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Abstract 

Well-quantified laboratory studies can provide a fundamental understanding of animal behavior 
in ecology, ethology and ecotoxicology research. These types of studies require observation and 
tracking of each animal in well-controlled and defined arenas, often for long timescales. Thus, 
these experiments produce long time-series and a vast amount of data that require software 
applications to automate the analysis and reduce manual annotation. In this Review, we examine 
28 free software applications for animal tracking to guide researchers in selecting the software 
that might best suit a particular experiment. We also review the algorithms in the tracking pipeline 
of the applications, explain how specific techniques can fit different experiments, and, finally, 
expose each approach's weaknesses and strengths. Our in-depth review includes last update, type 
of platform, user-friendliness, off- or online video acquisition, calibration method, background 
subtraction and segmentation method, species, multiple arenas, multiple animals, identity 
preservation, manual identity correction, data analysis and extra features. We found, for example, 
that out of 28 programs, only three include a calibration algorithm to reduce image distortion and 
perspective problems that affect accuracy and can result in substantial errors when analyzing 
trajectories and extracting mobility or explored distance. In addition, only four programs can 
directly export in-depth tracking and analysis metrics, only five are suited for tracking multiple 
unmarked animals for more than a few seconds and only 11 have been updated in the period 2019-
2021.  

Introduction 

Animal behavior studies are fundamental in ecology, ethology, ecotoxicology, neuroscience and 
many other fields1,2. These studies can be performed in a wide variety of ways, ranging from 
observational tests in natural conditions to experimental trials in a laboratory environment. To 
compare experiments in laboratory conditions, performed by different research groups and with 
different organisms, it is important that these types of experiments are implemented in carefully 
controlled conditions and that they use standardized and repeatable protocols. Therefore, these 
experiments often use model organisms that have been widely studied, such as zebrafish or 
rodents, and take place in well-defined environments, so-called arenas. The size of the arena and 
the number of animals in an arena should also be carefully considered and controlled not to bias 
the study's outcome. 

Standardized tests can measure an organism's activity in different arenas (Fig. 1a).  For 
example: open arenas and plus-mazes are common in anxiety or motivation studies3; T-maze or 
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Y-maze test arenas are commonly used for memory and spatial learning studies4; and 3-
chambered arenas are used to measure social approach or fear responses5. Other standard tests 
include water mazes6, elevated mazes7, arenas with light-dark transitions8 and arenas with thermal 
gradients or hot plates9. Stimuli or distractors can also be added to these arenas to measure 
behavioral changes in different conditions10. Although these arenas have different layouts, the 
way the data (video files) are acquired is similar (Fig. 1b). 

 
Fig. 1| Overview of typical setups used in tracking experiments. a, Examples of different arena 
configurations commonly used for insects, rodents and fish. b, Experiments in laboratory 
conditions should be carefully designed for front or back illumination depending on the type of 
organism under study and the arena used. Also, consider using diffuse illumination if details in 
the appearance of the animals are important, or backlight illumination to achieve high contrast for 
motion tracking. Make sure that no reflections from the surrounding environment or the lamp are 
seen. 

Regardless of the arena design or organism used, most behavioral studies use video 
recording and analysis techniques in which the video framerate, field of view as well as the 
resolution are adjusted to capture the organism's motion with the required temporal and spatial 
resolution11. These experiments can produce a vast amount of image data, which can be very time-
consuming to analyze, especially if manual annotation is used. Also, manual annotation can 
introduce human errors and biases, which can reduce the accuracy of the results12. Therefore, 
objective and automatic approaches for animal analysis are needed. Software and algorithms that 
can track and analyze the organism's position under study are critical for efficient research.  

In general, these software packages can help to solve two main issues: detecting the 
position of animals via tracking algorithms; or detecting the positions of the animals' parts, so-
called pose estimation. Pose estimation typically requires a previous tracking analysis. Therefore, 
as tracking is the main focus of this work, we refer only to the tracking software and the relevant 
tracking stages of pose estimation software. We exclude explicitly pose estimation software such 
as DeepPoseKit and DeepLabCut that are based on the extraction of images with distinct postures 
and the manual annotation of body parts to train machine learning models13–15. We think that these 
techniques are more oriented towards the detection of the behavior of a single animal at a fine 
scale and are not as directly relevant for general tracking applications. Also, they are sufficiently 
different in their theoretical approach to grant a separated analysis in another Review. 

Tracking applications are available as free or commercial tools. Commercial software 
usually offer more features and flexibility, especially regarding input video formats and statistical 
outputs. However, many researchers cannot afford these expensive tools and the algorithms used 
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by these software are often not transparent to the user. Thus, we focus this analysis on free 
tracking software. Several new types and versions are published each year. The continuous release 
of new software makes it challenging to select the appropriate software for a particular experiment 
or understand each option's limitations and differences. For example, many applications use the 
same pipeline and the same processing techniques, but there might be steps in the algorithm that 
are a limiting factor for some types of experiments. In addition, some programs are limited and 
specific in what they can do and what they can analyze. 

With these considerations, we conducted our analysis using a systematic search of 
tracking applications on Google Scholar and Research Gate, using the software published from 
2008 unti 2020 as inclusion criteria. We based our analysis primarily on the descriptions of the 
software in their respective papers and the published results from their authors. Additionally, we 
tested some of the analyzed software to gather information that was not available from these 
sources.  

In this Review, we compare 28 tracking applications in a comprehensive and accessible 
way to help and guide researchers within the field of behavior studies. In contrast to previous 
reviews that focused on specific research fields and organisms16,17, or explored only specific 
features such as social interactions18, or did not include an in-depth discussion19, or included only 
a handful of software18,19, we point out the weaknesses in every step of the pipeline, identifying 
the problems that might face behavioral researchers when choosing a specific software. Also, we 
provide a detailed taxonomy of the main algorithms and their limitations, and show the emerging 
opportunities in animal tracking software development. 

General pipeline of a tracking program 

To understand how a tracking application operates, it is essential to decompose the pipeline 
involved in the tracking process. Starting from video recording and ending in the analysis of 
animal trajectories, all the tracking applications we studied here use a similar sequence of 
algorithms. We show the general workflow of these tracking applications (see Fig. 2) and describe 
each step of the pipeline below. It is important to recall that some applications do not include all 
the steps shown in the figure. For example, some applications lack the calibration procedure (Fig. 
2b) and the possibility to analyze trajectories (Fig. 2d). 

 
Fig. 2| Illustration showing the general workflow of a tracking program; how an image 
frame is processed from video to analysis. a, Image acquisition. b, Calibration. c, Detection. d, 
Trajectory generation. e, Data analysis. See text for full description. 

Image acquisition. This step defines how video images are obtained. There are two main 
approaches: offline, in which a sequence of images feeds the algorithm from a video file; or 
online, in which a live camera streams each image. An advantage of using the offline mode is that 
complex algorithms can use extensive computations and access future and past frames to process 
a given image. The online method uses real-time computations, which require less storing 
capacity but increase the computational requirements, as each frame needs to be analyzed with 
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speed similar to the camera framerate to avoid losing data. As a result, the online method is 
currently only suitable for its use with relatively simple algorithms.  

Calibration. This step determines the relationship between the camera's natural units (pixels) and 
the real-world units. A calibration algorithm that can correct distortions in the images caused by 
misalignment, projection errors and the camera lens, is valuable. 

Detection.  This step consists of finding the spatial position of the animals in each image of a 
video sequence. Detection algorithms can include different steps, such as background subtraction 
to remove stationary features from the environment, segmentation to separate the objects that 
represent potential animals and a filtering step to remove false detections. 

Trajectory generation. This step associates the detected animals in each image to the tracked 
individuals. In this step, a set of trajectories are generated, each defined by an animal's positions 
in the subsequent images of the video. Trajectory generation is a trivial task for a single animal 
in an open arena without occlusions or reflections. However, in arenas with uneven illumination 
conditions, with multiple targets, possible occlusions or complex backgrounds, trajectory 
generation requires identity preservation algorithms to track animals when an occlusion or a 
crossing occurs. In general, trajectory generation is a very complex task that usually requires 
manual correction, especially with a large number of animals. 

Data analysis. Analysis involves extracting information from each trajectory to obtain the 
behavioral data required by the experiment. This extracted data consists of statistics related to 
moving velocity, distance, animal orientation, rate of explored territory or activity rate. Data 
analysis is usually a post-processing step done after all other tracking tasks are completed. 

Results and discussion 

To compare how the 28 selected free programs handle the different steps in the tracking pipeline, 
we analyze and evaluate their main characteristics and functionalities for each step. Since there 
are no public datasets and standard metrics, we cannot make a direct quantitative comparison of 
their performance. In addition, these programs have been developed to use different video files, 
are optimized for specific arenas and are aimed at tracking different animals. Therefore, we point 
out their most important limitations, study the benefits and drawbacks of the techniques and 
algorithms, evaluate the areas that require further research, and finally, comment on the most 
important missing features of the software. We list these features in two tables that follow the 
tracking pipeline structure (see Fig. 3 and 4) and discuss each step below. 

Video Acquisition. Behavioral experiments are often long and require a relatively large sample 
size; thus, they usually generate a vast amount of video data. The quality of the video data, and 
therefore the results extracted from it, are heavily dependent on experimental conditions such as 
illumination, camera position, camera resolution, optical quality and background color. The 
influence of these parameters in the behavioral results has rarely been studied, and most 
researchers are not familiar with the variables that need to be considered or how to adjust them20. 

It is also important to note that parameters such as resolution, codec configuration or 
frame rate, can affect the computational cost of tracking algorithms exponentially. It is 
recommended that each animal is composed of at least 50 pixels in a video21,22 and that the frame 
rate is high enough, so the animal position overlaps in two consecutive frames. However, most 
tracking applications are limited by the maximum resolution that they can handle. For example, 
EthoWatcher23,24 is restricted to a maximum video resolution of 320x240 pixels, and 
MouseMove25 can handle only resolutions up to 640x480 pixels22. Thus, these applications are 
somewhat limited in the field of view and the number of organisms they can track if one wants to 
fulfill the requirements presented above. To our knowledge, only anTraX26, Automated Planar 
Tracking27 and ToxTrac22,28,29 have been successfully tested with resolutions higher than 
1920x1080. Other programs such as Idtracker21,30 and Idtracker.ai31,32 or Ctrax33,34 are in our 
experience also able to handle videos with such resolutions. 
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Fig. 3| Tracking software comparison: Last update, platform, video acquisition, calibration 
and detection. * +: Bad; programing or high-level domain specific knowledge is required, the 
software needs to be compiled, has complex installation requirements or is difficult to use. ++: 
Ok; requires relevant domain specific knowledge to install and run. It is suitable for laboratories 
or academia. +++: Good; the software is easy to install and run and it is suitable for  domestic 
use. NA: Information not available. CNN: convolutional Neural Network. GPU: graphic 
processing unit. MCR: Matlab Compiler Runtime. OS: Operating system. 
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Fig. 4| Tracking software comparison: Trajectory generation, data analysis and extra 
features. *: Minimum-maximum number of animals and in brackets, the time the software is able 
to preserve their identity according to the results published by their authors. NA: Information not 
available.  CNN: convolutional Neural Network.  

 
  

http://www.nature.com/laban


Lab Animal | 246 VOL 50 | September 2021 | 246–254 | www.nature.com/laban 
https://doi.org/10.1038/s41684-021-00811-1 

7 
 

The frame rate or the number of frames in a video file are also computational limiting 
factors. Since Idtracker21,30 and Idtracker.ai31,32 require high computation times for each frame 
even on moderate resolutions, analyzing large data sets using these software programs can be very 
time-consuming. Finally, ABC tracker35,36 can only handle videos shorter than 10 minutes 
restricting the use of this software to short-time experiments37.  

The most important limitation of video acquisition is the processing speed and memory 
required to run tracking algorithms. This limitation is currently the bottleneck in behavioral 
experiments. The ability to process high-resolution high-framerate videos in real-time (online 
analysis) would revolutionize behavioral experiments by markedly decreasing the analysis 
timescale and reducing the need for video data storage. Currently, real-time tracking is only 
possible using simple algorithms that do not work with complex backgrounds and multiple 
targets. Out of the 28 applications, BioSense38,39, EthoWatcher23,24, MARGO40,41, Multi-Worm 
Tracker42,43 and SwisTrack44,45 offer both online and offline video acquisition modes, whereas the 
other programs only operate in offline mode. 

Calibration. Camera calibration is a process that allows the user to obtain measurements in real-
world coordinates. In addition, calibration can also include removing image distortion and 
perspective errors, which occur when imaging a 2D surface with a fixed camera; it is important 
to recall that the distance from the center to the edges is not linearly increasing. Although 
calibration is a critical feature of animal tracking software to obtain reliable data, only 9,of the 28 
analyzed programs offer a calibration function. See table 1, "Calibration" column. 

Calibration techniques are commonly based on the use of the pinhole mathematical 
camera model46 to solve the equations that describe the projection of a point in the real world to 
the image plane through the lens of an ideal camera. This model takes into account not only the 
pixel scale but also the rotation of the camera with respect to the arena, also allowing the 
estimation and removal of lens distortion. This technique requires to solve a complex equation 
system and to use a calibration pattern. Only SwisTrack44,45, MARGO40,41 and ToxTrac22,28,29 
implement this technique. 

Most calibration techniques do not take advantage of the pinhole model and use a simple 
scale transformation. A scale transformation converts image coordinates to world coordinates by 
multiplying them by a constant factor. The programs Animapp47, BEMOVI48,49, BioSense38,39, 
EthoWatcher23,24, MARGO40,41, MouseMove25 and ToxTrac22,28,29 use this approach. This 
technique is more straightforward for the user, but far less flexible and accurate since image 
distortion is not taken into account. Only SwisTrack44,45, ToxTrac22,28,29 and MARGO40,41 have both 
calibration systems. 

The lack of calibration options in available animal tracking software is surprising. We 
believe that this issue illustrates the deep gap between the considerations of the academic 
community that develops tracking software and the actual laboratory needs of software users'. 

Detection. The detection step consists of finding the animals of interest in the images. In table 1, 
we divide the detection step into three different sections: 

Background subtraction. Background subtraction algorithms aim to remove features of the 
environment that can interfere with animal detection. Background subtraction is a key feature 
when recording animals in a natural setting with dynamic lighting conditions or in aquatic 
environments where images are changed by reflections, shadows and other artifacts. Two most 
common types of background subtraction techniques are: background subtraction techniques 
based on static images, and background subtraction techniques based on dynamic models. 

Static techniques commonly use a reference frame or video of the background without 
animals, such as in EthoWatcher23,24, Pathtrackr50,51, MARGO40,41, MouseMove25, SpectralTL52 
and SwisTrack44,45; or estimate a background by averaging the frames of the video, such as in 
anTraX26, Biotracker53, Idtracker21,30 and Idtracker.ai31,32. Static background techniques are easy 
to implement and are effective when detecting stationary or moving animals, if the background 
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objects and illumination does not change during the experiment. Otherwise, these techniques 
should not be used. 

Dynamic techniques use moving or decaying average models, such as in Multi-Worm 
Tracker42,43, SwisTrack44,45; or Gaussian mixture models, such as in BioSense38,39, Ctrax33,34, 
ToxTrac22,28,29 and UMATracker54,55. Dynamic techniques can account for illumination changes 
or other gradual changes in the background. This factor is important when running long-time 
experiments in which the sun is used as a light source. However, these techniques are not reliable 
when detecting animals that remain static during a substantial part of the experiment. 

The only program that approaches background subtraction with an innovative technique 
is Mouse Tracking56,57. Mouse Tracking56,57 uses a deep learning algorithm to separate the pixels 
from the background and foreground. This strategy is more robust than other techniques but is 
also complex and requires a massive amount of training data, which makes the method very 
computationally heavy. 

From our experience, there is room for improvement in background subtraction 
algorithms given thay only a few studies have addressed situations with low and/or changing 
contrast within the background. 

 Segmentation. Segmentation is performed immediately after background subtraction and usually 
consists of a technique aimed at separating potential animals in the image and a filtering step that 
removes possible false positives. The most common segmentation technique is based on so-called 
thresholding. Thresholding is a simple segmentation method that uses a reference value to 
separate pixels' regions of the image of different brightness. Thresholding is based on contrast 
and requires the animals to appear as bright objects in a dark background or as dark objects in a 
bright background. The main advantage of thresholding is that it is a very computationally 
efficient technique. However, thresholding is very sensitive to false-positives or false-negatives 
in non-uniform images. Most of the analyzed software use a variation of this technique. 

To increase the sensitivity and robustness of detection, a few techniques locate specific 
animal-features on the image. This method limits the thresholding step given that it can only be 
applied to specific animals with certain body shapes and therefore can not be used for general 
tracking. Examples of software using this strategy are Ctrax33,34 and Mouse Tracking56,57, which 
use an ellipse fitting strategy to search for circular shaped objects. Automated Planar Tracking27 
and Fish CnnTracker58, on the other hand, rely on locating the specific shape of the fish head to 
improve detection. 

The only applications that provide some innovations in animal detection are ABC 
Tracker35,36, Multi-Animal Tracker59,60 and Pathtrackr50,51. These programs use a system that 
requires the user to mark each animal's location in a few frames on the video and use a machine 
learning technique to locate each animal in the remaining frames. This approach provides a more 
robust detection system than other algorithms. ABC Tracker35,36 successfully uses this approach 
by applying support vector machines (SVM) and obtains robust results with a user-friendly 
experience. 

Species. Most of the software studied are versatile and can be used for different species. 
Out of the 28 tested applications, 16, can be used for tracking any type of animal, whereas 11, are 
designed for a specific animal type and 1 require expanding the software with specific animal 
models (see column "Species" in table 1). 

Trajectory generation. The challenge of trajectory generation is to associate potential targets 
with previous trajectories. That is, to associate a set of detections to a group of animals, where we 
know the trajectories of these animals before the current frame. The most common technique to 
solve this problem is by using the Kalman filter, which is a prediction-correction technique61. 
With this technique, one can estimate an animal's position in the next frame based on its previous 
known positions by assuming a constant speed or a constant acceleration model. Then, in the next 
frame, the predicted positions are compared with the actual detections using a Hungarian 
optimization technique62. The Kalman filter is very efficient computationally, and most tracking 
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programs that we are aware of have implemented a variation of this algorithm or use similar 
techniques, for example, Particle Filters63. 

However, the Kalman filter and other similar techniques are not reliable in animal 
tracking scenarios where occlusions or multiple interacting animals exist. The reason for this 
limitation is that these techniques are not able to keep the identity of the objects and use only 
spatial information to match the trajectories. A typical example of a situation where these 
techniques fail is when two animals cross paths and change direction after the collision. When 
this situation occurs, the algorithm will lose track of the animals for a brief moment. It will then 
search for the animals' new positions, assuming they continued moving in the same direction. Asa 
consequence, animals’ identities will be switched.  

Preserving the identity of multiple individuals (Id. preservation) after an occlusion is 
currently the main limitation in the trajectory generation step. The complexity of this problem is 
illustrated in a 2014 study21, in which Pérez-Escudero and colleagues analyzed a scenario with 
multiple interacting animals. In this scenario, when solving correctly 99% of all crossings, only 
11% of the animals were correctly identified after 2 minutes of tracking owing to error 
propagation22. In summary, preserving the identity is complex and computationally expensive, 
and only a few offline tracking applications offer major contributions to this field. 

Motr64,65 uses an Id. preservation that relies on marking the individuals with visually 
distinctive markers that can be easily identified automatically. This technique is reliable and 
allows tracking animals for long periods of time and in multiple sessions. However, many modern 
techniques try to avoid placing markers or sensors on the animals given that the markers can be 
impractical and sometimes interfere with the experiment by affecting animal behavior66,67. 
Programs such as Automated Planar Tracking27, Tracktor19,68 and UMATracker offer Id. 
preservation algorithms that in our opinion have only marginally improved the basic Kalman 
strategy and are not robust and reliable for some specific situations. 

Idtracker21,30 and ToxTrac22,28,29 use a strategy based on a probabilistic texture analysis to 
analyze animals' similarity between collisions. Idtracker21,30 was one of the first applications that 
seriously approached this issue when tracking multiple targets and uses a complex algorithm 
based on a Bayesian analysis with a similarity metric to compare the objects' texture. 
ToxTrac22,28,29, on the other hand, uses a combination of a similarity analysis with a Hungarian 
algorithm to manage the identity preservation of multiple targets. This technique builds on top of 
a very fast tracking algorithm that can handle simultaneous tracking in multiple arenas, resulting 
in one of the most flexible free tracking tools for trajectory generation. 

Traditional probabilistic texture analysis is not capable of tracking many targets or for 
very long times, but the approach is very useful in short experiments with small groups of animals, 
for which body shape and appearance do not change much in comparison to their position or 
posture. Based on the results reported by ToxTrac22,28,29 and Idtracker21,30, we recommend using 
these programs with groups of up to 5 animals in videos no longer than 20 minutes. Between these 
two techniques, especially for users with limited computational speed, we think ToxTrac22,28,29 is 
a better alternative because it requires substantially less processing time19,28.  

Idtracker.ai31,32, and Fish CnnTracker58 use an approach based on deep learning models 
called convolutional neural networks (CNNs). CNNs are optimized for image classification tasks 
and are among the most powerful image classification techniques nowadays, outperforming those 
based on traditional probabilistic texture analysis. The current drawbacks of these models are that 
they require specific training data and cannot be used in real-time applications even with 
optimized hardware, such as graphics processing units (GPUs). While some techniques such as 
transfer learning can mitigate some of these issues, none of the software in the list use this 
approach.  

Idtracker.ai31,32 is an extension of Idtracker21,30, which combines two different deep 
learning algorithms: one to detect occlusions and one to identify targets with classification 
analysis. Idtracker21,30 and Idtracker.ai31,32 present the most solid identity preservation techniques 
on the market. However, the computational time required to analyze a standard experiment can 
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be as high as one hour per frame if not using expensive GPU computing hardware, making it 
unpractical to run on a standard laboratory computer. Fish CnnTracker58 offers a less flexible 
approach only suitable for fish tracking and is also less accurate28 than Idtracker.ai31,32. 
Idtracker.ai31,32 achieves the best accuracy in Id. preservation to date. In a set of experiments, 
Romero-Ferrero et al. manually reviewed a significant sample of the crossings for individual 
animals, and Idtracker.ai31,32 was able to track up to 100 zebrafish and fruit flies for 10 minutes, 
or 4 mice for one hour31. However, in our opinion, the computation times this technique requires 
makes Idtracker.ai31,32 not suitable for most common scenarios, given that many behavioral labs 
do not have a high-end computer with a state of the art GPU, and that processing an hour video 
with Idtracker.ai31,32, with a modern GPU, can take more than one day of computation in extreme 
situations32. Despite this limitation, it is important to note that Idtracker.ai31,32 is the best of the 
reviewed software to analyze experiments with large groups of unmarked animals. 

ABC Tracker35,36 offers a novel approach that uses forward and backward particle 
filtering. A particle filter is a selection-prediction-measurement solution of similar complexity to 
the Kalman filter. The particle filter uses a set of samples called particles to estimate the internal 
states in dynamical systems from partial observations and with random perturbations. This filter 
is also easy to parallelize and can be more accurate than Kalman filter69. In our opinion, the main 
novelty of ABC Tracker35,36 is that it combines with this prediction scheme an algorithm to track 
stationary objects based on a local search strategy that, in practice, is able to solve most animal 
interactions when the scenario does not involve complex occlusions in a 3D space. ABC 
Tracker35,36 can currently track up to 30 animals in a video for less than 10 minutes37, obtaining 
very good results in these situations. In our opinion, ABC Tracker35,36 has also the most intuitive 
interface for analyzing experiments with multiple individuals. 

Finally, anTraX26, combines the use of color tags to mark individuals, CNNs and a graph-
based approach. According to the authors, these features should allow the tracking of  dozens of 
marked individuals for hours, if not days. However, given the the use of tags and the lack of 
validation results forspecific timeit is unclear how robust is the algorithm compared to other 
techniques. 

In summary, Id. preservation algorithms for multiple interacting animals are still 
insufficient when looking at the computational performance and accuracy that are required for 
behavioral tests and analysis. So far, Id. preservation has not been accomplished when running 
multiple arenas simultaneously, with animal sizes smaller than 50 pixels or with online image 
acquisition techniques. 

Data Analysis. Nowadays, automatic behavior recognition can be achieved using annotated video 
datasets to train machine-learning classifiers70. Kabra et al. proposed an automatic animal 
behavior annotator that led to the creation of individual and social behavior classifiers for 
organisms, such as mice and larval flies71. Robie et al. proposed a similar strategy to detect 
patterns of social interactions18. Using these techniques, some works studied complex behaviors 
such as mating and feeding in mice72, or behavioral responses of larval fish to chemicals73. Despite 
this development, only a minority of the analyzed software include functions for complex 
behavior recognition, and they are always limited to specific behaviors in particular scenarios. 
For example, Multi-Animal Tracker59,60 was used to detect pirouette movements in worms,  
Ctrax33,34 was used to detect touch and chase social behaviors in flies, QTrack12,74 detects specific 
courtship behaviors also in flies; and finally, MouseMove25 can quantify unilateral locomotor 
deficits in mice. 

In general, tracking applications provide only movement metrics. Thus, most tracking 
applications are limited to movement, orientation, and zone exploration metrics. Furthermore, 
only a fraction of the assessed software in this Review provides a useful array of these metrics, 
that is: BioSense38,39, MouseMove25, Multi-Animal Tracker59,60, Multi-Worm Tracker42,43 and 
ToxTrac22,28,29. These software provide advanced toolkits that allow non-programmers to analyze 
parameters such as movement, time spent in selected areas, changes in direction, and time spend 
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moving. An important note is that these software packages can also provide individual or 
population metrics. 

We conclude that more work is needed to integrate behavior recognition in tracking 
software, and we believe that algorithms for automatic detection of stress and other complex 
behaviors would represent a true innovation if included in tracking tools. 

Extra Features. Some tracking applications implement extra features to facilitate user experience 
or to add versatility. The most useful extra feature, from our point of view, is the ability to analyze 
video files that have been split into multiple files. This feature is explicitly supported currently 
by Idtracker21,30, Idtracker.ai31,32 and ToxTrac22,28,29. Another important feature is the possibility 
of processing a batch of video files using the same camera configuration, allowing the user to 
adjust the parameters only once for a set of experiments. Only Animapp47, Ctrax33,34, 
idTracker21,30, MARGO40,41, MouseMove25 and ToxTrac22,28,29 implement this functionality. 

The possibility of controlling hardware peripherals such as external sensors, lights or 
temperature sources is a nice feature implemented in MARGO40,41 and RAT75,76. This feature 
allows measuring parameters such as reaction times to stimuli, planning long-term tests without 
supervision and modifying the stimuli according to behaviors creating a closed control loop. 

UMATracker54 and BioTracker53 implement a modular approach to facilitate the 
development and integration of new processing modules. We think that this addition can be useful 
in collaboration with the community to integrate new features into the software. However, taking 
full advantage of this feature requires a constant level of support and commitment that may not 
be realistic. 

Finally, we would like to highlight that Animapp47 includes an Android application that 
directly analyzes images using the smartphone camera. With the increased computational power 
of smartphones, we believe that this type of program can be useful for simple studies performed 
in a field environment. 

Conclusions 

Current tracking software need to balance robustness, accuracy, and processing speed. As a rule 
of thumb, higher robustness and accuracy require complex algorithms that reduce processing 
speed. Therefore, online processing programs use simple algorithms that increase efficiency to 
reach real-time performance, but with the trade-off of less robustness and accuracy. Offline 
software can take advantage of more complex processing algorithms but require a computational 
capacity that is not achievable for all users or suitable for every experiment. We tried to highlight 
these differences and the contributions of each application to the animal tracking field. 

Our assessment shows that all applications share more-or-less the same pipeline and very 
few of them offer a unique or revolutionary approach; the use of CNN networks for Id. 
Preservation being the most relevant new contribution. However, our biggest concern is the lack 
of usability of recent software. Out of the 28 tested programs, only four: IdTracker21,30, 
IdTracker.ai31,32, ABC Tracker35,36 and Toxtrac22,28,29 provide innovative algorithms, useful 
features and user-friendly interfaces. We believe that the main reason for this lack of usability is 
the existence of a gap between software design and their intended use in a laboratory. Most 
software packages are not easy-to-use, require tuning of several and complex parameters for each 
experiment, and do not include important features such as calibration options. In addition, most 
programs do not offer data analysis tools beyond the most basic ones and cannot extract valuable 
behavioral metrics. In our opinion, developers of tracking tools must change their paradigm from 
creating programs that can be published to creating programs that are useful and easy to use. 
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Finally, we want to draw attention to the lack of complete, open, and well-labeled datasets that 
provide a standard reference for validation and accuracy testing. Such datasets would give 
researchers an objective tool for a quantitative comparison of tracking programs6. 

 

Author Contributions 

A.R. co-wrote the manuscript and performed the majority of the analysis of the tracking software. 
V.P. co-wrote the manuscript and assisted with the analysis of the tracking software. J.H., D.W. 
and M.A. revised and edited the manuscript and assisted with the analysis of the tracking software. 

 

Competing interests 

The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper.  

 

Publisher’s note: Springer nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 

 

References 

1. Dell, A. I. et al. Automated image-based tracking and its application in ecology. Elsevier 
29, 417–428 (2014). 

2. Hajar, R. Animal testing and medicine. Hear. Views 12, 42 (2011). 

3. Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F. & Renzi, P. Evaluation of the 
elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour 
in inbred mice. Behav. Brain Res. 134, 49–57 (2002). 

4. Olton, D. S. Mazes, maps, and memory. Am. Psychol. 34, 583 (1979). 

5. Silverman, J. L., Babineau, B. A., Oliver, C. F., Karras, M. N. & Crawley, J. N. 
Influence of stimulant-induced hyperactivity on social approach in the BTBR mouse 
model of autism. Neuropharmacology 68, 210–222 (2013). 

6. Cirulli, F., Berry, A. & Alleva, E. Intracerebroventricular administration of brain-derived 
neurotrophic factor in adult rats affects analgesia and spontaneous behaviour but not 
memory retention in a Morris Water Maze task. Neurosci. Lett. 287, 207–210 (2000). 

7. Borta, A. & Schwarting, R. K. W. Inhibitory avoidance, pain reactivity, and plus-maze 
behavior in Wistar rats with high versus low rearing activity. Physiol. Behav. 84, 387–
396 (2005). 

8. Kulesskaya, N. & Voikar, V. Assessment of mouse anxiety-like behavior in the light--
dark box and open-field arena: role of equipment and procedure. Physiol. Behav. 133, 
30–38 (2014). 

9. Lee, H., Iida, T., Mizuno, A., Suzuki, M. & Caterina, M. J. Altered thermal selection 

 
6 The software BioTrack77,78 and FIMTrack79,80 is not specifically addressed in the text, and only 
referenced in Fig 3. And Fig 4. 

http://www.nature.com/laban


Lab Animal | 246 VOL 50 | September 2021 | 246–254 | www.nature.com/laban 
https://doi.org/10.1038/s41684-021-00811-1 

13 
 

behavior in mice lacking transient receptor potential vanilloid 4. J. Neurosci. 25, 1304–
1310 (2005). 

10. Woodley, C. M., Urbanczyk, A. C., Smith, D. L. & Lemasson, B. H. Integrating Visual 
Psychophysical Assays within a Y-Maze to Isolate the Role that Visual Features Play in 
Navigational Decisions. JoVE (Journal Vis. Exp. e59281 (2019). 

11. Jonsson, M. et al. High-speed imaging reveals how antihistamine exposure affects 
escape behaviours in aquatic insect prey. Sci. Total Environ. 648, 1257–1262 (2019). 

12. Dankert, H., Wang, L., Hoopfer, E. D., Anderson, D. J. & Perona, P. Automated 
monitoring and analysis of social behavior in Drosophila. Nat. Methods 6, 297–303 
(2009). 

13. Pereira, T. D. et al. Fast animal pose estimation using deep neural networks. Nat. 
Methods 16, 117–125 (2019). 

14. Graving, J. M. et al. DeepPoseKit, a software toolkit for fast and robust animal pose 
estimation using deep learning. Elife 8, e47994 (2019). 

15. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts 
with deep learning. Nat. Neurosci. 21, 1281–1289 (2018). 

16. Franco-Restrepo, J. E., Forero, D. A. & Vargas, R. A. A Review of Freely Available, 
Open-Source Software for the Automated Analysis of the Behavior of Adult Zebrafish. 
Zebrafish 16, zeb.2018.1662 (2019). 

17. Husson, S. J., Costa, W. S., Schmitt, C. & Gottschalk, A. Keeping track of worm 
trackers. in WormBook: The Online Review of C. elegans Biology [Internet] 
(WormBook, 2018). 

18. Robie, A. A., Seagraves, K. M., Egnor, S. E. R. & Branson, K. Machine vision methods 
for analyzing social interactions. J. Exp. Biol. 220, 25–34 (2017). 

19. Sridhar, V. H., Roche, D. G. & Gingins, S. Tracktor: image-based automated tracking of 
animal movement and behaviour. Methods Ecol. Evol. (2018). 

20. Henry, J., Rodriguez, A. & Wlodkowic, D. Impact of digital video analytics on accuracy 
of chemobehavioural phenotyping in aquatic toxicology. PeerJ 7, e7367 (2019). 

21. Pérez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda, S. & de Polavieja, G. G. 
idTracker: tracking individuals in a group by automatic identification of unmarked 
animals. Nat. Methods 11, 743–748 (2014). 

22. Rodriguez, A. et al. ToxTrac: A fast and robust software for tracking organisms. 
Methods Ecol. Evol. 9, 460–464 (2018). 

23. Junior, C. F. C. et al. ETHOWATCHER: validation of a tool for behavioral and video-
tracking analysis in laboratory animals. Comput. Biol. Med. 42, 257–264 (2012). 

24. Junior, C. F. C. et al. EthoWatcher. http://ethowatcher.paginas.ufsc.br/ (2019). 

25. Samson, A. L. et al. MouseMove: an open source program for semi-automated analysis 
of movement and cognitive testing in rodents. Sci. Rep. 5, (2015). 

26. Gal, A., Saragosti, J. & Kronauer, D. J. C. anTraX, a software package for high-
throughput video tracking of color-tagged insects. Elife 9, e58145 (2020). 

27. Wang, S. H., Cheng, X. E., Qian, Z.-M., Liu, Y. & Chen, Y. Q. Automated planar 
tracking the waving bodies of multiple zebrafish swimming in shallow water. PLoS One 
11, e0154714 (2016). 

http://www.nature.com/laban


Lab Animal | 246 VOL 50 | September 2021 | 246–254 | www.nature.com/laban 
https://doi.org/10.1038/s41684-021-00811-1 

14 
 

28. Rodriguez, A., Zhang, H., Klaminder, J., Brodin, T. & Andersson, M. ToxId: an efficient 
algorithm to solve occlusions when tracking multiple animals. Sci. Rep. 7, 14774 (2017). 

29. Rodriguez, A. et al. Toxtrac. https://sourceforge.net/projects/toxtrac/ (2019). 

30. Pérez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda, S. & de Polavieja, G. G. 
idTracker. http://www.idtracker.es/ (2019). 

31. Romero-Ferrero, F., Bergomi, M. G., Hinz, R., Heras, F. J. H. & de Polavieja, G. G. 
idtracker.ai: Tracking all individuals in large collectives of unmarked animals. Nat. 
Methods 16, 179–182 (2019). 

32. Romero-Ferrero, F., Bergomi, M. G., Hinz, R., Heras, F. J. H. & de Polavieja, G. G. 
idtracker.ai. https://idtracker.ai/ (2019). 

33. Branson, K., Robie, A. A., Bender, J., Perona, P. & Dickinson, M. H. High-throughput 
ethomics in large groups of Drosophila. Nat. Methods 6, 451–457 (2009). 

34. Branson, K., Robie, A. A., Bender, J., Perona, P. & Dickinson, M. H. Ctrax. 
http://ctrax.sourceforge.net/ (2019). 

35. Shin, M. C. ABC Tracker. http://abctracker.org/ (2018). 

36. Rice, L. A. A beginning-to-end system for efficiently gathering tracking data on multiple 
targets. (The University of North Carolina at Charlotte, 2016). 

37. David Farynyk. ABC Tracker Support. 
https://abctracker.atlassian.net/wiki/spaces/ABCTS/pages/458795/FAQ (2020). 

38. Patman, J., Michael, S. C. J., Lutnesky, M. M. F. & Palaniappan, K. BioSense: Real-
Time Object Tracking for Animal Movement and Behavior Research. in 2018 IEEE 
Applied Imagery Pattern Recognition Workshop (AIPR) 1–8 (2018). 

39. Patman, J., Michael, S. C. J., Lutnesky, M. M. F. & Palaniappan, K. BioSense. 
https://www.mantisrt.com/ (2019). 

40. Werkhoven, Z., Rohrsen, C., Qin, C., Brembs, B. & de Bivort, B. MARGO (Massively 
Automated Real-time GUI for Object-tracking), a platform for high-throughput ethology. 
PLoS One 14, e0224243 (2019). 

41. Werkhoven, Z., Rohrsen, C., Qin, C., Brembs, B. & de Bivort, B. MARGO. 
https://github.com/de-Bivort-Lab/margo (2020). 

42. Swierczek, N. A., Giles, A. C., Rankin, C. H. & Kerr, R. A. High-throughput behavioral 
analysis in C. elegans. Nat. Methods 8, 592 (2011). 

43. Swierczek, N. A., Giles, A. C., Rankin, C. H. & Kerr, R. A. Multi-Worm Tracker. 
https://sourceforge.net/projects/mwt/ (2019). 

44. Correll, N. et al. SwisTrack: A tracking tool for multi-unit robotic and biological 
systems. in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems 
2185–2191 (2006). 

45. Mario, E. Di et al. SwisTrack. https://sourceforge.net/projects/swistrack (2019). 

46. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. 
Mach. Intell. 22, 1330–1334 (2000). 

47. Rao, S. R. et al. Small Animal Video Tracking for Activity and Path Analysis Using a 
Novel Open-Source Multi-Platform Application (AnimApp). Sci. Rep. 9, (2019). 

48. Pennekamp, F., Schtickzelle, N. & Petchey, O. L. BEMOVI, software for extracting 

http://www.nature.com/laban


Lab Animal | 246 VOL 50 | September 2021 | 246–254 | www.nature.com/laban 
https://doi.org/10.1038/s41684-021-00811-1 

15 
 

behavior and morphology from videos, illustrated with analyses of microbes. Ecol. Evol. 
5, 2584–2595 (2015). 

49. Pennekamp, F., Schtickzelle, N. & Petchey, O. L. BEMOVI. http://bemovi.info/ (2015). 

50. Harmer, A. M. T. & Thomas, D. B. pathtrackr: An r package for video tracking and 
analysing animal movement. Methods Ecol. Evol. 00, 1–7 (2019). 

51. Harmer, A. M. T. & Thomas, D. B. Pathtrackr. https://github.com/aharmer/pathtrackr 
(2019). 

52. Madan, C. R. & Spetch, M. L. Visualizing and quantifying movement from pre-recorded 
videos: the spectral time-lapse (STL) algorithm. F1000Research 3, (2014). 

53. Mönck, H. J. et al. Biotracker: An open-source computer vision framework for visual 
animal tracking. arXiv Prepr. arXiv1803.07985 (2019). 

54. Yamanaka, O. & Takeuchi, R. UMATracker: an intuitive image-based tracking platform. 
J. Exp. Biol. 221, jeb182469 (2018). 

55. Yamanaka, O. & Takeuchi, R. UMATracker. http://ymnk13.github.io/UMATracker/ 
(2019). 

56. Geuther, B. Q. et al. Robust mouse tracking in complex environments using neural 
networks. Commun. Biol. 2, 124 (2019). 

57. Geuther, B. Q. et al. Mouse Tracking. https://github.com/KumarLabJax/MouseTracking 
(2019). 

58. Zhiping, X. U. & Cheng, X. E. Zebrafish tracking using convolutional neural networks. 
Sci. Rep. 7, 42815 (2017). 

59. Itskovits, E., Levine, A., Cohen, E. & Zaslaver, A. A multi-animal tracker for studying 
complex behaviors. BMC Biol. 15, 29 (2017). 

60. Itskovits, E., Levine, A., Cohen, E. & Zaslaver, A. Multi-Animal Tracker. 
https://github.com/itskov/MultiAnimalTrackerSuite (2019). 

61. Cuevas, E. V, Zaldivar, D. & Rojas, R. Kalman filter for vision tracking. Freie Univ. 
Berlin Tech. Pap. (2005) doi:10.17169/refubium-22852. 

62. Kuhn, H. W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 
83–97 (1955). 

63. Del Moral, P. Nonlinear filtering: Interacting particle resolution. Comptes Rendus 
l’Académie des Sci. I-Mathematics 325, 653–658 (1997). 

64. Ohayon, S., Avni, O., Taylor, A. L., Perona, P. & Egnor, S. E. R. Automated multi-day 
tracking of marked mice for the analysis of social behaviour. J. Neurosci. Methods 219, 
10–19 (2013). 

65. Ohayon, S., Avni, O., Taylor, A. L., Perona, P. & Egnor, S. E. R. Motr. 
http://motr.janelia.org/ (2019). 

66. Rodriguez, A. et al. Optical fish trajectory measurement in fishways through computer 
vision and artificial neural networks. J. Comput. Civ. Eng. 25, 291–301 (2011). 

67. Rodriguez, A., Bermúdez, M., Rabuñal, J. & Puertas, J. Fish tracking in vertical slot 
fishways using computer vision techniques. J. Hydroinformatics (2014). 

68. Sridhar, V. H., Roche, D. G. & Gingins, S. Tracktor. 
https://github.com/vivekhsridhar/tracktor (2019). 

http://www.nature.com/laban


Lab Animal | 246 VOL 50 | September 2021 | 246–254 | www.nature.com/laban 
https://doi.org/10.1038/s41684-021-00811-1 

16 
 

69. Rao, G. M. & Satyanarayana, C. Visual Object Target Tracking Using Particle Filter: A 
Survey. Image, Graph. Signal Process. 57–71 (2013) doi:10.5815/ijigsp.2013.06.08. 

70. Datta, S. R. Q&A: Understanding the composition of behavior. BMC Biol. 17, 1–7 
(2019). 

71. Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S. & Branson, K. JAABA: 
interactive machine learning for automatic annotation of animal behavior. Nat. Methods 
10, 64 (2013). 

72. Linck, V. de M. et al. Effects of inhaled Linalool in anxiety, social interaction and 
aggressive behavior in mice. Phytomedicine 17, 679–683 (2010). 

73. Steele, W. B., Mole, R. A. & Brooks, B. W. Experimental protocol for examining 
behavioral response profiles in larval fish: application to the neuro-stimulant caffeine. 
JoVE (Journal Vis. Exp. e57938 (2018). 

74. Dankert, H. QTrack (Cadabra). http://www.vision.caltech.edu/cadabra/ (2009). 

75. Krynitsky, J. et al. Rodent Arena Tracker (RAT): A Machine Vision Rodent Tracking 
Camera and Closed Loop Control System. eNeuro 7, (2020). 

76. Krynitsky, J. et al. RAT. https://hackaday.io/project/162481-rodent-arena-tracker-rat 
(2020). 

77. Feldman, A., Hybinette, M. & Balch, T. The multi-iterative closest point tracker: An 
online algorithm for tracking multiple interacting targets. J. F. Robot. 29, 258–276 
(2012). 

78. Hrolenok, B., Quitmeyer, A., Motter, S., Stolarsky, D. & Migliozzi, B. L. R. Bio-
tracking. http://www.bio-tracking.org/ (2012). 

79. Risse, B., Berh, D., Otto, N., Klämbt, C. & Jiang, X. FIMTrack: An open source tracking 
and locomotion analysis software for small animals. PLoS Comput. Biol. 13, e1005530 
(2017). 

80. Risse, B., Berh, D., Otto, N., Klämbt, C. & Jiang, X. FIMTrack. https://www.uni-
muenster.de/PRIA/en/FIM/download.shtml (2017). 

 

http://www.nature.com/laban

	Abstract
	Introduction
	General pipeline of a tracking program
	Results and discussion
	Conclusions
	Author Contributions
	References



