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Abstract

Feature selection is nowadays an extremely important data mining stage in the field
of machine learning due to the appearance of problems of high dimensionality. In the
literature there are numerous feature selection methods, mRMR (minimum-Redundancy-
Maximum-Relevance) being one of the most widely used. However, although it achieves
good results in selecting relevant features, it is impractical for datasets with thousands of
features. A possible solution to this limitation is the use of the fast-mRMR method, a greedy
optimization of the mRMR algorithm that improves both scalability and efficiency. In this
work we present fast-mRMR-MPI, a novel hybrid parallel implementation that uses MPI and
OpenMP to accelerate feature selection on distributed-memory clusters. Our performance
evaluation on two different systems using five representative input datasets shows that fast-
mRMR-MPI is significantly faster than fast-mRMR while providing the same results. As an
example, our tool needs less than one minute to select 200 features of a dataset with more
than four million features and 16,000 samples on a cluster with 32 nodes (768 cores in total),
while the sequential fast-mRMR required more than eight hours. Moreover, fast-mRMR-
MPI distributes data so that it is able to exploit the memory available on different nodes of
a cluster and then complete analyses that fail on a single node due to memory constraints.
Our tool is publicly available at https://github.com/borjaf696/Fast-mRMR.

Keywords: Machine Learning, Feature Selection, High Performance Computing, Parallel
Computing

1. Introduction

Over the last few years we have witnessed an explosion in the size of datasets related
to different fields such as biology, physics, mathematics, or engineering, to name just a few.
This increasing growth has not only occurred in the number of patterns or samples, but also
regarding the number of features. If a feature can be understood as an individual property
of a phenomenon which can be measurable and observed, it is reasonable to think that
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having more features could give us better results. However, this is not the case because of
the “curse of dimensionality”, a term that was coined by Richard Bellman back in 1957 to
describe the difficulty of optimization by exhaustive enumeration on product spaces [2]. This
colorful term refers to the different phenomena that appear when analyzing high-dimensional
datasets (with thousands of features) that do not occur in low-dimensional settings.

If we assume that datasets are usually represented by matrices in which the rows are
the patterns (or samples) and the columns are the features, a possible solution to the afore-
mentioned problem is to find “narrower” matrices which do not incur a significant loss of
information through data mining. This process is known as dimensionality reduction and
one of the most popular representative methods is called Feature Selection (FS). FS can be
defined as the process of selecting the relevant features and discarding the irrelevant ones,
without incurring a degradation of performance [4, 11]. Moreover, FS has also the advan-
tage of its explainability, since it maintains the meaning of the original features, in contrast
to feature extraction methods which perform a transformation of the original features to
reduce the dimensionality of the problem. However, with the advent of Big Data, and the
appearance of datasets with thousands or millions of features, existing state-of-the-art FS
methods have become inapplicable, and it has been necessary to accelerate them.

Acceleration of FS algorithms to be able to explore large datasets within a reasonable
time has been addressed in some previous works. On the one hand, the acceleration can come
from reducing the complexity of the algorithm itself. One example is the acceleration of the
popular method minimum-Redundancy-Maximum-Relevance (mRMR) [20] which, although
widely used, suffers from high complexity when dealing with a large number of features.
A greedy variation, called fast-mRMR [22], was recently proposed to reduce runtime by
assessing the redundancy of the candidate features to only those already selected, instead of
the whole dataset. Another greedy optimization consists in the simplification of the score
metric calculated for each feature [23]. Approaches such as memetic frameworks [29] or
particle swarm optimization [8] have also been applied to reduce the number of features to
explore during FS.

On the other hand, efficient exploitation of High Performance Computing (HPC) hard-
ware resources can also be employed to accelerate applications without reducing the overall
computational requirements of the algorithms. For instance, the popular WEKA toolkit [13]
already includes multithreaded support for some FS algorithms in order to exploit the sev-
eral cores available in current processors. The adequacy of parallel computing to accelerate
some WEKA FS algorithms has been addressed in [6], analyzing the use of multiple threads
on a multicore system as well as Spark instances on the cloud. FS on cloud-based systems
using MapReduce has been extensively studied, including implementations of ReliefF [28],
evolutionary algorithms [21] or positive approximation [14]. Another popular platform is
the GPU, with a relatively low price and good energy efficiency. For instance, GPU im-
plementations of FS algorithms exist using a non-parametric evaluation criterion [1] or the
delta test [10].

In this work, we present fast-mRMR-MPI, a novel parallelization of fast-mRMR that
exploits the hardware resources of modern distributed-memory systems to accelerate FS. It is
implemented with a hybrid approach that uses MPI [26] to work on different nodes connected
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through a network, with multiple OpenMP [19] threads to exploit several cores within the
same node. Our goal is to gather in the same implementation the performance advantages
of greedy optimizations and parallel computing. This idea is already present in [22], with
parallel versions of fast-mRMR for GPUs and cloud systems (based on Spark). However,
with the popularization of HPC and Big Data, many scientists have access to powerful
computational resources such as distributed-memory clusters. These systems are installed
in institutes or supercomputing centers and are available to researchers through remote
connection. Thus, scientists can have easy access to several multicore nodes connected
through a low-latency and high bandwidth network, and they require applications that scale
with a large number of nodes. Although the Spark implementation of fast-mRMR can be
used in such clusters, message-passing codes usually obtain better performance on them.
Therefore, our proposed fast-mRMR-MPI consists in a novel implementation of fast-mRMR
using MPI and OpenMP that significantly increases its speedup on clusters.

The idea of using message-passing to accelerate FS on multicore clusters has already
been addressed in previous works. Some examples are DWFS [24], with a parallel genetic
algorithm, as well as an MPI version of online FS [27]. Nevertheless, fast-mRMR-MPI
provides the following advantages over them:

• The FS filter used as base for our work (mRMR) is extremely popular and has been
proved highly accurate.

• The MPI implementation of the two previous works is based on a master-slave paradigm,
which usually limits the scalability to only tens of processes. Instead, fast-mRMR-MPI
employs a static and completely decentralized parallelization that, as will be shown in
Section 4.2, scales up to several hundreds of cores.

• fast-mRMR-MPI integrates multiple threads and processes with a hybrid MPI/OpenMP
implementation to efficiently exploit the computational capabilities of modern multi-
core clusters. This hybrid approach has shown good scalability in other fields such as
bioinformatics [9] or molecular dynamics [5].

• The code is publicly available at https://github.com/borjaf696/Fast-mRMR

The rest of the paper is organized as follows. Section 2 explains the background about
the FS algorithm and HPC technologies necessary to understand the implementation. Our
parallel implementation is described in Section 3. Section 4 provides the experimental eval-
uation in terms of runtime and scalability. Finally, concluding remarks and future work are
presented in Section 5.

2. Background

In this section we introduce some basic concepts associated to the FS method chosen to
be parallelized (fast-mRMR), as well as to the parallelization technologies employed in our
implementation (OpenMP and MPI).
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2.1. Feature selection

As mentioned in the Introduction, feature selection is a popular preprocessing technique
that allows us to reduce the dimensionality of the problem. A correct selection of the
features can lead to an improvement of the inductive learner, either in terms of learning
speed, generalization capacity or simplicity of the induced model.

FS methods are typically divided into three major approaches according to the relation-
ship between a FS algorithm and the inductive learning method used to infer a model [11]:
filters, which rely on general characteristics of the data and are independent of the induction
algorithm; wrappers, which use the prediction provided by a classifier to evaluate subsets of
features; and embedded methods, which perform FS in the process of training and are specific
to given learning machines.

Filters are probably the most popular approach for feature selection, because of their sim-
plicity but good results, the following being well-known representative methods: Correlation-
based Feature Selection (CFS), which selects features highly correlated with the class but
uncorrelated between them; ReliefF, which is based on the idea of nearest neighbors; Mu-
tual Information Minimization (MIM), which just selects those features with high mutual
information with the class; or mRMR, which is the focus of this work. Among embed-
ded methods, Recursive Feature Elimination for Support Vector Machines (SVM-RFE) is
a popular method which decides the relevant features according to the weights of an SVM
classifier, while LASSO and RIDGE are regularization methods that perform feature selec-
tion and classification at the same time. Finally, the most common approach for wrappers is
forward or backward selection, in combination with an induction method. It is worth men-
tioning the popular dimensionality reduction Principal Component Analysis (PCA), which
identifies a smaller number of uncorrelated variables known as principal components from
a larger set of data. Note, however, that PCA is a feature extraction method, since it
transforms the original features into a set of new ones. On the contrary, FS methods select
a subset of the original features. The interested reader can find more general information
about FS in the specialized literature [4, 12, 18, 25].

In this work we have focused on improving the performance of mRMR, which is a FS
method from the family of filters which returns an ordered ranking of all the features. It
will be further described in the next subsection.

2.2. minimum Redundancy Maximum Relevance

The mRMR method [20] is a popular filter for FS which in essence estimates the Mutual
Information (MI) to detect those features highly relevant to the class but not redundant
among them. It has been the focus of much attention by the research community. It was
originally developed to deal with DNA microarray data classification although, nowadays,
the method has also been applied to many other fields such as anomaly detection [3], human
activity recognition [16], or image classification [15].

However, mRMR can present computational problems when dealing with a high number
of features because of its complexity O(n2 ∗ m), where n is the number of features and m
is the number of samples. This high complexity is the result of an expensive calculation
process. It consists of calculating high and low MI in the form of relevance and redundancy,
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respectively. Equation 1 shows how to calculate the MI I between two variables A and B,
using the marginal probabilities p(a) and p(b), and the joint probability p(a, b).

I(A;B) =
B∑
b

A∑
a

p(a, b) ∗ log(
p(a, b)

(p(a) ∗ p(b))
(1)

Next, Equation 2 shows how to compute the mRMR value for a given feature A, where
C is the class and F is the complete set of features.

mRMR(A) = I(A;C) −
F−(A,C)∑

f

I(A, f) (2)

In the original implementation of the method, the high complexity comes from the fact
that the MI is calculated for each feature and class, and then between all feature pairs,
which requires an extremely long runtime when analyzing datasets with a large number of
features. In order to alleviate this issue, a modification of the original mRMR called fast-
mRMR was recently proposed [22], introducing multiple optimizations over mRMR. The
most important one is the explicit separation of the calculation of the high MI (relevance)
and low MI (redundancy), as follows:

• The relevance is only calculated once for each feature and saved in memory to be
reused. The score that determines the first feature selected is the relevance, while the
mRMR value is seen as the score for the next features.

• The redundancy is calculated only for those features which have already been selected,
instead of calculating the MI for every feature pair.

fast-mRMR is able to reduce the complexity from O(n2∗m) to O(m∗n), which results in
a high improvement in efficiency without affecting the effectiveness of the algorithm to select
the adequate features. We refer to [22] for more details about these algorithms. However,
the fast-mRMR implementation is still prohibitive when dealing with large datasets.

2.3. Parallel programming models

The target parallel architectures of this work are distributed-memory clusters that consist
of several nodes (each of them with several CPU cores and memory modules) interconnected
through a network. The basis of parallel computing on this kind of systems is to split
the workload into different tasks that are executed on multiple nodes. The most common
programming model for these systems is message-passing, where different processes (each
one with an associated local memory) are in charge of different tasks.

MPI [26] is a portable, efficient, and flexible standard interface for message-passing. It
allows programmers to not be concerned about the hardware architecture or the memory
system. All processes are connected and synchronized through a logical abstraction and
use messages to communicate among them. Nevertheless, programmers are in charge of
data distribution and communication, which means better optimization opportunities at
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the expense of hard programming work. We should remark that each process has its own
memory address space that cannot be directly accessed by other processes. MPI offers a
set of primitives to access remote data. Data communication among processes is one of the
main performance overheads in MPI programs, so programmers must try to minimize it by
placing on the local memory of each process the data required to complete its tasks.

In a pure MPI program each process is linked to one core, while in a hybrid approach
each process is usually mapped to one node and it has several associated threads launched
using OpenMP [19] (often the same number of threads as cores within the node). OpenMP
is a C/C++/Fortran API for platform-independent shared-memory parallel programming.
It provides a high-level abstraction layer over low-level multithreading primitives that are
portable to different compilers and hardware architectures, scalable over an arbitrary number
of CPU cores and flexible in terms of writing compact and expressive source code.

The basic philosophy of OpenMP is to augment sequential code by using compiler di-
rectives (called pragmas) to give hints to the compiler on how the code can be parallelized.
When a program starts its execution, only one master thread exists. Parallel sections or
parallel loops are defined with the corresponding pragma, and an arbitrary number of soft-
ware threads are spawned by the master thread. All threads share the resources of the
parent system process, i.e., they can access the same memory space. This is advantageous
since threads can be spawned with low latency and benefit from lightweight inter-thread
communication using shared registers and arrays. However, it can provoke race conditions,
i.e., situations where two or more threads access the same data simultaneously. As the
thread scheduling algorithm can swap between threads at any time, we do not know the
order in which the threads will attempt to access the shared data. Therefore, the result of
a data modification would depend on the thread scheduling algorithm. The programmer
must ensure that data modifications are performed in the correct order, either with mutexes
that serialize shared memory accesses or creating copies of the data for each thread (private
data).

3. Parallel implementation

fast-mRMR-MPI is a command line tool that receives as arguments some configuration
parameters such as the path to the input file, the number of wanted features or the number
of classes. An explanation of all the arguments, as well as installation and execution in-
structions, are included in the website of the tool. Note that fast-mRMR-MPI was designed
as a parallel version of fast-mRMR (it returns the same results) and thus requires the same
type of data as input:

• Data must be discrete in order to calculate the mRMR value as shown in Section 2.2.

• The input dataset must follow a binary format that helps to reduce the disk quota
requirements on the testbeds.

The website of the tool also includes programs to discretize data and convert it to the
binary format in the event that the input data format does not fulfill these conditions.
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3.1. MPI parallelization

As mentioned in Section 2.3, an MPI parallelization consists in splitting the computation
into several tasks that are assigned to different processes. Every time that a new feature must
be selected each process is in charge of calculating the mRMR value for different features. All
processes (numP ) can work simultaneously without interruptions as the mRMR calculation
is independent for different features (n). All static distributions assigning the same number
of features to every process lead to a well-balanced workload (similar runtime for every
process) as the time required to calculate the mRMR value is constant for every feature.
Specifically, we have used a pure block distribution where the first n

numP
features are assigned

to Process 0, next n
numP

to Process 1 and so on. Splitting the work by samples was discarded
as it would require n reduction operations involving all processes for every time that we select
a new feature in order to calculate the mRMR value of all features.

Algorithm 1 describes the MPI parallelization to select the most relevant features. In
order to reduce the overhead due to I/O operations each process starts reading from the
input file only its assigned features (ReadMyFeatures in Line 1), while the information of
the classes is read by all processes (ReadClass in Line 2). This approach also reduces
the memory requirements as each process only stores the data of the associated features
(no feature information is replicated in different local memories). As will be shown in an
example of the experimental evaluation (Section 4.2), feature distribution among different
nodes makes fast-mRMR-MPI able to analyze big datasets that do not fit in the memory of
a single desktop computer. An alternative approach where only Process 0 reads the whole
information and then distributes it among the processes was also designed, but was discarded
because it increased communication and provided poorer performance.

Once the local memory of each process contains the data of the associated features the
procedure to select each feature consists in the following steps:

1. Each process calculates the score of its features using the information stored in its local
memory. No communications are necessary at this point thanks to the appropriate
data distribution. Just like the original fast-mRMR, the score for the first feature
is the relevance to the class, while the mRMR value is used as a score for the other
numFeaturesWanted−1 features (Lines 6 and 24 in Algorithm 1, respectively).

2. Each process calculates the feature that obtained the highest score (mySelFeature in
Lines 7 and 25), as well as the partial maximum value (myMaximum in Lines 8 and 26).

3. The partial maximum scores of all processes and the features that obtained them
are collected by Process 0 using the MPI collective MPI Gather (Lines 10 and 11).
Concretely, these gathers are grouped into only one call to the MPI routine with two
elements per process in order to reduce communication latency.

4. As soon as Process 0 has all the partial maximums in its local memory, it looks for the
global maximum and includes it in the list where the selected features are saved (Lines
12-14). If the number of already selected features numSelectedFeatures is equal to
numFeaturesWanted the computation finishes.

5. Process 0 communicates to all processes which has been the last selected feature, using
the collective MPI Bcast (Line 17).
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Algorithm 1: fast-mRMR-MPI: most computationally expensive steps for every
MPI process.

Data: rank, file, numFeaturesWanted
/* rank is the id of the process, file the input file with the data,

and numFeaturesWanted is the number of selected features */

1 ReadMyFeatures(file, myCandidates);
2 ReadClass(file, classInfo);
3 numSelectedFeatures = 0;
4 for every feature f in myCandidates do
5 accumRedundancy[f] = 0;
6 myRelevancesVector[f] = MutualInfo(f, classInfo);

7 mySelFeature = getMaxPosition(myRelevancesVector);
8 myMaximum = myRelevanceVector[mySelFeature];
9 while numSelectedFeatures ≤ numFeaturesWanted do

10 MPI Gather(allMaximums, myMaximum, 0);
11 MPI Gather(allSelFeatures, mySelFeature, 0);
12 if rank == 0 then
13 lastFeatureSelected = allSelFeatures[getMaxPosition(allMaximums)];
14 selectedFeatures.add(lastFeatureSelected);

15 numSelectedFeatures += 1;
16 if numSelectedFeatures < numFeaturesWanted then
17 MPI Bcast(lastFeatureSelected, 0);
18 MPI Bcast(getInfo(lastFeatureSelected), getOwner(lastFeatureSelected));
19 if rank == getOwner(lastFeatureSelected) then
20 myCandidates.remove(myFeatureSelected);

21 for every feature f in myCandidates do
22 accumRedundancy[f] += mutualInfo(f, infoSelFeature);
23 redundancy = accumRedundancy[f] / numSelectedFeatures;
24 mRMR[f] = myRelevancesVector[f] - redundancy;

25 mySelFeature = getMaxPosition(mRMR);
26 myMaximum = mRMR[mySelFeature];

6. In order to calculate the next mRMR values for their associated candidates, all pro-
cesses need the data of the samples related to the last selected feature. However, as
previously explained, the data is not replicated, and thus only one process has read
from the input file and stored in its local memory the information of the last selected
feature. An MPI Bcast of the last feature data from the owner process is thus required
before starting to calculate the next mRMR values (Line 18).

7. The owner of the last feature must remove it from the candidates list to avoid checking
it again (Line 20) and all processes return to step 1.
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Figure 1: Abstraction of the communications during the selection of each feature for an example with three
processes (Process 2 has the features with the highest scores).

Figure 1 illustrates the communications that are present in each iteration for an example
with three processes. For simplicity, we assume the unlikely scenario where Process 2 is
the owner of all the selected features. At the end of the algorithm Process 0 has the list of
features that have been selected (selectedFeatures).

3.2. Hybrid MPI/multithreaded parallelization

There is a trend in HPC to develop hybrid MPI and multithreaded programs to achieve an
optimal balance between explicit and implicit parallelism in shared and distributed memory
architectures. Each process is associated to a group of cores and it launches several threads
to map its tasks among the cores of the group. This approach joins advantages of each
paradigm such as high speed access to shared memory for the threads which belong to the
same process, or the possibility of using multiple nodes to carry out executions with high
demand of resources. The best configuration of the number of MPI processes and number
of threads per process depends on characteristics of the code such as the number and size
of messages, as well as on hardware characteristics such as network latency and bandwidth.
Our implementation is flexible enough to allow the users to specify the desired number of
processes and threads in order to optimize performance on different systems.

OpenMP is used to generate several threads per process. Concretely, several threads are
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Table 1: Dataset description.

Dataset Features Samples
BreastCancer 47,293 128
Epsylon 2,000 400,000
ECBDL14 631 32,000,000
News20 1,355,191 19,996
E2006Log1 4,272,227 16,087

launched to collaborate in the for loops where the scores of the candidates are calculated
(Lines 4 and 21 in Algorithm 1), using a pragma parallel for directive. A dynamic
distribution with a block size of 2% of the candidates per thread is used, as this was assessed
as the optimal distribution in terms of workload balance.

As mentioned in Section 2.3, one of the main problems usually found in multithreaded
codes are the race conditions, where several threads perform concurrent accesses to shared
variables. In our fast-mRMR-MPI having a shared variable to indicate the partial maximum
of the process would lead to race conditions, as all threads should access and modify it.
Instead, each thread stores the scores of its associated features on the proper positions of
the vector mRMR, and the maximum is calculated by the process after the parallel for loop
(Lines 7-8 and 25-26 in Algorithm 1).

4. Experimental evaluation

The experimental evaluation is focused on performance in terms of execution time, as
the results of fast-mRMR-MPI were identical to those of the original fast-mRMR, and thus
their accuracy has already been proved in [22]. Table 1 summarizes the main characteristics
of five representative datasets used for the performance evaluation, which were obtained
from the LIBSVM website [17]. They present a different number of features and samples in
order to analyze the adequacy of the parallel approach to different scenarios.

Two platforms with different characteristics were used to evaluate the scalability of fast-
mRMR-MPI:

• A private cluster of the Universidade da Coruña called Pluton, with eight nodes con-
taining 64GB of memory and two 8-core Intel Xeon E5-2660 Sandy Bridge-EP proces-
sors each (i.e., 16 cores per node and 128 in total).

• 32 nodes of the Finis Terrae II supercomputer, installed at the Galician Supercomput-
ing Center (CESGA) [7]. It comprises a total of 768 cores as each node consists of 24
cores (two 12-core Intel Haswell 2680 processors) and 128 GB of memory.

Both clusters have a low-latency and high bandwidth InfiniBand FDR network to connect
the nodes. Regarding software, fast-mRMR-MPI was compiled and executed with the open
source OpenMPI library (versions 1.8.8 and 1.10.2 for Pluton and Finis Terrae, respectively)
and the -O3 option.
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Figure 2: Runtime of fast-mRMR-MPI on one node of each platform when selecting 200 features of
BreastCancer and Epsylon (P=#processes; Th=#threads per process).

Finally, there is a strong relation between the number of features selected and the run-
time, as it indicates the number of iterations of the while loop (Line 9 in Algorithm 1). All
the experiments in this section were run selecting 200 features of the dataset. This number
is high enough to show the impact of discarding the selected features from the candidates
list of the owner process, but not too large to avoid selecting an extremely high number of
features, which will never be the case in a real scenario. Anyway, the acceleration obtained
by our hybrid parallel approach over the original fast-mRMR should be independent of the
number of selected features, as the parallelization process is repeated for every iteration of
the while loop.

4.1. Best configuration of processes and threads

The experimental evaluation started by finding the best configuration of the number of
processes and threads for fast-mRMR-MPI. Figure 2 shows the runtime on a single node
of each platform (16 and 24 cores on Pluton and Finis Terrae II, respectively) for differ-
ent configurations. The smallest datasets (BreastCancer and Epsylon) were used for this
preliminary evaluation.

The worst results are obtained by the configuration with only one MPI process per node
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that launches one thread per core. As each node has two processors (each one with one
memory module), half of the threads are mapped to the cores of a processor different than
the host of the MPI process. This leads to some threads accessing the memory module of
the other processor, which generates a performance degradation.

When executing with more than one process per node, we use the proper runtime con-
figuration so that all threads are mapped to cores that belong to the same processor as their
associated MPI process. Therefore, all memory accesses are performed within the same
processor and, as can be seen in Figure 2, the performance of all configurations with more
than one process per node is very similar. Note that these conclusions are the same for
one dataset with more features than samples (BreastCancer) and another one with more
samples than features (Epsylon). From now on all the results are obtained with the con-
figuration that showed on average slightly better performance on these experiments: eight
processes and two threads per node on Pluton, and twelve processes and two threads per
node on Finis Terrae II.

4.2. Scalability analysis on several nodes

The speedup S is used as a measure of performance scalability. It is calculated as the
acceleration by comparing the sequential time Ts and the parallel time using n cores (Tn):
S(n) = Ts

Tn
. A parallel application is scalable when the speedup increases with the number

of cores. The closer S(n) is to n, the better parallel scalability the algorithm presents.
Figure 3 shows the speedups of fast-mRMR-MPI over the original sequential implementa-

tion for a different number of nodes. The use of powerful HPC resources is especially relevant
for large datasets, so the graphs only show the speedups for the three largest datasets. Re-
sults for E2006Log1 on Pluton are not shown as the original fast-mRMR requires around
70GB of memory, while one node of this cluster only provides 64GB. These graphs prove
that the scalability of fast-mRMR-MPI is high (close to the maximum theoretical speedup
of the machine), especially for those datasets with a significantly higher number of features
than samples (News20 and E2006Log1). For instance, the experiments using News20 obtain
accelerations of 121.91x and 711.52x on the 128 and 768 cores of Pluton and Finis Terrae II,
respectively (very high parallel efficiencies of 94.88% and 92.65%). In order to illustrate
this trend Figure 4 represents the speedups for all datasets on both platforms (using their
largest configuration), according to the number of features in the original dataset. Note that
datasets with much more features than samples are nowadays very common in fields such as
bioinformatics or genetics. In Section 1, a Spark-based approach of fast-mRMR was men-
tioned as a possible counterpart of fast-mRMR-MPI on distributed-memory clusters [22].
However, this implementation is focused on other kinds of systems (a cloud infrastructure)
and its scalability is very low compared to our tool: according to [22] it achieves accelerations
always lower than 5x over fast-mRMR using 228 cores.

As a summary, Table 2 gathers the runtimes to select 200 features of the five datasets on
both clusters, and compares them with fast-mRMR runtimes. The performance improve-
ment is significant even using only one node with shared memory (which could be seen
equivalent to use a single multicore server). For instance, while fast-mRMR requires more
than eight hours to select 200 features of E2006Log1, our parallel version reduces it to only

12



 0

 20

 40

 60

 80

 100

 120

 140

1 node
16 cores

2 nodes
32 cores

4 nodes
64 cores

8 nodes
128 cores

S
p
e
e
d
u
p
 o

v
e
r 

fa
s
t-

m
R

M
R

Pluton

Ideal
News20
ECBDL14

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 node
24 cores

2 nodes
48 cores

4 nodes
96 cores

8 nodes
192 cores

16 nodes
384 cores

32 nodes
768 cores

S
p
e
e
d
u
p
 o

v
e
r 

fa
s
t-

m
R

M
R

Finis Terrae II

Ideal
News20
E2006Log1
ECBDL14

Figure 3: Speedups of fast-mRMR-MPI over fast-mRMR selecting 200 features of the largest datasets.
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Figure 4: Speedups of fast-mRMR-MPI over fast-mRMR selecting 200 features of the five datasets ordered
by their number of features (using the largest configuration of Pluton and Finis Terrae II).
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Table 2: Runtimes (in minutes) of fast-mRMR-MPI with the best configuration of processes and threads for
each platform. The runtimes of the sequential fast-mRMR are also included for comparison purposes. Both
algorithms look for 200 features. ”−” means that the experiment could not be completed due to memory
constraints or not having enough nodes.

Platform Dataset fast-mRMR
fast-mRMR-MPI

1 node 8 nodes 32 nodes

Pluton

BreastCancer 5.18 0.36 0.06 -
Epsylon 11.77 1.06 0.13 -

ECBDL14 89.27 8.20 1.50 -
News20 224.31 14.53 1.84 -

E2006Log1 - - 4.38 -

Finis Terrae II

BreastCancer 5.11 0.33 0.03 0.01
Epsylon 11.48 0.52 0.10 0.04

ECBDL14 83.29 8.72 1.67 0.82
News20 220.57 9.74 1.24 0.31

E2006Log1 487.47 20.76 3.32 0.72

about 20 minutes on a single node with 24 shared-memory cores. Nevertheless, researchers
with access to a cluster will further benefit from the great performance of fast-mRMR-MPI,
being able to perform the FS of all the studied datasets in less than one minute on 32 nodes
of Finis Terrae II.

Finally, we remark again that the original fast-mRMR algorithm could not be executed
on Pluton for the E2006Log1 dataset, while it took around four minutes for fast-mRMR-
MPI using the eight nodes. Therefore, an additional advantage of our parallel version is
that it can exploit the memory of several nodes and, with the data distribution explained in
Section 3.1, complete the FS of large datasets that cannot be performed on a single node.

5. Conclusions

FS is a data mining technique that is nowadays a common and extremely important
step in machine learning, especially with the continuous increase of the average dataset
sizes on different fields such as text mining, genetics or bioinformatics. In this paper we
have presented fast-mRMR-MPI, a parallel tool designed to accelerate FS by exploiting the
computational capabilities of distributed-memory clusters. It is based on fast-mRMR, a
greedy optimization of the very popular mRMR algorithm that has proved to be efficient.

Our tool follows a hybrid two-level parallelization approach. First, it includes an MPI im-
plementation that distributes the features among MPI processes so that FS of large datasets
can benefit from the memory available on different nodes of a cluster or supercomputer. It
is optimized for modern multicore clusters thanks to the second level of parallelism, where
each MPI process launches several OpenMP threads sharing memory.

The experimental evaluation on several scenarios (two clusters and five representative
input datasets) proved that fast-mRMR-MPI selects the same features as fast-mRMR, but
in a significantly lower runtime. Although the magnitude of the acceleration depends on the
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characteristics of the dataset (it is more beneficial for those datasets where the number of
features is significantly higher than the number of samples), fast-mRMR-MPI performance
scales with the number of nodes for all tested datasets. Specifically, it is able to obtain
speedups of up to 711.52x using 768 cores.

Our tool is publicly available at https://github.com/borjaf696/Fast-mRMR. Our fu-
ture work consists in making fast-mRMR-MPI more flexible so that it can accept more
formats for the input datasets as well as in developing parallel versions of other feature
selection algorithms.
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