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Wavefront Marching Methods: a unified
algorithm to solve Eikonal and static

Hamilton-Jacobi equations.
Brais Cancela, and Amparo Alonso-Betanzos

Abstract—This paper presents a unified propagation method for dealing with both the classic Eikonal equation, where the motion
direction does not affect the propagation, and the more general static Hamilton-Jacobi equations, where it does. While classic Fast
Marching Method (FMM) techniques achieve the solution to the Eikonal equation with a O(M log M) (or O(M) assuming some
modifications), solving the more general static Hamilton-Jacobi equation requires a higher complexity. The proposed framework
maintains the O(M log M) complexity for both problems, while achieving higher accuracy than available state-of-the-art. The key idea
behind the proposed method is the creation of ‘mini wave-fronts’, where the solution is interpolated to minimize the discretization error.
Experimental results show how our algorithm can outperform the state-of-the-art both in precision and computational cost.

Index Terms—Fast Marching, Eikonal equation, static Hamilton-Jacobi, Isotropic, Anisotropic.
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1 INTRODUCTION

A Common problem that needs to be faced in the field of
computer vision is that there is an important number of

applications which require defining a method for solving the
optimal-trajectory problem. First attempts to solve this issue
involved the popular graph-search algorithms such as A* and F*,
that were employed in various applications such as road detection
[1] or computing distances in maps [2]. However, this kind of
algorithms have the shortcoming that they turn images into graphs
(and therefore each pixel becomes a node), thus causing errors
in some directions that will be invariant to the grid resolution.
Cohen and Kimmel [3] demonstrated this fact and also proposed
a solution to deal with the continuous optimal trajectory problem.
This solution was based on the idea that the motion is governed
by the static Hamilton-Jacobi partial differential equation(PDE). In
particular, computer vision researchers found the Eikonal equation

‖u(x)‖= f(x), x ∈ RN , (1)

with boundary condition u(x) = q(x), x ∈ ∂RN , to be very
useful to solve path planning problems. In order to obtain u (f and
q are known), it is necessary to solve a first-order nonlinear PDE,
whose solution tracks the motion of a monotonically advancing
front. There have been in the literature some attempts to solve
this equation, being the Fast Marching Method (FMM), the Fast
Sweeping Method (FSM) and their variants the most stable and
consistent ones [4], [5].

There are some works which presented more complex algo-
rithms trying to solve a more general equation (called the static
Hamilton-Jacobi equation) [6], [7], [8],

H(∇u(x), x) = 1, x ∈ RN ,
u(x) = q(x), x ∈ ∂RN , (2)
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where where q and H are assumed to be Lipschitz-continuous,
and the Hamiltonian H is also assumed to be convex and ho-
mogeneous of degree one in the first argument: H(∇u(x), x) =
‖∇u‖F (∇u/‖∇u‖, x) for some function F . This equation intro-
duces the concept of anisotropic forces, meaning that the direction
of the motion is also considered. Although some works in medical
imaging have started to deal with this problem, they used a
simplified version [9], [10], [11], [12]. In the following, we define
the Eikonal and static Hamilton-Jacobi solvers.

Eikonal Equation Solvers: The FMM introduced by Sethian
[4] defines a wavefront propagation method that is consistent with
the continuous case, while introducing order in the propagation
causes this one-pass algorithm to maintain the classic graph
search algorithm complexity, O(M logM), being M the number
of nodes in the model. Several approaches improve either the
complexity (O(M) [13], [14]) or the accuracy of the model [15],
[16], [17], [18], [19], [20].

FSM (Fast Sweeping Method) [5] is an iterative algorithm that
can solve the Eikonal equation by removing the FMM one-pass
condition. In essence, this algorithm searches for the numerical
solution by alternating sweepings in predetermined directions,
and at the same time it computes the solution employing a
nonlinear upwinding method. As happens with FMM, accuracy
can be improved when high order schemes are introduced into the
finite difference upwinding scheme [21]. FMM and FSM return
the same results since they are both using the same upwinding
procedure. The only difference between them relies in the method
they use to decide the node that needs to be updated. Hassouna et
al. [19] state that FMM is advantageous because it keeps order in
the selection of which point should be computed next.

Static Hamilton-Jacobi Equation Solvers: The Ordered Up-
wind Methods (OUM) [6] were created in order to ad-
dress this problem, although algorithm complexity increases to
Υ2O(M logM), being Υ = F1

F2
the so-called anisotropy coeffi-
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TABLE 1
2D Isotropic Analytical Functions (Closed form solution and gradient).
Accuracy and Complexity, being M the number of Nodes in the model

Family Complexity Eikonal accuracy Static Hamilton-Jacobi accuracy
FMM O(M logM) Very High Very low
FSM O(M) Very High Very low
OUM O(Υ2M logM) Low High

WMM (Proposed) O(M logM) Very High Very high

cient, where F1 and F2 are the upper and lower bounds on the
speed. Mirebeau [22], [23], [24] improved the computational cost
by precomputing a smaller grid, taking into account the speed
direction. Recently, some researches in computer vision made use
of anisotropic techniques, mainly focused in medical segmentation
[9], [10], [11], [12]. They employed an anisotropic approximation
method [25], [26], because, although OUM method has a better
accuracy, its computational cost makes it unsuitable for this kind
of problems.

Table 1 shows a summary of all the proposed methods. When
dealing with Eikonal equations, both FMM and FSM techniques
achieve state-of-the-art scores, but failed to provide a good so-
lution on static Hamilton-Jacobi problems. On the contrary, the
OUM family methods are able to solve the latter, but at the
expenses of a higher computational complexity and a low accuracy
when dealing with the Eikonal equations.

In this paper we present a novel unified algorithm, called
the Wavefront Marching Method (WMM), that solves both the
isotropic (Eikonal) and the anisotropic (static Hamilton-Jacobi)
equations with the same computational cost (O(N logN)), while
achieving state-of-the-art accuracy. Our idea is based on the FMM
algorithm (an FSM variant can also be implemented but, as its
results will only differ in the computational time, this point is
beyond the scope of this paper), but introducing knowledge about
the propagation orientation. To do so, our idea is to create “mini”
propagation sections that are used to update the wavefront. This
work is an extension of the one presented in [27], in which several
relevant improvements have been added:

1) We expand our previous work from 2D to 3D cartesian
grids.

2) We expand the algorithm scope to anisotropic cases,
obtaining remarkable results.

3) We also provide a novel super-resolution technique, that
is able to increase the algorithm’s accuracy without in-
creasing its complexity. This can be accomplished since
the extra computations can be easily parallelized.

4) We provide a complete framework including all these
algorithms, which can be used in two different program-
ming languages (C++ and Python).1

This paper is organized as follows: section 2 describes our
WMM algorithm; section 3 presents our super-resolution tech-
nique; section 4 introduces the experimental results obtained, and
finally section 5 offers some conclusions.

2 WAVEFRONT MARCHING METHOD

In order to solve the Eikonal equation, we propose a different
approach called Wavefront Marching Method (WMM), where
‘mini-wavefront’ sections are created and combined to obtain the
unique physically relevant solution.

1. Code will be avaible at: https://github.com/braisCB/WMM

Algorithm 1 Wavefront Marching Method (WMM)
Definitions:

• U : Minimal action surface.
• Trial set: triplets (p, Sp, rp), consisting in the next nodes to

be computed. p is the node, Sp is its associated wavefront
section, and rp is the score used to determine which set should
be computed next (in which lower is better).

• Alive set: the points of the grid for which U is already
computed.

Input:

• G: grid containing all nodes and the ∇U value.
• P0: set containing all initial nodes.

Initialization:

• For each point in the grid, let Up = ∞.
• Set the starting points p0 ∈ P0 to be zero:

Up0 = 0, ∀p0 ∈ P0, create the starting triplet (p0, p0, 0)
and put it in the Trial set (since there is only one point, the
wavefront section is just itself).

Marching loop:

• Select (p, Sp, rp) to be the triplet from Trial with the lowest
value of rp. Remove it from the set.

• For each 8-connectivity neighbour pn that is not in the Alive
set, compute the mini wavefront sections Spn and their quality
measure rpn . Put them into the Trial set.

Algorithm 1 shows the skeleton of our algorithm. It works in
the same way, no matter if we are dealing with 2D or 3D, or
isotropic or anisotropic scenarios. It only differs in the way the
wavefront segments Sp and the tentative values Up are computed.
For the sake of simplicity,

rp = Up, (3)

that is, similar to other marching algorithms, we use the tentative
value Up to select which is the next node to be evaluated.

2.1 Creating a Wavefront Section
As it was already mentioned, our algorithm is based on the
creation of small wavefront sections that are used to propagate
the solution over the grid. The idea behind this schema is to create
these small sections so they will be placed perpendicular to the
propagation direction, simulating its front (that is why we call
if wavefronts). Thus, we have defined two different wavefront
approximations, depending on whether we are dealing with 2D
or 3D schemes.

2.1.1 2D approach
As our system is developed to be used over Cartesian grids, a
regular 8-connectivity grid is used. Formally, having a wavefront
section Sp, centered at node p, we can propagate the solution to a
neighbour node pN by creating a new wavefront section SpN with
segments that satisfy:

SpN =
⋃

pR∈Ap∩ApN

spRpN = [pN , pR], (4)

where Ap and ApN are the sets containing all p and pN neigh-
bours, respectively. To put it in different words, we take all
segments in which one border belongs to the SpN center node
(pN ), and the other border is at the same time a neighbour to

https://github.com/braisCB/WMM
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Fig. 1. 2D wavefront sections. Starting at a pixel p, and using an 8-
connectivity architecture, eight different sections can be computed. On
the left, corner wavefront sections. On the right, lateral sections. All
wavefront centers and borders are neighbours to the propagation center
p.

Fig. 2. 3D wavefront sections for different center points ( in red). In
green, wavefront planes with their respective boundary nodes. From left
to right: face, corner and lateral center nodes.

both the previous and the new wavefront section center (p and
pN , respectively). Each segment is referenced by its other border
(spRpN ).

Note that, depending on the direction of the propagation,
a different wavefront can be created. Fig. 1 shows how, given
a point p that is marked as Alive, we can create 8 different
wavefront sections, each one including two segments. Assuming
an 8-connectivity, we can check that the boundary nodes are
always neighbors to both the wavefront center and the node from
which the propagation is started.

2.1.2 3D approach

The proposed 2D WMM method can be extended to a 3D cartesian
domain. The model only differs in the wavefront segment struc-
ture. Whereas in 2D we have wavefront segments, now we have
wavefront planes. Formally, having the initial wavefront section
Sp, the wavefront section SpN can be defined as

SpN =
⋃

pR1
,pR2

,pR3
∈Ap∩ApN

s
pR1

,pR2
pN = [pN , pR1 , pR2 , pR3 ],

(5)
that is, each wavefront section is defined as the union of all
quadrilaterals that can be formed, taking into account that all
corners must be neighbours to both p and pN . In particular, 4
planes are defined for each neighbor center but for the corners,
where we only have 3 planes, as explained in Fig. 2. Each plane
is referenced by the two border nodes that are not in the diagonal
(s
pR1

,pR2
pN ). The other node is a linear combination of these two

(pR3
= pR1

+ pR2
− pN ).

2.2 Tentative Value Computation

Once the wavefront section is determined, we will define how
tentative values are computed. Let PSp

be the set of all points
that are contained in the wavefront section Sp (not only the center
and the border nodes, but also any point, pt, inside the segments

connecting them), and let Upn be the tentative value we aim to
compute. The tentative score USp

pn is calculated as

USp
pn = min

pt∈PSp

USp
pt + ‖pn − pt‖ f(∇U, Sp), (6)

in the case of the isotropic scenario, and

USp
pn = min

pt∈PSp

USp
pt + ‖pn − pt‖ f(∇U, Sp, pn), (7)

in the anisotropic scenario. The f function will vary depending on
the problem. For the sake of simplicity, only the isotropic approach
will be presented in this section, as the anisotropic approach is
solved exactly in the same way.

Our method is a Volume Finite approximation between the
point pn and the wavefront section Sp, using the gradient provided
by∇U . Thus, the key points of this approach are: 1) How to select
the correct pt in the wavefront section Sp; and 2) How to compute
U
Sp
pt and ∇USp

pt . Below we are going to answer these questions.

2.2.1 Selecting pt
As mentioned before, each wavefront section Sp can be decom-
posed in smaller sections, denoted as spRpN and s

pR1
,pR2

pN in the 2D
and 3D approaches, respectively. Thus, Eq. 6 can be decomposed
in

USp
pn = min

pT∈Sp

{
min
pt∈s

pT
pN

USp
pt +

‖pn − pt‖
‖∇Upn‖+2 ‖∇U(pn+pt)/2‖+‖∇Upt‖

4

}
(8)

in the 2D approach, and

USp
pn = min

pT ,pR∈Sp

{
min

ptr∈s
pT ,pR
pN

USp
ptr +

‖pn − ptr‖
‖∇Upn‖+2 ‖∇U(pn+ptr/2‖+‖∇Uptr‖

4

}
(9)

in the 3D one, being pT and pR all border nodes of the rectangle,
except the diagonal. Thus, our approach computes the tentative
score in all small wavefront sections, selecting the minimum one
as the correct answer. pt is defined as

pt = (1− t) p+ t pT , t ∈ [0, 1], (10)

in the 2D section, and

pt,r = (1− t− r) p+ t pT + r pR, t, r ∈ [0, 1], (11)

in the 3D one.
In order to select the pt node that minimizes Eq. 8, we propose

3 different approximations:
2.2.1.1 Golden Section Search [28]:: The golden section

search is a classic technique for finding an extreme point (min-
imum in this case) in monotonic functions. Although this is a
fair assumption in the isotropic approach, it may not be the case
in the anisotropic one. However, it achieves solid results. As a
major drawback, this technique requires an iterative search over
the segment, reducing the computational speed of the algorithm.
In the case of the 3D grid, the Golden Section Search alternatively
iterates over t and r variables.

In order to speed up our algorithm, we propose to use other
non-iterative approaches: a modified version of the Hopf-Lax
update, and the Gradient Formula.
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Fig. 3. Modified Hopf-Lax technique. p and pT are the endpoints of a
wavefront section, whereas pN is the point to be updated. Note that for
values t < 0 or t > 1, t must be bounded to fit within the wavefront
section.

2.2.1.2 Modified Hopf-Lax Update:: A way to update
Upn in the Eikonal equation is using the Hopf-Lax formula
explained in [7], and extended to 3D in [29]. In our case, we are
going to modify this formula to take advantage of the interpolation
techniques used in our wavefront section.

2D approach: Let pN be the node to be update, and p, pT the
endpoints of a wavefront section, as explained in Fig. 3. Having
d = pT − p, the t value is computed by solving the system of
equations

pt = p+ (pT − p) t, (12)

pt = pN +m r

where t, r are scalars, and

m = R (pT − p),

R =

(
cosφ −sinφ
sinφ cosφ

)
, (13)

δ = cosφ =
U
Sp
pT − U

Sp
p

‖pT − p‖

In essence, the formula calculates the intersection point be-
tween the wavefront segment and the line starting in p which
follows the direction of the wavefront motion (cosφ). Note that it
must be narrowed, that is, t ∈ [0, 1]. Thus, the best approximation
is to solve t, forcing that t = min(1,max(0, t)), and then
solving pt.

3D approach: The approximation is similar. Now we have to
compute intersection between the line starting in pN and the plane
defined by spT ,pRpN .

2.2.1.3 Gradient Formula:: To solve the Eikonal equa-
tion, classical trajectory solver algorithms using isotropic forces
tend to simplify the speed of motion to its absolute value. How-
ever, if this information is provided, the direction of the speed
of motion can be used to obtain the t value, as shown in Fig. 4.
Thus, we have previously proposed a different approach to obtain
the intersection point [27]. Similarly to the modified Hopf-Lax
formula, we select the intersection point between the wavefront
segment and the line starting in p which follows the direction of
the speed of motion. Formally, it is solved in the same way the
Hopf-Lax formula (Eq. 12), but modifying

m = ∇UpN . (14)

Fig. 4. Gradient technique. p and pT are the endpoints of a wavefront
section, whereas pN is the point to be updated. pt is obtained by com-
puting the intersection between the gradient direction and the segment.

Reached point

Wavefront

Target frontwave
boundary points

Horizontal interpolation

Vertical interpolation

Fig. 5. Interpolation techniques during an upwinding procedure. 4
different interpolation segments are created.

2.2.2 Computing USp
pt

Our idea is to use these mini-wavefront sections to interpolate the
value of both U and P over the entire wavefront section. Thus, we
can increase the accuracy of the solution by introducing high-order
interpolation techniques. The interpolation in 3D Cartesian grids
is similar to the 2D model. Instead of a combination of segments,
now we have a combination of surfaces. Depending on whether
the node is a cube corner or not, a wavefront section will contain
3 or 4 mini surfaces, respectively (see Fig. 2). Thus, starting at any
given node p, the solution can be propagated through 26 different
direction. Each cube face contains 9 values that are used to create
each wavefront surface interpolation.

We have tested our algorithm with different approximations:
linear and polynomial for 2D; bilinear and 9-point polynomial
interpolation in 3D; and also the more complex natural spline,
Hermite Spline and Monotone Piecewise Cubic Hermite Interpo-
lation (PCHIP) in both dimensions. See Appendix A for more
information about how to compute the coefficients.

2.2.2.1 ∇U interpolation:: As early mentioned, ∇U is
also interpolated by using the same principle. However, since we
are interpolating a vector and not a scalar, we interpolate ∇U in
either its polar or its spherical form, depending on whether we are
solving a 2D or a 3D scenario, respectively. As described in Eqs. 8
and 9, the tentative score is highly dependent on the gradient norm.
Thus, in order to obtain a better solution, we selected a polar
interpolation over the classic Cartesian one (see Appendix for a
numerical proof). Thus, having a ∇Up = (∇ux,∇uy) gradient,
our polar representation is defined as

∇Uθp = (n, cos ρ = ∇ux/n, sin ρ = ∇uy/n), (15)

where n =
√
∇u2

x +∇u2
y is the magnitude, and the other two

parameters control the angle. If we are dealing with a 3D problem
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Fig. 6. 2D SR-WMM3 sections. 3 intermediate points are created within
each mini section. U value is computed over these points, but they are
not used to feed the main algorithm, just to obtain a more accurate
interpolation.

(∇Up = (∇ux,∇uy,∇uz)), then

∇Uθp = (n, cos ρ, sin ρ, cosφ, sinφ), (16)

where n =
√
∇u2

x +∇u2
y +∇u2

z , φ = arccos∇uz/n and
ρ = arctan(∇uy/∇uz). Note that a polar representation can
be defined by only using two parameters (three in the spherical):
magnitude and angle. However, we decided to split the angle in its
sine and cosine functions because they are easy to interpolate. For
instance, if we interpolate over the angles (−π+ ε, π− ε), which
are very close, we can interpolate the large segment (−π+ε, π−ε)
instead of the more suitable (and smaller) (π− ε, π+ ε). By using
its trigonometrical functions we ensure this extreme will never
happen.

We will show a toy example to illustrate the reason behind our
decision. Suppose you have a 2D grid and two neighbour nodes: p1

and p2. Suppose that ∇Up1 = (1, 0) and ∇Up2 = (0, 1) and we
are using a linear interpolation. Clearly, ‖∇Up1‖= ‖∇Up2‖= 1.
However, if we interpolate the result in the middle section between
p1 and p2, it results in ∇Up1.5 = (0.5, 0.5), and ‖∇Up1.5‖=√

0.5 ≤ ‖∇Up1‖.
However, if using the polar representation, we have ∇Uθp1 =

(1, 1, 0) and ∇Uθp2 = (1, 0, 1). Thus, ∇Uθp1.5 = (1, 0.5, 0.5) ≈
(1,
√

2
2 ,
√

2
2 ), as we have to normalize sine and cosine to have

norm 1. Reverting it to cartesian coordinates, we have ∇Up1.5 =

(
√

2
2 ,
√

2
2 ) and ‖∇Up1.5‖= ‖Up1‖= ‖Up2‖, which we believe is

a more precise approach.

3 SUPER-RESOLUTION WMM

As we have shown in the previous section, we need to make use of
nodes outside the wavefront section to use high-order interpolation
techniques. This is not a huge problem when using Cartesian
grids, as all points are correctly aligned. However, this approach
cannot be used when using unstructured meshes (only linear
interpolation techniques can be used). In order to overcome this
issue, and also aiming at increasing the precision of our algorithm
without increasing its computational cost, we have developed a
new version of our algorithm, called Super-Resolution WMM, or
SR-WMM.

The structure of the algorithm is the same as explained in
Algorithm 1, it only differs in the way wavefront sections are

created. We introduce a set of equispaced ‘virtual’ nodes, where
the solution is also computed, as depicted in Fig. 6. Formally,

S(i)
pN =

⋃
spRpN =

{
pj : pj =

(
1− j

i+ 1

)
pN +

j

i+ 1
pR,

j = [0, 1, . . . , i+ 1]

}
, (17)

where i is the number of those ‘virtual’ nodes. This approach has
several advantages:

1) It does not need a Cartesian grid, as the interpolation is
performed using only the values provided by either the
‘virtual’ and the border nodes.

2) It does not add extra complexity to the algorithm. These
nodes are only used to obtain the interpolated value, they
are not used to propagate the solution. That is, these
‘virtual’ nodes do not exist for Algorithm 1. All virtual
scores can be computed in parallel, and if and only if the
wavefront centered in pN is updated.

3) It does not add complexity to the USp
pt computation. Since

all nodes are equispaced, selecting which pair of nodes
are surrounding pt is straightforward.

As a minor disadvantage, polynomial interpolation techniques
are not available, as they could led to high polynomial degrees
which are prone to overfitting the solution.

3.1 Tentative Value Computation

In order to improve the accuracy or our model, we also made
some slightly modifications to Eqs. 8 and 9. Since we are creating
virtual nodes within the wavefront sections, we plan to use the
same approach over the segment that joins the candidate node pn
and the wavefront segment pt. Formally, it is defined as

USp
pn = min

pT∈Sp

{
min
pt∈s

pT
pN

USp
pt +

‖pn − pt‖
‖∇Upn‖+2

∑i
j=1‖∇Upos(pt,pn,i,j)‖+‖∇Upt‖

(2 + 1) ∗ i

}
(18)

for the 2D approach, and

USp
pn = min

pT ,pR∈Sp

{
min

ptr∈s
pT ,pR
pN

USp
ptr+

‖pn−ptr‖
‖∇Upn‖+2

∑i
j=1‖∇Upos(ptr,pn,i,j)‖+‖∇Uptr‖

(2 + 1) ∗ i

}
(19)

for the 3D one, where

pos(p, pn, i, j) =

(
1− j

i+ 1

)
p+

j

i+ 1
pn, (20)

is the virtual node between p and pn. We perform a linear volume
finite approach between these two nodes, using as many virtual
nodes as we use in the wavefront segment.
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TABLE 2
2D Isotropic Analytical Functions (Closed form solution and

gradient).

U ∇U
T1

√
x2 + y2 (x, y)/

√
x2 + y2

T2
x2

25
+
y2

9

(
2x

25
,

2y

9

)
T3

x2

100
+
y2

20

( x
50
,
y

10

)
T4 T1 − 2 sin

(
T1

2

)
∇T1

(
1− cos

(
T1

2

))
T5 T1 − 8 sin

(
T1

8

)
∇T1

(
1− cos

(
T1

8

))
TABLE 3

3D Isotropic Analytical Functions (Closed form solution and
gradient).

U ∇U
T6

√
x2 + y2 + z2 (x, y, z)/

√
x2 + y2 + z2

T7
x2

25
+
y2

9
+
z2

36

(
2x

25
,

2y

9
,
z

18

)
T8

x2

100
+
y2

20
+
z2

20

( x
50
,
y

10
,
z

10

)
T9

9

8
T6 − 2 sin

(
T6

2

)
∇T6

(
9

8
− cos

(
T6

2

))
T10

9

8
T6 − 20 sin

(
T6

20

)
∇T6

(
9

8
− cos

(
T6

20

))

3.1.1 Selecting pt

As in the WMM algorithm, we have 3 different approaches to
select pt: the Gradient method, the Golden Search method and the
modified Hopf-Lax formula. While the first two remain the same,
as adding inner nodes do not affect their computation, we needed
to modify the Hopf-Lax formula by computing it in all segments
that are created by the new virtual nodes. The reason behind this
decision is to obtain a more accurate wavefront motion direction.
Although in this way we increase the complexity of the algorithm,
this step is easily parallelized, so it does not highly affect the final
performance.

4 EXPERIMENTAL RESULTS

In order to show the versatility of our approach, we have con-
ducted several experiments, including 2D and 3D meshes, using
both isotropic and anisotropic approaches.

4.1 Isotropic Equations

First of all, we aim to test our algorithm against the Eikonal equa-
tion, which is the problem that is traditionally solved by methods
like FMM, MSFM or FSM. In order to provide a fair experimental
setup, we will conduct the same experiments performed in [30], as
their results prove to be the current state-of-the-art. Ten different
equations are tested, five in 2D (T1 to T5, see Table 2 and Fig.
7) and another five in the 3D domain (T6 to T10, see Table 3 and
Fig. 8). These experiments cover a broad range of situations like
unit speed propagation (T1 and T6), elliptical propagation (T2,
T3, T7 and T8) and high gradient variation (T4, T5, T9 and T10).
Since the closed form solution is known, we can provide an exact
accuracy measure.

4.1.1 Experiments with 2D and 3D functions

The configuration is the same for all of these experiments: a grid
of 101 × 101, h = 1 and −50 ≤ x, y ≤ 50, with the front
propagation starting from Γ0 = (0, 0), in the case of the 2D
solutions; a grid of 51×51×51, h = 1 and −25 ≤ x, y, z ≤ 25.
For the sake of simplicity, as the MSc approach in [30] provides
multiple configurations, we will only show its best performance in
each test. The gradient values are discretized over the grid nodes.
Thus, we do not assume to know the analytical gradient function.
In case it is known, SR-WMM results will be way better than the
ones we are showing, as the gradient values over the inner nodes
will be exact scores rather than an interpolation attempt.

The results in both Table 4 and Table 5 show how our WMM
algorithm is able to obtain similar scores to those obtained when
using the MSc approach (or better in some cases), which is the
current state-of-the-art. However, our SR-WMM method is able to
achieve better results in all configurations. Our algorithm proves
to be specially remarkable in 3D scenarios, as even the WMM
algorithm is able to overcome the MSc method in all equations.

4.1.2 Invariance with respect to the Axis Permutation

We also aim at testing the stability of our algorithm when rotating
the grid axis. To that end, we selected four different angles (21,
39, 57 and 75 degrees). Table 6 shows how the axis permutation
affects the computation of T2 equation. Although the results are
remarkable, they are not as good as the ones obtained when the
axis is not rotated. We believe this problem is more related with
the gradient discretization rather than an algorithm issue. When the
axis is not rotated, we always have the maximum gradient value
located at the nodes. Thus, it is easy to perform an interpolation
over it, as the maximum value is bounded over one edge. However,
this condition is not satisfied when the axis is rotated. Therefore,
it is more difficult to perform an interpolation so accurate.

The same experiment was performed over a 3D grid by using
T7 equation. Table 7 shows once more that our algorithm is
very stable under 3D scenarios. Again, we believe the gradient
discretization is the major factor in the quality of our results.

4.1.3 Invariance with respect to an Anisotropic Grid

We also tested the behavior of our algorithm when used over
anisotropic grids, that is, when the h value is different depending
on the grid orientation. To illustrate this, we performed the
same experiment that was presented in [31]: we tested how the
unit speed function (T1 and T6 for 2D and 3D, respectively)
propagates from the center of the grid. For the 2D approach,
we used a 101 × 101 grid and h = (∆x,∆y) = (0.1, 0.2),
whereas a 41 × 41 × 41 grid is used in the 3D approach, where
h = (∆x,∆y,∆z) = (0.1, 0.1, 0.2). Table 8 shows how our
methods achieves considerably lower errors than those obtained
by classic methods like FMM or MSFM. As our method does not
perform a quadratic approximation like the methods mentioned
above, an anisotropic grid size does not affect its performance.

4.2 Anisotropic Equations

The previous results demonstrate how our proposed method can
achieve higher accuracy than state-of-the-art methods like MSc
under isotropic functions. Over the next experiments, we will also
show how our method can be used to solve anisotropic cases by
only changing the function f(∇U, Sp, pn) described in Eq. 7. To
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Fig. 7. 2D Analytical function surfaces.

Fig. 8. 3D Analytical function surfaces.

TABLE 4
2D Isotropic Analytical Functions results. Our WMM algorithm achieves state-of-the-art results, whereas the SR-WMM obtains a better

performance. Experiment configuration: h = ∆x = ∆y = 1., −50 ≤ x, y ≤ 50, grid size = 101× 101.

T1 T2 T3 T4 T5
L1 L∞ L1 L∞ L1 L∞ L1 L∞ L1 L∞

MS1 [30] 0.092 0.216 3.815 7.556 1.515 3.000 0.661 1.440 0.539 1.280
MS2 [30] 0.228 0.307 0.090 0.253 0.022 0.097 1.318 2.521 0.259 0.712
MSc [30] 0.005 0.016 0.009 0.049 0.003 0.023 0.079 0.131 0.020 0.031
WMMgr 0.021 0.047 0.010 0.028 0.007 0.012 0.048 0.166 0.009 0.027
WMMhl 0.016 0.036 1.126 5.594 0.496 2.403 0.145 0.449 0.170 0.756
WMMgs 0.019 0.037 0.007 0.021 0.002 0.009 0.106 0.295 0.010 0.026

SR-WMM3
gr 3e-4 8e-4 0.009 0.017 0.003 0.013 0.023 0.074 0.001 0.008

SR-WMM3
hl 5e-4 0.002 0.194 1.255 0.081 0.522 0.018 0.070 0.031 0.141

SR-WMM3
gs 3e-4 0.001 0.004 0.003 0.017 0.002 0.030 0.093 0.001 0.004

SR-WMM5
gr 2e-4 5e-4 0.008 0.018 0.002 0.009 0.015 0.058 7e-4 0.004

SR-WMM5
hl 2e-4 7e-4 0.089 0.594 0.036 0.243 0.015 0.050 0.014 0.090

SR-WMM5
gs 6e-5 7e-4 0.002 0.018 0.002 0.008 0.019 0.063 8e-4 0.004

TABLE 5
3D Isotropic Analytical Functions results. Our WMM algorithm achieves state-of-the-art results, whereas the SR-WMM obtains the best

performance. Experiment configuration: h = ∆x = ∆y = ∆z = 1., −25 ≤ x, y, z ≤ 25, grid size = 51× 51× 51.

T6 T7 T8 T9 T10
L1 L∞ L1 L∞ L1 L∞ L1 L∞ L1 L∞

MS1 [30] 0.20 0.37 0.82 4.93 0.98 5.90 0.57 1.78 0.23 1.49
MS2 [30] 0.39 0.48 0.02 0.16 0.03 0.14 0.39 0.91 0.02 0.04
MSc [30] 0.04 0.23 0.02 0.05 0.01 0.05 0.13 0.59 0.01 0.05
WMMgr 0.03 0.06 0.01 0.03 5e-3 0.03 0.07 0.27 6e-3 0.01
WMMhl 0.04 0.24 1.00 5.11 0.57 2.67 0.47 1.24 0.29 0.54
WMMgs 0.04 0.06 4e-3 0.21 0.01 0.33 0.06 0.45 6e-3 0.03

SR-WMM1
gr 0.01 0.06 6e-3 0.04 0.01 0.03 0.04 0.26 2e-3 0.03

SR-WMM1
hl 0.07 0.33 0.24 1.30 0.18 0.58 0.14 0.58 0.09 0.21

SR-WMM1
gs 0.01 0.04 4e-3 0.03 5e-3 0.01 0.04 0.28 1e-3 6e-3

SR-WMM2
gr 2e-3 0.07 5e-3 0.03 9e-3 0.03 0.02 0.15 7e-4 0.01

SR-WMM2
hl 0.07 0.17 0.12 0.72 0.12 0.48 0.09 0.31 0.04 0.12

SR-WMM2
gs 3e-3 0.01 4e-3 0.02 4e-3 0.02 0.03 0.13 6e-4 6e-3
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TABLE 6
T2 error when rotating the grid axis. Experiment configuration: h = ∆x = ∆y = 0.5, −25 ≤ x, y ≤ 25, grid size = 101× 101.

0◦ 21◦ 39◦ 57◦ 75◦

L1 L∞ L1 L∞ L1 L∞ L1 L∞ L1 L∞

WMMgr 0.003 0.007 0.014 0.026 0.006 0.014 0.007 0.015 0.014 0.026
WMMhl 0.269 1.401 0.290 2.379 0.286 2.279 0.288 0.260 0.276 1.957
WMMgs 0.002 0.005 0.008 0.019 0.003 0.011 0.005 0.014 0.010 0.026

SR-WMM3
gr 0.002 0.004 0.015 0.023 0.008 0.014 0.011 0.016 0.007 0.025

SR-WMM3
hl 0.046 0.313 0.047 0.231 0.034 0.157 0.036 0.139 0.041 0.260

SR-WMM3
gs 7e-4 0.004 0.012 0.020 0.007 0.011 0.009 0.015 0.006 0.027

SR-WMM5
gr 0.002 0.005 0.015 0.023 0.008 0.014 0.008 0.012 0.007 0.018

SR-WMM5
hl 0.022 0.150 0.029 0.097 0.016 0.058 0.020 0.077 0.021 0.109

SR-WMM5
gs 6e-4 0.005 0.012 0.020 0.004 0.008 0.009 0.015 0.008 0.013

TABLE 7
T7 error when rotating the grid axis. Only the best approach is shown. Experiment configuration: h = ∆x = ∆y = ∆z = .5,

−12.5 ≤ x, y, z ≤ 12.5, grid size = 51× 51× 51.

γ
β 0◦ 21◦ 39◦ 57◦ 75◦

L1 L∞ L1 L∞ L1 L∞ L1 L∞ L1 L∞

0◦ 0.01 0.03 0.01 0.03 0.01 0.04 0.01 0.03 0.01 0.04
21◦ 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.04
39◦ 0.01 0.03 0.01 0.04 0.01 0.04 0.01 0.04 0.01 0.05
57◦ 0.01 0.04 0.01 0.04 0.01 0.05 0.01 0.05 0.01 0.04
75◦ 0.01 0.05 0.01 0.06 0.01 0.05 0.01 0.05 0.01 0.04

TABLE 8
T1 and T6 error when using an anisotropic grid. T1 experiment configuration: h = (∆x,∆y) = (0.1, 0.2), grid size = 101× 101, initial point

= (51, 51). T6 experiment configuration: h = (∆x,∆y,∆z) = (0.1, 0.1, 0.2), grid size = 41× 41× 41, initial point = (21, 21, 21).

T1 T6
L1 L2 L∞ L1 L2 L∞

FMM1 [31] 0.093769 0.106988 0.177274 0.693620 0.626133 1.610443
FMM2 [31] 0.043759 0.049431 0.083285 0.589116 0.451326 1.374615
MS1 [31] 0.046374 0.059139 0.133076 0.101452 0.012583 0.296870
MS2 [31] 0.017541 0.022933 0.052733 0.024059 0.001020 0.177943
WMMgr 0.004060 0.000034 0.016622 0.003665 0.000030 0.020650
WMMhl 0.004310 0.000040 0.014713 0.005189 0.000046 0.025917
WMMgs 0.004670 0.000034 0.015035 0.003390 0.000023 0.014292

SR-WMM3
gr 0.000142 9.08e−8 0.001146 0.001776 0.000008 0.019174

SR-WMM3
hl 0.000107 5.27e−8 0.000884 0.006164 0.000080 0.041198

SR-WMM3
gs 0.000112 3.71e−8 0.000753 0.001508 0.000003 0.007948

SR-WMM5
gr 0.000093 5.17e−8 0.001166 0.001277 0.000004 0.015363

SR-WMM5
hl 0.000038 5.34e−9 0.000301 0.006747 0.000074 0.032045

SR-WMM5
gs 0.000021 1.58e−9 0.000199 0.000535 5e-7 0.005434

that end, we will propose two anisotropic problems we aim to
solve.

The difference between the isotropic and the anisotropic prob-
lem is that the direction of the propagation affects the computation.
Thus, instead of f(∇U), we will have a function f(∇U, a), where
a is a unit vector pointing into the direction of the propagation.

4.2.1 Static Hamilton-Jacobi Equations

As in [6], we prove the causality of our algorithm by computing
the expansion of the ellipse, viewing it as an optimal-trajectory
problem, which minimal action surface u(x) is obtained by
solving the static Hamilton-Jacobi-Bellman equation

min
a∈S1

{(∇u(x)· a)f(x, a)}+ 1 = 0, x ∈ Ω, (21)

where the speed function in the direction a is given by

f(a, x, y) =
√

1 + (c1a1 + c2a2)2. (22)

Translated to our nomenclature, it is equivalent to solve an
anisotropic problem by using

f(∇U, Sp, pn) =
1√

1 + (∇UpN · nt)2
, (23)

where nt = pn−pt
‖pn−pt‖ . As we can see in Fig. 9, the ellipse

expansion computed (using c = [1, 1] in the first row and
c = [

√
2, 0]) obtains the same results both in the OUM (Ordered

Upwind Methods) [6] and the WMM, meaning that our system
can also operate independently of the grid orientation.

Furthermore, we decided to compare our method using classic
optimal-trajectory problems. First, we use the min-time optimal-
trajectory equation (Eq. 25). We consider the surface U =
0.9 sin(2πx) sin(2πy), computing the geodesic distance from the
origin. The anisotropy coefficient for this problem is Υ ≈ 6. We
used the OUM method over a 385 × 385 mesh to be the true
solution, since no analytical solution is available.

In Table 9, we can see the results obtained. WMM is able
to obtain better results. As said above,the complexity of our
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(a) (b)

Fig. 9. Ellipse expansion over different angles. (a) OUM. (b) WMM.

algorithm is lower than the OUM one, thus its consumption
of resources is always better. However, we also measured the
time required to perform the computation. In order to make a
fair comparison, we have not used any parallelization technique
(although our algorithm is able to do that). Even so, our algorithm
is much faster than OUM: our most expensive solution, using the
golden search approximation and 5 inner points, matches the OUM
cheapest solution.. Note that WMM error do not always decrease
when increasing the grid size. We think this effect is caused by
both the gradient or modified Hopf-Lax searching techniques we
have developed, but this effect do not affect the causality of our
approach. As the golden search approach is the most stable and
accurate technique, it demonstrates how the accuracy decreases as
we reduce the grid size.

In order to test the influence of the number of intermediate
points, another experiment is proposed. We use the example of the
first arrival travel times computation with applications to seismic
imaging. Having pN = (y, x), we have four layer shapes defined
by the function

C(x) = A sin(
mπx

a
+ β), (24)

where A, m, a and β are constants defined over each layer. We
use the anisotropic function

f(∇U, Sp, pn) =
F2√

1 + (∇UpN · nt)2
, (25)

to model the speed function, where the parameters are

∇UpN =

√(
F2

F1

)2

− 1√
1 +

(
∂C

∂x
(x)

)2

∂C∂x (x)

−1

 , (26)

and F1 and F2 are constants in each layer. In Fig. 10 we show
the equi-arrival curves obtained on a 385 × 385 mesh using the
following values:

a = 0.5, A = 0.1225, m = 2, β = 0, (27)

with layer offsets bi = (−0.25, 0, 0.25), the constants F1 =
(0.2, 1, 1, 0.2) and F2 = (0.8, 3, 1, 0.8). The global anisotropy

coefficient is Υ = 15. Thus, we decided to use 15 intermediate
points in a 385 × 385 mesh to be the true solution, and analysed
the performance of our method as the mesh size and number of
coefficients are decreased. Fig. 10 shows the obtained results for
this test. It is showed that no significant improvement is achieved
by using more than 3 intermediate points.

4.2.2 Riemannian Metrics
We also tested our algorithm when using Riemannian Metrics. In
this case, the tentative score defined Eq. 7 is changed to

USp
pn = min

pt∈PSp

USp
pt + ‖pn − pt‖Mpn

=

USp
pt +

√
(pn − pt)T Mpn (pn − pt), (28)

where Mpn is a Riemannian tensor. Two different experiments
are provided.

4.3 Tubular segmentation
Following [12], [23], we define the curve Γ(t) =
t (cos(w0t), sin(w0t)), t ∈ [0, 1] over a grid [−1, 1]× [−1, 1].
We set Mpn = I for all grid points, except those where their
distance against the curve is lower than r0. In that case,

Mpn = PDP−1, D =

[
δ2
0 0
0 1

]
, P =

[
Γy(t) −Γx(t)
Γx(t) Γy(t)

]
,

(29)
where δ0 is a constant variable, Γy(t) = cos(w0t)− t sin(w0t)
and Γx(t) = sin(w0t) + t cos(w0t). The test parameters are
w0 = 6π and r0 = δ0 = 0.01.

First of all, we tested our algorithm when the spiral thick is
just one pixel. To that end, we used a 151× 151 grid to compute
the result. Fig. 11 shows that, despite the WMM algorithm losses
accuracy after a couple of spins, the addition of virtual nodes
in the SR-WMM algorithm is able to improve the result by a
large margin. Furthermore, Fig. 12 shows that, despite using low
resolution grids, the minimal path between the beginning and the
end of the spiral (obtained by, starting at the end point, following
the maximum gradient descent direction), follows its contour all
way down.

4.4 Invariance with respect to the Axis Rotation
Following the experiment provided in [23], we also tested how
the axis rotation affects the result on a parametric surface of
height map z(pn) = 3

4 sin(3πy) cos(3πx), where pn = (y, x).
In this case, the Riemannian metric is defined as Mpn =
I + ∇z(pn)∇z(pn)T . Since there is no true solution to this
equation, we provide the result of a 4089 × 4089 grid to be the
true result (see Fig. 13), while testing how the rotation affects the
result over a 292× 292 grid. Fig. 14 shows how the axis rotation
affects both L1 and L∞ errors. The Hopf-Lax variant is proven
to behave slightly unstable. However, every golden search variant
is very stable against the axis rotation. Note also the errors are
indeed very low, in the same way all previous experiments have
demonstrated.

5 CONCLUSIONS

In this work we have presented a new method, named Wavefront
Marching Method (WMM), to deal with the task of solving an
optimal-trajectory problem through directional forces. Our main
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TABLE 9
Error estimation on the surface U = 0.9 sin(2πx) sin(2πy), produced on refined meshes taking the corresponding method on a 3852 mesh to be

the true solution.

method
size 252 492 972 1932

L1 L∞ Time(s) L1 L∞ Time(s) L1 L∞ Time(s) L1 L∞ Time(s)
OUMgr 0.111 0.425 0.09 0.082 0.320 0.34 0.047 0.183 1.30 0.014 0.047 4.58
OUMhl 0.109 0.425 0.13 0.082 0.320 0.33 0.050 0.185 1.35 0.020 0.051 4.91
OUMgs 0.108 0.425 0.36 0.084 0.32 1.21 0.050 0.187 4.85 0.015 0.055 19.22

WMMgr 0.037 0.153 3e− 3 0.013 0.047 4e− 3 0.021 0.051 0.02 0.026 0.069 0.08
WMMhl 0.053 0.231 4e− 3 0.043 0.147 5e− 3 0.036 0.123 0.02 0.038 0.121 0.09
WMMgs 0.050 0.232 8e− 3 0.017 0.096 0.02 0.004 0.022 0.07 0.005 0.018 0.29

SR-WMM3
gr 0.038 0.142 9e− 3 0.019 0.051 0.02 0.024 0.063 0.08 0.027 0.071 0.57

SR-WMM3
hl 0.055 0.246 0.01 0.020 0.095 0.03 0.009 0.027 0.15 0.012 0.028 0.78

SR-WMM3
gs 0.055 0.253 0.05 0.021 0.103 0.18 0.004 0.025 0.70 0.004 0.019 3.34

SR-WMM5
gr 0.038 0.139 0.01 0.018 0.051 0.03 0.024 0.063 0.17 0.026 0.070 0.69

SR-WMM5
hl 0.055 0.248 0.02 0.019 0.051 0.07 0.006 0.023 0.32 0.008 0.020 1.39

SR-WMM5
gs 0.056 0.252 0.09 0.021 0.103 0.33 0.004 0.025 1.20 0.004 0.018 4.86

L∞ Error 252 492 972 1932

WMM 0.197 0.118 0.057 0.028
SR-WMM3 0.173 0.082 0.037 0.013
SR-WMM5 0.203 0.087 0.033 0.012

SR-WMM15 0.208 0.086 0.038 0.014
L1 Error 252 492 972 1932

WMM 0.041 0.018 0.008 0.002
SR-WMM3 0.038 0.015 0.007 0.002
SR-WMM5 0.039 0.015 0.007 0.002

SR-WMM15 0.040 0.015 0.007 0.002

Fig. 10. Error estimation on a seismic image, using a different number of intermediate points. A 3852 mesh is used as the true solution, computed
in the square [−0.5, 0.5]× [−0.5, 0.5]. Using a number n ≈ 3 we obtained similar results as when using higher values.

Fig. 11. Tubular segmentation surface over a 151× 151 grid. Although the WMM algorithm losses the spiral after a couple of spins, the SR-WMM
algorithm can successfully cope with it.

Fig. 12. Tubular segmentation surface when using different grid resolutions. Even when using small grids, our proposal is able to obtain the right
answer when computing the minimal path between the spiral borders.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Fig. 13. True solution of the Riemannian metric defined asMpn = I +∇z(pn)∇z(pn)T , where z(pn) = z(y, x) = 3
4

sin(3πy) cos(3πx). On the
left, the solution without axis rotation. On the right, the axis is rotated bt π

6
radians.

Fig. 14. L1 and L∞ errors when rotating the grid axis between 0 and π
4

radians on a parametric surface of height map z(pn) =
3
4

sin(3πy) cos(3πx). Although the WMMhl algorithm is unstable, the other variants can maintain a stable error under every angle.

idea is to propagate the solution over ‘mini wavefront sections’,
instead of computing it over the nodes so as to reduce computa-
tional complexity. The front-propagation procedure only updates
the solution over the direct neighbours, reducing the computational
time to O(ΨM logM) in the average case, being Ψ the number
of intermediate nodes that are used to perform the interpolation
technique in the wavefront sections. Experimental results show
our method works faster and is more accurate than the state of the
art. We also have shown that WMM performs better using no more
than 3 intermediate nodes, reducing the complexity algorithm to
O(M logM). This kind of techniques have many applications
in computer vision domains, from which the state of the art
techniques used in our comparison study are taken. As shown, our
proposal obtains better results with less computational complexity.
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APPENDIX A
INTERPOLATION TECHNIQUES

Below we will show a detailed description about how to compute
the interpolation coefficients for each technique.

A.1 2D interpolation

Since we are using a regular grid, we have four different segments
with 3 values each, as exposed in Fig 5. Thus, 4 different
interpolation segments are defined. Four different interpolation
techniques were developed to compute Upt . The computation of
the ∇U(pt) value is analogous.

Linear Interpolation: Suppose we have one segment of a
wavefront section Sp, defined by the center node p and a border
node pR. USp

pt value computation is defined as

USp
pt = (1− t) Up + t UpR , (30)

independently of whether we are dealing or not with a corner
wavefront.

Polynomial Interpolation: U
Sp
pt value computation value is

defined as

USp
pt = aSp t2 + bSp t + cSp , (31)

where aSp
pt , bSp

pt and c
Sp
pt are the polynomial coefficients. If the

wavefront is a corner,

aSp =
UpT + Up − 2UpR

2
,

bSp = UpR − aSp − Up, (32)

cSp
= Up

where pT = 2pR − p. Note that this node point does not
belong to the wavefront section, but it is required to perform the
interpolation. On the contrary, if the wavefront is not a corner,

aSp =
UpU + UpR − 2Up

2
,

bSp = Up − UpU + aSp , (33)

cSp
= Up,

where pU = 2p− pR. It is worth mentioning that, when creating
the wavefront section Sp by propagation from any other wavefront
section SpS , we do not need to perform extra computations for
either pT and pU nodes, as these points are also neighbours of
the wavefront center node pS , so UpT and thus UpU have to be
computed before the wavefront creation, in order to know if our
solution needs to be propagated through these points. If any of
these nodes fits outside the node grid, then we extend the grid
size, filling these values by mirroring.

Natural Spline Interpolation: A cubic approximation can be
achieved using piecewise interpolation. To do so, we propose
to use a natural spline. Unfortunately, the problem of the spline
interpolation is that monotonicity is not preserved, causing the
interpolation to have lower values than its endpoints. Negative
values can also be achieved. Thus, we have to check if the result
is higher than any of its endpoints. If not, linear interpolation is

used to compute the Upt value. Formally, USp
pt value computation

value is defined as

USp
pt = Up + t

(
− bSp

6
− aSp

3
+ UpR − Up +

t

(
aSp

2
+ t

(
bSp − aSp

6

)))
, (34)

where

aSp = 0,

bSp =
3

2
(Up − 2 UpR + UpT ), (35)

if we are dealing with a wavefront corner section, and alternatively

aSp =
3

2
(UpU − 2 Up + UpR),

bSp = 0 (36)

if not.

Hermite Spline Interpolation: Also another cubic approxima-
tion, its value can be computed as

USp
pt = (2 t3 − 3t2 + 1) Up + (t3 − 2 t2 + t) aSp+

(−2 t3 + 3 t2) UpR + (t3 − t2) bSp , (37)

where

aSp = UpR − Up,

bSp =
UpT − Up

2
, (38)

if we are dealing with a wavefront corner section, and

aSp =
UpR − UpU

2
,

bSp = UpR − UpU (39)

if not.

Monotone Piecewise Cubic Hermite Interpolation (PCHIP):
As mentioned before, monotonicity is not preserved using spline
interpolation. A different way to solve this issue is the use of a
Monotone Piecewise Cubic Hermite Interpolation [32]. The model
is similar to the classic Cubic Hermite Interpolation. USp

pt is also
computed by using Eq. 37. It only differs in how aSp and bSp

coefficients are computed. If we are dealing with a wavefront
corner section

aSp =


0 if

3 ∆0 −∆1

2
∆0 ≤ 0

3 ∆0 if ∆1 ∆0 ≤ 0 and
∣∣∣3 ∆0 −∆1

2

∣∣∣ > ∣∣∣3 ∆0

∣∣∣
3 ∆0 −∆1

2
otherwise

(40)

bSp =

0 if ∆0 ∆1 ≤ 0
2 ∆0 ∆1

∆0 + ∆1
otherwise

(41)
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where ∆0 = UpR − Up and ∆1 = UpT − UpR . If the wavefront
is not a corner,

aSp =

0 if ∆′0 ∆′1 ≤ 0
2 ∆′0 ∆′1
∆′0 + ∆′1

otherwise

bSp =


0 if

3 ∆′1 −∆′0
2

∆′1 ≤ 0

3 ∆′1 if ∆′1 ∆′0 ≤ 0 and
∣∣∣3 ∆′1 −∆′0

2

∣∣∣ > ∣∣∣3 ∆′1

∣∣∣
3 ∆′1 −∆′0

2
otherwise

(42)

(43)

where ∆′0 = Up − UpU and ∆′1 = UpR − Up.

A.2 3D interpolation

Five different interpolation techniques were developed to compute
Uptr . Again, ∇U(ptr) value computation is analogue.

Bilinear Interpolation: Suppose we have one segment of a
wavefront section Sp′ , defined by the center node p and three
border nodes (pT and pR on its laterals, and pTR on its diagonal),
that was created by starting from another wavefront section Sp.
U
Sp
ptr value computation is defined as

USp
ptr = (1− t) (1− r) Up + t (1− r) UpT +

(1− t) r UpR + t r UpTR
. (44)

9-point Polynomial Interpolation: A little bit more complex
than the previous one, USp

ptr value computation is defined as

USp
ptr = aSp t2 + bSp t + cSp r2 + dSp r + eSp t2 r2 +

fSp t2 r + gSp t r2 + hSp t r + iSp . (45)

All coefficients are defined as

aSp =
Up′T − (1−∆T ) Up −∆T UpT

∆T (1−∆T )
,

bSp = UpT − aSp − Up,

cSp
=
Up′R − (1−∆R) Up −∆R UpR

∆R (1−∆R)
,

dSp
= UpR − cSp − Up,

eSp =
∆T∆R U1 −∆R U2 −∆T U3 + U4

∆T∆R (1−∆R −∆T + ∆T∆R)
, (46)

fSp =
∆T U3 − U4 − (∆T∆2

R (1−∆T )) eSp

∆T∆R (1−∆T )
,

gSp =
∆R U2 − U4 − (∆2

T∆R (1−∆R)) eSp

∆T∆R (1−∆R)
,

hSp =
U4 −∆2

T∆2
R eSp −∆T∆2

R gSp −∆2
T∆R fSp

∆T∆R
,

iSp = Up

where

p′T =

{
2pT − p if 2pT − p is neighbour of p′

2p− pT otherwise

p′R =

{
2pR − p if 2pR − p is neighbour of p′

2p− pR otherwise

∆T =

{
2 if 2pT − p is neighbour of p′

−1 otherwise

∆R =

{
2 if 2pR − p is neighbour of p′

−1 otherwise
(47)

U1 = UpTR
− Up − aSp − bSp − cSp − dSp ,

U2 = UpR+(∆T ,0) − Up −∆2
T a

Sp −∆T b
Sp − cSp − dSp ,

U3 = UpT +(0,∆R) − Up − aSp − bSp −∆2
R c

Sp −∆R d
Sp ,

U4 = Up+(∆T ,∆R) − Up −∆2
T a

Sp −∆T b
Sp −∆2

R c
Sp−

∆R d
Sp

Natural Spline, Hermite Spline and PCHIP: 2 consecutive
1D spline interpolations are used to perform a bicubic spline
interpolation. That is,

USp
ptr = spline(x = [0, 1,∆R], y = [U1, U2, U3])(t), (48)

where

U1 = spline(x = [0, 1,∆T ], y = [Up, UpT , Up+(∆T ,0)])(t),

U2 = spline(x = [0, 1,∆T ], y = [UpR , UpTR
, UpR+(∆T ,0)])(t),

U3 = spline(x = [0, 1,∆T ],

y = [Up+(0,∆R), UpT +(0,∆R), Up+(∆T ,∆R)])(t)

The spline 1D coefficients are computed as shown in the
2D interpolation section. In order to improve the accuracy, and
also to keep consistency in the results, we perform a two-pass
approximation: creating the first spline by using t and then using
r to compute USp

ptr (as shown in Eq. 48), and back. Thus, the
tentative value USp

ptr will be given as the mean between these two
scores.

APPENDIX B
CARTESIAN VS POLAR INTERPOLATION

As Eqs. 8 and 9 show, the tentative score in the Eikonal equation
requires to compute the gradient norm. Thus, in order to achieve
a good accuracy, it is mandatory to have a good gradient norm
interpolation. As exposed in section 2.2.2.1, the use of the polar
coordinates (or spherical in 3D) helps us with this matter. Besides
the theoretical motivation, we also wanted to show that using
Cartesian coordinates will result in a significant performance drop.
To that end, we create a vanilla experiment by replicating the
one presented in Table 4, employing both Polar and Cartesian
coordinates, but only using the linear interpolation (same results
are achieved with other interpolation techniques). Table 10 shows
how the Polar coordinates achieve the best accuracy in every
configuration. On those cases where the solution is similar we
can confirm almost all tentative scores choose t ∈ {0, 1}, making
the interpolation approach unnecessary.
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TABLE 10
2D Isotropic Analytical Functions results when using polar or cartesian approach for interpolation. Polar approach achieves the best scores

amongst all different configurations.

Interpolation T1 T2 T3 T4 T5
L1 L∞ L1 L∞ L1 L∞ L1 L∞ L1 L∞

WMMgr

Polar
0.021 0.047 0.010 0.028 0.007 0.012 0.048 0.166 0.009 0.027

WMMhl 0.016 0.036 1.126 5.594 0.496 2.403 0.145 0.449 0.170 0.756
WMMgs 0.019 0.037 0.007 0.021 0.002 0.009 0.106 0.295 0.010 0.026
WMMgr

Cartesian
0.130 0.281 0.291 0.588 0.090 0.180 0.048 0.166 0.070 0.199

WMMhl 0.116 0.273 1.269 5.647 0.551 2.492 0.144 0.449 0.223 0.848
WMMgs 0.118 0.276 0.276 0.576 0.085 0.168 0.106 0.295 0.061 0.196

TABLE 11
2D Isotropic Analytical Functions results. Our WMM algorithm achieves state-of-the-art results, whereas the SR-WMM obtains a better

performance. Experiment configuration: h = ∆x = ∆y = 1., −50 ≤ x, y ≤ 50, grid size = 101× 101.

T1 T2 T3 T4 T5
L1 L∞ L1 L∞ L1 L∞ L1 L∞ L1 L∞

FMM3
1 [30] 0.324 0.561 2.107 4.999 0.838 1.985 0.298 0.911 0.290 0.687

FMM3
2 [30] 0.081 0.123 1.034 3.681 0.430 1.657 0.390 1.062 0.210 0.502

MSFM3
1 [30] 0.135 0.270 2.107 4.999 0.838 1.985 0.381 1.332 0.300 0.598

MSFM3
1 [30] 0.060 0.116 0.836 2.466 0.331 0.972 1.303 2.811 0.336 0.800

FMM5
1 [30] 0.217 0.372 1.762 4.490 0.701 1.783 0.267 0.840 0.260 0.668

FMM5
2 [30] 0.048 0.069 1.096 3.307 0.446 1.488 0.274 0.853 0.227 0.461

MSFM5
1 [30] 0.092 0.185 1.762 4.490 0.701 1.783 0.303 1.053 0.277 0.609

MSFM5
1 [30] 0.035 0.058 0.993 2.967 0.394 1.176 0.787 1.937 0.295 0.685

SR-WMM3
gr 3e-4 8e-4 0.009 0.017 0.003 0.013 0.023 0.074 0.001 0.008

SR-WMM3
hl 5e-4 0.002 0.194 1.255 0.081 0.522 0.018 0.070 0.031 0.141

SR-WMM3
gs 3e-4 0.001 0.004 0.003 0.017 0.002 0.030 0.093 0.001 0.004

SR-WMM5
gr 2e-4 5e-4 0.008 0.018 0.002 0.009 0.015 0.058 7e-4 0.004

SR-WMM5
hl 2e-4 7e-4 0.089 0.594 0.036 0.243 0.015 0.050 0.014 0.090

SR-WMM5
gs 6e-5 7e-4 0.002 0.018 0.002 0.008 0.019 0.063 8e-4 0.004

APPENDIX C
ABOUT SUPER RESOLUTION

In this paper we tested our super-resolution algorithm (SR-WMM)
against the classic fast marching techniques, as we wanted to test
our methodology against techniques that have similar complexity.
However, it is not possible to create a similar super-resolution
technique by using classic Fast Marching Method approaches,
as they need a structured mesh to perform that computations.
Nevertheless, we can create a naive approximation by resizing
the initial grid, and interpolating the gradient in the inner nodes.
Note that the computational cost of this approach is way higher
than our proposed SR-WMM algorithm: if we imagine a grid with
only four nodes, creating a rectangle, our algorithm only creates
virtual nodes over the edges, while the naive approach above
computes virtual nodes over the whole surface. Furthermore, while
our virtual nodes are invisible for Algorithm 1, they have to be
taken into account in the vanilla version. Thus, being M the grid
size, and γ the number of inner nodes, the complexity of these
vanilla approaches scales up to O(γM log γM), while our SR-
WMM algorithm complexity remains at O(M logM).

Thus, we created a vanilla experiment by replicating the one
presented in Table 4, using a super-resolution grid for the FMM
and MSFM algorithms. Table 11 shows the results obtained, sug-
gesting that, although FMM and MSFM can increase its accuracy,
the margin is not high enough to compete with our proposed
algorithm.

Fig. 15. Galicia’s main roads (red: highways; blue: main routes; black:
local routes). The red pin sets the initial points, whereas the black pins
show five different destinations.

APPENDIX D
AN APPLICATION TO PATH PLANNING

Finally, we aimed at testing our algorithm against a real problem:
path planning. The objective is to obtain the fastest route from any
given initial point to a destination point. To do so, we have selected
six different cities from Galicia, a small region in the north-west
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TABLE 12
Path planning results. Our proposed WMMgs algorithm achieves the best result for all image sizes tested.

image size (3000, 3000) (1500, 1500) (1000, 1000) (750, 750)
error (km) L1 L∞ L1 L∞ L1 L∞ L1 L∞

FMM1 [30] 4.207 5.185 8.356 12.472 51.457 121.258 64.314 133.243
FMM2 [30] 2.038 3.437 6.667 9.232 51.005 120.494 64.184 132.982

MSFM1 [30] 1.599 2.222 2.910 3.730 4.418 5.821 5.162 7.447
MSFM1 [30] 0.729 1.005 1.968 3.157 3.890 5.266 5.428 7.367

WMMhl 2.408 3.130 2.892 3.771 4.140 4.817 3.444 5.003
WMMgs 0.581 1.096 0.672 1.419 1.950 3.353 1.666 3.396

of Spain, creating a map containing all routes (see Fig. 15. As the
main purpose is to obtain the fastest route, the speed function f
will be defined in terms of speed and distance:

ftime(x) =
distance

speed
=


α/120 for highways
α/80 for main roads
α/50 for local roads,

(49)

where α are the distance between grid nodes (in kilometers)
Thus, as the f function uses both distance and speed, the value

obtained in Utime is time, that is, the time needed to go from
the initial to any of the possible destination points. Unfortunately,
time is not an exact measure that can be used to compare the
performance of our algorithms. For that reason, in a similar way
as presented in [33], we simultaneously propagate the solution
over two different functions: ftime to compute the arrival time,
and

fdistance(x) = α (50)

to compute the arrival distance, that is, the exact distance (in
kilometers) between the initial position to any other node in the
map. This simultaneous propagation is done by using a master-
slave approach: ftime is used to seek for the correct propagation
of motion, whereas fdistance is propagated only by the direction
provided by ftime. In our WMM algorithm, this means that both
Utime and Udistance solutions are propagated by using the same
pt value, and this value is chosen by performing a tentative value
computation over Utime.

Therefore, as the distances between the initial city and the rest
of destination cities are well-known and can be exactly computed,
in Table 12 we compared both our WMM algorithms against the
classic FMM and MSFM algorithms, using four different image
sizes. The results obtained show that our algorithm obtains the
best results, independently of the image size.




