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Abstract

Codes written in a naive way seldom effectively exploit the computing resources, while writing optimized
codes is usually a complex task that requires certain levels of expertise. This problem is further increased
in the presence of heterogeneous devices, which present more tunable parameters than regular CPUs and
high sensitivity to the optimization decisions taken. Furthermore, portability is an added concern given the
wide variety of accelerators available. This paper tackles this problem adding an automatic optimizer to a
library that already provides an easy and portable way to program heterogeneous devices, the Heterogeneous
Programming Library (HPL). Our optimizer takes as input a simple version of a code and then tunes it for
the device where it is going to be executed by performing the most usual set of optimizations applicable in
heterogeneous devices. These optimizations are parametrized using a set of optimization parameters that
need to be tuned for the device. The HPL library has also been equipped with an autotuner that can be
used to this purpose. The effectiveness of the autotuner and the optimizer has been tested on several codes
and devices. The results show that the combination of the autotuner and the optimizer make the tested
codes 16 times faster on average than the original codes written by the programmer.
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1. Introduction device to use, as they can miss important optimiza-
tion opportunities [3].

One of the programming tools that addresses the
development of portable codes for heterogeneous
devices is the Heterogeneous Programming Library
(HPL) [4]. This framework provides a simple API
and semantics, and the fact that its current back-
end relies on OpenCL implies that HPL codes can
be run in all the devices that support this stan-
dard. The HPL environment generates and com-
piles OpenCL code at run-time, which opens the
possibility to dynamically apply optimizations on
it. This work takes advantage of this feature in or-
der to extend HPL with an automatic optimizer,
which is particularly valuable given the diverse na-
ture of the devices that can be targeted by this
framework.

The main contributions of the current paper are
two important additions to the HPL environment
which were not present in any previous version of

Nowadays there is a wide range of heterogeneous
devices available for general purpose computing.
Thus, programmers have to face two important
problems. The first one is that there is a large num-
ber of libraries, languages or extensions that allow
to program these devices. While some of these al-
ternatives are only usable on a limited range of de-
vices, standards like OpenCL [1] or OpenACC [2]
allow to develop codes that can be executed on a
wide range of devices. The second problem is that,
even if they use one of these portable technologies,
the code has to be manually optimized to exploit
effectively the capabilities of each device in order
to obtain a good, and sometimes just even a rea-
sonable performance. This is true even in the case
of the approaches supported by optimizing compil-
ers that retarget the binary generated to the specific
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set of optimizations included in this optimizer
are some of the usually applied on heteroge-
neous systems, such as local memory exploita-
tion, the adjustment of the amount of work
executed by each thread, or tiling. As we will
see, this addition required important changes
in the internals of HPL.

e An autotuner that sets the values of these pa-
rameters on a device using an iterative search
process guided by the execution time. In our
current implementation the search space can
be traversed using a random policy, a genetic
algorithm or an exhaustive search.

The rest of this paper is organized as follows.
Section 2 introduces HPL. Then, Section 3 gives an
overview about how HPL has been equipped with
an optimizer, and it explains in detail the set of
optimizations performed by that optimizer. Sec-
tion 4 summarizes the parameters that control the
operation of the optimizer and describes briefly the
autotuner. Section 5 presents the experimental re-
sults, which are compared in Section 6 to those ob-
tained by other approaches. Some related work is
discussed in Section 7 and, finally, Section 8 con-
cludes.

2. The Heterogeneous Programming Li-
brary

The Heterogeneous Programming Library
(HPL) [4], available at http://hpl.des.udc.es,
largely simplifies the development of portable
heterogeneous systems with respect to other
alternatives such as OpenCL while allowing fine
grained control of the code, and thus enabling good
performance compared to other alternatives [5].

The HPL library supports the same programming
model as CUDA and OpenCL. This way, the hard-
ware model is composed of a standard CPU host
with a number of computing devices attached. The
host runs the sequential parts of the code and it
dispatches the parallel parts, which are codified as
HPL kernels, to the devices. The CPU of the host
can be itself a computing device. Devices are com-
posed of a number of processors that execute SPMD
parallel code on data present in the memory of their
device. As kernels can only work with data avail-
able in the devices, data must be transferred be-
tween host and devices, but this process is totally
automated by the library.

Several instances of each kernel are executed as
threads and they are unequivocally identified us-
ing a tuple of non-negative integers, called global
identifiers. These identifiers, and their associated
threads, form a global domain with up to 3 di-
mensions. In turn, these threads can be associated
in groups. With this purpose, local domains can
be defined as equal portions of the global domain.
Threads inside a group are also identified using tu-
ples of local identifiers and they can be synchro-
nized through barriers and share a small scratchpad
memory.

The HPL memory model distinguishes four types
of memory regions in the devices (from largest to
smallest): (1) the global memory, which is read-
/written and shared by all the processors, (2) the
local memory, which is a read/write scratchpad
shared by all the processors in a group, (3) the con-
stant memory, which is a read-only memory for the
device processors and can be set up by the host,
and (4) the private memory, which is only accessi-
ble within each thread.

Programmers using HPL have to write a code to
be executed in the host, and one or several kernel
codes, which will be dispatched to the heteroge-
neous device(s). To do that, the library provides
three main components: the template class Array,
the kernels and the host API. They are now dis-
cussed in turn.

The variables used in a kernel must have type
Array<type, ndim [, memoryFlag]>. This type
represents an n-dimensional array of elements of a
C++ type, or a scalar for ndim=0. Scalars and
vectors can also be defined with special data types
like Int, Float, Int4, Float8, etc. The Array
optional memoryFlag specifies one of the kinds of
memory supported (Global, Local, Constant or
Private). The default value of the memoryFlag is
Global, the exception being the Arrays declared in-
side the body of kernels, which are placed by default
in Private memory. The elements that compose
an array may be any of the usual C++ arithmetic
types or a struct. The arrays passed as arguments
to the kernels must be declared in the host code us-
ing the same syntax. HPL automatically allocates
the memory space for these data structures in the
different memories where they are used and keeps
the copies required in a coherent state by perform-
ing the minimum possible number of transfers.

HPL kernels use special control flow structures.
They are similar to those available in C++4, but
their name finishes with an underscore (if_, for_,



#include "hpl.h"
using namespace HPL;

void saxpy(Array<float,1> vy,
Array<float,1> x, Float a) {
ylidx] = a * x[idx] + ylidx];
}

int main(int argc, char *argv) {

Float a;

Array<float, 1> x(1000), y(1000);

// x, y and a are filled in with data

eval (saxpy).global (1000).1local (10)(y, x, a);
}

Figure 1: SAXPY HPL code

...). Also, the arguments passed to for_ loops are
separated by commas instead of semicolons. In ad-
dition, the library provides an API based on prede-
fined variables to obtain the global, local and group
identifiers as well as the sizes of the domains and
number of groups. For example, idx provides the
global identifier of the first dimension, while szx
provides the global size of that dimension. Adding
the 1 prefix to these keywords allows to obtain their
local counterparts, whereas replacing the letter x
with y or z the same values are obtained for the
second and the third dimensions respectively.

Kernels are written as regular C++ functions or
functor classes that use these elements and whose
parameters are passed by value if they are scalars,
and by reference otherwise. The MxV class at the top
of the code of Figure 1 contains an example of an
HPL kernel implementing a SAXPY computation.
In this kernel, each thread computes one position
of the resulting array y.

Finally, the HPL host API contains functions
that allow to discover the devices available and their
properties as well as to request the execution of
kernels on them. The most important function is
eval, which runs a kernel in a device allowing to
specify the global and local domains and the list of
arguments. This is exemplified in the main func-
tion of Figure 1, which requests the execution of
the SAXPY kernel using a global domain of 1000
threads divided in subdomains of 10 threads.

3. An optimizer for HPL

The HPL backend currently translates the HPL
kernels invoked into OpenCL kernels at run-time.
This is performed with the assistance of the
Portable Expression Template Engine (PETE) [6],

which is a portable C4++ framework that lets users
easily add expression-template functionality to con-
tainer classes and perform complex expression ma-
nipulations [7]. HPL uses and extends this library
to parse the tokens that compose an HPL kernel
and turn them into strings containing the equiva-
lent OpenCL kernel code.

In this work, this translation stage is equipped
with an optimizer that is applied to a region of code
selected by the user. As we will see, our tool applies
five critical optimizations whose parameters are au-
totuned by means of iterative compilation. This
requires major changes in the implementation of
this stage. Figure 2 shows an overview of the work-
flow of the autotuner and the underlying optimizer.
Within the optimizer, instead of using PETE to
translate directly the HPL code into OpenCL, now
the HPL code is loaded into an Abstract Syntax
Tree (AST) representation of the kernel, which is
step 1 of Figure 2. On top of this AST representa-
tion the optimizer applies a set of classical source-
to-source code optimizations for codes in hetero-
geneous systems. These optimizations are tuned
using a set of parameters whose values are set by
the autotuner (step 1.1). Then, the optimizations
are applied on the AST (step 2). Once the code is
optimized, this AST representation is turned into
the equivalent OpenCL kernel code (step 3). As
last step, the new code version is compiled and its
performance is measured. After this, the autotuner
either proceeds to generate new combinations of
tuning parameters in order to further explore the
search space, or finishes and provides the best code
version found. Currently our autotuner supports
random and genetic algorithm searches, while the
criteria for terminating the search is based on the
time spent in the process, which is controlled by the
user.

In order to take advantage of this optimizer, an
HPL kernel must be written in a simple way, that is,
without using vectorization, local memory or other
optimization features. Rather, it must just encode
the calculation of one point of the solution. In addi-
tion, the code that performs the computation must
be enclosed inside a compute section, leaving initial-
izations and other parts of the kernel outside this
section. This hint, which just requires using the
keyword compute before the code to optimize en-
closed by curly brackets, as shown in Figure 3, gives
valuable semantic information to the optimizer and
it simplifies the optimization process.

Before the optimization process starts, the opti-
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Figure 2: Workflow of the autotuner and the optimizer

mizer populates the AST with information of the
access patterns that appear in the code. Such pat-
terns are extracted from the analysis of the refer-
ences to data structures located in global memory
found within the compute section marked by the
user. These references are classified according to
their memory access patterns. In order to do that,
the optimizer implements a simplified version of the
analyzer described in [8], which uses the index ex-
pressions of each reference to classify them in one
of these seven types, from the simplest to the most
complex one:

1. NoPat: It is the default pattern. The expres-
sion(s) that index the data structure do(es) not
include global identifiers or loop counters, so all

the threads access the same point of this data
structure.

2. SinglePat: The indexing expressions only
contain global identifiers, so each thread ac-
cesses a different position of the data structure.

3. InnerPat: The indexing expressions only con-
tain inner loop counters, thus, all the threads
access the same slice of the data structure.

4. RowPat: Omne dimension is indexed using a
global identifier and another one (the right-
most one) using a loop counter with stride 1.
As a consequence, each thread traverses se-
quentially a different row of the data structure.

5. ColPat: A loop counter with stride 1 indexes
the second rightmost dimension of the struc-
ture, and the rest are indexed using global
identifiers. Fach thread traverses a different
slice of the data structure in column-major or-
der.

6. DepthPat: A loop counter with stride 1 indexes
the third rightmost dimension of the structure,
while the rest are indexed by the corresponding
global identifiers. Thus, each thread traverses
a different 1D slice across planes in a 3D struc-
ture.

7. RadiusPat: The expressions that index one or
several dimensions operate a global identifier
and a loop counter. Thus, a single work-item
visits several positions of the data structure
around another one working as a pivot.

Once the pattern of each reference has been iden-
tified, the data structure accessed by the reference
is classified as associated to the pattern of the refer-
ence. A data structure accessed by references with
different patterns will be classified as associated to
the most complex pattern found in its references.
We will see the utilization of this classification dur-
ing the explanation of the optimization process of
the AST that follows.

It must be noted that codes that include refer-
ences whose access pattern does not conform to one
of the set previously described, the optimizer will
not be able to process it. This may happen in a
wide range of situations such as triangular loops,
conditionals, indirections, complex linear indexing
expressions, etc. Relatedly, our tool expects a clean
simple coding style to recognize the patterns, so
that possibilities such as for example flattening a
multidimensional data structure and linearizing its
access, may hide the underlying pattern from the
analyzer and thus preclude the analysis.



3.1. Applying optimizations on the AST

According to the CUDA C Programming
Guide [9], the optimization of a CUDA code has
to focus on three basic strategies:

e Maximizing parallel execution to achieve max-
imum utilization.

e Optimizing memory usage to achieve maxi-
mum memory throughput.

e Optimizing instruction usage to achieve maxi-
mum instruction throughput.

These strategies, although explicitly recom-
mended in this guide for Nvidia GPUs, are appli-
cable also to the optimization of the GPUs of other
manufacturers or of any other heterogeneous device
capable of executing parallel codes. In its aim of
tuning codes for any kind of devices, our optimizer
tries to apply these three strategies by following a
set of five stages:

1. The tiling stage, where the tiling technique is
applied to the main loop nest in the compute
section of the HPL kernel.

2. The local memory exploitation stage, that
performs a set of transformations in the code
aimed at using the local memory of the device,
when available.

3. The coarser grain adjustment stage, where
the code is generalized to allow the adjustment
of the amount of work made by each thread.

4. The private memory exploitation stage,
where some of the data structures are copied
to private memory to decrease the pressure on
the global memory.

5. The loop unrolling stage, where the inner-
most loop of the code in the compute section
can be unrolled.

The maximization of the benefit from parallel ex-
ecution based on granularity is targeted by stage
3. The strategy of optimizing the memory usage is
targeted by stages 1, 2 and 4 and the maximiza-
tion of the throughput is targeted by stages 3 and
5, although we will see that stage 4 also implies a
loop unrolling optimization which also supports this
strategy. The transformations made in each one of
these stages are explained now in turn. The basic
matrix multiplication kernel in Figure 3 will be used
as a running example throughout this explanation.

© @ N ;s W N e
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void mxm(Array<float,2> c, Array<float,2> a,
Array<float,2> b, Int limk)
{
Int k;
compute {
clidyl[idx] = 0.0f;
for(k=0; k<limk; k++)
clidyl[idx] += alidyl[k] * b[k][idx];
}
}

Figure 3: MxM running example

clidyl[idx] = 0.0f;
for (kk=0; kk<limk; kk+=tW0) {
limtile = min(kk+tWO0, 1limk);
for (k=kk; k<limtile; k++) {
clidy]l [idx] += alidy][k]
}
}

* b[k][idx];

Figure 4: MxM running example tiled

Tiling

This step applies the well-known tiling optimiza-
tion technique to all the loops in the compute sec-
tion. This technique can only be applied when the
kernel has at least one loop in its compute section.
For example, a simple version of the SAXPY code
(see Figure 1) will not have such a loop, but a ma-
trix multiplication like the one in our running ex-
ample will have it. The purpose of this technique is
to split the computation in tiles to ensure that the
information used by the kernel can be maintained
in the top levels of the memory hierarchy. Figure 4
shows the tiled version of the loop of the running
example using a generic tile size of tWO iterations.
The differences between Figures 3 and 4 exemplify
the changes on the code involved by this transfor-
mation:

e The loop in the original kernel (for k) is re-
placed by two loops (for kk and for k). The
two new loops traverse the same iteration space
as the original loop in a coordinated fashion.
Namely, the outer loop proceeds in steps of the
size of the tile considered, thus marking the be-
ginning of each new tile, while the inner loop
iterates within the current tile.

e The tile size may not be a divisor of the size of
the original loop. As a result, before proceed-
ing to iterate within the current tile in for k,




we must compute a maximum correct upper
bound for such loop (limtile).

Local memory exploitation

The next step tries to exploit the local memory
of the device when available. The local memory is
shared among the threads of the same group. As
a result, in order to use it effectively, we have to
choose which data structures will make use of local
memory, copy to the local counterpart of each of
these data structures the slices of them traversed
by the threads of the same group, and rewrite the
computation section by replacing the references to
the global data structures by references to the afore-
mentioned local counterparts.

The optimizer chooses the data structures that
will be copied to local memory based on the in-
formation gathered in the AST about the access
patterns. Namely, it selects the data structures
with access patterns that are more complex than
SinglePat to be loaded into local memory. Let us
recall that in the SinglePat access pattern each
thread accesses a different element of a data struc-
ture, thus there is no point in loading that informa-
tion in local memory. In our running example the
result of this classification is:

® clidyl[idx] is classified as SinglePat.
e alidy] [x] is classified as RowPat.
e b[k][idx] is classified as ColPat.

Thus, since both the ColPat and the RowPat ac-
cess patterns are more complex than SinglePat,
matrices a and b are selected to be loaded into lo-
cal memory in this example. Once the selection is
done, the optimizer follows four steps to transform
the code: (1) the local memory counterpart data
structures are declared, (2) the code snippets that
copy data from global to local memory are gener-
ated, (3) the global references are replaced by local
ones in the compute section of the kernel, and (4) if
any of the local structure is updated, a code snippet
to copy back that information to global memory is
also generated. More details are now given about
these steps.

The most challenging task of the first step, the
declaration of the local array, is to find out the ap-
propriate size of each dimension of the local data
structure. These sizes depend on the type of access
pattern followed by the memory references associ-
ated to the data structure, and on the tile and the

grain sizes. Although the coarser grain adjustment
transformation is applied in a subsequent step of
the optimizer, the grain size is already set in step 1.1
of Figure 2.

Table 1 shows the expressions used to calculate
the size of each dimension of the local data struc-
ture. In this table, 1szx, 1szy and lszz are the
sizes of the local space for dimensions 0, 1 and 2
respectively. The parameters tW0, tW1l and tW2 are
the tile sizes for the inner computing loops 0, 1
and 2, respectively, if tiling has been applied to
them. If not, their values will be the length of
the corresponding loops. The bszx, bszy and bszz
parameters appear when the coarser grain adjust-
ment transformation is applied. In this transforma-
tion the iterations of several loops are assigned in a
block-cyclic manner to threads, and these parame-
ters are the size of the block of iterations assigned
to a given thread. If the technique is not applied,
these parameters just take the value 1. Each pa-
rameter is associated to the loop whose counter in-
dexes a given dimension. As in the previous cases,
x is associated to dimension 0, y to 1 and z to 2.
The rationale of these expressions is that the opti-
mizer has to copy to the local memory only the slice
of the data structure that is going to be traversed
by the threads of the current group. In our run-

Pattern Dims Size expression
1D 0 [two]
2D 1 [tw1]

0 [two]

InnerPat

2 [tw2]
3D |1 [tW1]
0 [tW0]
oD 1 [1szy*bszy]
0 [tW0]
RowPat 2 [1szz*bszz]
3D 1 [1szy*bszy]
0 [tWO0]
9D 1 [two]
0 [1szx*bszx]

ColPat 2 [1szz*bszz]

3D 1 [two]

0 [1szx*bszx]

2 [two]

DepthPat 3D 1 [1szy*bszy]

0 [1szx*bszx]

1D 0 [1szx*bszx+tW0]

2D 1 [1szy*bszy+tW1]

. 0 [1szx*bszx+tWO0]
RadiusPat

2 [1szz*bszz+tW2]

3D 1 [1szy*bszy+tWi]

0 [1szx*bszx+tW0]

Table 1: Size of each dimension of the local data structure



ning example, the declarations of the local memory
counterparts of the data structures a and b are:

__local float lmem_al[lszy][tWO0];
__local float lmem_b[tWO][lszx];

The second step of the transformation consists of
copying the information from global to local mem-
ory. We use copy mechanisms similar to those de-
scribed in [10], which make use of the access pat-
tern information that we already have. Also, these
mechanisms make sure that the copied data is orga-
nized as its copy in global memory, which simplifies
the third step.

Then, in the third step, the optimizer turns all
the references to the global version of each data
structure in the compute section of the kernel to
references to their local counterparts. In addition,
the indexing of these references is adjusted to use
local identifiers instead of global ones.

If the data structures that have been copied to
the local memory are updated, the optimizer per-
forms a fourth step to copy the information back
to global memory. In this case, it uses the comple-
mentary code to the one used in the second step for
the reverse copy.

Finally, the optimizer has to introduce at cer-
tain points of the code the local barriers required
to synchronize the operation of the different threads
of the same group. For example, after a collabora-
tive copy is done, a local barrier must be performed
to make sure that the copy is completed before the
computation starts.

The code snippet in Figure 5 shows how our run-
ning example is adapted to use local memory. This
example does not require the fourth step to copy

for (kk=0; k<K; kk+=tW0) {

for (lr=1idy; lr<lszy;
for(lc=1lidx; 1lc<tW0;
lmem_a[lr][1lc] =

lr+=1szy)
lc+=1szx))
al[((idy/1szy)*1szy)+1r] [kk+1c]

for(lr=1idy; 1lr<tWo;
for(lc=1idx; lc<lszx;
lmem_b[1lr][1lc] =

lr+=1szy)
lc+=1szx))
blkk+1r] [((idx/1lszx)*1lszx)+1lc]

barrier (CLK_LOCAL_MEM_FENCE) ;

for (k=0; k<tWO; k++)
clidyl[idx] += lmem_a[lidy][k]l*1lmem_b[k][1lidx];

barrier (CLK_LOCAL_MEM_FENCE) ;
}

Figure 5: MxM kernel using local memory

S W N R

for(j=0; j<M;
for(i=0; i<N; i++)
for (k=0 ;k<K; k++)
c[jI0i]l += al[jl[k] * bl[k][i];

j++)

Figure 6: Sequential version of a MxM operation

back the information to global memory, because the
localized data structures are not updated.

In summary, the steps followed to apply this tech-
nique are:

e Choose which data structures will be loaded
into local memory depending on their access
pattern.

e Declare the local arrays (see Table 1).
e Replace the global references by local ones.

e Copy-back to global memory the updated local
arrays.

Coarser grain adjustment

The next optimization tries to adjust the num-
ber of threads and, conversely, the amount of work
made by each one. In order to do this, the optimizer
has to add loops that allow to change the number of
points of the result that are going to be computed
by each thread. Let us recall that in order to benefit
from the optimizer, the programmer must provide
a version of the kernel that computes just one point
of the result. Therefore, this simple version mini-
mizes the grain size and maximizes the number of
threads required. As a result, such a kernel has
fewer loops than its sequential version because the
loops have been replaced by the parallel executions
of the kernel. This can be seen in Figure 6, which
is a sequential version of our running example. The
single-point version of the same code, written as an
HPL kernel in Figure 3, lacks the two outermost
loops, those that index the resulting matrix, and
keeps the innermost one, because it is required to
compute a single point of the result.

As a first step of this transformation, the opti-
mizer encloses the existing loops in the compute
section in new loops, a pair per dimension of the
global space, and the global identifiers are replaced
by the counters of these loops in all the indexing
expressions. This part of the transformation re-
sembles the tiling optimization, but in this case dif-
ferent loops traverse different parts of the iteration
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for(zz=idz*bszz; zz<Z; zz+=szz*xbszz)
for (yy=idy*bszy; yy<Y; yy+=szy*bszy)
for (xx=idx*bszx; xx<X; xx+=szx*bszx)
for(z=zz; z<min(zz+bszz ,Z); z++)
for(y=yy; y<min(yy+bszy,Y); y++)
for(x=xx; x<min(xx+bszx,X); x++)

[...]

Figure 7: Coarser grain adjustment generic loop nest

for (yy=idy*2; yy<M; yy+=(M/4)*2)
for (xx=idx*2; xx<N; xx+=(N/4)*2) {
for(y=yy; y<min(yy+2,Y); y++) {

for (x=xx; x<min(xx+2,X); x++) {
clyllx]l = 0.0f;
for(k=0; k<K; k++) {
clyllx] += alyl[k] * bl[k]l[x];

Figure 8: MxM kernel with coarse grain adjustment

space, which is distributed in a block-cyclic man-
ner. This transformation enables the distribution
of the work among fewer threads. Figure 7 shows
a generic form of the loops that would enclose the
existing computation if the three dimensions of the
global work-space were used in the simple version of
the code. Each pair of loops in lines 1 and 4, lines 2
and 5, and lines 3 and 6, assigns the iterations fol-
lowing a block-cyclic distribution, where the block
sizes are bszz, bszy and bszx, respectively.

Figure 8 shows a version of our running example
with the loops added, where szx = N/4, szy = M/4,
and bszx = bszy = 2. Let us recall that N and M are
respectively the number of columns and rows of the
resulting matrix c, while szx and szy are the total
number of threads in the corresponding dimensions
of the global domain of the kernel execution. In
this case, the parallel execution requires 16 times
fewer threads and each thread is going to execute
four blocks (2 x 2) of four iterations (2 x 2) each, for
each one of the two pairs of loops added. Previous
research from [11] showed that the overhead intro-
duced by these loops is not negligible. For this rea-
son, the optimizer applies on top of this technique
small optimizations such as removing the inner loop
of a pair when the block size is 1, or removing the
outer one when only one block of iterations is as-
signed to one thread.

Private memory exploitation

The efficient exploitation of the memory hier-
archy usually implies an equally efficient usage of
the private memory, which is commonly mapped to
processor registers, as this alleviates the pressure
on the slower memory levels. In order to do this,
our optimizer maps to private memory the refer-
ences that operate on memory positions that are
both read and written by the kernel. The ratio-
nale for this heuristic is that write-only references
offer no temporal locality. However, read-and-write
ones exhibit sometimes great temporal locality and,
anyway, its associated data need to be loaded into
registers in order to be used as inputs. In addition,
these data sets are often smaller than the read-only
working sets, which makes them more amenable
to placement in the small private memories. The
aforementioned circumstances can be observed in
the matrix product running example. This code
updates each element of the destination matrix c
using as inputs a full row from the input matrix a
and a column of the input matrix b.

The structure of this transformation is similar to
the one related to the exploitation of local memory.
First, a private data structure of the appropriate
size has to be declared. This structure is declared
as a group of independent scalars. This complicates
the transformed code but we have found that it
guarantees that the private memory will be mapped
to registers. Then, these private scalars must be
filled in. After that, the global memory references
must be replaced by private ones, and finally, if
updated, the contents of the private scalars must
be copied back to the corresponding positions of
the global memory. Due to its similarity with the
local memory exploitation stage, the details of this
transformation are not included in this paper.

Loop unrolling

Loop unrolling is another well-known optimiza-
tion technique. In this step, the optimizer can un-
roll the innermost loop of the compute section of
the input kernel. This transformation increases the
number of independent statements available to be
scheduled and may help the processor to discover
groups of instructions that can be packed and au-
tomatically vectorized. Returning to our running
example, Figure 9 shows an unrolled version of the
innermost compute loop using a generic unroll fac-
tor, uf, which is assumed to divide exactly the tW0
tile size previously applied.
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for (kk=0;kk<K;kk+=tW0) {

if(;;‘(k=kk;k<kk+two;k+=uf) {
cl[idyl[idx] += alidy][kk+0] * b[kk+0][idx];
clidy]l [idx] += alidy][kk+1] * b[kk+1][idx];

alidy] [kk+(uf-1)]
* blkk+(uf-1)]1[idx];

clidyl[idx] +=

}
}
Figure 9: Unrolling a previously tiled MxM loop
‘Workspace dimensions .
Name D [ 55 [ 3D Explanation
sZX sZX SZX Global workspace sizes.
Global size - szy szy One value per dimension
- - szz of the work-space.
1szx 1szx 1lszx Local workspace sizes.
Local size - 1szy lszy One value per dimension
- - 1szz of the work-space.
bszx | bszx bszx Block sizes for block-
Block size - bszy bszy cyclic distribution. One
- - bszz value per dimension.
Boolean indicating if the
Full block unrolling work distribution loops
must be fully unrolled.

Nested loops

’ Name Explanation

1 2 3
tWO tWo tWOo Tile sizes for the inner com-
Tile size - tWl tWl puting loops. One value per
- - tW2 loop.

Factor to unroll the inner-
most computing loop. One
value.

Innermost loop unroll factor

Name Explanation ‘

Boolean indicating if local mem-

Local memory usage ory has to be exploited or not.

Table 2: Input parameters of the optimizer

4. Optimization parameters

The optimization stages described in the previous
section depend on the values of a set of parameters.
While some of these parameters decide whether an
optimization is applied or not, others tune certain
aspects of the optimization (for example, the unroll
factor used in the unrolling technique). The val-
ues of these parameters largely influence the perfor-
mance of the resulting code on a given device, and
thus their values should be tuned for each platform.

Table 2 summarizes, for each possible number of
dimensions of the problem, the parameters used by
the optimizer that need to be fixed before the opti-

mization process starts. A dash symbol (—) means
that this value is not required in that case. The
optimization parameters related to the workspace
definition and the work distribution are listed first.
There are parameters to define the global and local
workspace (one per dimension of the workspace),
as well as the block size (also one per dimension),
since the work is going to be distributed in a block-
cyclic manner among the threads. There is also a
boolean that defines whether the work distribution
loops must be totally unrolled or not.

The second group of parameters is related to the
application of the tiling technique. They define the
tile size (one per each nested compute loop), with
an additional parameter to set an unroll factor for
the innermost loop of that nest.

The last group of parameters is related to the
exploitation of the local memory. In this case, only
a flag that establishes whether the local memory is
going to be used or not is required.

While these are the values that must be set be-
fore the optimization process starts, there are other
decisions that are taken automatically during the
optimization process. For example, the data struc-
tures that are going to be mapped to local mem-
ory are selected following the algorithm explained
in Section 3.1, while the sizes of the local memory
arrays depend on the tile size and the work distribu-
tion parameters, as explained in the same section.

Selecting good values for the aforementioned pa-
rameters is not a trivial task. Previous works [11,
12] have tried exhaustive or informed search strate-
gies guided by the execution time that obtained
good results. Our autotuner, represented in Fig-
ure 2, injects in the optimizer different combina-
tions of values of the optimization parameters. The
search is guided by the execution time, and the
combinations can be generated randomly or using
a genetic algorithm. The experiments in Section 5
show that both strategies are very effective, as they
can generate good results in a reasonable time.

It is worth mentioning that our autotuner is com-
pletely integrated in the HPL framework and that
we offer a command-line interface (CLI) to it. The
parameters of this CLI are: basic data on the prob-
lem to optimize such as its number of dimensions
or the size of the global domain in each dimension,
and indications on the search process to apply such
as the search strategy or the maximum search time
allowed. For instance, -d GPU -n 1024,1024 -k
1024 -s glenetic] -t 3600 would indicate that:
the code has to be run on the GPU (-d), it has two



dimensions, the size of each dimension of threads of
the problem is 1024 (-n), the number of iterations
to be processed by each thread is 1024 (-k), the
genetic search is requested (-s), and the maximum
search time allowed is 3600 seconds (-t). The user
must build an object of type OptimizerSettings
to hold this data, which is easily achieved by pro-
viding its constructor with the well-known argc and
arv arguments of C4++ programs, from which the
object obtains the data provided by the command-
line arguments. After this step, the user must just
perform the eval invocation (see example in Fig-
ure 1) using the modifier optimize, which takes as
input the OptimizerSettings built in the previous
step to control and define the optimization process.
This way, the optimization can be simply launched
in a couple of lines such as

OptimizerSettings opt_settings(argc, argv);
eval (kernel) .optimize (opt_settings) (args);

It also deserves to be mentioned that, while trans-
parent to the user, the OptimizerSettings object
is also used to store the optimization parameters
described in Table 2, which are for internal use of
the autotuner. The runtime updates the values of
these fields in order to command the optimizer to
generate the kernel version required in each step of
the search algorithm.

5. Experimental results

This section contains the validation of the effec-
tiveness of our optimizer. The purpose of this val-
idation is to prove that the optimizer can generate
faster versions of a wide set of benchmarks for dif-
ferent types of platforms.

The input kernels used in this validation pro-
cess are HPL single-point implementations for
one-, two-, and three-dimensional signal convolu-
tions (1IDCONV, 2DCONV, 3DCONV), a Direct
Coulomb Summation [13] (DCS3D), the matrix
multiplication (MATMUL) used as a running ex-
ample along Section 3.1, a single time step of an
N-body simulation [14] (NBODY) and symmetric
k- and 2k-rank update matrix operations (SYRK,
SYR2K). 1DCONV and NBODY are defined
in one-dimensional workspaces, 2DCONV, MAT-
MUL, SYRK and SYR2K have two-dimensional
workspaces and, finally, the solution spaces of
3DCONV and DCS3D have three dimensions.
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Regarding the input simple kernels that imple-
ment these problems, IDCONV, NBODY, DCS3D,
MATMUL, SYRK and SYR2K versions consist of
a single inner computing loop, whereas 2DCONV
and 3DCONYV are computed by a two-loop and a
three-loop nest, respectively. Moreover, as Table 3
shows, three different test classes named as “small”
(S), “medium” (M) and “large” (L) have been de-
fined by setting different combinations of sizes for
the global workspace, called dimension sizes in the
table, and the nested inner loops of each problem,
which are the computing loop sizes in the table.

Optimized versions of these kernels have been
generated running tests for the aforementioned
three size classes on three different computing plat-
forms, namely an accelerator and two GPUs from
different vendors:

e K20: An NVIDIA Tesla K20m with Kepler
GPU architecture and 5 GB GDDR5. NVIDIA
OpenCL driver version 367.57. Single-

precision theoretical peak performance of 3524
GFLOPS.

e FirePro: An AMD FirePro S9150 with
Hawaii GPU architecture and 16 GB GDDRS5.
AMD OpenCL driver version 1702.3. Single-
precision theoretical peak performance of 5070
GFLOPS.

e Xeon Phi: An Intel Xeon Phi 5110P with
sixty 1.0563GHz cores with 8 GB of RAM. In-
tel OpenCL driver version 1.2-4.5.0.8. Single-
precision theoretical peak performance of 2022

GFLOPS.

Let us first analyze the speedups achieved. Fig-
ure 10 shows the speedups of the optimized ver-
sion with respect to the simple version provided
by the user. There is a separate graph for each
one of the three problem sizes: small, medium and
large. Within each graph, the speedups for the
three platforms using different search strategies are
found. Namely, as mentioned before, our optimizer
can currently perform either a random or a ge-
netic algorithm search, and we have tried 5, 15 and
60 minutes long searches of both kinds. The bar
with the color associated to a specific device and
search strategy shows the speedup achieved after a
5 minutes search. The additional speedup obtained
thanks to extending the search to 15 and 60 minutes
is represented with the stacked magenta and cyan
bars, respectively. Notice that a logarithmic scale



Small (S) class Medium (M) class Large (L) class
Dimension Computing Dimension Computing Dimension Computing
sizes loops sizes sizes loops sizes sizes loops sizes
IDCONV 16384 16384 32768 32768 65536 65536
2DCONV 512 x 512 256 X 256 1024 x 1024 256 x 256 2048 x 2048 256 X 256
3DCONV | 32x32x32 | 32x32x32 | 64x64x64 | 64x64x64 | 128 x 128 x 128 | 128 x 128 x 128
NBODY 16384 16384 32768 32768 65536 65536
DCS3D 32 X 32 x 32 2048 64 X 64 x 64 4096 128 x 128 x 128 8192
MATMUL | 1024 x 1024 1024 2048 x 2048 2048 4096 x 4096 4096
SYRK 1024 x 1024 1024 2048 x 2048 2048 4096 x 4096 4096 x 4096
SYR2K 1024 x 1024 1024 2048 x 2048 2048 4096 x 4096 4096 x 4096
Table 3: Size classification of test cases run in the experiments
Average speedup random search of medium problems in the Firepro.
Global 16.01 Finally, when one hour is devoted to the autotun-
IDCONV 5.62 ing, which is still a very reasonable time [12], the
2DCONV 3.58 average speedup is in a range within 3.6, attained
3SDCONV 3.86 by the random search for medium problems in the
Kernels DCS3D 1.94 Xeon Phi, and 55, again in the random search of
MATMUL 9.56 di bl . he FireP
NBODY |55 medium problems in the FirePro.
SYRK 46.23 A second summarization is provided by Table 4,
’ which shows the average speedups across more axis
SYR2K 55.74 . R K
Conotic 581 of the experiment. Considering all the problem
Search methods ’ sizes, search strategies and search times tried, the
Random 16.18 T )
K20 12.91 optimizer gets a global average speedup of 16.01. If
Platforms FirePro 32.31 each code is considered individually, the speedups
Xeon Phi 5.09 go from the average 1.55 of NBODY to the 55.74 of
. ere is not a big difference between us-
Small 17.29 SYR2K. Th t b g diff bet
Problem sizes Medium 19.25 ing a random search or a genetic one, although the
Large 11.48 genetic search behaves slightly better. The AMD

Table 4: Average speedup of the optimized versions

was used so that the large diversity of speedups
achieved could be observed.

We summarize these results in two ways. First,
Figure 11 shows the average speedups across all the
benchmarks for each platform and search strategy
using the same approach as Figure 10 to label them
and identify the search time used. It is noticeable
that just devoting only five minutes to the autotun-
ing, the codes can become between 2.8 times faster
on average, in the random search of large prob-
lems in the K20, and 38.4, in the random search of
medium problems in the FirePro. This single result
coupled with the ease of use of the tool justifies its
interest. Investing a very reasonable ten additional
minutes in the autotuning allows to reach average
speedups between 3.1, again the random search of
large problems in the K20, and 53.5, again in the
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FirePro is the platform that benefits the most from
the optimizer, and the Xeon Phi is the one with the
more discrete, although still noticeable, speedups.
This last result, also clearly illustrated in Figures 10
and 11, makes sense since Xeon Phis have no actual
software managed local memory, but a traditional
hardware managed memory hierarchy with two lev-
els of caches, the L2 cache being much more gen-
erous than the fast memories found in GPUs. As
a result, in general this machine is less sensitive
than GPUs to our optimizations focused on the ex-
ploitation of the fast memories. Another conclu-
sion from Table 4 and the aforementioned figures
is that Small and Medium size problems get bet-
ter speedups than Large ones. This effect is re-
lated to some extent to our experimental method-
ology, since given a fixed search time, the number
of code variants tested, and thus the ability to im-
prove the baseline code, will be smaller the larger
the problem size considered. This way, in our ex-
periments, the average number of variants explored
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Figure 10: Speedup achieved using the optimizer for the 8
benchmarks, in the three platforms using the small, medium
and large problems sizes. The search strategies are: Random
(5 minutes), Genetic (5 minutes), 15 minutes and 60 minutes.

for the large problems across the three search times
considered was 488, while this value grew to 1364
for the medium size problems and 2971 for the small
problem sizes.

Another point of view is provided by Figure 12,
which shows in which percentage of the optimiza-
tion tests performed the speedup achieved was
within a given range. There are separate bars for
the random and the genetic searches, as well as for
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Figure 11: Average speedups

the global average. The darkest color corresponds
to the percentage of optimization processes where
the optimizer could not improve the baseline. The
next three areas correspond to increasing but still
modest levels of optimization, reaching speedups of
up to 1.1, 1.25 and 1.5, respectively. The top yellow
area is associated to the percentage of tests where
the speedup was above 1.5. As we can see, the op-
timizer achieves considerable speedups around 80%
of the times, no matter which search strategy is
used. However, we can see that the genetic search
is somewhat more likely to achieve a considerable
speedup than the random one.

Table 5 gives us an idea of the values chosen by
the autotuner for the parameters in Table 2. These
values are displayed separately for each platform
and problem size, for the SYR2K benchmark using
the 60 minutes genetic search. As this benchmark
implements a 2D problem, the szz, 1szz and tW2
parameters are always set to 0. Besides that, in gen-
eral the size of the global space grows with the prob-
lem size, and some architectures (FirePro and Phi)
benefit more from non-square global spaces than
others (K20). Something similar happens with the
local space. Regarding the tile size, it is worth to
notice that the Phi prefers much larger values than
the GPUs. Unroll factors are usually below 4, ex-
cept for one case (Phi, Large) and the local memory
is worth to be used just in the GPUs.

Another insightful view of the results is provided
by Figure 13, which represents the impact of the ap-
plication of each optimization on the final speedup.
Namely, the contribution of each tuning stage is
expressed as a ratio of the overall speedup. The



Platform Global size Local size Block size
. Unroll factor | Local memory
(Problem Size) | szx szy | szz | lszx | lszy | lszz | tWO | tWl | tW2

K20 (S) 256 256 0 8 32 0 8 0 0 4 Yes

K20 (M) 256 256 0 8 32 0 8 0 0 2 Yes

K20 (L) 2048 | 4096 0 32 16 0 16 0 0 4 Yes
FirePro (S) 256 256 0 8 32 0 8 0 0 4 Yes
FirePro (M) 128 256 0 8 16 0 16 0 0 0 Yes
FirePro (L) 128 4096 0 2 128 0 16 0 0 2 Yes

Phi (S) 64 1024 0 1 2 0 32 0 0 4 No

Phi (M) 256 2048 0 2 4 0 2048 0 0 4 No

Phi (L) 4096 | 1024 0 1 64 0 2048 0 0 8 No

Table 5: Values of the main optimization parameters of Table 2 for the SYR2K benchmark using the 60 minutes genetic search,

for each problem size
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Figure 12: Contribution of the tuning of each optimization
parameter to the overall speedup.

figure contains the average values observed in all
the benchmarks for each one of the three platforms
and for each problem size considered. The contri-
bution to the speedup of each stage was computed
considering the additional speedup it provides when
applied after the preceding stages in the order ex-
plained in Section 3. In this comparison neither of
the two versions considered when measuring the ad-
ditional impact of an optimization stage applies the
stages that follow the one being measured. The
reason is that sometimes the optimization stages of
our optimizer depend on preceding ones, and thus
they cannot be applied if those they depend on are
missing, which makes this strategy the fair way to
estimate the isolated impact of each optimization.
It must be noted however, that the individual im-
pact of an optimization measured in this way can be
much smaller than the one it can provide when com-
bined with subsequent ones, particularly when, as
we have just explained, they are enablers for some
of those optimizations.
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Figure 13: Relative impact of each optimization on the final
speedup

6. Comparison to other approaches

The optimization tool presented in this paper
consists of: (1) an autotuner that finds appropri-
ate values for the optimization parameters, and (2),
an optimizer that performs the optimizations of the
HPL kernel code according to these values. It is rea-
sonable to wonder how good is our tool in these two
aspects. This is discussed in turn in Sections 6.1
and 6.2.

6.1. HPL built-in autotuner vs. OpenTuner

In order to assess the quality of our autotuner, we
need to compare it with another well-established
one such as OpenTuner [15]. The integration of
our optimizer with OpenTuner required to write an
ad-hoc Python tool that uses the OpenTuner API.
The tool defines a search space with all the can-
didate values for the optimization parameters, and
the validity constraints that define which combina-
tions of values are valid and which are not. These



constraints generally depend on user-provided in-
formation (see Section 4), on the capabilities of the
target device, queried via PyOpenCL [16] and on
specific information that is extracted by the opti-
mizer when it analyzes the input code. Contrary to
what happens with our built-in autotuner, this lat-
ter information cannot be easily provided to Open-
Tuner, as it is generated once the code is analyzed
by HPL. To overcome this issue, we chose the MAT-
MUL problem as a single comparison case and we
hardcoded this information for this specific kernel
into the OpenTuner tool.

The OpenTuner Python tool uses the default
search method, which is the best option according
to the authors of that API. Finally, the information
about the execution time of the kernel must be fed
up to OpenTuner in a JSON-formatted file.

Figure 14 shows a comparison of the speedups
achieved by the best kernels found by the genetic
algorithm of our HPL autotuner and by those found
by the evolutionary techniques of OpenTuner for
the MATMUL benchmark. The comparison is done
for each problem size and target device.

The performance of OpenTuner is on average bet-
ter than that of our built-in autotuner. However,
in our opinion this is not the only aspect to con-
sider. Let us recall that, our built-in autotuner im-
plements a plain genetic algorithm, whereas the de-
fault search method of OpenTuner combines several
evolutionary techniques and it is able to leap from
one to another on the go depending on the progress
of the search. Thus, in a given search space, the
more elaborated a method is, the more it is ex-
pected to benefit from the search time and obtain
better versions. However, the random nature of evo-
lutionary search techniques may explain that vari-
ability of the results. For instance, independent
runs of either the same or different search processes
do not ensure to explore the same versions in a
given search space. This behavior may lead to well-
known pitfalls of these techniques such as starting
the search process evaluating quite bad solutions or
reaching local optima too quickly. Also, the seam-
less integration of our HPL autotuner and the opti-
mizer makes the overhead introduced by the launch
of each kernel and the retrieval of its execution time
is quite lower than in the OpenTuner Python tool.
In this latter tool, the Python code must run the
HPL optimizer in a special mode to request the
evaluation of a kernel version, and then parse the
standard output to get the execution time.

Summarizing, we find that OpenTuner offers
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more powerful evolutionary search methods than
those provided by our autotuner. However, we con-
sider that this does not balance out the additional
programming effort needed to achieve a full and
smooth integration of an OpenTuner-based search
component with the HPL parts for kernel analysis,
generation and evaluation. Moreover, the tighter
integration of our autotuner allows it to perform
a somewhat faster exploration of the search space
that allow it to obtain results reasonably competi-
tive with those of OpenTuner.

6.2. HPL optimizer vs. cIBLAS

In addition, it is interesting to compare the per-
formance of the optimized kernels generated by our
tool with that of kernels provided by a state-of-
the-art library in order to assess how good our
automatic optimizer is. In this case, we have de-
cided to use as reference the performance achieved
by the same routines in the cIBLAS library [17].
This domain-specific library provides hand-tuned
implementations of basic linear algebra routines,
thus, it does not provide baselines for all our bench-
marks. Because of that, this comparison is based on
the MATMUL, SYRK and SYR2K kernels, which
are the ones also available in cIBLAS.

Table 6 contains the speedup of our library with
respect to cIBLAS for the three aforementioned
benchmarks on the three tested platforms. The
cases where our optimizer is slower than cIBLAS
are in bold font. In these experiments the last
cIBLAS stable version (2.12) is used and the codes
are based on the samples provided for each routine
by cIBLAS, which have been only modified to ac-
cept any problem size and to record the execution
time of the routine. The speedup compares the per-
formance of the best kernel obtained with our tool
using the 60 minutes genetic search with the time
required by cIBLAS to complete the execution of
the corresponding routine. In the case of cIBLAS,
ten executions of the routines are done. Then, the
first one is disregarded, because it takes a longer
time, and the average time of the remaining 9 exe-
cutions is calculated to be taken as reference.

The results show that our optimizer generates
competitive kernels, as in fact our kernel is slower
than the cIBLAS routine only in 4 out of the 27
cases (14.8% of the tests). The general tendency
shows that cIBLAS performance is worse for small
problem sizes and more competitive for larger prob-
lem sizes. Regarding the differences in the perfor-
mance on the different platforms, the performance
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Figure 14: Comparison of using OpenTuner vs using the HPL autotuner, within the HPL optimizer

of our kernels is clearly better than cIBLAS in the
Xeon Phi, almost the same in the K20, and better
in the FirePro. The reason of the large difference
in the performance for Xeon Phi is probably that
this platform has not been considered at all by the
cIBLAS team.

7. Related work

We have already addressed the problem of au-
tomatic optimization and autotuning for heteroge-
neous systems in our previous works [11, 12, 18, 19].
In OCLoptimizer [11] the optimization process is
driven through pragmas that are introduced in the
code by the programmer itself, and the only op-
timizations that can be performed are unroll and
unroll-and-jam. In [12, 18, 19] the run-time code
generation capabilities of HPL are explicitly ex-
ploited by an expert programmer who has to man-
ually write each kernel using a series of techniques
that give place to the application of different code
transformations. This way the resulting code can
be self-tuned using an external search algorithm
that operates on the parameters that control the
transformations.

Other authors have addressed the problem of
automatic code optimizations from many perspec-
tives [20]. This way, some approaches work as black
boxes whose input is a code written in a traditional
language such as C, C++ or FORTRAN. This is
the case of a multi-objective auto-tuning framework
developed by Jordan et al. [21] on top of the In-
sieme [22] compiler infrastructure.

Other tools rely on the functional portability pro-
vided by OpenCL and then try to overcome its
well-known performance portability gap by imple-
menting code transformations that can optimize
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OpenCL kernels in multiple ways. For instance,
Fang et al. propose Sesame [23], a performance-
portable framework for OpenCL that gathers a
number of techniques derived from a comprehen-
sive systematic study on the optimization space for
many-core devices performed by the authors. In
that study they evaluate the impact that a proper
usage of the vector capabilities of processors [24]
or the local memory hardware usually included in
many-core architectures [8] have in the performance
of OpenCL kernels. The memory access pattern
classification implemented in our optimizer is based
on this latter study. Regarding the proper exploita-
tion of local memory, they propose two tools that
complement each other: one enables local memory
usage in OpenCL kernels [10], whereas the other is
able to rewrite OpenCL codes that already used
local memory in a quite architecture- or device-
specific way [25]. The OpenCL code analysis and
transformation operations performed by these tools
are implemented by means of LLVM and Clang.
One of the future research directions they proposed
to effectively implement such a framework is to find
a generic order to apply optimizations. The work-
flow followed by our optimizer tackles this issue.

The Many-Core Levels (MCL) framework, ori-
ented to different kinds of many-core devices, was
built by Hijma et al. as an implementation of
their stepwise-refinement for performance method-
ology [26]. It is composed of the Many-Core Pro-
gramming Language (MCPL), which is an embed-
ded language to write kernels, and a compiler able
to improve these kernels with optimizations with
different levels of abstraction.

Steuwer et al. propose in [27] a high-level func-
tional language embedded in Scala to implement
simple problem descriptions. This forces the pro-



Code/Size K20 FirePro Xeon Phi
S \ M \ L S \ M \ L S \ M \ L
MATMUL | 19 | 10| 0.8 | 82| 53|12 ]| 182 | 9.7 6.1
SYRK 1411312 |31 (25|11 6.7 | 38| 1.6
SYR2K 06 15|02 312111 41 |23 0.9

Table 6: Speedup of our best performing kernel w.r.t. the cIBLAS routine

grammers not only to rewrite their kernels but
also to leap from the imperative to the functional
paradigm, which may become uncomfortable for
many users.

There are also domain-specific programming
frameworks that provide optimization capabilities.
An example is Halide [28], a domain-specific lan-
guage for image processing that is built on top of
C++. Halide programmers must describe a high-
level strategy to map image processing pipelined
applications to heterogeneous platforms. The com-
piler provided by the framework is in charge of
generating the code that implements that strategy,
OpenCL being one of the supported back-ends for
GPU code.

The European AutoTune project has developed
the Periscope Tuning Framework which combines
automated performance analysis and performance
tuning. A plugin of this framework, presented
in [29], succeeded to optimize the performance of
CPU, GPUs and Xeon Phi. They autotune the
compilation flags and the workspace configuration
for each specific platform. Regarding the compila-
tion flags, the search space is explored using an in-
dividual search strategy, where parameters are au-
totuned one at a time in decreasing order of impor-
tance. Regarding the tuning of the workspace, the
user provides an initial tuning specification, which
is going to narrow intelligently the search space
to be explored, and then the search space is tra-
versed using a local or a global strategy, depend-
ing on whether the kernels in the application are
autotuned separately or jointly. The validation is
conducted using several benchmarks of the Rodinia
Suite and the Direct Coulomb summation bench-
mark on several platforms. They report modest
speedups, always below 2x.

Other works focus on traversing the search space
of possible values of the parameters in the most ef-
ficient manner. For instance, the authors of [30] use
machine learning techniques to explore the search
space. In this work, the parametrized optimized
benchmarks are written by hand. Thus, the authors
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focus on using machine learning techniques instead
of performance models to narrow the search space.
This smaller search space is then traversed exhaus-
tively to find the best values for the parameters.
The training of the neural network has to be done
for each benchmark separately, and even for each
problem size, if we want to increase the accuracy.
That is an important limitation of this approach.
Also, Bruel et al. [31] use an autotuner to find the
most appropriate values for the optimization flags
of the Nvidia compiler. Finally, in the same vein,
Kernel Tuner [32] is an easy-to-use tool for testing
and auto-tuning OpenCL, CUDA, and C kernels.
In this proposal the user is responsible for gener-
ating a tunable version of the kernel and for indi-
cating which are the tunable parameters. The con-
tribution focuses on proposing and comparing the
performance of different search strategies, including
a genetic algorithm. The evaluation only relies on
two codes (a 2D-convolution, and GEMM) and a
single GPU.

8. Conclusions

While there are a number of tools that provide
varying degrees of functional portability to codes
for heterogeneous devices, performance portability
continues to be an elusive target. In this paper we
extend one of such tools, the Heterogeneous Pro-
gramming Library (HPL), with a runtime that ap-
plies some of the most common optimizations to a
simple code provided by the user in order to gener-
ate a variant adapted to the device at hand. The
implementation of our optimizer required impor-
tant modifications in HPL, as we modified exten-
sively the module that translates the kernels writ-
ten in the HPL C++-based language into work-
ing OpenCL codes. The purpose of our changes
was to first generate an AST representation of the
code and later analyze and modify it in order to
apply different code transformations. Namely, our
optimizer can tile and unroll the compute loops,



cache shared data on the local memory of the de-
vices when available, coarsen the granularity of the
simple input kernel, and reduce memory access con-
tention by computing results in the private memory
regions of the devices.

A last component of our optimizer is an inte-
grated autotuner engine that is in charge of finding
proper values for the set of parameters that con-
trol the optimizer transformations. Such parame-
ters range from booleans that determine whether
a certain optimization must be applied or not to
degrees of granularity per task or tile sizes per di-
mension. Our autotuner engine traverses the search
space by applying iterative compilation and relying
on runtime measurements in the target architecture
in order to take its decisions. Currently, the engine
supports random and genetic algorithm searches.

Experiments based on 8 benchmarks and three
different platforms show that the optimized versions
generated are on average 16 times faster than the
input simple kernels. As expected, the genetic algo-
rithm search provides better results than the ran-
dom search. While all the platforms benefit from
the optimizer, it is worth to mention the 32x av-
erage speedup obtained for the AMD FirePro plat-
form, the averages found for a Nvidia K20 GPU and
an Intel Xeon Phi being 12.2 and 5.1, respectively.
We also used OpenTuner as an alternative auto-
tuner for our optimizer. The integration of Open-
Tuner with our optimizer was not easy, as we had to
patch by hand this integration in order to provide
OpenTuner with the same information as our own
autouner. The performance of the kernels gener-
ated for some of our benchmarks was also compared
to the performance of the corresponding routines of
a state-of-the-art optimized library such as cIBLAS.
The conclusion of this experiment is that the per-
formance of the kernels generated by our optimizer
is usually better than that of cIBLAS.

An interesting future work would be to imple-
ment an algorithm able to select the optimization
values by itself, which would automatically pro-
vide the performance portability. There are sev-
eral sources from which knowledge for that algo-
rithm could be extracted and then encoded, such as
heuristics based on the bibliography and results ob-
tained in prior experiments, micro-benchmarking,
or analytical performance models. This work can
be also extended by enriching the optimization
pool, both making the current transformations
more generic and by implementing other well-
known techniques, such as explicit loop vectoriza-

tion or exploiting local memory to compute inter-
mediate results. Finally, more search strategies as
well as heuristics that prune the search processes,
making them more efficient, could be also imple-
mented.
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