Applied to our scenario,
the training sequence is built as X = [er1 , . . . , erT ]T , where
ei is a vector of zeros with a one in the i-th element and
{r1, . . . , rT } are the marks of the ruler [10]. Thus, the sample
covariance Ĉφ approximates the true covariance for K suffi-
ciently large, and therefore we can write the approximation
Ĉφ ≈ FDFH + σ2

vI. This expression can be vectorized as

y = vec(Ĉφ) ≈ (F ∗ ◦ F ) diag(D) + σ2
ve
′, (13)

where e′ = [eT1 , . . . , e
T
Ttr

]T . Observe that (F ∗ ◦ F ) con-
tains the products corresponding to the spatial differences z ∈
{−M + 1,M − 1}. Spatial smoothing discards the repeated
distances and sorts the remaining ones in a matrixB contain-
ing 2M − 1 rows from (F ∗ ◦ F ). The reduced vector is then

y̌ ≈ B diag(D) + σ2
veM . (14)

The 2M − 1 differences in the reduced vector y̌ ∈ C2M−1

are next seen as a phase shift of the M differences to be es-
timated. Considering M overlapping subarrays, such that the
m-th subarray comprises the differences {−M +m,m− 1}
in y̌m ∈ CM , the spatial smoothed matrix is obtained by av-
eraging over the M subarrays

Y̌ =
1

M

M∑
m=1

y̌my̌
H
m. (15)



As shown in [14], Y̌ = Y̌
1/2
Y̌

1/2
, where Y̌

1/2
is

Y̌
1/2

=
1√
M

(ADAH + σ2
vIM ). (16)

Since the result of applying spatial smoothing is a linear com-
bination of the steering vectors, it is possible to identify the
angles by using algorithms like MUSIC. After computing the
eigendecomposition of

√
M Y̌

1/2
= UkΛkU

H
k , the L eigen-

vectors corresponding to the L largest eigenvalues are dis-
carded. Thus, we obtain an incomplete basis Ūk spanning
the noise subspace and the estimator function as

J (θi) =
1

‖a(θi)HŪ‖22
. (17)

Following the procedure explained for the MUSIC algorithm,
we estimate the gains using a similar procedure to (12).

A direct improvement of this method consists of employ-
ing all the differences in the vector y instead of discarding
them. Notice that in (13) the vector y = vec(Ĉφ) has T 2

tr
elements, whereas in (14) only 2M − 1 elements are con-
sidered for y̌. Let us introduce yji as the element of y de-
noting the j-th snapshot of the i-th difference. In this case,
we can redefine the vector [y̌]i = 1

J

∑J
j=1 y

j
i , where J repre-

sents the number of snapshots available for the i-th difference,
which depends on the structure of the sparse ruler. This mod-
ified spatial smoothing will be referred to as Improved Spatial
Smoothing (ISS) in the following.

4. SIMULATION RESULTS

The following setup is considered for the numerical experi-
ments. The number of transmit antennas is M = 400, and
the dictionary size is G = 400 with equally spaced angles
within the range (π/32, 31π/32). We consider the channel
covariance model of an ULA assuming, as in (1), L different
channel paths. The training sequence was generated from a
Wichmann ruler and its length is Ttr = 50. The numerical
results are averaged over 400 channel realizations.

Fig. 1 shows the Normalized Mean Squared Error
(NMSE) for the channel covariance matrix, defined as

‖Ĉh −Ch‖2F
‖Ch‖2F

,

and determined for the algorithms described in the previous
section for a Signal-to-Noise Ratio (SNR) of 0 dB and 30 dB,
and K = {5, 10, 20, 50, 100}. It is remarkable the robustness
of MUSIC compared to COMP for the low SNR regime. ML
is the best algorithm in terms of NMSE, but it is also the most
computationally expensive. Moreover, MUSIC performs bet-
ter if the number of snapshots is large enough. Taking into
account the spatial smoothing, SS and ISS curves show the
performance gain of our approach with respect to the stan-
dard one.
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Fig. 1. NMSE of different covariance identification strategies
for N = 400 antennas and L = 15.
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Fig. 2. NMSE of different covariance identification strategies
for N = 400 antennas and L = 70.

Fig. 2 shows the NMSE for L = 70 channel propagation
paths and SNR levels. In this case, K = {50, 100, 150, 200}
because the number of paths to estimate is much larger. MU-
SIC and COMP do not apply to this scenario due to the large
number of paths. Therefore, we compare SS and ISS with
ML, which again exhibits the best performance.

5. CONCLUSIONS

We have investigated several algorithms for covariance iden-
tification in a Massive MIMO FDD scenario. We have shown
that it is possible to identify the covariance matrix even if the
number of channel paths is much larger than the length of the
training sequences. Finally, we have also modified the spa-
tial smoothing method to substantially improve the estimation
quality in terms of NMSE.
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