
A scalable saliency-based feature selection method with
instance-level information

Brais Cancelaa,b,∗, Verónica Bolón-Canedoa, Amparo Alonso-Betanzosa, João
Gamab

aCITIC. Universidade da Coruña. 15006, A Coruña, Spain
bLIAAD, INESCTEC. Rua Dr. Roberto Frias 4200-465 Porto, Portugal

Abstract

Classic feature selection techniques remove irrelevant or redundant features to

achieve a subset of relevant features in compact models that are easier to in-

terpret and so improve knowledge extraction. Most such techniques operate on

the whole dataset, but are unable to provide the user with useful information

when only instance-level information is required; in other words, classic feature

selection algorithms do not identify the most relevant information in a sam-

ple. We have developed a novel feature selection method, called saliency-based

feature selection (SFS), based on deep-learning saliency techniques. Our algo-

rithm works under any architecture that is trained by using gradient descent

techniques (Neural Networks, SVMs, . . . ), and can be used for classification

or regression problems. Experimental results show our algorithm is robust, as

it allows to transfer the feature ranking result between different architectures,

achieving remarkable results. The versatility of our algorithm has been also

demonstrated, as it can work either in big data environments as well as with

small datasets.
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1. Introduction

The rise of big data has been accompanied by a growing need for techniques

that reduce the input space [1]. Such techniques are typically classified as [2]

feature selection (FS) and feature extraction (FE) techniques. Fig. 1 shows a

graphic representation about how these two approaches work. FE approaches5

reduce the number of characteristics by combining (linearly or otherwise) input

space features [3]. An FE technique in deep learning obtains what are called

deep features, i.e., data representation resulting from removal of the last neural

network (NN) layer. The result is a new feature set, typically more compact

and with a greater discriminant capacity. FE is mostly used for image analysis,10

signal processing and information retrieval [4, 5, 6]. In contrast, FS approaches

achieve dimensionality reduction by removing irrelevant and redundant features

[7]. Since FS techniques preserve the original features, they are especially useful

in applications where those attributes are essential for understanding the model

and for knowledge inference [8, 9, 10].15

Feature

Extraction

Feature

Selection

Figure 1: Feature extraction creates new features by combining elements of the original

input, whereas feature selection removes features that are considered irrelevant or redundant,

while retaining the remaining features.

FS techniques are frequently classified in three broad groups: filters, em-

bedded methods and wrappers [3, 11]. Filters are independent of the inductive
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model and use the general characteristics of the data as a measure of the rele-

vance of features, e.g., mutual information among the features and correlation

classes. Embedded methods and wrappers select relevant features according to20

the performance of a given induction model. Embedded methods select features

during training of a classifier; e.g., recursive feature elimination for support vec-

tor machines (RFE-SVM) [12] chooses relevant features during support vector

machine (SVM) training. Finally, wrappers use the prediction model to evalu-

ate the relevance of subsets of features by applying a given prediction algorithm25

(e.g., an SVM or an NN) in combination with a search strategy. Examples are a

spam detection wrapper based on evolutionary random weight networks[13] and

a grasshopper optimization algorithm with evolutionary population dynamics

for FS that was successfully applied to 22 UCI datasets [14]. Figure 2 summa-

rizes the main advantages and disadvantages of the three FS approaches.30

The concept underlying the three approaches is similar: drawing from the

entire dataset, features that contain the most discriminant information are se-

lected. We describe an algorithm, however, that, instead of using the informa-

tion contained in the whole dataset, draws on a sample taken from the dataset

to build an FS model.35

FILTER EMBEDDED WRAPPER

Filter Classifier Classifier

Embedded

Classifier
Feature
selection

Wrapper

● Classifier independent
● Low computational cost
● Fast
● Good generalization

● Interaction with classifier
● Lower computational cost than 

wrappers
● Captures feature dependencies

● Interaction with classifier
● Captures feature 

dependencies

● No interaction with 
classifier

● Classifier-dependent 
selection

● Computationally expensive
● Risk of overfitting
● Classifier-dependent 

selection

Advantages

Disadvantages

Figure 2: Classic feature selection techniques.

To illustrate, using a medical dataset, suppose we want to predict if a patient

is likely to develop cancer. While classic FS algorithms select the most important
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features that will help the classifier make a good prediction, in our approach, we

infer the features the classifier uses to predict a certain outcome and use these

to build the FS algorithm. The advantage of this approach is that it customizes40

feature relevance information for each sample.

In terms of model explainability, typically used is the LIME algorithm [15],

which applies small perturbations to the input to establish the importance of

each feature in the model’s decision. Although this black-box method has the

advantage that it can be used for any classifier model, it has two main drawbacks:45

1) it requires too much time to evaluate each sample (up to 10 minutes in the

ImageNet dataset [16], as indicated by the authors); and 2) it does not improve

model explainability, as it is designed to be applied after model training.

To overcome this problem, we developed a novel FS algorithm, called saliency-

based FS (SFS), designed to provide personalized information for any given ex-50

ample. This algorithm was created by including those features that contain a

higher discrimination coefficient. Since scalability is an important requirement

for any machine learning algorithm, our algorithm was designed to work in big

data environments.

The most important contributions of the SFS are as follows: 1) it can be55

used in NNs and in any architecture trained using gradient descent techniques;

2) it is robust, as demonstrated by experimental results for challenging datasets

(e.g., the NIPS 2003 Feature Selection Challenge), for which it achieves state-of-

the-art performance in many different scenarios, including for datasets such as

MNIST, CIFAR-10 and CIFAR-100; and 3) it provides the kind of instance-level60

information that is very useful for explainability purposes.

The rest of the paper is organized as follows: Section 2 describes the person-

alized information algorithm; Section 3 describes the metrics used to compute

saliency; Section 4 describes our novel SFS algorithm; Section 5 describes an

application of the SFS to an ablation study; Section 6 reports experimental re-65

sults for certain public datasets, and finally, Section 7 concludes and describes

future work.
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2. A personalized information algorithm

A mere handful of research works address the problem of FS in big data

environments. While deep Bayesian networks have been used to select rele-70

vant features [17, 8] in big data settings, this approach only functions for small

datasets (with either few examples or few features). A deep FS technique has

been used to reduce the input space in short-term wind forecasting models [18],

but the use of recursive feature elimination (RFE) required exponentially train-

ing several different models, which means this approach cannot be used when75

the number of features is large. Perhaps the most interesting approach is one

called deep feature selection (DFS) [19], which consists of an elastic net variant

that can be introduced as an extra layer into any NN; a mask is included in

the input data with l1- and l2-regularization, in the same way as the elastic net

is defined, and elastic net penalties are applied to the hidden layers. However,80

according to the authors, for the method to function properly the number of

layers has to be reduced, contraindicating its use with convolutional NN (CNN)

models. None of those approaches is able to provide personalized information,

nonetheless. To address this issue, we used a well-known computer vision tech-

nique called saliency.85

2.1. Saliency

NNs are viewed as black boxes where, given any input and any desired

output, it is possible to obtain an accurate prediction that is somehow close to

what we should expect. However, NNs do not provide any kind of transparent

explanation about how the system reaches the predicted solution. Saliency, a90

concept that was first developed in computer vision settings, enables viewing

what is happening inside a given NN. More specifically, it is an evaluation of

the quality of individual pixels in an image [20].

Semi-supervised and supervised approaches are used to calculate saliency.

The earliest works used a semi-supervised approach [20, 21]; thus, for a given NN95

trained for classification and a given image, a back-propagation routine detects
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the pixels that most influence the desired output. More recent approaches are

supervised [22, 23], for which training is different. Thus, the NN has the same

input and output size and it is also known what the most relevant features are

in a given image; e.g., if we are detecting a cat, the important features are100

pixels in the image of the actual cat. The model is trained so that the predicted

output matches a prior segmentation of important features. This segmentation

explains why these NNs are also called semantic segmentation networks. They

are alternatively called attention models [24, 25] when a recurrent NN is used

at the end to evaluate the quality of features.105

While supervised techniques achieve better results than semi-supervised ap-

proaches, they have the major drawback that it is necessary to know the most

relevant features for each instance a priori in order to successfully train the

model. Unlike what happens with image datasets, this information is not al-

ways available for other environments, e.g., DNA microarrays. Furthermore,110

supervised techniques can only be used for classification problems and are not

suitable for other approaches, such as regression. For this reason we used a

semi-supervised saliency technique.

2.2. The proposed model

For our model, we used a generalization of an idea proposed by Simonyan115

et al. [20]. Let X ∈ RN×R be our input data, with N and R representing

the number of samples and of features, respectively; and let Ỹ = f(X; Θ) ∈

RN×C be our classification model (for the purposes of explanation only; later

we explain how this approach can be applied to regression problems). Which

type of model we use is irrelevant, as long as it can be trained using a loss120

minimization function (NN, CNN, SVM, etc). C is the number of different

classes to evaluate, and Θ are the classifier weights, which are adjusted during

the training procedure.

For explanatory purposes, we can assume that f(X; Θ) is the result of ap-
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plying the softmax function to a one-layer model (Θ ∈ RC×R). Thus:

C∑
c=1

y(i)c = 1, (1)

where

y(i)c = softmax(θTc X(i)). (2)

y
(i)
c is the probability that instance i belongs to class c. θc is the c-th column

of Θ.125

To train this model, we minimize a loss function `(Θ; f,X,Y), where Y ∈

RN×C is one-hot encoding for the class. Since we are using the softmax function

as our output, our minimization function is the categorical cross-entropy, defined

as

`(Θ; f,X,Y) = − 1

N

N∑
i=1

C∑
c=1

y(i)c log
(
f(x(i); Θ)c

)
(3)

2.2.1. Classic saliency

To know which the features most contribute to activating the class c, the

solution proposed by Simonyan et al. [20] is to evaluate the gradient of y(i)c with

respect to the input, i.e., in mathematical terms:

σ(i)
c =

∣∣∣∣ ∂y(i)c

∂X(i)

∣∣∣∣. (4)

Intuitively, this gradient indicates how we should modify the input instance

in order to maximize its belongingness to class c. Since this technique only

works for classification problems, however, we need to generalize the method to

make it suitable for our purposes.130

2.2.2. Generalization

Instead of applying a gradient function for each class c, we use an ap-

proach that is similar to updating weights during training. As the loss function

usually yields higher gradients whenever there is severe misclassification during

training, we propose defining a gain function (g(Θ; f,X,Y)) that will ensure
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high gradients when samples are correctly classified. Thus, our saliency function

σ is defined as:

σ(ỹ(i), y(i)) =

∣∣∣∣∂g(ỹ(i))

∂x(i)

∣∣∣∣ , (5)

where ỹ = f(X; Θ) is our model’s predicted output for instance i.

Below we describe how to create this gain function g depending on the loss

function being minimized.

3. The gain function135

Since our aim was to develop a saliency system that can work with multiple

types of problems, we explain how to create our gain function g for three different

scenarios: one for regression and two for classification (NNs and SVMs). This

gain function must be defined in a way such that correctly classified samples

obtain high saliency scores, with incorrect classifications indicated by values140

close to zero. This explains why loss functions cannot be directly applied.

3.1. Regression

We first describe the regression gain function as being more intuitive. For

simplification purposes, we assume our model is trained using the mean square

error (MSE) loss:

`MSE(Ỹ,Y) = − 1

N

N∑
i=1

(
ỹ(i) − y(i)

)2
, (6)

where Ỹ = f(X; Θ) is our model’s predicted output. Choosing a different loss

function makes no difference since all regression losses have the same structure: a

0 value if the prediction is absolutely correct, increasing in value as the prediction145

moves away from the expected result.

Our gain function must behave in the opposite way, however, i.e., it must

yield high values for accurate predictions and values close to zero for poor pre-

dictions. Thus, our solution is to use the inverse of the MSE loss function:
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gMSE(Ỹ,Y) =
α

`MSE(Ỹ,Y) + ε
, (7)

where α is a multiplication factor and ε > 0 is a factor that avoids division by

zero. By default, we set α = 1 and ε = 10−3.

3.2. Classification

Although Eq. 7 can potentially also be used as the gain function in classi-150

fication problems, we found it to be less than suitable because of its behavior

with total misclassifications (ỹ(i)c = 0 and y
(i)
c = 1, for instance). Remember

that since we are using the saliency function to build an FS algorithm, we do

not want any information on total misclassifications; in other words, in these

instances we want our gain function to return 0 values, which is a requirement155

not satisfied by the gain function in Eq. 7. We therefore developed two dif-

ferent gain functions for two different classification losses: a cross-entropy gain

function and a hinge loss gain function.

3.2.1. Cross-entropy gain function

The cross-entropy loss function (Eq. 3) is frequently used with NNs for

classification, including CNNs. Since our gain function should operate in reverse,

our solution is as follows:

gCE(Ỹ,Y) = − α
N

N∑
i=1

C∑
c=1

y(i)c log
(

1− ŷ(i)c

)
, (8)

where

ŷ(i)c = min
{

1− ε, ỹ(i)c

}
, (9)

in order to avoid a zero-logarithm, with α and ε having the same behavior as160

in Eq. 7. This function will ensure that no saliency results whenever total

misclassification occurs (log(1− 0) = log(1) = 0). Note that we do not want to

kill the gradient when clipping the value in Eq. 9, so the gradient should remain

unaltered (∇ŷ(i)c = 1).

This approach is similar to that of Simonyan et al. [20], differing in just165

one point: while that method decomposes the last layer network to obtain the

9



saliency, in our approach the model is directly applied to a gain function, mak-

ing it suitable for use in other machine learning approaches, like regression. An

advantage of our approach is that it returns close-to-zero gradients whenever

there is a misclassification. Our algorithm, unlike that of Simonyan et al. [20],170

is therefore able to indicate that there are no relevant features in a misclassifi-

cation.

3.2.2. Hinge loss function

The hinge loss function is often used to train SVMs. In a multiclass

problem, it can be defined as:

`H(Ỹ,Y) = − 1

N

N∑
i=1

C∑
c=1

y(i)c max(0, 1− ỹ(i)c )+

(1− y(i)c ) max(0, 1 + ỹ(i)c ). (10)

Thus, correct class predictions will have values higher than 1, whereas incorrect

class predictions will have values lower than −1.175

Note that the function does not have a gradient when values are higher than

1 in correct classes (and similarly for −1 in incorrect classes), which means that

a predicted output with value 2 would have the same information as a predicted

output with value 2000. The gain function was thus modified as follows:

gH(Ỹ,Y) = − α
N

N∑
i=1

C∑
c=1

y(i)c log
(

1− y̆(i)c

)
, (11)

where

y̆(i)c = min

{
1− ε, min(1,max(−1, ỹ

(i)
c )) + 1

2

}
. (12)

Again, we do not kill the gradient after clipping (∇y̆(i)c = 1).

4. Saliency-based feature selection

Our SFS approach, a ranker-based FS method that returns an ordered vector

of all features based on their importance, is described in Fig. 3 and Algorithm

1.180
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Figure 3: SFS algorithm flow chart.

Data: X,Y, f, `,Θ, γ, ε, reps

Result: feature ranking r

nf ← R // nf is the number of Alive features

r← [1 . . . nf ];

while nf > ε > 1 do

X̂← X;

X̂[:, r[nf + 1 : R]]← 0;

σfs ← zeros(nf );

for rep← 1 to C do

Initialize f(X̂; Θ);

Train f(X̂; Θ) given Y;

Ỹ ← f(X̂; Θ);

σfs ← σfs + GetSaliency(Ỹ , Y, σ);

end

index← argsort(σfs, descend);

r[1 : nf ]← r[index];

nf ← int(nf ∗ γ);

end
Algorithm 1: SFS algorithm pseudocode
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The proposed algorithm contains just three hyperparameters: ε ≥ 1, a stop-

ping criterion; 1 ≥ γ > 0 to control the number of alive features kept in the

following iteration; and reps to control the number of times a model is trained

so as to avoid overfitting.

We trained the model f with all the features in the feature set, computed185

saliency, then summed up and sorted all the features so as to obtain a feature

ranking r. The least relevant features were then discarded and the operation

was repeated until the stopping criterion applied.

Function GetSaliency(Ỹ , Y, σ):

σ ← 0;

C ← Number of classes in Y ;

for c← 1 to C do

σc ←
∑Nc

ic=1 σ(ỹ(ic),y(ic));

σ ← σ +
σc
‖σc‖1

;

end

return σ
end

Algorithm 2: Saliency function for classification

How saliency is computed differs depending on whether we are dealing with a

classification or a regression problem. As shown in Algorithm 2, for classification190

we compute and normalize saliency for each class and then sum up all the

features. For regression we simply sum up all the saliency scores, as described

in Algorithm 3.

Function GetSaliency(Ỹ , Y, σ):

σ ←
∑N

i=1 σ(ỹ(i),y(i));

return σ
end

Algorithm 3: Saliency function for regression

The complexity of the algorithm is variable, as it completely depends on the
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Table 1: NIPS 2003 Feature Selection Challenge datasets
Name # instances (train, test) # features # relevant features % relevant features pos/neg ratio

Arcene (88, 112) 10000 7000 0.7 1.0

Dexter (300, 300) 20000 9947 0.5 1.0

Dorothea (800, 350) 100000 50000 0.5 0.11

Gisette (6000, 1000) 5000 2500 0.5 1.0

Madelon (2000, 600) 500 20 0.04 1.0

γ parameter. In the best case scenario, when γ = 0, complexity is linear in the195

number of instances (O(N)), whereas in the worst case scenario, when γ ≈ 1,

complexity depends on the number of variables (O(RN)), given that we only

remove one feature in each loop.

5. Ablation case study

Below we demonstrate how the γ and reps parameters affect the behavior200

of our saliency algorithm and also show how decoupling to obtain the feature

ranking from the model used for classification can affect our approach. We first

describe the datasets used to test our methodology.

5.1. Datasets

5.1.1. NIPS 2003 Feature Selection Challenge205

We used the five synthetic datasets – Arcene, Dexter, Dorothea, Gisette and

Madelon – proposed for the NIPS 2003 Feature Selection Challenge,1 designed

for the sole purpose of measuring the quality of feature selection algorithms for

classification. Table 1 lists the specific characteristics of each dataset. Although

the datasets contain just two classes each, they are challenging because of spe-210

cific traits, namely, they contain few training examples (Arcene), unbalanced

data (Dorothea) or low-relevance features (Madelon).

1http://clopinet.com/isabelle/Projects/NIPS2003/
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5.1.2. MNIST, FASHION-MNIST, CIFAR-10 and CIFAR-100

The NIPS 2003 datasets had too few example to be suitable for testing our

approach in a big data scenario, so we also selected four classic computer vision215

datasets, as follows:

• MNIST, the classic computer vision classification challenge [26], contains

some 50,000 handwritten digits (10 classes) stored in 28 × 28 grayscale

resolution.

• FASHION-MNIST, a dataset of Zalando clothing images [27], contains220

60,000 images (10 classes) stored in 28× 28 grayscale resolution.

• CIFAR-10 and CIFAR-100 [28], containing some 50,000 tiny RGB images

(32 × 32 × 3) of objects such as cars, truck, planes, etc belonging to 10

and 100 different classes, respectively.

5.1.3. Regression225

Unlike classic information-based FS algorithms [29], our SFS algorithm is

able to perform FS for regression problems. For testing purposes we used two

big data datasets:

• Relative Location of CT Slices on Axial Axis2[30]. This dataset, whose

aim, as indicated by the name, is to uncover the relative location of com-230

puted tomography (CT) images on the axial axis, contains 53,500 images

for 74 different patients. Each image is described by two histograms, for

a total of 385 features.

• Energy Molecule 3 [31]. The aim of this dataset is to train machine learning

techniques to quickly compute atomization energy, as the corresponding235

simulations are computationally time-consuming. The dataset contains

ground state energies for 16,242 molecules, each with 1,275 features.

2https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
3https://www.kaggle.com/burakhmmtgl/energy-molecule
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5.2. Testing algorithm parameter effects

5.2.1. The reps parameter

It is almost impossible to train the same machine learning model more than240

once and expect to achieve the exact same result each time, as random initial-

ization in a model’s weights or random permutations in the training set cause

small differences in output. Thus, we first evaluated how the number of train-

ing repetitions could affect the output. Our objective was to check if it would

be necessary to train the model more than once at each step, computing the245

saliency ranking as the mean average of all repetitions.

We trained our algorithm using the NIPS 2003 datasets, setting γ = 0 and

trying different numbers of repetitions. We trained a 3-layer fully-connected

NN (150, 100 and 50 nodes per layer) using batch normalization (BN) [32] and

ReLU (x) = max(0, x) activation. The softmax function was used as output and250

Eq. 3 was used as the loss function. We included l2 weight decay regularization

with factor 0.001 and trained the model for 100 epochs using the Adam optimizer

[33]. To deal with unbalanced data, we replicated the number of examples until

we achieved balance between classes. All models were created using the Keras

framework4 and TensorFlow [34] as back-end.255

From Fig. 4 it can be seen that the number of repetitions affected accuracy

in most datasets, and that this effect depended also on the number of features.

A Friedman test showed no significant differences between the models when the

number of repetitions was greater than two, except for the Madelon dataset,

with a small number of relevant features. We also found significant differences260

between these models and the model with just one repetition. On that basis, we

would recommend using more than two repetitions to ensure better performance.

5.2.2. Effect of γ parameter

To analyze the behavior of the γ parameter, we set reps = 1, while keeping

the remaining parameters the same as for the previous test. Fig. 5 shows that265

4https://keras.io/
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Figure 4: Effect of the number of training repetitions with our algorithm. The number of

repetitions significantly affects the outcome.
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Figure 5: Effect of the hyperparameter γ with our algorithm. Using γ = 0 led to poor

results when using a small number of features. However, there was no significant performance

improvement when γ > .3.

17



the accuracy of our algorithm improved as the γ value increased. This occurred

because when features were removed, redundancy was also reduced, causing

the other features to become more important. Although increasing the γ value

helped our algorithm achieve better scores, the Friedman test results indicate

that there were no significant differences when we set γ ≥ 0.3, except for the270

Madelon dataset. Furthermore, Wilcoxon testing indicated that there was a

significant difference between the γ = 0 and γ = 0.75 models for the Arcene,

Madelon and Gisette datasets, but no significant difference for the Dexter and

Dorothea datasets. In the latter datasets, this may be because of the high

feature-to-sample ratios.275

5.2.3. Effect of ranker-classifier decoupling

Our FS algorithm is an embedded model: both selection and classifica-

tion/regression tasks can be performed at the same time. An embedded system

selects the features that achieve good results in the same model used for either

classification or regression. However, the problem is that this might lead to the280

selection of features that are only valid for the machine learning model used to

obtain the ranking.

A question we needed to answer, therefore, was: how good is our selection?.

We consequently tested our proposal separating the problem into two different

tasks: ranking and classifying. By using different models for each task, we285

tested how dependent the ranking was on the model used to obtain it. We used

the four kernel implementations provided by sklearn’s SVC dataset [35], for

parameters C = 1, degree = 3 and coef0 = 1. Our algorithm meta-parameters

were set to γ = 0.975 and reps = 1. We did not need any more repetitions,

as the SVM-training sequential minimal optimization (SMO) algorithm [36] is290

very stable. Table 2 shows the results obtained for the NIPS 2003 datasets.

The answer to the question posed above was therefore as follows:

1. Only in 35% of cases was the best result obtained by using the same

algorithm for both ranking and classification. Since we are using four

different models, this percentage is close to random.295
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Table 2: Decoupling ranker and classifier accuracy results. The number of features used to

achieve the best score and the best score achieved by each classifier are indicated in brackets

and bold, respectively. For multiple rankers achieving the best score, the ranker with the

fewest features is highlighted.

Dataset SVM Ranker
SVM Classifier (# of features)

Linear Poly RBF Sigmoid

Arcene

Linear 83.0 (3189) 88.0 (9750) 85.0 (48) 75.0 (327)

Poly 84.0 (5578) 88.0 (9750) 81.0 (1088) 73.0 (438)

RBF 83.0 (1269) 88.0 (9750) 88.0 (487) 74.0 (3622)

Sigmoid 84.0 (1145) 88.0 (9750) 81.0 (1088) 72.0 (3715)

Dexter

Linear 94.3 (1419) 93.3 (99) 93.7 (105) 93.0 (102)

Poly 93.6 (7071) 91.0 (66) 90.7 (33) 90.3 (68)

RBF 94.0 (7071) 92.0 (93) 92.7 (37) 91.7 (40)

Sigmoid 93.7 (3384) 93.7 (66) 92.3 (54) 92.0 (64)

Dorothea

Linear 94.9 (222) 94.6 (216) 94.6 (79) 95.1 (11318)

Poly 94.9 (69) 95.1 (88) 94.9 (65) 94.9 (150)

RBF 94.6 (26) 94.6 (25) 94.6 (23) 94.9 (27)

Sigmoid 94.3 (71) 94.6 (75) 94.9 (96) 94.9 (85)

Gisette

Linear 98.3 (1080) 98.3 (714) 98.1 (351) 97.6 (351)

Poly 98.1 (168) 98.2 (360) 98.2 (470) 97.9 (240)

RBF 98.2 (275) 98.2 (581) 98.2 (412) 98.0 (412)

Sigmoid 98.0 (315) 98.3 (483) 98.3 (351) 98.0 (351)

Madelon

Linear 58.2 (218) 71.7 (94) 73.7 (271) 57.0 (374)

Poly 61.0 (9) 76.2 (18) 88.0 (11) 52.3 (500)

RBF 60.5 (5) 70.3 (96) 89.3 (12) 53.7 (3)

Sigmoid 62.0 (4) 71.3 (108) 90.8 (17) 52.3 (500)
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Figure 6: Effect of overfitting during the FS step. As classifier overfitting increases, FS

quality decreases.

2. In three datasets (Arcene, Dorothea and Gisette), the best ranker was the

same for three different classifiers. This would suggest that the selected

features were not substantially affected by the type of classifier. Thus, a

good ranker model performs well irrespective of the classifier used.

We can therefore conclude that it is more important to have a good classifier300

for FS than to try and use the same model for both ranking and classifying.

5.2.4. Effect of overfitting in the FS step

As we have seen in the previous subsection, good classifier selection is crucial

to good FS, so we also needed to evaluate the impact of model overfitting. We

report results only for the Arcene dataset, as it yielded very meaningful results.305

The best results were achieved using SVM-RBF for both ranking and classifying,

with C = 1.5 as the meta-parameter (see Table 2). In our experiment we

therefore used the same classifier configuration, checking how the result varied

as we modified the C parameter during the FS step and setting our algorithm
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Table 3: Instance-level results. For each sample, the saliency function successfully provides

information about which features are most relevant.
X = {xa, xb, xc, xd, xe} Y significant variables saliency(X)

{−0.5,−0.5,−0.5,−0.5, 0.5} 1 {xa, xb, xc} {9.0,5.9,8.7, 0.7, 0.8}

{−0.5, 0.5,−0.5, 0.5, 0.5} −1 {xa, xb, xc} {7.4,6.8,6.3, 2.5, 0.1}

{0.5, 0.5,−0.5,−0.5,−0.5} 1 {xa, xd, xe} {6.3, 0.9, 0.1,5.1,5.7}

{0.5, 0.5, 0.5,−0.5, 0.5} −1 {xa, xd, xe} {9.9, 2.0, 2.4,3.7,5.7}

meta-parameters at their minimum values (γ = 0 and reps = 1). Fig. 6 shows310

that the best results were achieved when using the same C value as used in

the classification step. While using a lower value did not substantially affect

the result, overfitting (i.e., high C values) drastically affected the quality of

the result. Thus, we strongly recommend using classifiers in the FS step that

prevent overfitting, to avoid the introduction of noise in the FS ranking system.315

5.3. Benefits of instance-level information

Besides dimensionality reduction, our algorithm provides instance-level in-

formation, i.e., it shows which features are most relevant for each specific case.

This is particularly interesting in terms of explainable models, as it provides

insights as to why a model makes certain decisions.320

Using a toy example to demonstrate how our algorithm provides insightful

instance-level information, let X = {xa, xb, xc, xd, xe} be a random uniform

datum (X ∈ [−1, 1]) and let

Y =

 sign(xb)× sign(xc) if xa < 0

sign(xd)× sign(xe) otherwise
(13)

be the expected output. The output will always depend on three variables:

one fixed variable (xa) and two variables that depend on the fixed variable

value. While all five variables are, by definition, needed to successfully train the

classifier, each instance only takes into account three of them.

Table 3 shows the instance-level information obtained for an NN trained325

with a single hidden layer. The higher values correspond to features used to
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create the expected output.

6. SFS compared with other FS methods

In order to test our proposed SFS, we compared it to the most representative

FS methods currently available, namely: (a) Lasso and Elastic Net implementa-330

tions in the sklearn package [37, 38]; (b) the MIM revision [39], also implemented

in the sklearn package; (c) the ReliefF algorithm [40] implemented in the skre-

bate package [41]; and (d) the DFS algorithm [19], which uses our own Keras

implementation. To ensure a fair comparison, we used DFS mask values as the

feature rankings for the DFS. Note that this approach was not mentioned in335

the original paper [19], as the model was only trained with the new mask and

constraint (like Lasso and Elastic Net). However, experimental results show

that this approach achieves better results (the code with our implementations

is available at GitHub5).

6.1. NIPS 2003 Feature Selection Challenge340

As the number of instances was relatively low in all the NIPS 2003 datasets,

we followed the same approach as explained in the ablation study described

above; i.e., we used four SVM variants to test algorithm performance. In the

case of the DFS algorithm, we used the 3-layer NN (also described above) as

the FS algorithm. We also tried the same network with our proposed approach.345

6.1.1. Arcene dataset

From Table 4 it can be observed that the best accuracy results were achieved

using the polynomial kernel, but using practically all the features (in the most

favourable case, 81.6%). Our algorithm achieved equivalent accuracy results but

using an RBF kernel and only 19 features (i.e., only 4.87% of all the features in350

the dataset).
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Table 4: Accuracy results for the Arcene dataset. The number of features that achieved the

best score is indicated in brackets. ‘Baseline’ refers to classifier accuracy without feature

removal. ‘Same’ in the ranker column means that the same SVM model was used as both

ranker and classifier. The best ranker-classifier combinations are indicated in bold.

FS Method Ranker
SVM Classifier (# of features)

Linear Poly RBF Sigmoid

Baseline (all features) — 83.0 87.0 72.0 69.0

LASSO [37, 38] — 70.0 — — —

Elastic Net [37, 38] — 76.0 — — —

MIM [39] — 83.0 (84) 88.0 (8164) 81.0 (25) 69.0 (1817)

ReliefF [40] — 83.0 (10000) 88.0 (8818) 75.0 (600) 71.0 (2231)

DFS [8] NN 86.0 (1145) 87.0 (8810) 77.0 (302) 72.0 (4439)

SFS

Same (γ = 0) 84.0 (4328) 87.0 (10000) 83.0 (600) 74.0 (3715)

Best (γ = 0) 85.0 (318) 87.0 (9036) 86.0 (513) 78.0 (2601)

Same (γ = 0.975) 83.0 (3189) 88.0 (9760) 88.0 (487) 72.0 (3715)

Best (γ = 0.975) 84.0 (1145) 88.0 (9750) 88.0 (487) 84.0 (1145)

NN (γ = 0.9, reps = 3) 83.0 (1599) 87.0 (5869) 88.0 (19) 75.0 (465)

Table 5: Accuracy results for the Dexter dataset. The number of features that achieved the

best score is indicated in brackets. ‘Baseline’ refers to classifier accuracy without feature

removal. ‘Same’ in the ranker column means that the same SVM model was used as both

ranker and classifier. The best ranker-classifier combinations are indicated in bold.

FS Method Ranker
SVM Classifier (# of features)

Linear Poly RBF Sigmoid

Baseline (all features) — 93.7 89.0 89.0 89.0

LASSO [37, 38] — 89.0 — — —

Elastic Net [37, 38] — 91.3 — — —

MIM [39] — 93.7 (20000) 92.0 (166) 91.0 (152) 90.7 (1533)

ReliefF [40] — 93.7 (20000) 91.7 (31) 91.0 (68) 90.0 (111)

DFS [8] NN 93.7 (20000) 90.7 (93) 90.3 (2979) 90.3 (3746)

SFS

Same (γ = 0) 94.0 (939) 92.0 (56) 91.3 (52) 91.0 (4710)

Best (γ = 0) 94.0 (939) 92.7 (52) 91.3 (52) 91.0 (4710)

Same (γ = 0.975) 94.3 (1419) 91.0 (66) 92.7 (37) 92.0 (64)

Best (γ = 0.975) 94.3 (1419) 93.7 (7071) 94.0 (7071) 93.7 (3384)

NN (γ = 0.9, reps = 3) 94.0 (2493) 91.7 (111) 91.7 (114) 91.0 (124)
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Table 6: Accuracy results for the Dorothea dataset. The number of features that achieved

the best score is indicated in brackets. ‘Baseline’ refers to classifier accuracy without feature

removal. ‘Same’ in the ranker column means that the same SVM model was used as both

ranker and classifier. The best ranker-classifier combinations are indicated in bold.

FS Method Ranker
SVM Classifier (# of features)

Linear Poly RBF Sigmoid

Baseline (all features) — 93.1 90.3 9.7 92.3

LASSO [37, 38] — 93.4 — — —

Elastic Net [37, 38] — 93.7 — — —

MIM [39] — 94.0 (1677) 94.9 (112) 94.9 (77) 94.9 (77)

ReliefF [40] — 94.6 (1030) 94.3 (79) 94.3 (67) 94.3 (7)

DFS [8] NN 94.6 (59) 95.1 (61) 95.4 (57) 95.1 (53)

SFS

Same (γ = 0) 94.0 (3995) 95.4 (283) 95.1 (138) 94.9 (94)

Best (γ = 0) 94.3 (94) 95.4 (283) 95.4 (381) 94.9 (94)

Same (γ = 0.975) 94.9 (222) 95.1 (88) 94.6 (23) 94.9 (27)

Best (γ = 0.975) 94.9 (69) 95.1 (88) 94.9 (65) 95.1 (11318)

NN (γ = 0.9, reps = 3) 94.3 (193) 94.3 (85) 94.9 (381) 94.6 (402)

6.1.2. Dexter dataset

As can be observed in Table 5, the issue with the polynomial kernel in the

Arcene dataset also emerged for the Dexter dataset, although this time with the

linear kernel. Again, our algorithm outperformed the other techniques, indepen-355

dently of the SVM kernel selected. This time our approach not only considerably

reduced the number of features used (7.1% of features in our case, compared to

100% for the other methods) but also slightly improved the accuracy result.

6.1.3. Dorothea dataset

Table 6 shows that the best result for Dorothea was achieved using the DFS360

algorithm with an RBF kernel. Our approach achieved the same accuracy with

both polynomial and RBF kernels, but requiring more features (57 for the DFS

algorithm and 283 for our algorithm, 0.057% and 0.3% of the full set of features,

respectively).

5https://github.com/braisCB/SFS
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Table 7: Accuracy results for the Gisette dataset. The number of features that achieved

the best score is indicated in brackets. ‘Baseline’ refers to classifier accuracy without feature

removal. ‘Same’ in the ranker column means that the same SVM model was used as both

ranker and classifier. The best ranker-classifier combinations are indicated in bold.

FS Method Ranker
SVM Classifier (# of features)

Linear Poly RBF Sigmoid

Baseline (all features) — 97.7 97.5 96.9 95.7

LASSO [37, 38] — 97.4 — — —

Elastic Net [37, 38] — 97.4 — — —

MIM [39] — 97.7 (2212) 97.8 (1997) 97.6 (902) 96.7 (645)

ReliefF [40] — 98.2 (3083) 98.2 (1803) 97.7 (1850) 97.1 (1587)

DFS [8] NN 98.2 (168) 98.1 (3503) 98.3 (130) 97.5 (163)

SFS

Same (γ = 0) 98.1 (551) 98.1 (333) 98.0 (423) 97.8 (645)

Best (γ = 0) 98.1 (299) 98.3 (662) 98.1 (275) 97.8 (412)

Same (γ = 0.975) 98.3 (1080) 98.2 (360) 98.2 (412) 98.0 (351)

Best (γ = 0.975) 98.3 (1080) 98.3 (483) 98.3 (351) 98.0 (351)

NN (γ = 0.9, reps = 3) 98.0 (1397) 98.4 (291) 98.2 (333) 97.8 (324)

6.1.4. Gisette dataset365

Table 7 shows that our algorithm achieved the highest score using the NN

as ranker, although DFS obtained similar accuracy with fewer features (130 for

DFS versus 291 for our approach, 2.6% and 5.8% of the full set of features,

respectively). Compared with either MIM or ReliefF, our algorithm systemati-

cally selected fewer features.370

6.1.5. Madelon dataset

As indicated by Table 8, the ReliefF algorithm achieved the best score.

Noteworthy, however, was the fact that our algorithm achieved the same score,

although using more features (1.8% and 5% of the total number of features,

respectively).375

To sum up, compared with state-of-the art algorithms, our algorithm achieved

the same or even slightly improved FS accuracy results for all five NIPS 2003

datasets. Regarding the number of features used, our SFS algorithm greatly

reduced the number of features needed, while in other cases in which existing
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Table 8: Accuracy results for the Madelon dataset. The number of features that achieved

the best score is indicated in brackets. ’Baseline’ refers to classifier accuracy without feature

removal. ’Same’ in the ranker column means that the same SVM model was used as both

ranker and classifier. The best ranker-classifier combinations are indicated in bold.

FS Method Ranker
SVM Classifier (# of features)

Linear Poly RBF Sigmoid

Baseline (all features) — 53.0 67.7 68.7 52.3

LASSO [37, 38] — 58.3 — — —

Elastic Net [37, 38] — 59.7 — — —

MIM [39] — 62.5 (5) 72.5 (128) 80.2 (15) 57.2 (3)

ReliefF [40] — 62.7 (4) 74.7 (36) 91.5 (9) 53.2 (111)

DFS [8] NN 62.5 (8) 72.0 (40) 90.8 (11) 53.0 (1)

SFS

Same (γ = 0) 59.2 (56) 73.5 (42) 83.9 (32) 54.7 (76)

Best (γ = 0) 62.3 (1) 73.5 (42) 83.9 (32) 62.3 (58)

Same (γ = 0.975) 58.2 (218) 76.2 (18) 89.3 (12) 52.3 (500)

Best (γ = 0.975) 62.0 (4) 76.2 (18) 90.8 (17) 57.0 (374)

NN (γ = 0.9, reps = 3) 62.8 (9) 77.8 (16) 91.5 (25) 52.8 (87)

methods achieve an important reduction, our approach needed approximately380

the double of features.

6.2. Regression

We conducted two experiments to test behavior of our SFS algorithm for

a regression problem using (as mentioned previously) the Relative Location of

CT Slices on Axial Axis and the Energy Molecule datasets. Our approach was385

similar to that described in Section 5.2.1, i.e., a 3-layer NN (150, 100 and 50

nodes), BN and the ReLu activation function, differing only in the output (now

just one node) and the loss function (MSE). Cross-validation was five-fold.

Table 9 shows results for the CT dataset. We compared our SFS algorithm

with the DFS algorithm, using an input mask with l1 = 5 · 10−4 as the weight390

penalty. We also used our SFS method adding the DFS mask at the input (the

SFS+DFS configuration). The reps parameter was set to 2 in all experiments.

The SFS and SFS+DFS, both with a 3-layer CNN, achieved the best results. For

the SFS alone, 192 features (the full set) were needed, whereas for the SFS+DFS
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Table 9: SFS mean absolute error performance for a regression problem and the Relative

Location of CT Slices on Axial Axis dataset.

FS Method
# of features

19 38 96 192

DFS [8] 4.18 2.84 2.32 2.39

SFS (γ = 0) 6.55 3.70 2.71 2.24

SFS (γ = 0.9) 4.18 3.16 2.60 2.31

SFS+DFS (γ = 0) 4.41 2.94 2.25 2.40

SFS+DFS (γ = 0.9) 4.08 2.87 2.30 2.27

Table 10: SFS mean absolute error performance for a regression problem and the Energy

Molecule dataset.

FS Method
# of features

63 127 318 637

DFS [8] 0.139 0.136 0.137 0.142

SFS (γ = 0) 0.292 0.215 0.146 0.141

SFS (γ = 0.9) 0.145 0.132 0.131 0.136

SFS+DFS (γ = 0) 0.145 0.139 0.143 0.149

SFS+DFS (γ = 0.9) 0.139 0.136 0.132 0.138

combination, only 96 features (50%) were needed for equivalent accuracy.395

Table 10 shows, for the same configuration, the results for the Energy Molecule

dataset. SFS with γ = 0.9 achieved almost the best score using just 127 features

(10% of the whole dataset), while SFS and SFS+DFS achieved the best scores

for all the different configurations.

6.3. Results for big data scenarios400

One of the main advantages of the SFS algorithm is that it can be used

in big data environments, as it was developed for state-of-the-art architectures

like CNNs. We further tested its behavior with four different datasets using the

WRN-16-4 wide residual network [42] as classifier.

27



Table 11: MNIST accuracy results using WRN-16-4 as the classifier.

FS Method Ranker
# of features

39 78 196 392

DFS [8] 3-layer CNN 95.73 98.56 99.32 99.46

DFS [8] WRN-16-4 92.92 97.36 98.72 98.98

SFS 3-layer CNN (γ = 0) 89.78 95.66 99.14 99.53

SFS 3-layer CNN (γ = 0.9) 97.08 98.49 99.13 99.56

SFS WRN-16-4 (γ = 0) 88.18 94.98 98.70 99.41

SFS WRN-16-4 (γ = 0.9) 96.76 98.62 99.10 99.30

SFS+DFS 3-layer CNN (γ = 0) 95.60 98.47 99.38 99.48

SFS+DFS WRN-16-4 (γ = 0) 92.92 97.36 98.72 98.98

We tested two different ranker configurations: WRN-16-4 and a standard 3-405

layer CNN consisting of two convolutional layers with 16 and 32 channels and,

after each convolution, a 2× 2 max-pooling layer. Finally, two fully connected

layers were used, one containing 1,024 nodes, and the other sized according

to the number of labels in the dataset (100 for CIFAR-100, 10 for the other

datasets). Both BN [32] and the ReLu activation function were applied right410

after all hidden layers, and the softmax function was applied to the output. The

Adam optimizer [33] was used to train the model.

Used for both networks was categorical cross-entropy as the loss function

and a weight penalty l2 = 5 · 10−4.

Our experiments were conducted with the image databases described earlier,415

i.e., MNIST, Fashion-MNIST, CIFAR-10 and CIFAR-100.

6.3.1. MNIST

No data augmentation techniques were used to train the models. The 3-layer

CNN was trained for 40 epochs, while the WRN-16-4 required 80 epochs. As

can be observed from the results in Table 11, our approach achieved the best420

scores in terms of balancing accuracy and the number of features used. Note

also that the accuracy of the classifier improved greatly on using a high γ value.
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Table 12: Fashion-MNIST accuracy results using WRN-16-4 as the classifier.

FS Method Ranker
# of features

39 78 196 392

DFS [8] 3-layer CNN 78.85 85.5 90.45 92.41

DFS [8] WRN-16-4 72.58 76.52 87.05 92.61

SFS 3-layer CNN (γ = 0) 67.85 81.86 89.33 92.36

SFS 3-layer CNN (γ = 0.9) 82.63 86.33 90.09 92.60

SFS WRN-16-4 (γ = 0) 64.17 73.53 85.60 92.48

SFS WRN-16-4 (γ = 0.9) 77.99 82.58 88.16 91.72

SFS+DFS 3-layer CNN (γ = 0) 79.81 86.29 90.44 92.59

SFS+DFS WRN-16-4 (γ = 0) 65.09 73.87 85.86 92.40

Table 13: CIFAR-10 accuracy results using WRN-16-4 as the classifier.

FS Method Ranker
# of features

153 307 768 1536

DFS [8] 3-layer CNN 67.43 79.92 87.71 90.69

DFS [8] WRN-16-4 61.51 71.19 83.94 89.47

SFS 3-layer CNN (γ = 0) 61.00 72.49 84.31 89.31

SFS 3-layer CNN (γ = 0.9) 63.52 77.96 89.60 91.5

SFS WRN-16-4 (γ = 0) 53.03 60.42 85.55 90.44

SFS WRN-16-4 (γ = 0.9) 64.15 79.27 89.85 91.58

SFS+DFS 3-layer CNN (γ = 0) 68.13 79.03 88.04 91.06

SFS+DFS WRN-16-4 (γ = 0) 54.05 68.65 82.47 89.54
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Table 14: CIFAR-100 accuracy results using WRN-16-4 as the classifier.

FS Method Ranker
# of features

153 307 768 1536

DFS [8] 3-layer CNN 34.55 49.68 57.92 62.22

DFS [8] WRN-16-4 28.24 40.77 56.98 67.42

SFS 3-layer CNN (γ = 0) 24.53 34.14 52.67 63.45

SFS 3-layer CNN (γ = 0.9) 30.74 44.55 61.49 66.96

SFS WRN-16-4 (γ = 0) 24.66 37.86 56.66 66.39

SFS WRN-16-4 (γ = 0.9) 27.88 44.45 62.83 67.22

SFS+DFS 3-layer CNN (γ = 0) 36.86 46.64 60.46 63.55

SFS+DFS WRN-16-4 (γ = 0) 25.08 37.29 54.07 64.94

Later we discuss the intuition behind this effect.

6.3.2. Fashion-MNIST

As data augmentation we used random horizontal flips, along with horizontal425

and vertical random shifts (up to 4 pixels). As this dataset is more complex

than MNIST, we increased the number of training epochs to 80 for the 3-layer

CNN and to 130 for the WRN-16-4. Table 12 shows our result, indicating that,

overall, our SFS approach with γ = 0.9 achieved the best scores.

6.3.3. CIFAR-10430

We used the same data augmentation and training configuration as for

Fashion-MNIST, but increased the random shifts to 5 pixels. As confirmed

by Table 13, use of DFS helped the model achieve better results when the num-

ber of retained features was low. In contrast, a high γ value was useful with

higher numbers of features (more than 25% of the full set of features).435

6.3.4. CIFAR-100

Using the same training configuration as for CIFAR-10, we obtained the re-

sults in Table 14. For this dataset, the result for our approach was not clearly
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better than the result for DFS, possibly because of an overfitting problem (al-

though training accuracy was close to 100%, test accuracy never reached 70%).440

6.4. Classifier reliability

To our knowledge, ours is the first FS algorithm, outside tree-based tech-

niques, that can provide information on feature importance. The main ad-

vantage of our approach is that it can explain classifier decisions. Regarding

classifier reliability, if we look at the MNIST results (Table 11), we can see that445

the best results were achieved using the 3-layer CNN rather than the WRN-16-4

model as ranker. This result was not expected because the latter is considered

a better classifier than the former. Thus, our intuition regarding this effect is

as follows:

1. Max-pooling. We think the main problem with our algorithm was that it450

did not manage feature correlation unless the training algorithm did. In

the case of a CNN model, local correlations can be detected using pooling

layers. Unlike the WRN-16-4 classifier, the 3-layer CNN contained 2 max-

pooling layers, which may have helped our algorithm achieve better scores.

2. Over-fitting. Training set accuracy was always optimal using the WRN-455

16-4. This may have led our algorithm to poor generalization behavior,

as explained in relation to the ablation study (see Fig. 6).

We thus conclude that the quality of the classifier greatly affected the be-

havior of our algorithm. Furthermore, the MNIST results indicate that test

accuracy is not a good metric to deterime the suitability of a classifier for use460

as a ranker in the SFS algorithm. We therefore conducted another experi-

ment, taking advantage of saliency properties. As previously defined, since our

saliency function is the gradient of the gain function with respect to the input,

it measures how we have to modify our input to increase the probability of be-

longingness to the desired class. We therefore used our saliency function to do465

exactly the opposite. The idea is to answer the simple question: how much do

I have to change a sample to change the classifier’s output?
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Table 15: Adversarial images. Given an original image X, the minimal perturbation needed

to force a trained classifier to predict each label with more than 95% certainty.
X X = 0 X = 1 X = 2 X = 3 X = 4 X = 5 X = 6 X = 7 X = 8 X = 9

WRN-16-4 w/o

Input Noise

WRN-16-4 w/

Input Noise

This issue of adversarial examples as inputs to an NN that result in incorrect

output has attracted great attention in recent years. Several techniques have

been developed to increase the reliability of classifiers, including the fast gradient470

sign method (FGSM) [43], FGSM variants [44] and projected gradient descent

(PGD) [45], which use the saliency gradient to evaluate how much an input

sample must be modified to cheat the classifier. In our case, we extended these

works to the evaluation of classifier reliability, focusing not so much on how

an image has to be modified, but whether the generated image can cheat the475

human eye.

Our experiment is depicted in Table 15. Given original images and a trained

classifier, we used the saliency output to make perturbations in the images aimed

at cheating the classifier and obtaining wrong predictions with high certainty

(greater than 95%). The first row shows the perturbations needed in a WRN-480

16-4 model, achieving 99.69% accuracy in the test set.

The resulting images were not substantially visually different from the origi-

nal, as only random noise was added to the original; in other words, ten different

images that looked extremely similar were able to achieve completely different

predictions in our WRN-16-4 model.485

Since introducing white noise could easily fool our WRN-16-4 model, we re-

trained it, but this time introducing some random Gaussian noise in the training

images. The quality of the classifier decreased, as we only obtained 99.37% ac-

curacy in the test set. However, on looking at the images (Table 15, second

row), we can see that the perturbed images look completely different from the490

originals and so it should be easy to establish classifier prediction by just exam-
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ining the input. Therefore, we conclude that the second model is more reliable

even though it achieves lower accuracy in the training set.

This very interesting effect has implications for the training algorithm. As

we can easily obtain images that can fool our model, we can make adjustments495

to our training set that improve the reliability of our model. This is a very

important factor in decision support systems, as conclusions are based on more

solid explanations. It also has implications for medical analysis, as, for any

given sample, we can demonstrate a conclusion to doctors and explain how

input should be modified to modify predictions. Together with a dictionary of500

potential treatments and their effect on the input parameters, it could also lead

to treatment recommendations.

7. Conclusion

Our novel saliency-based FS approach (the SFS algorithm), contrary to clas-

sic approaches, ranks the importance of each feature at the instance level rather505

than in relation to the entire dataset. Experimental state-of-the-art results un-

der different configurations for challenging datasets show that our algorithm is

suitable for use in any kind of classification or regression problem. In contrast

with classic information-based FS techniques, the reduced complexity of our

SFS algorithm, which can be computed simultaneously with classification or510

regression training, allows it to be used in high-dimension datasets.

7.1. Contributions

Summarizing the contributions of our work in terms of the strengths and the

disadvantages of the SFS algorithm, advantages are as follows:

1. Versatility. The SFS algorithm can be used in many different scenarios, for515

different target objectives (classification or regression) and with different

model architectures (NNs, SVMs, etc).

2. Robustness. The SFS algorithm achieves state-of-the-art results with both

small and big data datasets, while its ability to work with different archi-

tectures makes it a powerful FS technique in multiple scenarios.520
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Figure 7: Feature selection algorithm choice depending on needs.

3. Instance-level information. The SFS algorithm provides detailed informa-

tion for each sample introduced in the model that is very useful in terms

of explainability.

Disadvantages are as follows:

1. Failure to detect redundancy. As the SFS algorithm focuses on the gradient525

of the gain function, it cannot detect redundancy. This problem is partially

solved when using a CNN architecture, but only for the detection of locally

spatial correlations (other redundancies cannot be detected).

2. Wrapper problems. The SFS algorithm has the same problems as wrapper

methods, namely, it can be slow (using γ ≈ 1), there is a risk of over-fitting530

and selection is dependent on the model used (for either classification or

regression).

3. Instance-level information in small datasets. Although the SFS algorithm

can provide instance-level information under all circumstances, in terms

of explainability issues it possibly functions best when applied to large535

datasets (when the number of features is small a tree-based method will

output more explainable information).

Fig. 7 is an FS algorithm recommendation graphic based on the three re-
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quirements of an FS algorithm: explainability, accuracy and big data capability.

Our SFS algorithm is recommended as the best state-of-the-art wrapper for big540

data environments, while a tree-based algorithm will provide a better explana-

tion if the number of features is small.

7.2. Future research

As future research, we aim to use our SFS technique to define a metric to

evaluate a model’s robustness, i.e., to measure how hard it is to fool a classifier545

or a regression architecture, so as to avoid having to rely on visual cues. We

also plan to test adversarial images as part of an explainable model in a real

scenario like medical information. Other lines of future research are to fine-

tune weak points in the SFS algorithm, e.g., improve explainability in small

datasets through SFS combined with tree-based methods in a hybrid model and550

resolve the redundancy problem, e.g., by including an additional step aimed at

detecting correlation between variables.
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