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ABSTRACT
Testing procedures for assessing a parametric regression model with a circular res-

ponse and an Rd-valued covariate are proposed and analyzed in this work. The test 
statistics are based on a circular distance comparing a (non-smoothed or smoothed)
parametric circular regression estimator and a nonparametric one. Two bootstrap
procedures for calibrating the tests in practice are also presented. Finite sample per-
formance of the tests in different scenarios is analyzed by simulations and illustrated
with real data examples.
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1. Introduction

In many scientific fields, such as oceanography, meteorology or biology, data are an-
gular measurements (sample realizations of a circular variable), which may be accom-
panied by auxiliary observations of other Euclidean random variables with a possible
influence on the circular one. The joint behaviour of these circular and Euclidean
variables can be analyzed by considering a linear-circular regression model (circular
response and Euclidean covariates), allowing to explain the possible relation between
the variables and, at the same time, to make predictions on the variable of interest.
In this context, parametric and nonparametric methods can be used to estimate the
unknown regression function. Parametric regression approaches were studied, among
others, in [1–3]. Alternatively, nonparametric kernel-type estimators of the regression
function considering a model with a circular response and a univariate Euclidean
covariate were introduced in [4], while the extension to a model with an Rd-valued
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covariate was considered in [5,6]. To compute these kernel-type estimators it is cru-
cial to select a bandwidth parameter (a symmetric d × d matrix for an Rd-valued
covariate) which directly impacts the smoothness of the estimator. If the bandwidth
matrix is appropriately chosen, these nonparametric methods provide more flexible
and robust estimators than those obtained when using parametric approaches, avoid-
ing misspecification problems. However, if a suitable parametric regression model is
assumed, parametric methods usually provide estimators which are more efficient and
easier to interpret.

At this point, an important question in this context is to decide if a certain para-
metric family is appropriate to model the unknown circular regression function. If this
assumption holds, a parametric method should be preferably used to estimate it. If
not, it would possibly be more convenient to use a nonparametric approach to esti-
mate this function. Both approaches, parametric and nonparametric, have been used
to analyze different datasets in the literature. For instance, the classical blue periwin-
kles dataset, which collects measurements of direction and distance moved by 31 blue
periwinkles, was analyzed using parametric methods in [1,2], considering the direc-
tion as the response variable and the distance as the covariable. On the other hand,
also considering this dataset and this regression model, nonparametric techniques were
employed in [4] to estimate the corresponding regression function. Another such exam-
ple is the sand hopper orientation dataset studied, using parametric methods, in [7].
Following the proposal in [2], these authors considered a projected multivariate linear
model (PMLM) to analyze the orientation of two species of sand hoppers as a function
of different covariates. This dataset was also explored using nonparametric tools by
[5], considering a regression model with a circular response (sand hopper orientation)
and two real-valued covariates (temperature and humidity). In this case, the regres-
sion function was estimated nonparametrically using a local linear-type estimator. In
order to determine if a parametric regression model is a suitable representation of
such datasets, goodness-of-fit tests can be designed and analyzed, providing a tool for
assessing a general class of parametric linear-circular regression models.

There is a substantial literature on testing parametric regression models involving
Euclidean data, for example, [8–14]. See also [15] for a review on this topic. The
previous testing procedures are based on measuring differences between a suitable
parametric estimator under the null hypothesis and a nonparametric one. Specifically,
L2-norm or supremum-norm tests, among others, can be employed for testing parame-
tric regression models with a Euclidean response and an Rd-valued covariate (d ≥ 1). In
the context of regression models with directional response and directional or Euclidean
explanatory variables, the literature on goodness-of-fit tests is relatively scarce. In this
setting, in [16], an exploratory tool and a lack-of-fit test for circular-linear regression
models (Euclidean response and circular covariates) were proposed. The same problem
was studied by [17], using nonparametric methods. The authors proposed a testing
procedure based on the weighted squared distance between a nonparametric and a
parametric regression estimator, where the nonparametric regression estimator was
obtained by a projected local regression on the sphere. Local linear-type estimators
have been recently used by [18] in order to propose no-effect and ANCOVA tests for
regression models with circular response and/or covariate. However, the problem of
assessing a certain class of parametric regression models with circular response and
Euclidean covariates (up to the authors’ knowledge) has not been considered in the
statistical literature yet.

In this work, new approaches for testing a linear-circular parametric regression
model are proposed and empirically analyzed. The test statistics employed in these
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procedures are based on a comparison between a (non-smoothed or smoothed) para-
metric fit under the null hypothesis and a nonparametric estimator of the circular
regression function. More specifically, two different test statistics are considered. In
the first one, the parametric estimator of the regression function under the null hy-
pothesis is directly used, while in the second one, a smoothed version of this estimator
is employed. Notice that, in this framework, a suitable measure of circular distance
must be employed [see 19, Section 1.3.2]. The null hypothesis that the regression func-
tion belongs to a certain parametric family is rejected if the distance between both fits
exceeds a certain threshold. To perform the parametric estimation, procedures based
on least squares or maximum likelihood are used [1,2,20]. For the nonparametric al-
ternative, a local linear-type estimator [4,5] is considered.

For the application in practice of the proposals, the test statistics should be accom-
panied by a calibration procedure. In this case, this is not based on the asymptotic
distribution, given that the convergence to the limit distribution under the null hy-
pothesis will presumably be too slow. Instead, two bootstrap methods are designed and
their performance is analyzed and compared employing numerical experiments. Stan-
dard resampling procedures adapted to the context of regression models with circular
response and Euclidean covariates are used: a parametric circular residual bootstrap
(PCB) and a nonparametric circular residual bootstrap (NPCB). The PCB approach
consists in using the residuals obtained from the parametric fit in the bootstrap algo-
rithm. If the circular regression function belongs to the parametric family considered
in the null hypothesis, then the residuals will tend to be quite similar to the theoretical
errors and, therefore, it is expected that the PCB method has a good performance.
Following the proposal by [21], the NPCB method aims to increase the power of the
test and, for this purpose, the residuals obtained from the nonparametric fit are the
ones employed in the bootstrap procedure.

This paper is organized as follows. Section 2 is devoted to present the assumed
linear-circular regression model, to introduce the testing problem and to briefly de-
scribe the parametric and nonparametric circular regression estimators (in Sections
2.1 and 2.2, respectively) employed in the test statistics. In Section 3, the proposed
test statistics are explained. A description of the bootstrap calibration algorithms con-
sidered is given in Section 4. Section 5 contains a simulation study for assessing the
performance of the tests when using the PCB and NPCB resampling approaches to
approximate the sampling distribution of the test statistics. Section 6 illustrates the
testing proposals with the blue periwinkle and sand hopper orientation datasets intro-
duced above. Finally, some conclusions and ideas for further research are provided in
Section 7.

2. Statistical model

Let {(Xi,Θi)}ni=1 be a random sample from (X,Θ), where Θ is a circular random
variable taking values on T = [0, 2π), and X is a random variable with density f and
support on D ⊆ Rd. Assume that the following regression model holds:

Θi = [m(Xi) + εi](mod 2π), i = 1, . . . , n, (1)

where m is a circular regression function, εi, i = 1, . . . , n, is an independent sample
of a circular variable ε, with zero mean direction (which is equivalent to assume that
E[sin(ε) | X = x] = 0) and finite concentration, and mod stands for the modulo
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operation.
Considering the regression model (1), the aim of this work is to propose and study

different testing procedures to assess the suitability of a general class of regression
models Mβ = {mβ,β ∈ B}, where mβ is a certain parametric circular regression
function with parameter vector β. The specific testing problem to be addressed is
formulated as:

H0 : m ∈Mβ vs. Ha : m /∈Mβ. (2)

As pointed out in Section 1, the procedure proposed in this work consists in com-
paring a (non-smoothed or smoothed) parametric fit with a nonparametric estimator
of the circular regression function m, measuring the circular distance between both
fits and employing this distance as a test statistic. The parametric and nonparametric
estimation methods considered in this proposal are described in the following sections.

2.1. Parametric circular regression estimation

As mentioned in Section 1, our proposal requires a parametric estimator of the circular
regression function m, once a parametric regression family is set as the null hypothesis.
Notice that, for instance, the procedures based on least squares for Euclidean data are
not appropriate when the response variable is of circular nature. Minimizing the sum of
squared differences between the observed and predicted values may lead to erroneous
results, since the squared difference is not an appropriate measure on the circle.

A circular analog to least squares regression for models with a circular response and
a set of Euclidean covariates was presented by [20]. Specifically, assuming that the
regression model (1) holds and m ∈Mβ, a parametric estimator of mβ is constructed

obtaining an estimator of β, namely β̂, and computing mβ̂. A parameter estimate

of β could be obtained by minimizing the sum of the circular distances between the
observed and predicted values as follows:

β̂ = arg min
β

n∑
i=1

{1− cos [Θi −mβ(Xi)]} . (3)

Note that the previous estimation proposal does not require any assumption on the
conditional distribution of the response over the covariate. Nevertheless, the assump-
tion of a conditional parametric distribution model facilitates the use of maximum
likelihood estimation methods. Specifically, if it is assumed that the response variable
(conditionally on X) follows a von Mises distribution with mean direction given by mβ

and concentration parameter κ, the maximum likelihood estimator of mβ maximizes
the following expression:

n∑
i=1

cos [Θi −mβ(Xi)] . (4)

Given the maximum likelihood estimator of β, the maximum likelihood estimator
of κ is given by the solution to A(κ̂) = 1

n

∑n
i=1 cos[Θi − mβ̂(Xi)], where A(κ) =

I1(κ)/I0(κ), being I0 and I1 the modified Bessel functions of the first kind with order
zero and one, respectively. As indicated in [20], numerical solutions to A−1(x) can be
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found in [22].
Notice that the circular least squares estimator given in (3) also maximizes the

expression (4) and, therefore, assuming a von Mises distribution, the circular least
squares estimator coincides with the maximum likelihood estimator (for further details,
see [20]).

Assuming that the response variable follows a von Mises distribution and con-
sidering the general class of models for the circular regression function Mβ =
{µ0 + g(βT

1 X), µ0 ∈ [0, 2π),β1 ∈ Rd}, where g is a link function mapping the real
line onto the circle, an iteratively reweighted least squares algorithm can be used to
compute the maximum likelihood estimators of κ, µ0 and β1 [see 1,20]. The exten-
sion of these results to the case of a generic parametric family has not been explicitly
considered.

Although the assumption that the response variable follows a von Mises distribution
is quite common, other circular distributions can be used in this context. For example,
considering a projected normal distribution allows to define general regression models,
such as the PMLM [2,7]. This class of models deals with directional observations as
projections onto the unit circle of unobserved response vectors in a multivariate linear
model. Considering these type of regression models, the estimation of the parameters
can be performed using maximum likelihood methods employing iterative procedures.
For further details on the estimation approach in this case, we refer to [2].

2.2. Nonparametric circular regression estimation

A nonparametric regression estimator for m in model (1) is presented in this section.
The circular regression function m, at a point x, is the conditional mean direction of
Θ given X = x, which can be defined as the minimizer of the risk function E{1 −
cos[Θ − m(X)] | X = x}. The minimizer of this cosine risk is given by m(x) =
atan2[m1(x),m2(x)], where m1(x) = E[sin(Θ) | X = x], m2(x) = E[cos(Θ) | X = x],
and the function atan2(y, x) returns the angle between the x-axis and the vector from
the origin to (x, y). Therefore, replacing m1 and m2 by appropriate estimators, an
estimator for m can be directly obtained. In this work, a local linear-type estimator
of m(x) is used, defined by considering local linear estimators for m1(x) and m2(x).
Specifically, the estimator

m̂H(x) = atan2[m̂1,H(x), m̂2,H(x)] (5)

is considered, where m̂1,H(x) and m̂2,H(x) denote the local linear estimators [23] (with
bandwidth matrix H) of m1(x) and m2(x), respectively, defined by:

m̂j,H(x) =

 e1
T(X x

TWxX x)−1X x
TWxS if j = 1,

e1
T(X x

TWxX x)−1X x
TWxC if j = 2,

(6)

where e1 is a (d + 1) × 1 vector having 1 in the first entry and 0 in all
other entries, X x is a n × (d + 1) matrix having [1, (Xi − x)T] as its ith row,
Wx = diag [KH(X1 − x), . . . ,KH(Xn − x)], S = [sin(Θ1), . . . , sin(Θn)]T and C =
[cos(Θ1), . . . , cos(Θn)]T.

Asymptotic properties of estimator (5), considering regression model (1), were stud-
ied by [5].
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3. The test statistics

In this section, two tests statistics to address the testing problem (2) (that is, to check
if the circular regression function belongs to a general class of parametric models)
are proposed. The first approach considers a weighted circular distance between the
nonparametric and parametric fits:

T 1
n =

∫
D
{1− cos[m̂H(x)−mβ̂(x)]}w(x)dx, (7)

where w is a weight function that helps in mitigating possible boundary effects. The
estimator m̂H is the local linear-type estimator of the circular regression function
m, given in (5). As for the parametric estimator mβ̂, in a general setting, the least

squares approach described in Section 2.1 can be used to compute (7). As previously
mentioned, if a parametric (conditional) distribution model is assumed (e.g. a von
Mises model), parametric estimation by maximum likelihood methods is also feasible.

The second test statistic is similar to the first one, but considering a smoothed
version of the parametric fit:

T 2
n =

∫
D
{1− cos[m̂H(x)− m̂H,β̂(x)]}w(x)dx, (8)

where m̂H,β̂ is a smoothed version of the parametric estimator mβ̂, which is given by:

m̂H,β̂(x) = atan2[m̂1,H,β̂(x), m̂2,H,β̂(x)], (9)

with

m̂j,H,β̂(x) =

 eT
1 (XT

xWxX x)−1XT
xWxŜ if j = 1,

eT
1 (XT

xWxX x)−1XT
xWxĈ if j = 2,

where

Ŝ = {sin[mβ̂(X1)], . . . , sin[mβ̂(Xn)]}T

and

Ĉ = {cos[mβ̂(X1)], . . . , cos[mβ̂(Xn)]}T.

If the null hypothesis in the testing problem given in (2) holds, then the (non-
smoothed or smoothed) parametric fit and the nonparametric circular regression es-
timator will be similar and, therefore, the value of the test statistics T 1

n and T 2
n will

be relatively small. Conversely, if the null hypothesis does not hold, the fits will be
different and the value of T 1

n and T 2
n will be fairly large. So, the null hypothesis will

be rejected if the circular distance between both fits exceeds a critical value. Then, to
apply these procedures, it is essential to approximate the distribution of the test statis-
tics under the null hypothesis. To tackle this problem, we use bootstrap resampling
methods.
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Illustration of the tests

For a visual illustration of the performance of the tests (for simplicity, a model with a
single covariate, that is, d = 1, is initially employed), consider an equally-spaced sample
of size n = 200, generated in the unit interval following model (1), with regression
function (13) and c = 0. The random errors εi are drawn from a von Mises distribution
vM(0, 10). If we want to test if m(X) ∈ M1,β = {µ0 + 2atan(β1X), µ0 ∈ [0, 2π), β1 ∈
R} using the test statistics given in (7) and in (8), the local linear estimator, m̂h, given
in (5), as well as a parametric fit, mβ̂, and its smoothed version, m̂h,β̂ (denoting by h

the bandwidth parameter when d = 1) must be computed. In this case, the estimator
obtained from (4) is considered for the parametric fit. The local linear-type estimator
and m̂h,β̂ are computed using a triweight kernel and the optimal bandwidth obtained

by minimizing the circular average squared error (CASE), defined as:

CASE[m̂H(x)] =
1

n

n∑
i=1

{1− cos [m(Xi)− m̂H(Xi)]} , (10)

for d = 1 (in this case, H = h is a real value). Figure 1 shows the linear (top panels)
and cylinder (bottom panels) representations of the estimates. The local linear-type
regression estimator (left panel), the parametric fit (center panel) and the smoothed
version of the parametric fit (right panel) are represented with red lines. The sample
points and the circular regression function (black lines) are also included in the plots.
All estimates show a very similar behaviour and, therefore, the value of the test statis-
tics T 1

n and T 2
n are expected to be presumably small. Consequently, there may be no

evidences against the assumption that the circular regression function belongs to the
parametric family M1,β.

[Figure 1 about here.]

A similar visual experiment considering a regression model with a circular response
and two covariates is also presented. A sample of size n = 400 is generated on a bidi-
mensional regular grid in the unit square, assuming the linear-circular regression model
(1), with regression function (15) and c = 0. The random errors εi are also drawn
from a von Mises distribution vM(0, 10). In this case, as in the previous example, in
order to test if m(X) ∈ M2,β = {µ0 + 2atan(β1X1 + β2X2), µ0 ∈ [0, 2π), β1, β2 ∈ R},
being X = (X1, X2), using the test statistics given in (7) and in (8), the estimator
obtained from (4) is employed for the parametric fit. The local linear-type estimator
and the smoothed parametric fit are computed using a multiplicative triweight kernel
and an optimal bandwidth obtained by minimizing the CASE, given in (10). Figure 2
shows the theoretical circular regression function (top left panel), the local linear-type
regression estimator (top right panel), the parametric fit (bottom left panel) and the
smoothed version of the parametric fit (bottom right panel). It can be observed that
estimates at top right, bottom left and bottom right panels seem to be very similar
and, therefore, analogous conclusions to those given for d = 1, but in this case for
d = 2, can be derived.

[Figure 2 about here.]
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Bandwidth selection

The test statistics given in (7) and in (8), respectively, require a d×d bandwidth matrix
H (or a bandwidth parameter h, if d = 1). The selection of the bandwidth in this type
of goodness-of-fit problems is non-trivial, since the optimal bandwidth for estimation
may not be the optimal one for testing (being not even clear what optimal means).
For instance, [24–26] gave some strategies on bandwidth selection in testing problems.
As usual in the context of smooth-based goodness-of-fit tests for regression models,
the performance of the proposed test statistics is analyzed for a range of bandwidths,
in order to evaluate the impact of this parameter in the numerical results.

Weight function

In both tests statistics, the weight function w is used to avoid possible boundary effects
that are (or could be) due to the use of a nonparametric estimator. An automatic choice
of w can be complex, since that election could depend, among other things, on the
bandwidth matrix H. For that reason, ad hoc elections of the weight functions are
usually employed.

In this paper, we consider a general class of weight functions trying to get a com-
promise between (partially) removing the boundary effect and simplicity. Specifically,
we use weight functions depending on the sample size n. This is reasonable since the
boundary regions depend on the bandwidth employed and an optimal selection of this
parameter is also related to the sample size. This type of weight functions are quite
common in this and other contexts (for example, in bandwidth selection problems). In
Sections 5 and 6, the explicit expressions of the weight functions we used in practice
are given. After some empirical tests, we observed that they provided good results in
our numerical studies.

4. Calibration in practice

Once a suitable test statistic is available, in order to solve the testing problem (2), a
procedure for calibration of critical values is required. This task can be done by means
of bootstrap resampling algorithms.

In what follows, a description of two different bootstrap proposals (PCB and NPCB)
designed to approximate the distribution (under the null hypothesis) of the tests statis-
tics, given in (7) and in (8), are presented. The main difference between them is the
mechanism employed to obtain the residuals. As pointed out in Section 1, the residuals
used in PCB come from the parametric regression estimator. On the other hand, in the
NPCB algorithm, the residuals employed in the resampling process are obtained from
the nonparametric regression estimator. In order to present the PCB and NPCB re-
sampling methods, a generic bootstrap algorithm is described. No matter the method
used, m̂ denotes the parametric or the nonparametric circular regression estimator.
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Algorithm 1

1. Compute the parametric or the nonparametric regression estimates (described in
Sections 2.1 and 2.2, respectively), namely m̂(Xi), i = 1, . . . , n, depending on if a
parametric (PCB) or a nonparametric (NPCB) bootstrap procedure is employed.
2. From the residuals ε̂i = [Θi − m̂(Xi)](mod 2π), i = 1, . . . , n, draw independent
bootstrap residuals, ε̂∗i , i = 1, . . . , n, sampling with replacement from (ε̂1, . . . , ε̂n).
Then, for each i = 1, . . . , n, P (ε̂∗i = ε̂j) = 1/n, j = 1, . . . , n
3. Obtain bootstrap samples {(Xi,Θ

∗
i )}ni=1 with Θ∗i = [mβ̂(Xi) + ε̂∗i ](mod 2π), being

mβ̂(Xi) the parametric regression estimator under H0.

4. Using the bootstrap sample {(Xi,Θ
∗
i )}ni=1, the bootstrap test statistics T l∗n , with

l = 1, 2, are computed as in (7) and in (8).
5. Repeat Steps 2-4 a large number of times B.

In Step 1 of the previous algorithm, in the PCB approach, the circular regression
function is estimated parametrically, employing one of the procedures described in
Section 2.1. Alternatively, the NPCB tries to avoid possible misspecification problems
by using more flexible regression estimation methods than those employed in PCB.
Then, following the same arguments as in [21] to increase the power of the test, in
the NPCB method, the nonparametric circular regression estimator given in (5) is
employed in Step 1 of the bootstrap Algorithm 1.

Notice that the empirical distribution of the B bootstrap test statistics can be
employed to approximate the distribution of the test statistics T ln, for l = 1, 2, under
the null hypothesis. Denoting by {T l∗n,1, . . ., T l∗n,B} the sample of the B bootstrap test

statistics given in (7), for l = 1, and in (8), for l = 2, and defining its (1− α)-quantile
tl∗α , the null hypothesis in (2) will be rejected if T ln > tl∗α (for l = 1, 2). Additionally,
the p-values of the test statistics can be approximated by:

p-value =
1

B

B∑
b=1

I{T l∗
n,b>T

l
n}, l = 1, 2, (11)

where I{A} = 1 if A is true and 0 otherwise.

5. Simulation study

The finite sample performance of the proposed tests, using the bootstrap approaches
described in Algorithm 1 for their calibration, is illustrated in this section with a
simulation study, considering a regression model with a single real-valued covariate
and also with a bidimensional one. The R code to compute the estimates in this
section and the next one are provided in the Supplementary Material.

5.1. Simulation experiment with a single covariate

In order to study empirically the performance of the proposed tests considering a
regression model with a circular response and a single real-valued covariate, the para-
metric regression family

M1,β = {µ0 + 2atan(β1X), µ0 ∈ [0, 2π), β1 ∈ R} (12)
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is chosen, and for different values of c the regression function

m(X) = 2atan(X) + c asin(2X5 − 1) (13)

is considered. Therefore, the parameter c controls whether the null (c = 0) or the
alternative (c 6= 0) hypotheses hold in problem (2). Values c = 0, 1, and 2 are con-
sidered in the study. For each value of c, 500 samples of sizes n = 50, 100 and 200
are generated on the unit interval, considering an equally-spaced explanatory variable
X, following model (1) with regression function (13). The circular errors εi are drawn
independently from a von Mises distribution vM(0, κ), for different values of κ (5, 10
and 15).

To analyze the behaviour of the test statistics, given in (7) and in (8), in the different
scenarios, the bootstrap procedures described in Section 4 are applied, using B = 500
replications. The non-smoothed or smoothed parametric fits used for constructing
(7) and (8) are computed using the estimators obtained from (4) and given in (9),
respectively. The nonparametric fit is obtained using the estimator given in (5) with
a triweight kernel (empirical experiments with the Epanechnikov kernel yield similar
results). We address the bandwidth selection problem by using the same procedure
as the one used in [8,9,13,27], among others, applying the tests on a grid of several
bandwidths. In order to use a reasonable grid of bandwidths, the optimal bandwidth
selected by minimizing the CASE given in (10), for d = 1, is calculated for each sample
and for each scenario. In this case, the average of the CASE optimal bandwidths
are in the interval [0.2, 0.6]. Therefore, the values of the bandwidth parameter h =
0.15, 0.25, 0.35, 0.45, 0.55, 0.65 are considered to compute both test statistics (7) and
(8). The weight function used in both tests is w(x) = I{x∈[1/

√
n,1−1/

√
n]}, to avoid

possible boundary effects.

5.1.1. Effect of sample size

Proportions of rejections of the null hypothesis, for a significance level α = 0.05,
considering κ = 10 and different sample sizes are shown in Table 1, when using T 1

n and
T 2
n . If c = 0 (null hypothesis), the proportions of rejections are similar to the theoretical

level, although they are quite affected by the value of h. The tests preserve the nominal
significance level of 5%, since for appropriate values of h, the majority of proportions
of rejections under the null hypothesis lie within the intervals (0, 0.110), (0.007, 0.093)
and (0.020, 0.080), when n = 50, 100 and 200, respectively. For alternative assumptions
(c = 1 and c = 2), as expected, as the sample size increases the proportions of rejections
are larger. For all the scenarios, a larger power of both tests is observed as the value of
c increases. Notice that, in most of the cases, an increasing power of the tests when the
values of h decrease is observed. It should be noted that the NPCB method presents
a slightly better performance than the PCB approach. On the other hand, although
both test statistics provide a similar behaviour, T 2

n seems to give slightly better results.

[Table 1 about here.]

5.1.2. Effect of κ

The performance of the tests T 1
n and T 2

n (for α = 0.05) is studied for n = 200 and for
different values of the concentration parameter κ. Results are included in Table 2. If
c = 0, the proportions of rejections are similar to the theoretical level when using both
bootstrap approaches (PCB and NPCB). For alternative assumptions, as expected,
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large values of the concentration parameter κ lead to an increase in power, which
justifies the correct performance of the bootstrap procedures.

[Table 2 about here.]

5.2. Simulation experiment with several covariates

The extension for regression models with a circular response and two covariates is
analyzed in this section. For this purpose, the parametric regression family

M2,β = {µ0 + 2atan(β1X1 + β2X2), µ0 ∈ [0, 2π), β1, β2 ∈ R} (14)

is chosen, and for different values of c the regression function

m(X) = 2atan(−X1 +X2) + c asin(2X3
1 − 1), (15)

being X = (X1, X2), is considered. This circular regression function is plotted in Figure
2 (top left panel) considering c = 0. For each value of c (c = 0, 1, and 2), 500 samples
of sizes n = 100, 225 and 400 are generated on a bidimensional regular grid in the unit
square, following model (1), with regression function (15) and circular errors εi drawn
from a von Mises distribution vM(0, κ), for κ = 5, 10 and 15. The bootstrap procedures
described in Section 4 are applied, using B = 500 replications. The non-smoothed or
smoothed parametric fits used for constructing (7) and (8) are computed using the
estimators obtained from (4) and given in (9), respectively. The nonparametric fit is
obtained using the estimator given in (5) with a multiplicative triweight kernel. In
order to simplify the calculations, the bandwidth matrix is restricted to a class of di-
agonal matrices with equal elements. In this case, the diagonal elements of the CASE
optimal bandwidths are in the interval [0.3, 0.8]. Therefore, diagonal bandwidth matri-
ces H = diag(h, h) with different values of h, h = 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85,
are considered to compute both test statistics (7) and (8). In this case, the weight
function used in both tests is w(x) = I{x∈[1/

√
n,1−1/

√
n]×[1/

√
n,1−1/

√
n]}.

5.2.1. Effect of sample size

Proportions of rejections of the null hypothesis, for a significance level α = 0.05,
considering κ = 10 and different sample sizes are shown in Table 3, when using T 1

n

and T 2
n . It can be observed that using both bootstrap methods (PCB and NPCB),

the tests have a reasonable behaviour. If c = 0 (null hypothesis), the tests preserve
the nominal significance level, since most of the proportions of rejections lie within
the intervals (0.007, 0.093), (0.022, 0.078) and (0.029, 0.071), when n = 100, 225 and
400, respectively. For alternative assumptions (c = 1 and c = 2), the NPCB method
presents a slightly better performance than the PCB approach. Notice that, in most
of the cases, an increasing power of the tests when the values of h increase is observed.
Additionally, as in the single covariate case, for all the scenarios a larger power of both
tests is obtained as the value of c increases.

[Table 3 about here.]
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5.2.2. Effect of κ

The performance of the bootstrap procedures is analyzed for n = 400 and for different
values of the concentration parameter κ when using T 1

n and T 2
n , for α = 0.05, in

Table 4. If c = 0, the proportions of rejections are similar to the theoretical level
when using both bootstrap approaches (PCB and NPCB). It can be observed that
for larger values of the concentration parameter κ, the bandwidth values providing an
effective calibration must be smaller. For alternative assumptions, if the value of the
concentration parameter κ is larger, an increasing power is obtained.

[Table 4 about here.]

6. Real data examples

The datasets briefly mentioned in Section 1 are used to illustrate the performance in
practice of the test statistics T 1

n and T 2
n , given in (7) and in (8), respectively. Consider-

ing the regression model (1) with a single real-valued covariate, the testing procedure
is applied to the blue periwinkle dataset. For a bidimensional real-valued covariate,
the sand hopper dataset is employed to illustrate the proposed methodology. Based on
the simulation study, where both T 1

n and T 2
n presented a very similar behaviour, only

the test statistic T 2
n was employed in these illustrations. Moreover, taking into account

that NPCB presented a slightly better performance than the PCB in the simulations,
only the NPCB resampling approach was used to calibrate the test.

6.1. Blue periwinkle data

The blue periwinkle dataset, mentioned in the Introduction, is described in this section
in more detail to illustrate the application of the proposed goodness-of-fit test T 2

n for a
regression model with a single real-valued covariate. These data can be found in Table
1 of [1], and are available in the R package circular [28].

Directions and distances moved by small blue periwinkles after they had been trans-
planted downshore from the height at which they normally live are considered. Figure
3 (left panel) shows the observations of this dataset, which were analyzed and modeled
by different authors in the literature. In order to study how orientation varies with
distance, in [1], a parametric regression model was fitted, considering that the regres-
sion function belongs to the parametric family M1,β, given in (12). An iteratively
reweighted least squares algorithm to perform the maximum likelihood estimation of
the parameters was employed. On the other hand, in [2], a parametric approach was
also used to model these data. However, in that case a PMLM was assumed, consid-
ering linear models on the covariate (distance) for the means of the bivariate normal
distribution that is projected. Notice that if a projected normal distribution with iden-
tity covariance matrix is assumed, it holds that tan(µ) = µ2/µ1, being µ the circular
mean direction, and µ1 and µ2 the mean components of the bivariate normal distribu-
tion that is projected [2,29]. Therefore, using this approach, the following parametric
family is considered:

M3,β = {atan2(β0,2 + β1,2X,β0,1 + β1,1X), β0,2, β1,2, β0,1, β1,1 ∈ R},

where X represents the distance moved by the small blue periwinkles.
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This dataset was also explored by [4] using a nonparametric approach. Considering a
regression model with a circular response (direction) and a single real-valued covariate
(distance), the regression function was estimated using kernel-type methods.

In order to decide ifM1,β orM3,β are plausible parametric models for the regression
function with this dataset, the test statistic T 2

n is applied twice considering B = 500
replications. In both cases, the parametric fits were computed by maximum likelihood
(see Section 2.1). For further details on the estimation procedures, we refer to [1,2]. As
for the nonparametric fit, the local linear-type estimator given in (5) with a triweight
kernel was considered. As pointed out before, the performance of the test is analyzed
in a range of bandwidths.

Figure 3 (left panel) shows the smoothed versions of the parametric fits when con-
sidering the parametric families M1,β (dashed line) and M3,β (dotted line), and the
nonparametric regression estimator (solid line), using the leave-one-out cross valida-
tion (CV) bandwidth (see [4] for further details on bandwidth selection in this context).
These curves are compared in the proposed test statistic. Figure 3 (right panel) shows
the p-values of the tests for different bandwidths, when considering the parametric
families M1,β (dashed line) or M3,β (dotted line) as the null hypothesis, using the
significance traces [30]. Taking into account this plot, there are no evidences to reject
the null hypothesis in both testing problems. However, it can be observed that for
h larger than 15 the p-value decreases considerably when considering the parametric
family M1,β in the null hypothesis.

[Figure 3 about here.]

6.2. Sand hopper data

In this section, the testing procedure is applied to the sand hopper dataset, which con-
tains orientations of two species of male and female sand hoppers (Talorchestia brito
and Talitrus saltator). With the purpose of analyzing how sand hopper orientation
behaves when other variables are included as covariates (such as azimuth, pressure,
temperature, among others), both parametric and nonparametric approaches have
been considered in the literature. For instance, following the proposal in [2], [7] used
a PMLM to model such data. The authors assumed a projected normal distribution
for the scape directions with the corresponding parameters (circular mean and mean
resultant vector) depending on the explanatory variables through a linear model. Us-
ing nonparametric tools, this dataset (for males and females, being the sample sizes
n = 330 and n = 404, respectively) was also explored by [5], in order to check how
orientation behaves when temperature and (relative) humidity are included as covari-
ates. Only observations corresponding to relative humidity values larger than 45%
were considered (the corresponding datasets for both sexes are plotted in Figure 4,
with males in the left panel and females in the right panel). These authors provided
regression estimates using the local linear-type estimator (5).

[Figure 4 about here.]

In order to determine if a parametric multiple regression model is an appropriate
representation of these datasets (male and female sand hoppers), it is necessary to carry
out a goodness-of-fit test for the selected parametric model. Assuming the parametric
model used in [2] for this dataset, and taking into account the arguments in the
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previous section regarding the PMLM, the following parametric family is considered:

M4,β = {atan2(β0,2 + β1,2X1 + β2,2X2, β0,1 + β1,1X1 + β2,1X2)},

with β0,2, β1,2, β2,2, β0,1, β1,1, β2,1 ∈ R, and X1 = “temperature” and X2 = “humidity”.
The test statistic T 2

n is applied with B = 500 replications. The parametric fit was
computed by maximum likelihood (for further details on the estimation procedure,
we refer to [2]). As for the nonparametric fit, the local linear-type estimator given in
(5) with a multiplicative triweight kernel was considered. The bandwidth was taken
as a diagonal matrix H = diag(h1, h2), being the values of h1 and h2 different. The
range of bandwidths was selected taking into account the CV bandwidth matrices,
which can be found in [5]. Figure 5 shows the smoothed version of the parametric
fit for male (top left panel) and female (bottom left panel), and the nonparametric
regression estimators for male (top right panel) and for female (bottom right panel),
using the CV bandwidth matrices provided by [5]. The plots corresponding to the left
panels are compared with the right panels in the proposed test statistic.

[Figure 5 about here.]

Figure 6 shows the approximated p-values of the test for male (left panel) and female
(right panel), using the significance trace. Taking into account this figure, there are no
evidences against the circular regression function belonging to the parametric family
M4,β, for both sexes.

[Figure 6 about here.]

7. Discussion and further research

Novel testing procedures for assessing a parametric circular regression model (with a
circular response and an Rd-valued covariate) were proposed and empirically analyzed
in this work. The proposed test statistics were constructed by measuring a circular
distance between a (non-smoothed or smoothed) parametric fit and a nonparametric
estimator of the circular regression function. For the parametric approach, taking into
account that the classical least squares regression method is not appropriate when
the response variable is of circular nature, a circular analog can be used [1,20]. Other
parametric fitting approaches, such as maximum likelihood methods, could be also em-
ployed. Regarding the nonparametric fit, although the test statistics were presented
and numerically studied for a local linear-type estimator, they may be also defined
considering a local polynomial-type estimator of a general order p. Nevertheless, sig-
nificantly better results than the ones obtained for p = 1 (local linear case) are not
expected. Moreover, although the multiplicative triweight kernel was considered in
practice, some simulations were replicated using the Epanechnikov kernel, and similar
results were obtained. In any case, as expected, the effect of the bandwidth in the
performance of the tests is clearly more important than the effect of the kernel. For
this reason, the tests were applied on a grid of several bandwidths.

Although the asymptotic distribution of the tests, under the null and under local
alternatives, is out of the scope of this work, its derivation can follow from using a
Taylor approximation of the function 1−cos(Θ) by Θ2/2, for Θ ∈ [0, 2π) [3]. Using this
approach, the expressions 1−cos[m̂H(x)−mβ̂(x)] and 1−cos[m̂H(x)−m̂H,β̂(x)] in the

test statistics T 1
n and T 2

n , given in (7) and in (8), respectively, can be approximated by
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1
2 [m̂H(x)−mβ̂(x)]2 and 1

2 [m̂H(x)− m̂H,β̂(x)]2, respectively. Consequently, T 1
n and T 2

n

can be approximated by test statistics similar to the ones used, for example, in [8] or
in [13], for regression models with Euclidean response and covariates. Notice that the
regression estimators involved in the test statistics T 1

n and T 2
n have more complicated

expressions than those in [8] or in [13]. Therefore, as intuition suggests, it will be more
difficult to calculate close expressions of their asymptotic distributions.

For practical implementation, bootstrap resampling methods were used to calibrate
the test. Two procedures have been designed and compared: PCB and NPCB. Both
methods are based on computing the residuals and generating independent bootstrap
resamples. The main difference between them is the mechanism employed to obtain
the residuals. In PCB, the residuals come from the parametric regression estimator.
Alternatively, in NPCB, the residuals are obtained from the nonparametric regression
estimator. In the majority of scenarios considered in the simulation study, results ob-
tained with NPCB improved those achieved by PCB, especially for alternative assump-
tions. Moreover, a better behaviour is observed when T 2

n , given in (8), is employed,
showing the benefits of using the novel smoothed parametric estimator of the circu-
lar regression function defined in (9). The whole simulation study was repeated using
a Nadaraya–Watson-type estimator for the nonparametric fits employed to compute
the test statistics, given in (7) and in (8). The close expression of the Nadaraya–
Watson-type estimator can be found in [5]. In this case, the procedures work fairly
well when PCB is employed, while NPCB provides quite poor results. It seems that
the tests statistics suffer from boundary problems induced by the use of the Nadaraya–
Watson-type estimator, while this issue is overcome employing the local linear-type
estimator. When using the Nadaraya–Watson-type estimator, probably a modification
of the weight functions w used in the simulation study is required to obtain better
results.

Along this work, data generated from the circular regression model are assumed to
be independent. However, this assumption does not always hold in practical situations
[31–33]. The construction of the proposed test statistics makes possible to easily extend
the procedure for more general settings, such as spatially correlated data (or even with
spatio-temporal correlation). The estimators described in Section 2.1 could be also
employed for the parametric fit. Probably, more accurate results would be obtained
if an estimator taking the dependence structure into account was used. However, the
problem of estimating parametrically the circular regression function accounting the
dependence structure, up to the knowledge of the authors, has not been tackled in the
statistical literature. Regarding the nonparametric counterpart, the local linear-type
estimator given in (5) could be used. With the purpose of calibrating the tests in a
dependence framework, it should be noted that the bootstrap Algorithm 1, which was
designed for independent data, should not be used for dependent data, as it does not
account for the correlation structure. In order to mimic properly the distribution of
the spatial dependence structure of the circular errors in the bootstrap procedure,
Step 2 of Algorithm 1 should be modified. A possible approach to deal with this issue
is to fit an appropriate spatial circular process to the residuals, such as the wrapped
Gaussian spatial process [31], and generate a random sample from the fitted model.

In practice, the numerical studies performed in this work were run in an Intel Core
i7-9700K at 3.60Ghz. The procedures were implemented in the statistical environment
R [34], using functions included in the npsp and CircSpaceTime packages [35,36]. For
regression models with a single real-valued covariate, the computing time for running
the whole testing procedure (simulate a sample, compute the test statistics in a range
of bandwidths and apply the bootstrap methods considering B = 500 replications)
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for a sample of size n = 50, 100 and 200 is around 2, 3 and 5 seconds, respectively,
no matter the bootstrap method (PCB or NPCB) used to calibrate the test. For a
bidimensional one, the computing times are around 4, 6 and 14 seconds, when n =
100, 225 and 400, respectively. As expected, considering a bidimensional covariate is
more computationally expensive than using a single covariate.
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Table 1. Proportions of rejections of the null hypothesis for the parametric familyM1,β with different sample

sizes and κ = 10. Significance level: α = 0.05.
Test statistic c n Method h = 0.15 h = 0.25 h = 0.35 h = 0.45 h = 0.55 h = 0.65
T 1
n 0 50 PCB 0.032 0.036 0.034 0.040 0.042 0.042

NPCB 0.048 0.040 0.044 0.048 0.046 0.050
100 PCB 0.026 0.026 0.032 0.032 0.036 0.034

NPCB 0.028 0.028 0.032 0.034 0.036 0.034
200 PCB 0.024 0.028 0.028 0.034 0.036 0.034

NPCB 0.026 0.034 0.026 0.036 0.040 0.046
1 50 PCB 0.100 0.124 0.148 0.162 0.156 0.152

NPCB 0.142 0.156 0.170 0.184 0.184 0.174
100 PCB 0.212 0.264 0.300 0.324 0.318 0.304

NPCB 0.250 0.306 0.344 0.352 0.352 0.336
200 PCB 0.504 0.604 0.642 0.660 0.668 0.666

NPCB 0.548 0.636 0.674 0.686 0.692 0.680
2 50 PCB 0.380 0.506 0.574 0.606 0.618 0.598

NPCB 0.478 0.582 0.638 0.672 0.678 0.670
100 PCB 0.856 0.934 0.952 0.958 0.962 0.962

NPCB 0.896 0.944 0.964 0.972 0.970 0.970
200 PCB 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000
T 2
n 0 50 PCB 0.032 0.032 0.040 0.044 0.042 0.040

NPCB 0.044 0.042 0.046 0.050 0.052 0.050
100 PCB 0.026 0.028 0.038 0.032 0.030 0.030

NPCB 0.026 0.030 0.038 0.036 0.036 0.036
200 PCB 0.028 0.028 0.028 0.024 0.032 0.038

NPCB 0.026 0.030 0.030 0.022 0.032 0.038
1 50 PCB 0.106 0.118 0.144 0.140 0.156 0.146

NPCB 0.140 0.154 0.168 0.182 0.188 0.180
100 PCB 0.214 0.260 0.288 0.290 0.290 0.270

NPCB 0.248 0.298 0.324 0.334 0.336 0.312
200 PCB 0.502 0.582 0.610 0.618 0.644 0.620

NPCB 0.536 0.610 0.632 0.650 0.654 0.640
2 50 PCB 0.380 0.500 0.548 0.570 0.562 0.558

NPCB 0.476 0.574 0.620 0.626 0.638 0.620
100 PCB 0.840 0.924 0.944 0.946 0.948 0.944

NPCB 0.894 0.944 0.962 0.966 0.960 0.958
200 PCB 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 0.998
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Table 2. Proportions of rejections of the null hypothesis for the parametric familyM1,β with different values

of κ and n = 200. Significance level: α = 0.05.
Test statistic c κ Method h = 0.15 h = 0.25 h = 0.35 h = 0.45 h = 0.55 h = 0.65
T 1
n 0 5 PCB 0.030 0.030 0.024 0.024 0.028 0.030

NPCB 0.034 0.030 0.024 0.024 0.028 0.030
10 PCB 0.024 0.028 0.028 0.034 0.036 0.034

NPCB 0.026 0.034 0.026 0.036 0.040 0.046
15 PCB 0.026 0.034 0.030 0.034 0.038 0.040

NPCB 0.026 0.030 0.028 0.034 0.034 0.036
1 5 PCB 0.200 0.262 0.282 0.306 0.290 0.278

NPCB 0.216 0.276 0.306 0.314 0.320 0.294
10 PCB 0.504 0.604 0.642 0.660 0.668 0.666

NPCB 0.548 0.636 0.674 0.686 0.692 0.680
15 PCB 0.764 0.836 0.878 0.880 0.868 0.850

NPCB 0.784 0.856 0.882 0.882 0.872 0.868
2 5 PCB 0.872 0.916 0.930 0.942 0.942 0.928

NPCB 0.884 0.918 0.938 0.946 0.940 0.930
10 PCB 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000
15 PCB 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000
T 2
n 0 5 PCB 0.032 0.028 0.022 0.022 0.028 0.026

NPCB 0.034 0.028 0.026 0.030 0.030 0.028
10 PCB 0.028 0.028 0.028 0.024 0.032 0.038

NPCB 0.026 0.030 0.030 0.022 0.032 0.038
15 PCB 0.028 0.034 0.038 0.034 0.034 0.034

NPCB 0.026 0.038 0.036 0.036 0.032 0.034
1 5 PCB 0.198 0.252 0.264 0.272 0.268 0.250

NPCB 0.218 0.274 0.280 0.290 0.280 0.264
10 PCB 0.502 0.582 0.610 0.618 0.644 0.620

NPCB 0.536 0.610 0.632 0.650 0.654 0.640
15 PCB 0.752 0.826 0.862 0.868 0.868 0.858

NPCB 0.782 0.846 0.874 0.874 0.884 0.868
2 5 PCB 0.870 0.910 0.918 0.932 0.928 0.918

NPCB 0.884 0.916 0.930 0.942 0.938 0.932
10 PCB 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 0.998
15 PCB 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000
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Table 3. Proportions of rejections of the null hypothesis for the parametric familyM2,β with different sample

sizes and κ = 10. Significance level: α = 0.05.
Test statistics c n Method h = 0.25 h = 0.35 h = 0.45 h = 0.55 h = 0.65 h = 0.75 h = 0.85
T 1
n 0 100 PCB 0.030 0.034 0.048 0.050 0.062 0.066 0.068

NPCB 0.044 0.048 0.058 0.062 0.062 0.064 0.068
225 PCB 0.030 0.032 0.028 0.038 0.042 0.042 0.042

NPCB 0.024 0.030 0.032 0.038 0.042 0.044 0.044
400 PCB 0.042 0.040 0.042 0.038 0.030 0.036 0.038

NPCB 0.034 0.038 0.040 0.030 0.032 0.036 0.036
1 100 PCB 0.102 0.066 0.034 0.008 0.004 0.004 0.000

NPCB 0.158 0.106 0.038 0.014 0.004 0.004 0.000
225 PCB 0.362 0.264 0.140 0.058 0.020 0.008 0.004

NPCB 0.372 0.280 0.152 0.068 0.022 0.008 0.004
400 PCB 0.724 0.614 0.396 0.198 0.066 0.030 0.020

NPCB 0.722 0.616 0.392 0.190 0.076 0.032 0.020
2 100 PCB 0.574 0.548 0.442 0.302 0.176 0.098 0.070

NPCB 0.640 0.600 0.478 0.342 0.202 0.114 0.078
225 PCB 0.992 0.990 0.976 0.916 0.776 0.638 0.472

NPCB 0.992 0.994 0.980 0.924 0.804 0.664 0.508
400 PCB 1.000 1.000 1.000 0.998 0.992 0.976 0.932

NPCB 1.000 1.000 1.000 0.998 0.996 0.984 0.940
T 2
n 0 100 PCB 0.040 0.048 0.060 0.054 0.062 0.050 0.050

NPCB 0.060 0.064 0.066 0.064 0.066 0.070 0.068
225 PCB 0.032 0.032 0.030 0.038 0.046 0.044 0.046

NPCB 0.038 0.034 0.032 0.044 0.048 0.044 0.042
400 PCB 0.030 0.034 0.040 0.042 0.036 0.038 0.030

NPCB 0.032 0.032 0.040 0.036 0.030 0.034 0.034
1 100 PCB 0.132 0.220 0.292 0.332 0.336 0.344 0.342

NPCB 0.194 0.266 0.332 0.368 0.382 0.386 0.370
225 PCB 0.398 0.554 0.636 0.672 0.680 0.682 0.672

NPCB 0.418 0.552 0.640 0.670 0.678 0.676 0.662
400 PCB 0.944 0.984 0.994 0.994 0.990 0.990 0.988

NPCB 0.938 0.978 0.994 0.994 0.992 0.988 0.988
2 100 PCB 0.508 0.736 0.856 0.894 0.904 0.904 0.898

NPCB 0.556 0.752 0.854 0.898 0.902 0.902 0.902
225 PCB 0.980 0.996 0.998 1.000 1.000 1.000 1.000

NPCB 0.980 0.996 0.998 0.998 1.000 1.000 1.000
400 PCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4. Proportions of rejections of the null hypothesis for the parametric familyM2,β with different values

of κ and n = 400. Significance level: α = 0.05.
Test statistic c κ Method h = 0.25 h = 0.35 h = 0.45 h = 0.55 h = 0.65 h = 0.75 h = 0.85
T 1
n 0 5 PCB 0.026 0.034 0.040 0.038 0.042 0.038 0.038

NPCB 0.026 0.036 0.038 0.038 0.042 0.038 0.038
10 PCB 0.042 0.040 0.042 0.038 0.030 0.036 0.038

NPCB 0.034 0.038 0.040 0.030 0.032 0.036 0.036
15 PCB 0.038 0.044 0.040 0.038 0.032 0.038 0.038

NPCB 0.030 0.036 0.038 0.036 0.034 0.040 0.038
1 5 PCB 0.354 0.268 0.176 0.090 0.046 0.020 0.014

NPCB 0.360 0.290 0.178 0.094 0.048 0.020 0.012
10 PCB 0.724 0.614 0.396 0.198 0.066 0.030 0.020

NPCB 0.722 0.616 0.392 0.190 0.076 0.032 0.020
15 PCB 0.936 0.802 0.560 0.294 0.140 0.050 0.022

NPCB 0.922 0.792 0.554 0.302 0.136 0.050 0.026
2 5 PCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 PCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 PCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T 2
n 0 5 PCB 0.030 0.024 0.024 0.026 0.028 0.030 0.026

NPCB 0.046 0.046 0.050 0.050 0.050 0.054 0.052
10 PCB 0.030 0.034 0.040 0.042 0.036 0.038 0.030

NPCB 0.032 0.032 0.040 0.036 0.030 0.034 0.034
15 PCB 0.034 0.042 0.040 0.044 0.038 0.042 0.040

NPCB 0.024 0.024 0.038 0.044 0.042 0.036 0.036
1 5 PCB 0.566 0.684 0.744 0.776 0.786 0.794 0.786

NPCB 0.574 0.692 0.752 0.776 0.794 0.790 0.780
10 PCB 0.944 0.984 0.994 0.994 0.990 0.990 0.988

NPCB 0.938 0.978 0.994 0.994 0.992 0.988 0.988
15 PCB 0.990 0.998 0.998 0.998 0.998 0.998 0.998

NPCB 0.990 0.998 0.998 0.998 0.998 0.998 0.998
2 5 PCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 PCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 PCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000

NPCB 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Figure captions

Figure 1. Linear (top panels) and cylinder (bottom panels) representations. Red
lines: local linear-type regression estimator (left panels), parametric fit (center
panels) and smoothed version of the parametric fit (right panels), with sam-
ple points and circular regression function (black lines). Equally-spaced sample of
size n = 200 generated on the unit interval, following model (1), with regres-
sion function (13), for c = 0, and circular errors εi drawn from a vM(0, 10).

Figure 2. Circular regression function (top left panel), local linear-type regression
estimator (top right panel), parametric fit (bottom left panel) and smoothed version
of the parametric fit (bottom right panel). Sample of size n = 400 generated on a
bidimensional regular grid in the unit square, following model (1), with regression
function (15), for c = 0, and circular errors εi drawn from a vM(0, 10).

Figure 3. Left panel: Sample of directions and distances moved by periwinkles (circle
points), smoothed versions of the parametric fits when considering the parametric
families M1,β (dashed line) and M3,β (dotted line), and local linear-type regression
estimator (solid line), using the CV bandwidth. Right panel: p-values of the test when
considering the parametric family M1,β (dashed line) and M3,β (dotted line) as the
null hypothesis for different values of h. Horizontal solid line represents the value 0.05.

Figure 4. Observed orientation of male (left) and female (right) sand hoppers varying
with temperature and relative humidity.

Figure 5. Smoothed version of the parametric fit for male (top left panel) and fe-
male (bottom left panel), and local linear-type regression estimators for male (top
right panel) and for female (bottom right panel), using the CV bandwidth matrices.
Horizontal axis: temperature in Celsius degrees. Vertical axis: relative humidity in
percentage.

Figure 6. For male (left panel) and female (right panel) sand hopper orientation
dataset, p-values of the test for different values of h1 and h2, considering the parametric
family M4,β as the null hypothesis.
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